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Abstract: We propose a method to explore the causal transmission of an intervention through two
endogenous variables of interest. We refer to the intervention as a catalyst variable. The method is
based on the reduced-form system formed from the conditional distribution of the two endogenous
variables given the catalyst. The method combines elements from instrumental variable analysis and
Cholesky decomposition of structural vector autoregressions. We give conditions for uniqueness of
the causal transmission.
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1. Introduction

In general, it is difficult to deduce the causal ordering of two observed variables from
their joint distribution. However, if we can assume that a third variable is causal, it may
be possible to deduce how the effect of this third variable will transmit between the two
variables of interest. By conditioning on a catalyst, the joint distribution of a bivariate
system can be used to infer a causal transmission. Our approach allows for different catalysts
transmitting through the same two variables in different ways. We formulate this for a
general distributional setup.

Philosophers and scientists argue that some background of causal knowledge is
required in order to construct new causal facts. The view “no causes in, no causes
out” (Cartwright 1989) expresses the concern that we cannot jump from theory to cause
without some causal facts in hand. Pearl (2000) similarly underlines the importance of
distinguishing between causal and associational concepts, as every causal conclusion relies
on a causal assumption that is untested in observational studies. In contrast, Granger (1969)
causality is an example of an associational concept seeking to infer correlations from data
without a causal assumption. Moreover, Granger causality is concerned with temporal
correlations as opposed to the ordering of contemporaneous variables. Causal analysis
goes one step further by inferring correlations under changing conditions.

We combine elements from instrumental variable analysis and recursive ordering
of structural vector autoregressions. Instrumental variable analysis will in general not
order the endogenous variables but can be used to identify a structural relation uniquely.
Cholesky decomposition orders endogenous variables, but the ordering is not unique. By
carrying out a Cholesky decomposition in the presence of an instrument, there is scope for
a unique ordering which is interpretable as a causal transmission. In this situation we will
refer to the instrument as a catalyst.

The catalyst w may transmit causally through the variables y, z. It is possible that w
transmits through z to y or through y to z or, of course, that there is no ordering of the
variables. We present two sets of testable conditions. A first set of conditions is needed
for establishing that the catalyst w transmits through z to y, say, in a unique fashion. A
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second set of conditions is needed for showing that w actually affects y. The econometric
framework is a reduced form based on the conditional distribution of y, z given w. The
theory is formulated for general densities but with special attention to the most common
cases, which include the bivariate normal distribution and mixtures of a univariate normal
distribution with a logit or probit distribution.

We can identify catalysts from the analysis of past events, exploiting interventions
that were determined separately from the realization of endogenous variables. Careful
judgement of the situation at hand will be needed. For instance, in the context of our
empirical illustration of the UK demand for narrow money, we will consider reduction
in the value added tax (VAT) to be an intervention. While the VAT reduction will be a
reaction to the state of the UK economy, the objective was specifically to boost demand
rather than to impact money demand (Cloyne 2013). Our interpretation is that there may be
some important causal transmission channels at work, which we can learn about through
econometric analysis. If we are able to find a causal transmission, then we can hope that
a future intervention of the same type may transmit in the same manner. We restrict the
analysis to the bivariate setup in order to be as clear as possible. Larger systems can have
many possible transmission channels, which will be examined in future work.

Causal transmission is similar to but distinct from super exogeneity (Engle et al. 1983).
Hendry (1995, pp. 176–77) argues that causation between two variables of interest—money
and inflation—could be investigated through super exogeneity. One of the conditions is
that the conditional distribution of one variable yt given zt is invariant under interventions
to zt. In contrast, our notion of causal transmission is concerned with the propagation of
specific shocks to the system of the variables yt, zt. It allows the possibility that different
shocks can flow through a system of variables in different directions. The empirical
illustration provides an example of this property. Our analysis is inspired by the invariance
to interventions but with a focus on the transmission of the shock through y, z rather than
on the conditional relation of y given z.

Our notion of causal transmission also bears many similarities to the graphical
modeling literature, see, for instance Dawid (1979), Lauritzen (1996), Pearl (2000), and
Cox and Wermuth (2004). We operate exclusively in the conditional distribution of y, z
given w, leaving w unmodeled, as our aim is to discover how the w transmits through y, z.
Causal search over graphical models is usually formulated in the unconditional distribution
of y, z, w (Spirtes et al. 2000), while our particular setup takes the asymmetry of w as given
and could be referred to as a chain graph with components {w} and {y, z} (Drton 2009).
The idea of exploring conditional structures can be found in Lauritzen and Wermuth (1989),
Andersson et al. (2001), and Cox and Wermuth (2003). To describe the transmission, we
will look for both conditional independences and conditional dependences. The latter have
been addressed by, for instance, Wermuth and Sadeghi (2012). The graphical modeling
literature often works through correlations and therefore requires normality, while we work
with general distributions. For this, we have found inspiration in Lauritzen (1996).

