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1. Introduction

Let (Ω,F , P ) be a probability space and {yt = [y1,t, y2,t]
′; t = 0, 1, ...} a bivariate stochastic process

defined on (Ω,F , P ). We consider the differenced process {∆yt = [∆y1,t,∆y2,t]
′; t = 1, ...}, where ∆

is the first-difference operator. Following Caporale and Pittis [1] and Hassapis et al. [2], we say that the
process {∆yt; t = 1, ...} is jointly unpredictable if

E(∆yt+1|σ(yt, ...,y0)) = 0 ∀t (1)

where σ(yt, ...,y0) is the σ-field generated by past vectors yi i = 0, ..., t.
The goal of this paper is to show that the notion of joint unpredictability, in a particular parametric

framework, can be characterized by a geometric condition. This characterization is given in terms of
distance between information sets in an Hilbert space. In particular, we will show that the process
{∆yt; t = 1, ...} is jointly unpredictable if and only if the information contained in its past is ‘much
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distant’ from the information contained in its future. Even if our result is not as general as might
seem desirable, we think that the intuition gained from this characterization makes the notion of joint
unpredictability more clear.

The rest of the paper is organized as follows. Section 2 presents the utilized mathematical framework.
Sections 3 presents the geometric characterization. Section 4 concludes.

2. Preliminaries

Definitions, notation, and preliminary results from Hilbert space theory will be presented prior to
establish the main result. An excellent overviews of the applications of Hilbert space methods to time
series analysis can be found in Brockwell and Davis [3].

We use the following notations and symbols. Let (Ω,F , P ) be a probability space. We consider the
Hilbert space L2(Ω,F , P ) of all real square integrable random variables on (Ω,F , P ). The inner product
in L2(Ω,F , P ) is defined by 〈z, w〉 = E(zw) for any z, w ∈ L2(Ω,F , P ). The space L2(Ω,F , P ) is a
normed space and the norm is given by ‖w‖ = [E(w2)]

1/2
. The distance between z,w ∈ L2(Ω,F , P ) is

d(z,w) = ‖z − w‖. A sequence {zn}⊂ L2(Ω,F , P ) is said to converge to a limit point z ∈ L2(Ω,F , P )

if d(zn, z)→ 0 as n→∞. A point z ∈ L2(Ω,F , P ) is a limit point of a set M (subset of L2(Ω,F , P ))
if it is a limit point of a sequence from M . In particular, M is said to be closed if it contains all its limit
points. If S is a arbitrary subset of L2(Ω,F , P ), then the set of all α1z1 + ... + αhzh (h = 1, 2, ....;
α1, ..., αh arbitrary real numbers; z1, ..., zh arbitrary elements of S) is called a linear manifold spanned
by S and is symbolized by sp(S). If we add to sp(S) all its limit points we obtain a closed set that we call
the closed linear manifold or subspace spanned by S, symbolized by sp(S). Two elements z, w ∈ L2 are
called orthogonal, and we write z ⊥ w, if 〈z, w〉 = 0. If S is any subset of L2(Ω, F, P ), then we write
x ⊥ S if x ⊥ s for all s ∈ S; similarly, the notation S ⊥ T , for two subsets S and T of L2(Ω, F, P ),
indicates that all elements of S are orthogonal to all elements of T . For a given z ∈ L2(Ω,F , P ) and a
closed subspace M of L2(Ω,F , P ), we define the orthogonal projection of z on M , denoted by P (z|M),
as the unique element of M such that ‖z − P (z|M)‖ ≤ ‖z − w‖ for any w ∈M. We remember that if
z ⊥M , then P (z|M) = 0.

If M and N are two arbitrary subsets of L2(Ω,F , P ), then the quantity

d (M,N) = inf {‖m− n‖ ;m ∈M,n ∈ N}

is called distance between M and N .
We close this section introducing some further definitions, concerning discrete stochastic processes

in L2(Ω,F , P ).
Let {xt} be a univariate stochastic process. We say that {xt} is integrated of order one (denoted

xt ∼ I(1)) if the process {∆xt = xt − xt−1} is stationary whereas {xt} is not stationary. We say that the
bivariate stochastic process

{
yt = [y1,t, y2,t]

