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Abstract: This paper presents recent developments in model selection and model averaging
for parametric and nonparametric models. While there is extensive literature on model
selection under parametric settings, we present recently developed results in the context of
nonparametric models. In applications, estimation and inference are often conducted under
the selected model without considering the uncertainty from the selection process. This often
leads to inefficiency in results and misleading confidence intervals. Thus an alternative to
model selection is model averaging where the estimated model is the weighted sum of all
the submodels. This reduces model uncertainty. In recent years, there has been significant
interest in model averaging and some important developments have taken place in this area.
We present results for both the parametric and nonparametric cases. Some possible topics
for future research are also indicated.
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1. Introduction

Over the last several years many econometricians and statisticians have persistently devoted their
efforts in finding various paths to the true model. The uncertainty in correctly specifying the regression
model has resulted in a large amount of literature in two major directions: firstly, what variables are
to be included and secondly, how they are related with the dependent variable in the model. Thus
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“what” refers to determining the variables to be included in constructing the model and “how” refers
to finding the correct functional form, e.g., parametric (specifications like linear, quadratic, etc.), or in
general, nonparametric smoothing methods that do not require specifying a parametric functional form
but instead let the data search for a suitable function that describes well the available data, see [1,2]
among others.

To determine “what”, model selection was first introduced, and it has a huge literature in statistics and
econometrics. In fact, in recent years, model selection (variable selection) procedures have become more
popular due to the emergence of econometric and statistical models with high dimension (large number)
variables. As examples, in labor economics, wage equations can have a large number of regressors [3]
and in financial econometrics, portfolio allocation may be among hundreds or thousands of stocks [4].
Such models raise additional challenges of econometric modeling and inference along with the selection
of variables. Different tools have been developed based on various estimation criteria. The majority
of such procedures involve variable selection by minimizing penalized loss functions based on the least
squares and the log-likelihood, and their variants. The adjusted R2 and residuals sum of squares are
the usual variable selection procedures without any penalization. Among the penalized procedures we
have Akaike information criterion (AIC) [5], Mallows C

p

procedure [6], Bayesian information criterion
(BIC) by [7], cross-validation method by [8], generalized cross-validation (GCV) by [9], and the focused
information criterion (FIC) by [10]. We note that the traditional AIC and BIC are based on least squares
(LS), maximum likelihood (ML), or Bayesian principles, and the penalization is based on the l

0

-norm
for the parameters entering in the model, with the result penalization is proportional to the number of
nonzero parameters. Both AIC and BIC are variable selection procedures and do not provide estimators
simultaneously. On the other hand the bridge estimator in [11,12] uses the l

q

-norm (q > 0), and for
0 < q  1 provides a way to combine variable selection and parameter estimation simultaneously.
Within this class the least absolute shrinkage and selection operator (LASSO; q = 1) has become the
most popular. For q = 2 we get the ridge estimator [13]. For a detailed review of model selection
in high dimensional modeling, see [14], and the books [15,16]. Similarly, in the context of empirical
likelihood estimation and generalized methods of moments estimators, model selection criteria have
been introduced by [17,18], among others.

Model selection is an important step for empirical policy evaluation and forecasting. However,
it may produce unstable estimators because of bias in model selection. For example, a small data
perturbation or an alternative selection procedure may give a different model. Reference [19] shows
that AIC selection results in distorted inference, and [20] explores the negative impact on confidence
regions. Reference [21] gives conditions under which post model selection estimators are adaptive, but
see [22,23] for their comments that they cannot be uniformly estimated. For a selected model with
unstable estimators, [24] provides bagging or bootstrap averaging procedure to reduce their variances
for the i.i.d. data, and by [25] for the dependent time series data. But this averaging does not always
work, e.g., for large samples and/or in entire parameter space.

Taking the above reasons into consideration, model averaging is introduced as an alternative to model
selection. Unlike in model selection, where the model uncertainty is dealt with by econometricians
selecting one model from a set of models, in model averaging, we resolve the uncertainty by averaging
over the set of models. There is large recent literature on Bayesian model averaging (BMA) and more
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recently, on frequentist model averaging (FMA). Among the BMA contributions, model uncertainty
is considered by setting a prior probability to each candidate model, see [26–30]; for interesting
applications in econometrics, see, e.g., [31–33]. Also, see [10] for comments on the BMA approach. The
main focus here is on the FMA method, which is totally determined by data only and assumes no priors,
and it has received much attention in recent years, see [34–41]. Reference [10] provides asymptotic
theory. For applications, see [16,42,43]. The concept behind the FMA estimators is related to the ideas
of combining procedures based on the same data, which have been considered before in several research
areas. For instance, [44] introduces forecast combination and [45,46] suggest combining parametric and
kernel estimators of density and regression respectively. Other works include bootstrap based averaging
(“stacking”) by [24,47,48], information theoretic method to combine density by [49,50], and the mixing
of experts models by [51,52]. Similar kinds of combining have been used in computational learning
theory by [53,54] and in information theory by [55].

Related to “how”, or rather determining the unknown functional forms of econometric models, we
use data based nonparametric procedures (e.g., kernel, smoothing spline, series approximation). See,
for example,[1,2,56,57], for kernel smoothing procedures, [58] for the spline methods, and [59,60] for
the series methods. These procedures help in dealing with the problems of bias and inconsistency in
estimation and testing due to misspecifying functional forms. Because of this recent developments on
nonparametric model selection and model averaging have taken place.

The current paper is hence focused on a review of parametric and nonparametric approaches to
model selection and model averaging mainly from a frequentist point of view, and for independently
and identically distributed (i.i.d.) observations. Earlier [14] provides a review of parametric model
selections, [61] surveys the FMA estimation, and [62] provides variable selection in semiparametric
regression models. To distinguish, our paper hence concentrates on the review of frequentist model
selection and model averaging under both parametric and nonparametric settings.

The paper is organized as follows. We first introduce a review of parametric model selection and
parametric model averaging in Section 2. Then, in Section 3 we present nonparametric model selection
and model averaging procedures. A conclusion follows in Section 4.