In Section 2, we provide a motivating example for the case of a bivariate normal
setup. In Section 3, we define and explore causal transmissions. In Section 4, we generalize
the idea to situations with multiple catalysts which transmit through the variables of
interest in different ways and we offer a structural interpretation that combines Cholesky
decomposition and instrumental variable estimation. Section 5 compares our use of graphs
to describe transmission of multiple catalysts with the use of graphs in the graphical model
literature, and it gives an overview of the associated exponential family properties. An
empirical illustration using a UK monetary data set follows in Section 6. Section 7 concludes.
Proofs are given in Appendix A.

2. Introductory Example

We think of causal transmission as being asymmetric by nature: influence flows one
way and cannot be reversed. Here, we introduce the ideas in a bivariate normal setup.
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Suppose we are interested in an economic relationship between two endogenous, or
modeled, variables (y, z) given a third variable w. Thus, we are interested in the conditional
distribution f(y, z|w). Under normality, the distribution of y, z given w is given by(

y
z

)
=

(
γyw
γzw

)
w +

(
εy
εz

)
, (1)

where the innovations are normally distributed with positive definite variance(
εy
εz

)
D
= N

{(
0
0

)
,
(

σyy σyz
σzy σzz

)}
. (2)

There are two different ways of ordering y and z, corresponding to two Cholesky
decompositions. First, we can condition y on z to obtain the equations

y = γyzz + γyw·zw + εy·z, (3)

z = γzw w + εz, (4)

with derived coefficients γyz = σyz/σzz and γyw·z = γyw − γyzγzw, and independent,
normal innovations εy·z, εz with variances σyy·z = σyy − σ2

zy/σzz, σzz. Second, we can
condition z on y to obtain the equations

z = γzyy + γzw·yw + εz·y, (5)

y = γyw w + εy, (6)

where γzy = σzy/σyy and γzw·y = γzw − γzyγyw, as well as the independent, normal
innovations εz·y, εy with variances σzz·y = σzz − σ2

yz/σyy, σyy. Without further information,
the two orderings are equivalent in the sense of giving the same joint distribution.

A unique ordering arises from the Equations (3) and (4) under the restrictions γyw·z = 0
and γzw 6= 0. The Equations (3) and (4) then reduce to

y = γyzz + εy·z, (7)

z = γzw w + εz. (8)

This ordering of (y, z) is unique in the sense that it is not possible to have γyw·z = 0
and γzw 6= 0 so that (3) and (4) reduce to (7) and (8) and at the same time have γzw·y = 0
in (5) and (6). We prove this result for general distributions in Section 3.1.1.

We also want to ensure that a shock represented by w feeds through to y in the
system (7) and (8). We analyze this in two steps. In Section 3.1.2, we will say that (7) and
(8) has a non-trivial Markov structure if changes in w impact the distribution of z and
changes in z impact the distribution of y. In (7) and (8), this requires that γzw 6= 0 and
γyz 6= 0. In general, however, this is not sufficient to ensure that changes in z impact the
distribution of y. For this to happen in the system (7) and (8), it is required that γyw 6= 0 in
the marginal Equation (1). While this condition follows from previous conditions in the
case with normal errors, this is not true for general distributions, so we provide a detailed
analysis of this condition.

The conditions mentioned above would all be testable when implemented in a statis-
tical model. A framework for causal interpretation of the above structure is discussed in
Section 3, which is distinct from the structural interpretations in the usual instrumental
variable problem, see Section 4.2, and from super exogeneity, see Section 4.5.

We note, in passing, that the situation described in Equations (7) and (8) is different
from the common features concept (Centoni and Cubadda 2015; Engle and Kozicki 1993;
Vahid and Engle 1993). There, the objective is, starting from Equation (1), to find a linear
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combination of y and z that does not depend on w. Under the relevance condition γzw 6= 0,
we can define δyz = γyw/γzw and find that y− δyzz does not depend on w. Thus, we obtain

y = δyzz + εδ, (9)

z = γzw w + εz, (10)

where εδ = εy − δyzεz. The covariance of εδ and εz is σyz − δyzσzz. This covariance reduces
to zero under the additional restriction that δyz = γyw/γzw equals γyz = σyz/σzz, in
which case εδ = εy·z, and the system (9) and (10) reduces to (7) and (8). We will see
that the additional independence assumption for εy·z and εz is what gives the ordering of
the variables.