′} is integrated of order one if y1,t ∼ I(1) and y2,t ∼ I(1).
A stochastic process {yt} Granger causes another stochastic process {xt}, with respect to a given

information set It that contains at least xt−j , yt−j , j > 0, if xt can be better predicted by using
past values of y than by not doing so, all other information in It (including the past of x) being
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used in either case. More formally, we say that {yt} is Granger causal for {xt} with respect to
Hxy(t) = sp {xt, yt, xt−1, yt−1, ...} if

‖xt+1 − P (xt+1|Hxy(t))‖2 < ‖xt+1 − P (xt+1|Hx(t))‖2

where Hx(t) = sp {xt, xt−1, ...}.
Two stochastic processes, {xt}, and {yt}, both of which are individually I(1), are said to be

cointegrated if there exists a non-zero constant β such that {zt = xt − βyt} is a stationary (I(0)) process.
It is important to note that cointegration between two variables implies the existence of causality

(in the Granger sense) between them in at least one direction (see Granger [4]).

3. A Geometric Characterization

In this section we assume that
{
yt = [y1,t, y2,t]

′ ; t = 0, 1, ...
}

be a bivariate stochastic process
defined on (Ω,F , P ), integrated of order one, with y1,0 = y2,0 = 0, that has a VAR(1) representation

yt = Ayt−1 + ut (2)

where

A =

[
a11 a12

a21 a22

]
is a fixed (2 × 2) coefficient matrix and ut= [u1,t, u2,t]

′ is i.i.d. with E (ut) = 0 and E(utu
′
t) = Σ =[

σ2
1 0

0 σ2
2

]
for all t and E(utu

′
s) = 0 for s 6= t.

In this framework we have that {y2,t} does not Granger cause {y1,t} if and only if a12 = 0. Similarly,
{y1,t} does not Granger cause {y2,t} if and only if a21 = 0.

We observe that the VAR residuals are usually correlated and hence the covariance matrix Σ is seldom
a diagonal matrix. However, because the main aim of this study is pedagogical, we assume that Σ is
diagonal for analytical convenience.

We consider the following information sets: I∆y1(t+) = {∆y1,t+1,∆y1,t+2, ...}, I∆y2(t+) =

{∆y2,t+1,∆y2,t+2, ...}, H∆y1(t) = sp {∆y1,t,∆y1,t−1, ...} and H∆y2(t) = sp {∆y2,t,∆y2,t−1, ...}.

Theorem 3.1. Let yt be a VAR(1) process defined as in (2). The differenced process {∆yt; t = 1, ...}
is jointly unpredictable if and only if

d (I∆y1(t+), H∆y2(t)) = σ∆y1 and d (I∆y2(t+), H∆y1(t)) = σ∆y2

Theorem 1 provides a geometric characterization of the notion of joint unpredictability of a bivariate
process in term of distance between information sets. It is important to note that

d (I∆y1(t+), H∆y2(t)) ≤ σ∆y1 and d (I∆y2(t+), H∆y1(t)) ≤ σ∆y2

Thus we have that the process {∆yt = [∆y1,t,∆y2,t]
′; t = 1, ...} is jointly unpredictable if and only if the

distances d (I∆y1(t+), H∆y2(t)) and d (I∆y2(t+), H∆y1(t)) achieve their maximum value, respectively.
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It is intuitive to think that if these distances achieve their maximum value, then σ(yt, ...,y0) does
not contain any valuable information about the future of the differenced series, ∆yt = [∆y1,t,∆y2,t]

′

and hence these are jointly unpredictable with respect to the information set σ(yt, ...,y0), that is
E(∆yt+1|σ(yt, ...,y0)) = 0.

We recall that Theorem 1 holds only in a bivariate setting.

3.1. Lemmas

In order to prove Theorem 1, we need the following lemmas.

Lemma 3.2. Let V be a closed subspace of L2(Ω,F , P ) and G 6= ∅ a subset of L2(Ω,F , P ) such that
‖g‖ = η ∈ R, ∀g ∈ G. G ⊥ V if and only if d (G, V ) = η.

Proof. Focker and Triacca ([5], p. 767).

Lemma 1 establishes a relationship between the orthogonality of sets/spaces in the Hilbert space
L2(Ω,F ,P) and their distance. We note that the orthogonality between G and V holds if and only if the
distance d (G, V ) achieves the maximum value. In fact, d (G, V ) can not be greater than η since 0 ∈ V .