2. Parametric Model Selection and Model Averaging

2.1. Model Selection

Let us consider y

i

as a dependent variable and x

i

= (x

i1,

..., x

iq

)

0 a q ⇥ 1 vector of explanatory
variables/covariates. Then the linear regression model can be written as

y

i

= x

0
i

� + u

i

=

qX

j=1

x

ij

�

j

+ u

i

, i = 1, ..., n (1)

or
y = X� + u (2)

where y is n⇥ 1, X is n⇥ q, � = (�

1

, ..., �

q

)

0, and u is n⇥ 1.
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Among the well known procedures for model selection, often used routinely, we are looking at the
goodness of fit R2

, adjusted R

2 (R2

a

), and residuals sum of squared (RSS) given by

R

2

= 1�
P

û

2

iP
(y

i

� ȳ)

2

, R

2

a

= 1� (n� 1)

P
û

2

i

(n� q)

P
(y

i

� ȳ)

2

, RSS =

X
(û

i

)

2 (3)

where 0  R

2  1. The model with the highest R2 (or R2

a

) or smallest RSS is chosen. However R2

increases or RSS decreases, monotonically as q increases. Further, between R

2 and R

2

a

, Bias(R

2

a

) 
Bias(R

2

) but V (R

2

a

) � V (R

2

). Thus R2

a

may not always be statistically more efficient (MSE(R

2

a

) 
MSE(R

2

)), see [63] for further detail. Thus R

2

a

and RSS are not preferred measures of goodness
of fit or model selection. Recently [64] develops a model selection procedure based on the “mean
squared prediction error” denoted by MSPE. Consider (x

i1

, ..., x

iq

, z

i

), i = 1, ..., n, as a new observed
sample in which z

i

is the “new observed value” and ŷ

i

is such that MSPE =

P
E(z

i

� ŷ

i

)

2

/n =

�

2

u

(n+q+1)/n. When a model has q = 0 (no explanatory variable), MSPE = �

2

y

(n+1)/n. Then, using
the unbiased estimator of MSPE

0

= FPE

0

= s

2

y

(n+1)/n, and of MSPE = FPE as s2
û

(n+q+1)/n,

in [64] introduces

R

2

FPE

= 1� FPE

FPE

0

=

(n� 1)(n+ q + 1)R

2 � 2qn

(n� q � 1)(n+ 1)

such that R2

FPE

 R

2

a

 R

2 where FPE represents final prediction error. The statistical properties of
the bias and MSE of R2

FPE

, compared to those of R2

a

and R

2

, are analyzed in [65]. Reference [64] has
demonstrated that one of the exciting advantages of R2

FPE

is that it can be used for choosing a model
with the best prediction ability. Furthermore, R2

FPE

not only overcomes inflation in R

2

, it also avoids the
problem of selecting an overfitted model with some irrelevant explanatory variables due to using R

2

a

. In
addition, they indicate that R2

FPE

and AIC, discussed below, are asymptotically equivalent and in model
selection R

2

FPE

is perfectly consistent with using AIC and is closest with BIC. Thus R2

FPE

can be used
simultaneously for goodness of fit as well as for model selection.

2.1.1. AIC, TIC, and BIC

Now we turn to the methods of model selection, AIC in [5], Takeuchi informaiton criterion (TIC)
in [66], and BIC in [7]. For this, we first note that if f(y) is an unknown true density, and g(y, ✓) is an
assumed density then the Kullback-Leibler Information Criterion (KLIC) is given by

D(f, g) = KLIC(f, g) = E

f

log(

f(y)

g(y, ✓)

) = E

f

log f(y)� E

f

log g(y, ✓),

where E

f

is the expectation with respect to f(y). This is an expected “surprise” from knowing f is
in fact the true density of y. We note that D(f, g) � 0 where equality holds if and only if g = f

almost everywhere. Further E
f

log f(y) is called the entropy of distribution f ; for more on entropy and
information, see [67,68].

A concept related to entropy is the quasi maximum likelihood estimator (QMLE) ˆ

✓

QML

which
maximizes the quasi log-likelihood function

L(✓) = L

n

(✓) =

1

n

nX

i=1

log g(y

i,

✓)
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based on the random sample Y = (y

1

, ..., y

n

) from f(y). Since L
n

(✓) !p

E

f

[log g(y

1

, ✓)], it is expected
that ˆ

✓

QML

converges in probability to the maximizer ✓⇤ of E
f

[log g(y

1

, ✓)] under suitable conditions.
Since E

f

[log f(y

1

)] does not depend on ✓, QMLE minimizes a random function which converges to

KLIC(f, g) = E

f

log f(y

1

)� E

f

log g(y

1

, ✓) = D(f, g)

Thus ˆ

✓

QML

!p

✓

⇤ where ✓

⇤
= argmin

✓

D(f, g(✓)) is often referred to as the pseudo-true value of ✓.
It is well known that under some regularity conditions

p
n(

ˆ

✓

QML

� ✓

⇤
) !d

N(0, G(✓

⇤
)

�1

I(✓

⇤
)G(✓

⇤
)

�1

)

where G(✓) = �E

g

[@

2

log g(y, ✓)/@✓@✓

0
] and I(✓) = E

g

[@ log g(y

1

, ✓)@ log g(y

1

, ✓)/@✓@✓

0
]. When

f(·) = g(·, ✓⇤), G(✓

⇤
) = I(✓

⇤
) and ˆ

✓

QML

is the MLE and it is asymptotically efficient.
Now consider the fitted density ĝ(y) = g(y,

ˆ

✓

QML

) and

KLIC(f, ĝ) = E

f

log(

f(y)

ĝ(y)

)

= c� E

y

log g(y,

ˆ

✓

QML

)

where c =

R
f(y) log(f(y))dy is free of the fitted model and E

y

(·) denotes the expectation with respect
to the true density of y, i.e., g(y) here. Then E[KLIC(f, ĝ)] = c � EYEy

[log g(y,

ˆ

✓

QML

)] = c �
n

�1

P
EYEyi [log g(yi,

ˆ

✓

QML

)] where Y and y are independent. The expected KLIC can be interpreted
as the expected likelihood when Y is used for ˆ✓

QML

, and an independent sample y (with one observation
here) used for evaluation. In linear regression, the expected KLIC is the expected squared prediction
error. Dropping c, and using second order Taylor expansion, it can be shown that

nT = E[KLIC(f, ĝ)] = �E[L

n

(

ˆ

✓)] + tr[I(✓

⇤
)G(✓

⇤
)

�1

].