3. Causal Transmission

We analyze a joint conditional probability model for two endogenous variables given
a third variable, with a view to establishing conditions for unique asymmetric flow
of influence from the conditioning variable. We give results for unique ordering and
non-trivial transmission in a general bivariate distribution setup. From this, we define
causal transmission.

3.1. Result for General Distributions

For a general joint density of y, z conditional on w, f(y, z|w), we explore testable
restrictions that ensure a unique and non-trivial chain from w through z to y. In Section 3.2,
we interpret w as a catalyst that initiates a unique causal transmission through z to y.

3.1.1. Unique Markov Structure

The natural generalization of the result for normal distributions is a Markov property.
Generally, the joint density of (y, z|w) can be decomposed as

f(y, z|w) = f(y|z, w)f(z|w) = f(z|y, w)f(y|w). (11)

At this point, there is no natural ordering of the bivariate system. The uniqueness
result is inspired by the normal example. It presents a condition under which we can rule
out the possibility that both f(y|z, w)=f(y|z) and f(z|y, w)=f(z|y) hold. In other words,
we give a condition that ensures a Markov chain from w to y through z while excluding
a Markov chain from w to z through y. A key feature of the result is that it is concerned
with properties of the conditional distribution of y, z given w. The proof builds on the
ideas in the proof of the intersection property by Lauritzen (1996, Proposition 2.1), see also
Dawid (1979, Lemma 4.3). That result is, however, aimed at exploring properties of the
simultaneous distribution of three variables y, z, w.

Theorem 1. Suppose the density f(y, z|w) has support on a product space, and it is positive on
this support. Suppose that, for all y, z,

f(y|z, w) = f(y|z). (12)

Then

f(z|w) 6= f(z) in a set of y, z with positive probability, (13)

⇒ f(z|y, w) 6= f(z|y) in a set of y, z with positive probability. (14)

The requirement in Theorem 1 that the support is a product space is satisfied in a range
of common situations, for instance, in a normal setup. It allows for the less interesting case
where y or z is atomic. If z is atomic, then condition (13) always fails. If y is atomic, then
conclusion (14) reduces to (13).
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Theorem 1 gives conditions for a unique Markov structure among the variables.
Condition (12) implies

f(y, z|w) = f(y|z, w)f(z|w) = f(y|z)f(z|w). (15)

Theorem 1 shows that conditions (12) and (13) imply (14), and therefore there is no
Markov structure from w through y to z, that is

f(y, z|w) = f(z|y, w)f(y|w) 6= f(z|y)f(y|w). (16)

In other words, the conditional model for y, z given w allows for two possible Markov
structures, but we can distinguish these through testable assumptions.

3.1.2. Non-Trivial Markov Structure

The next step is a requirement that the Markov structure is non-trivial.

Definition 1. Consider the conditional distribution of y, z given w with the Markov structure
f(y, z|w) = f(y|z)f(z|w). If f(y|z) 6= f(y) and f(z|w) 6= f(z), on a set with positive probability,
we have a non-trivial Markov structure. We represent this by the graph w — z — y, where the
variable w is underlined to emphasize the conditioning on w.

The conditioning on w is emphasized by underlining the conditioning variable w in
the notation w — z — y. This is to contrast with the notation w — z — y commonly used for
undirected graphs in the graphical model literature. That notation is usually taken to imply
that the unconditional distribution f(y, z, w) satisfies the Markov property

f(y, w|z) = f(y|z)f(w|z), (17)

see Lauritzen (1996, §2.4). The Markov property (17) in the unconditional distribution
f(y, z, w) implies the Markov property (15) in the conditional distribution f(y, z|w) due to
Bayes’ Theorem, while the opposite implication requires the formulation of a distribution
for w. In both cases, the dash notation is used as opposed to arrows to indicate that the
Markov structures are undirected.

We now combine Theorem 1 and Definition 1 to see that the two non-trivial Markov
structures w — z — y and w — y — z cannot hold simultaneously.

Theorem 2. Suppose the density f(y, z|w) has support on a product space, and it is positive on
this support. Suppose that, for all y, z,

f(y|z, w) = f(y|z) , (18)

and that, for all y, z in a set with positive probability,

f(z|w) 6= f(z) and f(y|z) 6= f(y). (19)

Then, we have a unique and non-trivial Markov structure w — z — y.