Lemma 3.3. The processes {y1,t} and {y2,t} are not cointegrated if and only if A = I.

Proof. By (2) we have[
∆y1,t

∆y1,t

]
=

[
a11 − 1 a12

a21 a22 − 1

][
y1,t−1

y2,t−1

]
+

[
u1,t

u2,t

]

These equations must be balanced, that is the order of integration of (a11 − 1)y1,t−1 + a12y2,t−1 and
a21y1,t−1 + (a22 − 1)y2,t−1 must be zero.

(⇒) If A 6= I, since (a11− 1)y1,t−1 +a12y2,t−1 ∼ I(0) and a21y1,t−1 + (a22− 1)y2,t−1 ∼ I(0), we can
have three cases.

Case (1) A = [aij], with aij 6= 0 i, j = 1, 2, i 6= j and aii 6= 1 i = 1, 2.

Case (2)

A =

[
a11 a12

0 1

]
with a11 6= 1 and a21 6= 0.

Case (3)

A =

[
1 0

a21 a22

]
with a21 6= 0 and a22 6= 1.

In all three cases, there exists at least a not trivial linear combination of the processes {y1,t} and {y2,t}
that is stationary. Thus we can conclude that {y1,t} and {y2,t} are cointegrated.

(⇐) If A = I, then a12 = a21 = 0 and so {y1,t} does not Granger cause {y2,t} and {y2,t} does not
Granger cause {y1,t}. It follows that {y1,t} and {y2,t} are not cointegrated.
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Lemma 3.4. If {y1,t} and {y2,t} are cointegrated, then |a11 + a22 − 1| < 1.

Proof. We subtract [y1,t−1, y2,t−1]′ from both sides of Equation (2) by obtaining[
∆y1,t

∆y2,t

]
=

[
a11 − 1 a12

a21 a22 − 1

][
y1,t−1

y2,t−1

]
+

[
u1,t

u2,t

]
If {y1,t} and {y2,t} are cointegrated, we have[

∆y1,t

∆y2,t

]
=

[
α1

α2

] [
β1 β2

] [ y1,t−1

y2,t−1

]
+

[
u1,t

u2,t

]

= β1

[
α1

α2

] [
1 β2/β1

] [ y1,t−1

y2,t−1

]
+

[
u1,t

u2,t

]

=

[
ϑ1

ϑ2

] [
1 −β

] [ y1,t−1

y2,t−1

]
+

[
u1,t

u2,t

]

=

[
ϑ1

ϑ2

]
(y1,t−1 − βy2,t−1) +

[
u1,t

u2,t

]

where β = − (β2/β1) is the cointegration coefficient and ϑ1 = β1α1 and ϑ2 = β1α2 are the speed of
adjustment coefficients.

We observe that

∆y1,t − β∆y2,t = ϑ1y1,t−1 − βϑ2y1,t−1 − βϑ1y2,t−1 + β2ϑ2y2,t−1 + u1,t − βu2,t (3)

By rearranging Equation (3) we obtain an AR(1) model for y1,t − βy2,t :

y1,t − βy2,t = δ(y1,t−1 − βy2,t−1) + u1,t − βu2,t

where δ = 1 + ϑ1 − βϑ2 = a11 + a22 − 1. Since {y1,t} and {y2,t} are cointegrated, {y1,t − βy2,t} is a
stationary process and so

|a11 + a22 − 1| < 1

Lemma 3.5. The process
{

∆yt = [∆y1,t,∆y2,t]
′ ; t = 0, 1, ...

}
is jointly unpredictable if and only if

A = I

Proof. (⇒) process
{

∆yt = [∆y1,t,∆y2,t]
′ ; t = 0, 1, ...

}
is jointly unpredictable, then

E(yt|σ(yt−1, ...,y1)) = yt−1

On the other hand, since
yt = Ayt−1 + ut

with E (ut) = 0 and E(utu
′
t) = Σ for all t and E(utu

′
s) = 0 for s 6= t, we have that

E(yt|σ(yt−1, ...,y1)) = Ayt−1
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Hence we have
Ayt−1 = yt−1

and so
A = I

(⇐) If
A = I

then yt = yt−1 + ut with E (ut) = 0 and E(utu
′
t) = Σ for all t and E(utu

′
s) = 0 for s 6= t, and hence

we have
E(yt|σ(yt−1, ...,y0)) = yt−1

Thus we can conclude that the process
{

∆yt = [∆y1,t,∆y2,t]
′ ; t = 1, ...