Further, an asymptotically unbiased estimator of T can be written as

ˆ

T = �n

�1{L
n

(

ˆ

✓)� tr(

ˆ

I

ˆ

G

�1

)}

where L

n

(

ˆ

✓) = log g(Y,

ˆ

✓),

ˆ

I

ˆ

G

�1 is a consistent estimator of I(✓

⇤
)G(✓

⇤
)

�1 in which
ˆ

I =

1

n

P
@ log g(yi,✓)

@✓

@ log g(yi,✓)

@✓

0 and ˆ

G = � 1

n

P
@

2

log g(y

i

, ✓)/@✓@✓

0
.

When the model is correctly specified, that is g(y, ✓⇤)=f(y), G(✓

⇤
)=I(✓⇤) and tr(I(✓

⇤
)G(✓

⇤
)

�1

) = q,

ˆ

T = �n

�1

L

n

(

ˆ

✓) + n

�1

q

which is related with AIC given by 2

ˆ

T :

AIC = �2L

n

(

ˆ

✓)

n

+

2q

n

. (4)

Thus, we can think of AIC as an estimate of the expected 2KLIC based on the assumption that the
model is correctly specified. Therefore, selecting a model based on the smallest AIC amounts to choosing
the best-fitting model in the sense of having the smallest KLIC. A robust AIC by Takeuchi [66], known
as the Takeuchi Information Criterion (TIC), is

TIC = �2L

n

(

ˆ

✓)

n

+

2tr(

ˆ

I

ˆ

G

�1

)

n

,



Econometrics 2013, 1 162

which, unlike AIC, does not require g(y, ✓) to be correctly specified. In general, picking models with the
smallest AIC/TIC is selecting fitted models whose densities are close to the true density.

We note that in a linear regression model, the minimization of the AIC reduces to the minimization
of the following

AIC = log �̂

2

+

2q

n

where �̂

2

=

û

0
û

n

. It can be shown that G(✓

⇤
) = I(✓

⇤
) if u

i

|x
i

⇠ N(0, �

2

). Thus AIC is more
appropriate under normality, otherwise it is an approximation for the non-normal and heteroskedastic
regression cases.

Further, in a linear regression case, the minimization of TIC can be shown as the minimization of

TIC = log �̂

2

+

2

n�̂

2

nX

i=1

h

i

û

2

i

+

ˆ

k

4

n

where ˆk
4

=

1

n�̂

4

P
n

i=1

(û

2

i

��̂

2

)

2 and h

i

= x

0
i

(X

0
X)

�1

x

i

. When the errors are homoskedastic and normal,

TIC ' log �̂

2

+

2(q + 1)

n

which is close to AIC. Although differences may arise under heteroskedasticity and nonnormality.
However, as we change models, typically the results û

2

i

and hence ˆ

k

4

may not change much. In this
case, TIC and AIC may give similar model selection results.

We note that the BIC due to [7] is

BIC = log �̂

2

+

(log n)q

n

in which the penalty term depends on the sample size and it is generally larger than the penalty term
appearing in the AIC. BIC provides a large sample estimator of a transformation of the Bayesian posterior
probability associated with the approximation model. In general, by choosing the fitted candidate model
corresponding to the BIC criterion, one is selecting the candidate model with the highest posterior
probability. A good property of BIC selection is that it provides consistent model selection, see for
example [69]. That is, when the true model is of finite dimension, BIC will choose the model with
probability tending to 1 as the sample size n increases.

In general, a penalized function can only be consistent if its penalty term (log n in BIC) is a fast
enough increasing function of n (see [70]). Thus AIC is not consistent as it always has some probability
of selecting models that are too large. However, we note that in finite samples, adjusted versions of
AIC can behave much better, see for example [71]. Further, since the penalty term of BIC is more
stringent than the penalty term of AIC, BIC tends to form smaller models than AIC. However, BIC
provides a large-sample estimator of the transformation of the Bayesian posterior probability associated
with the approximating model, and AIC provides an asymptotically unbiased estimator of the expected
Kullback discrepancy between the generating model and the fitted approximating model. In addition,
AIC is asymptotically efficient in the sense that it asymptotically selects the fitted candidate model
which minimizes the MSE of prediction, but BIC is not asymptotically efficient. This is because AIC
can be advocated when the primary goal of the model is to induce meaningful factors influencing the
outcome based on relative importance.
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In summary, both AIC and BIC provide well-founded and self-contained approaches to model
selection although with different motivations and penalty objectives. Both are typically good
approximations of their own theoretical target quantities. Often, this also means that they will identify
good models for observed data but both criteria can still fail in this respect. For a detailed simulation and
empirical comparison of these two approaches, see [72], and for their properties see [69,73,74]. Both the
AIC and the TIC are designed for the likelihood or quasi-likelihood context. They perform in a similar
way. Their relationship is similar to the relationship between the conventional and the White covariance
matrix estimators for the MSE/QMLE or LS. Unfortunately, despite the merit TIC has theoretically, it
does not appear to be widely used perhaps because it needs a very large sample to get good estimates.

2.1.2. FIC

Let us start from the model
y

i

= x

0
i

� + z

0
i

� + u

i

, i = 1, ..., n

or
y = X� + Z� + u

where X is an n ⇥ p matrix of variables intended (focused) to be included all the time yet the variables
in a n ⇥ q matrix Z may or may not be included. From the ML estimators (ˆ�

l

, �̂

l

), corresponding with
the l-th model, the predictor for m

l

= x

0
�

l

+ z

0
�

l

can be written as m̂
l

= x

0
ˆ

�

l

+ z

0
�̂

l

at (x, z). In [10]
provides MSE of m̂

l

. The basic idea of FIC is to develop a model selection criterion that chooses the
model with the smalllest estimated MSE. Such an MSE-based FIC for the l-th submodel is

d
FIC

l

= (!̂

0
(I � ˆ

 

l

ˆ

L

�1

)�̂)

2

+ 2!̂

0
ˆ

 

l

!̂

where ˆ

 

l

= ⇡

0
l

(⇡

l

ˆ

L

�1

⇡

0
l

)

�1

⇡

l

, ˆL = (Z

0
M

x

Z)

�1 where M
x

= I �X(X

0
X)

�1

X

0
, !̂ = X(X

0
X)

�1

x� z,

and ⇡

l

captures the projection mappings from the full model to the l-th submodel, such that !
l

= ⇡

l

!.