3.1.3. Non-Trivial Transmission

A non-trivial Markov structure does not, in general, imply that w and y are dependent,
so w may affect z without affecting y. Indeed, the Markov structure w — z — y allows the
possibility that y and w are independent. From a causal viewpoint, this is not so exciting,
so we will seek to characterize when the effect is non-trivial.

For a non-trivial Markov structure w — z — y, the conditional distribution of y given
w can be written as the compound distribution

f(y|w) =
∫

f(y|z)f(z|w)dz, (20)
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where f(y|z) 6= f(y) and f(z|w) 6= f(z). The integral can be interpreted as summation if
the dominating measure dz is discrete. We would like to establish conditions ensuring
f(y|w) 6= f(y).

Definition 2. Consider a non-trivial Markov structure w — z — y. There is a non-trivial trans-
mission between w and y when f(y|w) 6= f(y) in a set with positive probability, represented as
w — y.

We give a sufficient condition for a trivial transmission.

Lemma 1. Suppose f(y|z, w) = f(y|z). If either f(y|z) = f(y) or f(z|w) = f(z), then
f(y|w) = f(y).

The condition in Lemma 1 for trivial transmission is the contradiction of condition (19)
in Theorem 2 for a non-trivial Markov structure.

The trivial transmission property is also related to the singleton transitivity property,
as expressed, for instance, in Wermuth (2012, §2.4); Fallat et al. (2017) also link singleton
transitivity with a total positivity property. The difference between the concepts is subtle.
Under singleton transitivity, the condition and the implication in Lemma 1 are swapped.

The condition in Lemma 1 is not necessary for a trivial transmission. Indeed, the
following example for a conditional distribution f(y, z|w) is a case where the contrary
condition (19) holds, yet the transmission is trivial. Similar examples for an unconditional
distribution f(y, z, w) are given in Birch (1963, eq. 5.4) and Wermuth (2012, §4.1) to illustrate
that distributions may not have the singleton transitivity property in general.

Example 1. Suppose w — z — y. We construct an example where it holds that f(y|z) 6= f(y) and
f(z|w) 6= f(z), yet f(y|w) = f(y). Let w, y be binary, while z takes three values. Describe the
conditional distributions f(z|w) and f(y|z, w) = f(y|z) by the transition matrices

0 1 2 z | w
4/8 3/8 1/8 0
4/8 2/8 2/8 1

0 1 y | z
1/4 3/4 0
2/4 2/4 1
2/4 2/4 2

The conditional distribution f(y|w), computed as the product of the transition matrices,
satisfies f(y|w) = f(y), that is

0 1 y | w
3/8 5/8 0
3/8 5/8 1

From a causal transmission perspective, we are interested in exploring when the
condition (19) in Theorem 2 for a non-trivial Markov structure is sufficient to give a
non-trivial transmission. As remarked earlier, this holds for distributions satisfying the
singleton transitivity property. This is satisfied if w, z, y satisfy a joint normal distribution
(Wermuth 2012, §4.1) or are all binary (Birch 1963; Simpson 1951, §5). We give some further
examples. In the first case, z is binary, but w and y need not be binary. Then, the question
relates to collapsibility of contingency tables, see, for instance, Dawid (1980, Theorem 8.3),
which is attributed to Yule.

Lemma 2. Suppose w — z — y with binary z. Then w — y.

Moving away from binary z, we find the same result for some common distributions.

Lemma 3. Suppose w — z — y with normal (y, z|w) satisfying (1). Then w — y.
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Lemma 4. Suppose w — z — y with binary y so that the conditional distribution (y|z) is logit,
log{f(y = 1|z)/f(y = 0|z)} = γyzz, or probit, f(y = 1|z) = Φ(γyzz), while (z|w) is normal,
N(γzww, σzz). If γyzγzw 6= 0, then w — y.

3.2. Causal Interpretation

Theorem 2 gave testable conditions ensuring that the conditional distribution f(y, z|w)
reduces to a non-trivial Markov structure w — z — y. This was followed in Section 3.1.3
by a variety of conditions ensuring a non-trivial transmission between w and y. In the
following, we give this a causal interpretation. We will think of the variable w as taking a
value that is determined outside the system (y, z). This value then transmits through the
system as described by the conditional distribution f(y, z|w).