}
is jointly unpredictable.

Before to conclude this subsection we observe that Equation (2) can be written in lag operator
notation. The lag operator L is defined such that Lyt = yt−1. We have that

(I−AL)yt = ut

or [
1− a11L −a12L

−a21L 1− a22L

][
y1,t

y2,t

]
=

[
u1,t

u2,t

]

3.2. Proof of Theorem 1

Sufficiency. If

d (I∆y1(t+), H∆y2(t)) = σ∆y1 and d (I∆y2(t+), H∆y1(t)) = σ∆y2

then, by Lemma 1, we have
I∆y1(t+)⊥H∆y2(t)

and
I∆y2(t+)⊥H∆y1(t)

Now we assume that a12 and a21 are not both equal to zero. We can have three cases.
Case (1) a12 6= 0 and a21 = 0. This implies that

r1,t = (a11 − 1)y1,t + a12y2,t + u1,t

and
∆y2,t = u2,t

Thus

< ∆y1,t+1,∆y2,t >= E(∆y1,t+1∆y2,t)

= (a11 − 1)E(y1,tu2,t) + a12E(y2,tu2,t) + E(u1,t+1u2,t)

= (a11 − 1)E(y1,tu2,t) + a12E(u2,t

t∑
s=1

u2,s)

= (a11 − 1)E(y1,tu2,t) + a12σ
2
2
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Now, we note that
E(y1,tu2,t) = at11E(y1,0u2,t) = 0

Thus
< ∆y1,t+1,∆y2,t >= a12σ

2
2 6= 0

but this is absurd since
I∆y1(t+)⊥H∆y2(t)

Case (2) a12 = 0 and a21 6= 0. In this case we have

< ∆y2,t+1,∆y1,t >= a21σ
2
1 6= 0

Again this is absurd since
I∆y2(t+)⊥H∆y1(t)

Case (3) a12 6= 0 and a21 6= 0. We note that[
∆y1,t

∆y2,t

]
=

[
(1− a22L)γ(L) a12Lγ(L)

a21Lγ(L) (1− a11L)γ(L)

][
u1,t

u2,t

]
where

γ(L) =
1− L

(1− a11L)(1− a22L)− a12a21L2

By Lemma 2, we have that {y1t} and {y2t} are cointegrated and hence the matrix

A− I =

[
a11 − 1 a12

a21 a22 − 1

]
has rank 1. It follows that

a12a21 = (1− a11)(1− a22)

Thus

γ(L) =
1− L

(1− a11L)(1− a22L)− (1− a11)(1− a22)L2

=
1− L

(1− L)(1 + L)− (1− L)(a11 + a22)L

=
1

1 + L− (a11 + a22)L

=
1

1− (a11 + a22 − 1)L

=
1

1− δL

where δ = a11 + a22 − 1.

Since {y1t} and {y2t} are cointegrated, by Lemma 3 we have that |δ| < 1 and hence

γ(L) = 1 + δL+ δ2L2 + ...

Now, we can have two cases.
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Case (a) δ = 0. In this case we have

∆y1,t = u1,t − a22u1,t−1 + a12u2,t−1

and
∆y2,t = a21u1,t−1 + u2,t − a11u2,t−1

Thus
< ∆y1,t+1,∆y2,t >= a12σ

2
2 6= 0

and
< ∆y2,t+1,∆y1,t >= a21σ

2
1 6= 0

but this is absurd since
I∆y1(t+)⊥H∆y2(t)

and
I∆y2(t+)⊥H∆y1(t)

Case (b) δ 6= 0. In this case we have

∆y1,t = u1,t + (a11 − 1)u1,t−1 + δ(a11 − 1)u1,t−2 + ...a12u2,t−1 + a12δu2,t−2 + ...

= u1,t + (a11 − 1)
∞∑
i=0

δiu1,t−1−i + a12

∞∑
i=0

δiu2,t−1−i

and

∆y2,t = u2,t + (a22 − 1)u2,t−1 + δ(a22 − 1)u2,t−2 + ...a21u1,t−1 + a21δu1,t−2 + ...