In contrast, from [10],
AIC

l

= ��̂

0
ˆ

L

�1

ˆ

 

l

ˆ

L

�1

�̂ + 2 |l|

where |l| is the number of uncertain parameters in the l-th submodel, shows that when the estimand
m = log f(y, �, �) such that f(y, �, �) is the probability density function of the data, the MSE-based
FIC is asymptotically equivalent to AIC.

2.1.3. Mallows Model Selection

Let us write the regression model (2) as

y = m+ u

where m = X�. Then m̂ = m̂(q) = P (q)y, where P (q) = X(X

0
X)

�1

X

0
.

The objective is to choose q such that the average mean squared error (risk) EL(q|X) is minimum,
where

L(q) =

1

n

[m� m̂(q)]

0
[m� m̂(q)] =

1

n

(

ˆ

� � �)

0
X

0
X(

ˆ

� � �) =

1

n

u

0
P (q)u
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such that
R(q) = E[L(q)|X] =

1

n

�

2

tr(P (q)) =

�

2

q

n

.

Mallows criterion for selecting q is to minimize

C(q) =

û

0
û

n

+

2�

2

q

n

where the seceond term on the right hand side is a penalty.
In fact, Mallows criterion is an unbiased estimator of the MSE of the predictive estimator m̂ of m.

This is because E[L(q)|X] = E[(m̂ �m)

0
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u

0
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n
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2
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�

2
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n

+

2�

2
q

n

= �

2

+ �

2

trP (q)/n. But the minimization of E[L(q)|X] with respect to q is the same as
the minimization of E[C(q)|X] since �

2 does not depend on q.

Alternatively,

1

n

(m̂�m)

0
(m̂�m) =

1

n
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0
(m̂� y + y �m)

=

1
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2
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2

]. So, an unbiased estimator is (û0
û+2�

2

q��

2

)/n

and its minimization is equivalent to the Mallows criterion.

2.1.4. Cross-Validation (CV)

CV is a commonly used procedure for model selection. According to this, the selection of q is made
by minimizing

CV (q) =

1

n
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(y

i

� x

0
i
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��i

)

2
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��i
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i
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from the sample. It can be shown
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�. Thus, CV is an almost unbiased
estimator of MSPE(q).

This can be shown by first writing the MSPE, based on an out of sample observation from the same
distribution as the in sample observation, as
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2 does not depend on q, its selection by MSPE(q) and MSE(q) are equivalent.
We observe that û

n+1

= y

n+1

� x

n+1

ˆ

� is a prediction error based on first estimating ˆ

� based on
in sample n observations, and then calculating the error by using the out of sample observation n + 1.
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Therefore, MSPE(q) is the expectation of a squared leave-one-out prediction error when the sample
length is n + 1. Using this idea we can also obtain a similar leave-one-out prediction error for each
observation i. This is given by û

i

= y

i

� x

0
i

ˆ

��i

based on n observations. Thus, Eû

2

i

= MSPE(q) for
each i, and

E[CV (q)] = E[

1

n

nX

i=1

û

2

i

] = MSPE(q).

Further, since Eû

2

n+1

based on n + 1 observations will be close to Eû

2

i

based on n observations,
CV (q) is an almost unbiased estimator of MSPE(q).

The CV (q) written above can be rewritten as

CV (q) =

1

n

nX

i=1

ũ

2

i

1� h

ii

where ũ
i

= y

i

�x

0
i

ˆ

�, h

ii

is referred to as the leverage effect and it is the diagonal element of the projection
matrix X(X

0
X)

�1

X

0
, see [75]. This expression is useful for calculations. Also, see [74] for a link of

CV (q) with AIC.

2.1.5. Model Selection by Other Penalty Functions

The issue regarding the model selection has received more attention in recent years because of the
challenging problem of estimating models with large numbers of regressors, which may increase with
sample size, for example, earning models in labor economics with large number of regressors, financial
portfolio models with large number of stocks, and VAR models with hundreds of macro variables.

A different method of variable selection and estimating such models is penalized least squares (PLS),
see [14] for a review on this. In fact in this literature estimation of parameters and variables selections
are done by using a criterion function involving loss function with a penalization function. Using l

p

-
penalized, the PLS estimator and variables selection problem are carried out as

min

�

[

nX

i=1

(y

i

� x

0
i

�)

2

+ �(

qX

j=1

|�
j

|p)1/p]

where � is a tuning or shrinkage parameter and the penalty is the restriction (

P
q

j=1

|�
j

|p)1/p  c (another
tuning parameter). For p = 0, the l

0

-norm becomes
P

q

j=1

I(�

j

6= 0) with I(·) as the usual indicator
function which indicates the number of nonzero �

j

for j = 1, ..., q. The AIC and BIC belong to this
norm. For p = 1, the l

p

-norm becomes
P

q

j=1

|�
j

|  c, which is used in the LASSO for simultaneous
shrinkage estimation [76] and for variable selection. It can be shown analytically that the LASSO method
estimates the zero coefficient as zero with positive probability as n ! 1. Next, for p = 2 the l

2

-
norm uses

P
q

j=1

�

2

j

 c and provides ridge type [13] shrinkage estimation but not variable selection.
However, if we consider the generalized ridge estimator under

P
ˆ

�

j

�

2

j

 c then the coefficient estimates
corresponding to ˆ

�

j

! 1 will tend to zero, see [77].
Further, when 0 < p  1 we get the bridge estimator [11,12] which provides a way to combine

variable selection and parameter estimation together with p = 1 as the LASSO. For adaptive LASSO
and other forms of LASSO, see [62,78–80]. Also, see the link of LASSO with the least angel regression
selection (LARS) by [81].