Definition 3. Consider variables w, z, y. Assume that for each realization of w, then f(y, z|w)
describes the distribution of outcomes of y, z. Let w represent an intervention on the system. Then,
we say that w is a catalyst.

By an intervention, we mean an external, autonomous change that affects only the
specified subset of variables (Pearl 2000, p. 23). The objective is to separate actions, where
variables are assigned values by intervention, and observations, where variables assume
values according to a joint distribution. Pearl (2000) assumes, however, that the mechanism
that is altered by an intervention is known, as is the nature of the alteration. Directionality
within a system of variables is discovered or assumed prior to analysis of interventions
by representing a joint distribution with a directed acyclical graph. Contrastingly, we only
discover directionality conditional on the presence of an intervention; this corresponds to
the notion of a transmission.

Definition 4. Consider a non-trivial Markov structure w — z — y with non-trivial transmission
w — y and where w is a catalyst. Then, we have a causal transmission of the catalyst w to y
through z. This is represented by the notation w→ z→ y.

Definitions 3 and 4 consider the testable and undirected Markov structure w — z — y
and give it a causal interpretation. In Definition 3, the notation w→ z→ y is directional,
so there is no longer a need for emphasizing the conditioning upon w as in w — z — y or
w — y. The important distinction between our exposition and the existing literature is
the objective of characterizing potential unique transmission of catalysts using testable
assumptions as far as possible. Definition 4 has the feature that we are agnostic about the
causal relationship between the endogenous variables when a catalyst is not present.

Catalysts will not always be obvious but can potentially be discovered as natural
experiments through examination of observational data on yt, zt, wt for t = 1, . . . , T. In the
empirical illustration in Section 6, we have a vector autoregression for the velocity and cost
of holding money augmented with dummy variables representing fiscal and oil shocks
determined outside the system The density f(y, z|w) is then taken as the i.i.d. density for
the innovations of the modeled variables given the dummy variables and past information.
If one is interested in modeling monetary policy, one may observe market interest rates,
inflation and a policy rate. The central banks observe the past market interest rate and
the inflation and set the policy rate to influence the current and future market interest
rate and policy rate. The policy rate could be modeled as one of the y, z variables, with
w representing major external shocks such as the COVID-19 pandemic. Alternatively, if
the policy rate is thought of as the w variable, there may be strong correlation with the
lagged market rate and lagged inflation and one should consider the interpretation carefully.
Causal transmission lends itself to statistical models with a repetitive structure which can
be captured by the above ideas for f(y, z|w).

The assumptions required for a causal transmission exclude the situation of a collider. A
variable z is a collider when f(y|z, w) 6= f(y|z) even though f(y|w) = f(y). In the graphical
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modeling literature, this is represented as w → z ← y. The first condition for a collider
contradicts the conditions assumed in Definition 1, w — z — y, while the second condition
contradicts the conditions assumed in Definition 2, w — y.

We consider three special cases: a normal model and two types of logit/probit-
normal mixtures.

Example 2. Suppose (y, z|w) has a bivariate normal distribution as in (3) and (4) or (5) and (6)
with a positive definite covariance matrix. If γyw·z = 0 while γzw 6= 0, then Theorem 1 implies a
unique Markov structure. If in addition γyz 6= 0, then Theorem 2 and Lemma 3 imply a non-trivial
Markov structure w — z — y and a non-trivial transmission w — y. When w is interpretable as a
catalyst, then w→ z→ y.

Example 3. Suppose y is binary and (y, z|w) satisfies a logit-normal mixture model or a probit-
normal mixture model. That is, the conditional distribution (y|z, w) satisfies

logit{f(y = 1|z, w)} = γyzz + γyw·zw or f(y = 1|z, w) = Φ(γyzz + γyw·zw),

while (z|w) is N(γzww, σzz). If γyw·z = 0 while γzw 6= 0, then Theorem 1 implies a unique
Markov structure. If in addition γyz 6= 0, then Theorem 2 and Lemma 4 imply a non-trivial Markov
structure w — z — y and a non-trivial transmission w — y. When w is interpretable as a catalyst,
then w→ z→ y.

We note that in this situation, f(y|z, w) is much easier to work with than f(z|y, w). Due to
Theorem 1, we only need to check the first instance to narrow the potential orderings of the system
(y, z|w).

Example 4. Suppose z is binary and (y|z, w) is N(γyzz + γyw·zw, σyy·z). If γyw·z = 0 while
f(z|w) 6= f(z), then Theorem 1 implies a unique Markov structure. If in addition γyz 6= 0,
then Theorem 2 and Lemma 2 imply a non-trivial Markov structure w — z — y and a non-trivial
transmission w — y. When w is interpretable as a catalyst, then w→ z→ y.