= u2,t + (a22 − 1)
∞∑
i=0

δiu2,t−1−i + a21

∞∑
i=0

δiu1,t−1−i

Thus

< ∆y1,t+1,∆y2,t >= (a11 − 1)σ2
1

δ

1− δ2
a21 +

[
1 + (a22 − 1)

δ

1− δ2

]
σ2

2a12

and

< ∆y2,t+1,∆y1,t >= (a22 − 1)σ2
2

δ

1− δ2
a12 +

[
1 + (a11 − 1)

δ

1− δ2

]
σ2

1a21

Now, we consider the system[ [
1 + (a22 − 1) δ

1−δ2
]
σ2

2 (a11 − 1)σ2
1

δ
1−δ2

(a22 − 1)σ2
2

δ
1−δ2

[
1 + (a11 − 1) δ

1−δ2
]
σ2

1

][
a12

a21

]
=

[
0

0

]

The determinant of the matrix[ [
1 + (a22 − 1) δ

1−δ2
]
σ2

2 (a11 − 1)σ2
1

δ
1−δ2

(a22 − 1)σ2
2

δ
1−δ2

[
1 + (a11 − 1) δ

1−δ2
]
σ2

1

]

is

σ2
1σ

2
2

(
1− δ

1 + δ

)
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Since σ2
1σ

2
2 > 0 and δ

1+δ
6= 1, we have that

σ2
1σ

2
2

(
1− δ

1 + δ

)
6= 0

Thus a12 6= 0, a21 6= 0 implies that < ∆y1,t+1,∆y2,t >6= 0 or < ∆y2,t+1,∆y1,t >6= 0, but this is
absurd since

I∆y1(t+)⊥H∆y2(t)

and
I∆y2(t+)⊥H∆y1(t)

In all Cases (1–3) we obtain an absurd conclusion, thus we can state that

a12 = 0, a21 = 0

Now, we prove that a11 = a22 = 1. We have that

∆yi,t = (aii − 1)yi,t + uit i = 1, 2

Since the error term ut= [u1,t, u2,t]
′ is stationary these equations must be balanced, that is the order of

integration of ∆yi,t and (aii − 1)yi,t must be the same. By the hypothesis that yi,t ∼ I(1), it follows that
∆yit ∼ I(0) (i.e., stationary) and (aii − 1)yi,t is I(1), hence ∆yi,t = (aii − 1)yi,t + ui,t i = 1, 2 implies
that a11 = a22 = 1. Thus A = I and hence, by Lemma 4, it follows that the process {∆yt; t = 1, ...} is
jointly unpredictable.

Necessity. If the process {∆yt; t = 1, ...} is is jointly unpredictable, then by Lemma 4 it follows
that A = I and hence ∆y1,t = u1,t and ∆y2,t = u2,t ∀t. This implies that P (∆y1,t+h|H∆y2(t)) = 0

and P (∆y2,t+h|H∆y1(t)) = 0 ∀h > 0. Therefore we have that ∆y1,t+h⊥H∆y2(t) and ∆y2,t+h⊥H∆y1(t)

∀h > 0. Thus, by Lemma 1, it follows that

d (I∆y1(t+), H∆y2(t)) = σ∆y1 and d (I∆y2(t+), H∆y1(t)) = σ∆y2

Theorem 1 is proved.

4. Conclusions

In this paper we have considered the following geometric condition concerning the distance between
information sets

d (I∆y1(t+), H∆y2(t)) = σ∆y1 and d (I∆y2(t+), H∆y1(t)) = σ∆y2 (4)

It says that the distances d (I∆y1(t+), H∆y2(t)) and d (I∆y2(t+), H∆y1(t)) achieve their maximum value,
respectively. Theorem 1 tells us that, under the hypothesis that the process yt follows a bivariate
VAR(1) model, the condition Equation (4) represents a geometric characterization of the notion of joint
unpredictability. If this condition holds, the processes ∆y1 and ∆y2 are jointly unpredictable since
the past of the bivariate process yt does not contain any valuable information about the future of the
differenced series. The information in the past is too far from the future information.

Even if the bivariate VAR(1) assumption is far from general, we think that this geometric
characterization is useful in order to throw light on the concept of joint unpredictability of a
stochastic process.
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