Econometrics 2013, 1 166

2.2. Model Averaging

Let us consider m be a parametric or nonparametric model, which can be a conditional mean or
conditional variance. Let m̂

l

, l = 1, ...,M be the set of estimators of m corresponding to the different
sets of regressors considered in the problem of model selection. Consider w

l

, l = 1, ...,M, to be the
weights corresponding to m̂

l

, where 0  w

l

 1 and
P

M

l=1

w

l

= 1. We can then define a model
averaging estimator of m as

m̂(w) =

MX

l=1

w

l

m̂

l

.

Below we present the choice of w

l

in linear regression models. For the linear regression model
consider the model in (1) or (2) where the dimension of � can tend to 1, as n ! 1. We take M models
where l-th model contains q

l

regressors, which is a subvector of x
i

. The corresponding model could be
written as

y = X

l

�

l

+ u,

and the LS estimator of �
l

is
ˆ

�

l

= (X

0
l

X

l

)

�1

X

0
l

y.

This gives
m̂

l

= X

l

ˆ

�

l

= P

l

y

where P

l

= X

l

(X

0
l

X

l

)

�1

X

0
l

. The model averaging estimator (MAE) of m is given as

m̂(w) =

MX

l=1

w

l

m̂

l

= P (w)y

where P (w) =

P
M

l=1

w

l

P

l

. An alternative expression is

m̂(w) =

MX

l=1

w

l

m̂

l

=

MX

l=1

w

l

X

l

ˆ

�

l

= X

ˆ

�(w)

where we write ˜

�

l

=

✓
ˆ

�

l

0

◆
such that X

l

ˆ

�

l

= [X

l

X�l

]

✓
ˆ

�

l

0

◆
= X

✓
ˆ

�

l

0

◆
= X

˜

�

l

and ˆ

�(w) =

P
M

l=1

w

l

˜

�

l

=

✓P
M

l=1

w

l

ˆ

�

l

0

◆
is the MAE of �. Thus, for the linear model, the MAE of m corresponds to the MAE of �

but this may not hold for the non-linear parameters model.
Now we consider the ways to determine weights.

2.2.1. Bayesian and FIC Weights

Under the Bayesian procedure we assume that there are M potential models and one of the models is
the true model. Then, using the prior probabilities that each of the potential models is the true model, and
considering the prior probability distributions of the parameters, the posterior probability distribution is
obtained as the weighted average of the submodels where weights are the posterior probabilities that the
given model is the true model given the data.
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The two types of weights considered are then

w

l

=

exp{�1

2

AIC

l

}
P

M

l=1

exp{�1

2

AIC

l

}
and w

l

=

exp{�1

2

BIC

l

}
P

M

l=1

exp{�1

2

BIC

l

}

where AIC

l

= �2 logL + 2q

l

and BIC

l

= �2 logL + q

l

log n. These are known as smoothed AIC
(SAIC) and smoothed BIC (SBIC) weights. While the Bayesian model averaging estimator (BMAE) has
a neat interpretation, it searches for the true model instead of selecting an estimator of a model with a
low loss function. In simulations it has been found that SAIC and SBIC tend to outperform AIC and BIC
estimators, see [82].

As for the FIC, consider the model averaging estimator as

m̃ =

MX

l=1

w

l

m̂

l

where
w

l

= exp(�1

2

FIC

l

!

0
L!

)/

X

all l

exp(

1

2

FIC

l

!

0
L!

)

and  is an algorithmic parameter, bridging from uniform weighting ( close to 0) to the hard-core FICC
( is large). For this and further properties and applications of FIC, see [10] and [82].

2.2.2. Mallows Weight Selection Method

In the linear regression model, m̂(w) = P (w)y is a linear estimator with w 2 W

M

. So an optimal
choice of w can be found following the Mallows criterion described above. The Mallows criterion for
choosing weights w is

C(w) = û(w)

0
û(w) + 2�

2

tr(P (w))

where û(w) = y � m̂(w) = y �
P

M

l=1

w

l

m̂

l

=

P
M

l=1

w

l

(y � m̂

l

) =

P
M

l=1

w

l

û

l

=

ˆ

Uw and

tr(P (w)) =

MX

l=1

w

l

trP

l

=

MX

l=1

w

l

q

l

= q0
w

in which q = (q

1

, ..., q

M

)

0
, w = (w

1

, ..., w

M

)

0
, û

l

is the residual vector from the l-th model and ˆ

U =

(û

1

, ..., û

M

) is an n⇥M matrix of residuals from all the models. Thus

C(w) = w

0
ˆ

U

0
ˆ

Uw + 2�

2q0
w

is quadratic in w. Thus
ŵ = arg min

w2WM

C(w),

which is obtained by using the quadratic programming procedure with inequality constraints using Gauss
or MATLAB. Then Hansen’s Mallows model averaging (MMA) estimator is

m̂(ŵ) =

MX

l=1

ŵ

l

m̂

l

.
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Following [83], [39] shows that
L(ŵ)

Inf

w2W ⇤
M
L(w)

! 1

as n ! 1, and ŵ is asymptotically optimal in Li’s sense, where L(ŵ) = (m � m̂(ŵ))

0
(m � m̂(ŵ)).

However, Hansen’s result requires weights belonging to a discrete set and the models to be nested.
In [41] improves the result by relaxing discreteness and by not assuming that the models are nested.
Their approach is based on deriving an unbiased estimator of the exact MSE of m̂(w).

Reference [84] also proposes a corresponding forecasting method, using Mallows model averaging
(MMA). He proves that the criterion is an asymptotically unbiased estimator of both the in-sample and
the out-of-sample one-step-ahead MSE.