3.3. Multiple Causal Transmissions

The concept of causal transmission generalizes to multiple catalysts that may flow
through the system in different ways. For notational convenience, we present this by
augmenting the linear, normal system (1) with two distinct catalysts w1, w2 so that(

y
z

)
=

(
γy1
γz1

)
w1 +

(
γy2
γz2

)
w2 +

(
εy
εz

)
, (21)

where f(εy, εz|w) = f(εy, εz) is normal as in (2). The variables w1, w2 are observable and
may represent two types of shocks to the economy at different points in time.

We now set up the two possibilities for ordering y, z through conditioning. Condition-
ing y on z gives

y = γyzz + γy1·zw1 + γy2·zw2 + εy·z, (22)

z = γz1 w1 + γz2 w2 + εz, (23)

where εy·z, εz are independent and γyz = σyz/σzz, while conditioning z on y gives

z = γzyy + γz1·yw1 + γz2·yw2 + εz·y, (24)

y = γy1 w1 + γy2 w2 + εy, (25)

where εz·y, εy are independent and γzy = σzy/σyy. Assuming w1, w2 are catalysts, we obtain
two causal transmission hypotheses

H1 : γy1·z = 0∩ γz1 6= 0∩ γyz 6= 0 ⇒ w1 → z→ y, (26)

H2 : γz2·y = 0∩ γy2 6= 0∩ γzy 6= 0 ⇒ w2 → y→ z. (27)
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When the hypotheses H1 and H2 are both satisfied, we obtain causal transmissions in
opposite directions, which we represent by superimposing two directed graphs

H1 ∩H2 ⇒ w1 z y w2 (28)

The joint restrictions imposed by H1 ∩H2 are possibly best expressed in terms of the
original system (21) as:

H1 ∩H2 : γy1 =
σyz

σzz
γz1, γz2 =

σzy

σyy
γy2, γz1 6= 0, γy2 6= 0, σyz 6= 0.

Written in a vector format, we have the reduced-form model(
y
z

)
=

(
σyz/σzz

1

)
γz1w1 +

(
1

σzy/σyy

)
γy2w2 +

(
εy
εz

)
, (29)

where all coefficients in the conditional expectation are non-zero.

3.4. Detection of Outliers and Catalysts

In practice, catalysts may be discoverable from the empirical analysis of observational
data. For this purpose, Hendry and Santos (2010) give an algorithm for discovering super-
exogeneity. This exploits the Autometrics algorithm in OxMetrics, see Doornik (2009) and
Hendry and Doornik (2014).

This algorithm generalizes the robustified least squares approach used by Hendry
and Mizon (1993) in their UK money analysis and by Hendry (1999) in his analysis of US
food demand. A theory for analyzing such algorithms is gradually emerging. Indeed,
a statistical theory for robustified least squares is presented in Hendry et al. (2008) and
Johansen and Nielsen (2009, 2016).

4. Structural Considerations

The causal transmission concept unites ideas from Cholesky decompositions within
structural vector autoregressions with ideas from instrumental variable estimation. We
explore how causal transmission arises as a special case in those two settings. The idea is
that we define economic structure conditional on a variable w. This variable rather than
the innovations will play the role of structural shocks and it will have features in common
with instruments in traditional simultaneous equations models. The variable w could be an
indicator variable for a particular event. It can arise from substantive considerations or it
can potentially be found by outlier detection algorithms. We draw comparisons with the
more restrictive concept of super exogeneity before delving into a structural interpretation
when multiple catalysts are available.

4.1. Cholesky Decomposition

Sims (1980) used vector autoregressions to address the haphazard accumulation of
restrictions to achieve identification in the large simultaneous equation models of the
time. This approach has evolved into the frequently-used structural vector autoregressive
(SVAR) approach, where a structural model is identified from the reduced form. In its basic
form, this involves a recursive ordering of the variables. We will discuss how Cholesky
decomposition relates to causal transmission.