2.2.3. Jackknife Model Averaging Method (CV)

Utilizing the leave-one-out cross validation (CV) procedure, which is also known as the Jackknife
procedure, Jackknife model averaging (JMA) method of estimating m(w) by [40] relaxes assumptions
in [39]. The submodels are now allowed to be non-nested and also the error terms can be heteroskedastic.
The sum-of-squared residuals in the JMA method is

CV (w) =

1

n

(y � m̃(w))

0
(y � m̃(w))

where m̃(w) is the vector of the Jackknife estimator computed with the i-th element deleted. To be more
specific, m̃

l

= X(X

0
l(�i)

X

l(�i)

)

�1

X

0
l(�i)

y�i

, where X

l(�i)

is equal to X

l

with its i-th row deleted and y�i

is y with the i-th element deleted. Thus

ũ(w) =

MX

l=1

w

l

(y � m̃

l

) =

MX

l=1

w

l

ũ

l

=

˜

Uw

where ˜

U = (ũ

1

, ..., ũ

M

) is an n⇥M matrix, ũ
l

= (ũ

1l,

..., ũ

nl

)

0 is an n⇥1 vector in which ũ

il

is computed
with the i-th observation deleted. Then

CV (w) =

1

n

ũ(w)

0
ũ(w) =

1

n

w

0
˜

U

0
˜

Uw

and JMA weights are obtained by minimizing CV (w) with respect to w = w̃

l

, and the JMA estimator
is m̃(w) =

P
M

l=1

w

l

m̃

l

. Reference [40] shows the asymptotic optimality, using [83,85], in the sense of
minimizing conditional risk which is equivalent to the out-of-sample prediction MSE.

There are many extensions of the JMA method to various other econometric models. Reference [86]
does it for the quantile regression model. Reference [82] extends it for the dependent time series
models or models with GARCH errors. Also, using MMA method in [39], for models with endogeneity,
in [87] develops MMA based two-stage least squares (MATSLS), model averaging limited information
maximum likelihood (MALIML), and model averaging Fuller (MAF) estimators.

However, it would be useful to have extensions of the MMA and JMA procedures to the models
with GMM or IV estimator. In addition the sampling properties of the average estimators need to be
developed for the purpose of statistical inference.
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3. Nonparametric (NP) Model Selection and Model Averaging

3.1. NP Model Selection

Let us write the NP model as
y

i

= m(x

i

) + u

i

where x

i

is i.i.d. with density f and the error u
i

is independent of x
i

.

We can write the local linear model as

y

i

= m(x) + (x

i

� x)

0
�(x) + u

i

= z

i

(x)

0
�(x) + u

i

or
y = Z(x)�(x) + u

where z

i

(x) = [1 (x

i

� x)

0
]

0 so that Z(x) is an n ⇥ (q + 1) matrix and �(x) = [m(x) �(x)]

0
. Then the

local linear LS estimator (LLLS) of �(x) is

ˆ

�(x) = (Z

0
(x)K(x)Z(x))

�1

Z

0
(x)K(x)y = P (x)y

where P (x) = (Z

0
(x)K(x)Z(x))

�1

Z

0
(x)K(x), K(x) = diag(K((x

1

� x)/h), ..., K((x

n

� x)/h))

is a diagonal matrix in which the kernel K((x

i

� x)/h) =

Q
q

j=1

K((x

ij

� x

j

)/h

j

), and h

j

is the
window-width for the j-th variable. From this, pointwise m̂(x) = [1 0]

ˆ

�(x),

ˆ

�(x) = [0 1]

ˆ

�(x). Further,
profiled m̂ = (m̂(x

1

), ..., m̂(x

n

))

0 can be written as

m̂ = Py

where P = P (h) is an n⇥n matrix generated by [1 0]P (x

i

) = [1 0](Z

0
(x

i

)K(x

i

)Z(x

i

))

�1

Z

0
(x

i

)K(x

i

),
for i = 1, ..., n. If h is fixed then m̂ is a linear estimator in y. But it will be a nonlinear estimator in y if
h =

ˆ

h is either obtained by a plug-in estimator or by cross-validation.
With respect to the goodness of fit measures for the NP models we note that

V (y) = V (m(x)) + E[�

2

(x)]

So the global population goodness of fit is

⇢

2

=

V (m(x))

V (y)

= 1� E[y �m(x)]

2

V (y)

, 0  ⇢

2  1

and its sample global estimator is given by
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0
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0
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(h)y
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0
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(h)y
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0
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where û = y � m̂ = y � P (h)y = M(h)y (M(h) = I � P (h)), M
1

(h) = M(h)

0
M(h), M

⇤
1

(h) =

M

2

�M

1

(h), and M

2

= I � ◆◆

0

n

with ◆ being an n ⇥ 1 vector of unit elements. However, 0  R

2  1

may not be valid since
P

(y

i

� ȳ)

2 6=
P

(m̂(x
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) � ȳ)

2

+

P
û

2

i

. Therefore, one can use the following
modified 0  R

2

1

 1 as
R

2

1

= R

2

I(a  1)

where a =

P
û

2

i

/

P
(y

i

� ȳ)

2 and I(·) is an indicator function.
Another way to define a proper global R2 is to first consider a local R2

(x). This is based on the fact
that at the point x,

X
(y

i

� ȳ)

2
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x
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� x
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)� ȳ)
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)

because
P

u

i

K(

xi�x

h

) = 0 and
P

(x

i

�x)u

i

K(

xi�x

h

) = 0 due to local linear LS estimation. Thus a local
R

2

(x) can be defined as

R
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P
(m̂(x

i

)� ȳ)

2
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xi�x
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)

P
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� ȳ)

2

K(

xi�x
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=

SSR(x)

SST (x)

which satisfies 0  R

2

(x)  1. A global R2

2

is then

R

2

2

=

R
x

SSR(x)dxR
x

SST (x)dx

, 0  R

2

2

 1

The goodness of fit R2

1

is considered in [88] where they showed its application for the statistically
significant variables selection in NP regression. R2

2

is introduced in [89,90]. For the variables selection
it may be more appropriate to consider an adjusted R

2

1

as

R

2

1a

= R

2

a

I(b  1)

where R

2

a

= (1 � n�1

trM1(h)

y

0
M1(h)y

y

0
M2y

) = 1 � b. As a practical matter, the most critical choice in model
selection in the nonparametric regression estimation above is the choice of the window-width h and the
number of variables q. Further, if instead of considering the local linear estimator taken above and often
used, we consider a local polynomial of degree d, then Z(x) in ˆ

�(x) would be a n ⇥ (qd + 1) matrix
and we would need an additional selection for d. Thus the nonparametric goodness of fit measures
described above should be considered as R2

1

= R

2

1

(h, q, d) and R

2

1a

= R

2

1a

(h, q, d) and they can be used
for choosing, say h, for fixed q and d, as the value which maximizes R2

1a

(h, q, d). We note that d = 0

is the well known Nadaraya and Watson local constant estimator and for d = 1, it is the local linear
estimator. Further, for given d and h, R2

1

= R

2

1

(q) and R

2

2

= R

2

2

(q) can be used to choose q.

3.1.1. AIC, BIC, and GCV

In the NP case the model selection (choosing q) using AIC is proposed by [91]. This is based on the
LCLS estimator,

AIC = log �̂

2

+

1 + trP (h)/n

1� (trP (h) + 2)/n

where �̂

2

= û

0
û/n = y

0
M

1

(h)y/n in which M

1

(h) = M(h)

0
M(h) and M(h) = I � P (h) where the

(i, j)-th element of P (h) is P
i,j

(h) = K

ij

/

P
n

l=1

K

il

and K

ij

=

Q
q

s=1

h

�1

s

K((x

is

� x

js

)/h

s

).
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In the same way, we note that AIC = AIC(h, q, d) and it can be used to select, for example, h given
q and d ([92]) or q given h and d. In the latter case AIC = AIC(q). The result for the BIC = BIC(q)

procedure in the NP model is not yet known. However, if one considers NP sieve regression of the type
m(x) =

P
q

j=1

z

j

(x)�

j

where z

j

(x) are nonlinear function of x and q, then BIC is similar to the BIC
given in [96]. This includes, for example, special cases of a series expansion in which z

j

(x) = x

j

, and a
spline regression in which m(x) =

P
p

j=1

x

j

�

j

+

P
r

j=1

�

p+j

(x� t

j

)I(x � t

j

) with q = p+ r, t

j

as j-th
knot, and I(x � t

j

) = 1 if x � t

j

and 0 otherwise.
In [9] an estimate of the minimizer of EL(q), called the GCV, is proposed which does not require the

knowledge of �2

. This can be written as the minimization of

V (q) =

n

�1

P
n

i=1

(y

i

� m̂(x

i

))

2

(1� n

�1

trP )

2

with respect to q. It has been shown by [9] that E[V (q)|x] � �

2 ' E[L(q)|x] for large n, and
the minimizer q̂ of EV (q) is asymptotically optimal in the sense that EL(q̂)/min

q

EL(q) = 1 as
n ! 1. That is, the MSE of q̂ tends to be minimum as n ! 1. We note that L(q) in parametric
and nonparametric cases are given in Sections 2.1.3 and 3.1.2, respectively.

3.1.2. Mallows Model Selection

Let us write the regression model
y

i

= m(x

i

) + u

i

where E[u

i

|x
i

] = 0 and E(u

2

i

|x
i

) = �

2

. Then, for m = (m(x

1

), ...,m(x

n

))

0
, y = (y

1

, ..., y

n

)

0 and
u = (u

1

, ..., u

n

)

0

y = m+ u.

Let us consider the LLLS estimator of m, which is linear in y, as

m̂ = m̂(q) = P (q)y

where P = P (h) = P (q) as defined in section 3.1. When ˆ

h ! h for large n, m̂ can become
asymptotically linear.

Our objective is to choose q such that the average mean squared error (risk) E[L(q)|x] is minimum
where

L(q) =

1

n

(m� m̂(q))

0
(m� m̂(q)).

We note that for û = y � m̂(q)
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0
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and
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n
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]

Further Mallows criterion for selecting q (number of variables in x

i

) is by minimizing

C(q) =

1

n

(y � m̂(q))

0
(y � m̂(q)) +

2�

2

n

trP (q)
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where the second term on the right-hand side is the penalty. Essentially, the minimization of C(q) is the
same as the minimization of the unbiased estimator of E[L(q)|x] = R since �

2 does not depend on q,
see Section 2.1.3 and [6,9].

3.1.3. Cross Validation (CV)

The CV method is one of the most widely used window-width selectors for NP kernel smoothing.
We note that the cross-validation estimator of the integrated squared error weighted by the density f(x),

ISE(q) =

Z

x

(m̂(x)�m(x))

2

f(x)dx

is given by

CV (q) =

1

n

nX

i=1

(y

i

� m̂�i

(x

i

))

2

where m̂�i

(x

i

) is m̂(x

i

) after deleting the i-th observations y
i

, x

i

from the sample. In fact,

CV (q) =

1

n

nX

i=1

(m(x

i

)� m̂�i

(x

i

))

2

+

2

n

nX

i=1

(m(x

i

)� m̂�i

(x

i

))u

i

+

1

n

nX

i=1

u

2

i

where the first term on the right-hand side is a good approximation to ISE(h), because the second term
is generally negligibly small, and the third term converges to a constant �2

= E[�

2

(x)] free from h.
Therefore CV (q) = ISE(q) + �

2 asymptotically.
Also, in the case where m(x) is a sieve regression, [96] shows that CV is an unbiased estimator

of the MSE of prediction error (MSEPE) of m, MSEPE = E[y

n+1

� m̂

(

x

n+1

)]

2, see section 2.1.4.
In addition, the minimization of MSEPE is equivalent to the minimization of MSE and integrated MSE
(IMSE) of estimated m for conditional and unconditional x, respectively.