It is well known that, while useful, recursive orderings are not unique. Causal trans-
mission takes its starting point in recursive orderings but uses a catalyst to establish a
unique ordering. If we ignore dynamic features, we can explore this using the setup in
Section 2. The reduced-form system for the variables y, z given w is then given by (1).
Pre-multiplying that system by a square matrix A gives a structural model(

a1y a1z
a2y a2z

)(
y
z

)
=

(
b1w
b2w

)
w +

(
e1
e2

)
(30)
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where e = Aε has covariance Ωe = AΣε A′ and where Σε is the covariance matrix in (2). A
structural model of this general form is not identifiable from the reduced-form model. We
therefore consider two Cholesky decompositions where A is triangular and Ω is diagonal.
The first possibility is

Az =

(
1 a1z
0 1

)
, Ωz

e =

(
ωz

11 0
0 ωz

22

)
, (31)

which is identifiable from (3) and (4), when a1z = −γyz = −σyz/σzz, while ωz
11 = σyy·z and

ωz
22 = σzz. The second possibility is

Ay =

(
1 0

a2y 1

)
, Ωy

e =

(
ω

y
11 0
0 ω

y
22

)
, (32)

which is identifiable from (5) and (6), when a2y = −γzy = −σzy/σyy, while ω
y
11 = σyy and

ω
y
22 = σzz·y. The Cholesky forms (31) and (32) are observationally equivalent.

Using the causal transmission analysis, we may find, for instance, that w → z → y
in the reduced-form model. This is consistent with the first Cholesky form (31) with the
additional restriction that b1w = 0, that is:(

1 a1z
0 1

)(
y
z

)
=

(
0

b2w

)
w +

(
e1
e2

)
, (33)

where the errors e1 and e2 are independent. This model is asymmetric. It shows how
economic shocks in z can transmit to the structural relation y + a1zz. Subtly, the asymmetry
is captured by w rather than the errors e1, e2, which have a symmetric role. Thus, the
interpretation of this structural model is that it shows how, typically, large shocks of the
type w move through the economy, which is also subject to, typically, small shocks of the
type e1, e2. For instance, w may represent the onset of a major economic crisis or a major
government intervention, while the shocks e1, e2 represent the minor, daily pulling and
pushing forces in the economy. Thus, the structural assumption we need for this analysis
is that w is a catalyst. The remaining features of the causal transmission w → z → y
are testable and discoverable from reduced-form analysis. In Section 3.3, we extend this
analysis to a situation with multiple catalysts.

4.2. Instrumental Variable Estimation

The traditional simultaneous equations model has no causal direction. Instead, the
focus is to estimate the behavioral equations with the aid of instruments. We discuss this in
the context of a simple demand and supply example, with a focus on the demand curve.

Consider the following demand function formulated in terms of the (log) quantity q
and the (log) price level p

q = a0 + a1 p + ud. (34)

The demand function can be identified with the use of an instrument w that is valid
E(wud) = 0 and informative E(wp) 6= 0. This corresponds to a supply shock and gives the
first-stage equation

p = b0 + b1w + up, (35)

implying an exclusion restriction in the demand equation. The demand function describes
the linear relation between prices and quantities. The variables are jointly determined, so
there is no causal direction between them. Thus, the Equation (34) can be reversed as

p = − a0

a1
+

1
a1

q− 1
a1

ud. (36)

This is reflected when estimating with limited information maximum likelihood. In
that case, the product of the estimate for a1 in Equation (34) and the estimate for 1/a1
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in Equation (36) is indeed unity. This applies both in the just-identified case where w is
univariate and in the over-identified case where w is multivariate.

In general, the structural error ud in (34) and the first-stage error up in (35) may be
conditionally dependent given w in the instrumental variable problem. However, if the two
errors are indeed conditionally independent, then the demand Equation (34) represents
the conditional distribution of q given p, w with the property f(q|p, w) = f(q|p) so that
the first condition of Theorem 1 is met. The second condition of Theorem 1 ensures the
informativeness of w in the first-stage Equation (35), that is b1 6= 0. Theorem 1 then shows
that the reversed demand Equation (36) cannot represent the conditional distribution of p
given q, w, and there is a unique Markov structure w — p — q: the demand equation does
not depend on w, but the conditional distribution must depend on w. In the case of normal
errors, w — p — q implies w — q by Lemma 3. With the additional assumption that w is a
catalyst, we arrive at the causal transmission w→ p→ q.