If, instead of the local linear of m(x

i

) we consider the local polynomial of order d, then m̂(x

i

) is the
LPLS estimator [2], and CV (q) = CV (h, q, d) continues to hold. For d = 0 we have a local constant LS
(LCLS) estimator developed by [98,99]. For d = 1 we have the LLLS estimator as considered above.
In practice, the values of h and d can be determined by minimizing CV (h, q, d) with respect to h and
d for given q, which is developed by [100]. For a vector x

i

, if the choice of h
j

=

ˆ

h

j

for any j tends to
be infinity (very large) then the corresponding variable is an irrelevant variable. This can be observed
from a simple example. Suppose the m̂(x) for two variables x

i1,

x

i2

, considering the LCLS estimator
is m̂(x

1

, x

2

) = m̂(x) =

P
y

i

K(

xi1�x1

h1
)K(

xi2�x2

h2
)/

P
K(

xi1�x1

h1
)K(

xi2�x2

h2
). Thus if h

2

! 1, then
K(

xi2�x2

h2
) = K(0) is constant and m̂(x) = m̂(x

1

, x

2

) =

P
y

i

K(

xi1�x1

h1
)/

P
K(

xi1�x1

h1
). Thus a large

estimated value of the window-width leads to the exclusion of variables, and hence variables selection.
In a seminal paper [83] shows that Mallows, GCV and CV procedures are asymptotically equivalent

and all of them lead to optimal smoothing in the sense that
R
(m̂(x, q̂)�m(x))

2

dF (x)

inf

q

R
(m̂(x, q)�m(x))

2

dF (x)

!p

1

where m̂(x) = m̂(x, q̂), given h and d, is an estimator of m(x) with q̂ obtained using one of the
above procedures.
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Also, [101] demonstrates that for the local constant estimator (d = 0 and given q), CV = CV (h, q, 0)

smoothing selectors of h are asymptotically equivalent to GCV selectors. In an important paper,
in [92] shows the asymptotic normality of m̂(x) = m̂(x,

ˆ

h), where ˆ

h is obtained by the CV method
and x

i

is a vector of mixed continuous and discrete variables. Their extensive simulation results reveal
(no theoretical proof) that AIC window-width selection criterion is asymptotically equivalent to the CV
method, but for small samples AIC tends to perform better than the CV method. Further, with repect
to the comparison of NP and parametric models, their results explain the observations of [102] which
finds that NP estimators with smoothing parameters h chosen by CV can yield better prediction relative
to commonly used parametric methods for the datasets of several countries. Reference [85] shows that
CV is optimal under heteroskedasticity. For GMM model selection which involves selecting moments
conditions, see [93]. Also, see [94] for using minimization of empirical likelihood/KLIC and comments
by [95] claiming a fundamental flaw in the application of KLIC.

3.2. NP Model Averaging

Let us consider m̂
l

, l = 1, ...,M, to be the set of estimators of m corresponding to the different sets
of regressors considered in the model selection. Then

m̂(w) =

MX

l=1

w

l

m̂

l

= P (w)y

where m̂

l

= P

l

y, P (w) =

P
M

l=1

w

l

P

l

and P

l

is the P matrix, as defined before, based here on the
variables in the l-th model. Then the choice of w can be determined by applying Mallows criterion (see
Section 2.2.2) as

C(w) = w

0
ˆ

U

0
ˆ

Uw + 2�

2q⇤0
w

where q⇤
= (trP (q

1

), ..., trP (q

M

)), and ˆ

U = (û

1

, ..., û

M

)

0 is a matrix of NP residuals of all the models.
Thus we get m̂(ŵ) =

P
M

l=1

ŵ

l

m̂

l

.

Similarly, as in section 2.2.3, if we calculate m̃

l

by deleting one element of each variable, then w can
be determined by minimizing

CV (w) =

1

n

w

0
˜

U

0
˜

Uw

in which the NP residuals matrix ˜

U = (ũ

1

, ..., ũ

M

)

0 with ũ

l

= (ũ

1l,

..., ũ

nl

)

0
, and ũ

il

is computed with the
i-th observation deleted.

For the fixed window-width the optimality result of ŵ can be shown to follow from [83]. However,
for h =

ˆ

h the validity of Li’s result needs further investigation.

4. Conclusions

Nonparametric and parametric models are studied in econometrics and practice. In all applications,
the important issue is to reduce model uncertainty by using model selection or model averaging.
This paper selectively reviews frequentist results on model selection and model averaging in the
regression context.
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It is clear that most of the results presented are under the i.i.d. assumption. It is useful to relax this
assumption to allow dependence or heterogeneity in the data, see [103] for model selection in dependent
time series models using various CV procedures. A systematic study of the properties of estimators
based on FMA is warranted. Further, results need to be developed for more complicated nonparametric
models, e.g., panel data models and models where variables are endogenous, although for the parametric
case see [104–108]. Also, the properties of NP model averaging estimators, when the window-width in
kernel regression is estimated are to be developed; although readers can see [96] for NP results of the
estimators based on the sieve method.
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101. Härdle, W.; Hall, P.; Marron, J.S. How far are automatically chosen regression smoothing

parameters from their optimum? J. Am. Stat. Assoc. 1988, 83, 86–99.
102. Li, Q.; Racine, J. Empirical Applications of Smoothing Categorical Variables; Working Paper;

Department of Economic, McMaster University: Ontario, Canada, 2001.
103. Racine, J. Consistent cross-validatory model-selection for dependent data: Hv-block

cross-validation. J. Econom. 2000, 99, 39–61.
104. Caner, M. A lasso type GMM estimator. Econom. Theory 2009, 25, 270–290.
105. Caner, M.; Fan, M. A Near Minimax Risk Bound: Adaptive Lasso with Heteroskedastic Data

in Instrumental Variable Selection; Working Paper; North Carolina State University: Raleigh,
USA, 2011.

106. Garcia, P.E. Instrumental Variable Estimation and Selection with Many Weak and Irrelevant
Instruments; Working Paper; University of Wisconsin: Madison, WI, USA, 2011.

107. Liao, Z. Adaptive GMM shrinkage estimation with consistent moment selection. Econom. Theory
2013, FirstView, 1–48.

108. Gautier, E.; Tsybakov, A. High-Dimensional Instrumental Variables Regression and Confidence
Sets; Working Paper; Centre de Recherche en Economie et Statistique: Malakoff Cedex,
France, 2011.

c� 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Parametric Model Selection and Model Averaging
	Model Selection
	AIC, TIC, and BIC
	FIC
	Mallows Model Selection
	Cross-Validation (CV)
	Model Selection by Other Penalty Functions

	Model Averaging
	Bayesian and FIC Weights
	Mallows Weight Selection Method
	Jackknife Model Averaging Method (CV)


	Nonparametric (NP) Model Selection and Model Averaging
	NP Model Selection
	AIC, BIC, and GCV
	Mallows Model Selection
	Cross Validation (CV)

	NP Model Averaging

	Conclusions
	Acknowledgements
	Conflicts of Interest