We can also start from a reduced-form model and discover Markov structures without
imposing structural assumptions. Ignoring intercepts, the starting point is the reduced-form
system (1), that is (

q
p

)
=

(
γqw
γpw

)
w +

(
εq
εp

)
, (37)

where f(εq, εp|w) = f(εq, εp) is normal. Here, w is merely a conditioning variable, albeit a
candidate for an instrument. The reduced-form system implies an equation that does not
depend on the exogenous w

q =
γqw

γpw
p + u where u = εq −

γqw

γpw
εp, (38)

when γpw 6= 0 so that the instrument is informative. The error term u in Equation (38) has
the property that it is independent of the instrument w since f(εq, εp|w) = f(εq, εp) implies
f(u|w) = f(u). We note that in this just-identified setup, the ratio of least squares estimators
for γqw and γpw is the indirect least squares estimator, which is the same as the two-stage
least squares estimator or limited information maximum likelihood estimator. If the slope
γqw/γpw is positive and if we can interpret w as a supply shock, then Equation (38) can be
interpreted as a demand equation. By imposing the additional, testable restriction that u
and εp are independent or, equivalently, that γqw/γpw = Cov(εq, εp)/Var(εp), the unique
Markov structure w — p — q is obtained by Theorem 1. If the instrument w can be viewed
as a catalyst, it transmits causally through p to the traded quantity q. The likelihood ratio
test for the hypothesis of independence of u and εp can be approximated by the Hausman
test for endogeneity.

As a causal concept, causal transmission is modest in scope: all causal orderings
are relative to particular interventions with no attempt to give an overall causal ordering
of the variables of interest, y, z. The concept is more modest than the causal inference
interpretation of quasi-experiments, where the difference of potential and realized outcomes
is estimated using an instrumental variable approach and the causal language from random
control trials is applied, see Imbens (2014). Rather than conducting causal inference under
an assumption of causal transmission, we are interested in conducting inference about
the causal transmission itself. In practice, the consequence is that it becomes clearer that
results can only be extrapolated to future interventions insofar as those interventions are
comparable with the interventions in the sample.

An empirical illustration of this instrumental variable setup is the analysis of the
Fulton Fish market data by Hendry and Nielsen (2007). This uses the data collected and
analyzed by Graddy (1995) and Angrist et al. (2000). For those data, q and p would be log
aggregated daily quantities and prices of whiting while w is an indicator variable for the
stormy/fair weather at sea where the fish is caught.
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4.3. External Instruments

Montiel Olea et al. (2021) identify impulse response functions within structural vector
autoregressions by finding instruments for the structural shocks. For comparison, we ignore
the lagged dependent variable, which does not play any particular role in the argument,
and focus on the first structural shock. The structural model is(

yt
zt

)
=

(
1 H21

H12 H22

)(
e1,t
e2,t

)
, (39)

where the structural shocks e1,t and e2,t are assumed to have a diagonal covariance matrix
Ωe = diag(ω11, ω22). The coefficient H12 is of interest, but it is not identifiable from the
reduced-form representation. The identification strategy sought here is through an external
instrument wt that satisfies E(e1,twt) = α 6= 0 for informativeness and E(e2,twt) = 0 for
validity; diagonality of Ωe is required for identification of the structural shocks but not
for identification of the impulse response function. The coefficient H12 can then be found
from the covariance of (yt, zt) and wt. It is useful to express the assumptions through the
joint density of f(e1, e2, w). If normality is assumed, for instance, the requirements on the
instrument and the structural shocks are that

(
et
wt

)
D
= N


 0

0
0

,

 ω11 0 α
0 ω22 0
α 0 σww

. (40)

This approach identifies impulse response functions but does not impose any causal
ordering. An ordering would require either H12 = 0 or H21 = 0. The instrumental
variable assumptions placed on the structural model, however, do not imply either of
these situations; they are necessary but not sufficient for causal transmission of w, since no
asymmetry is introduced between the endogenous variables.

The recursive ordering achieved through Cholesky decomposition with H21 = 0
gives direction but no uniqueness as it is observationally equivalent to swapping the
roles of the variables y and z. The external instrument approach with E(e1,twt) = α
gives uniqueness but no direction; additionally, imposing H21 = 0 would yield a causal
transmission w → y → z, but imposing H12 = 0 does not due to E(e2,twt) = 0. In both
identification approaches, the restrictions introduce an asymmetry in the structural model.
For example, external instruments impose the asymmetry on the joint distribution of the
unobserved structural errors e1,t, e2,t and the instrument wt. The restrictions are sufficient
to just identify the structural model from the reduced-form model that remains symmetric.
It seems necessary to impose the asymmetry on the reduced-form model in order to ensure
a unique direction.

4.4. Multiple Causal Transmissions

The possibility of multiple causal transmissions was explored in Section 3.3. This was
performed in a reduced-form model. Here, we explore the structural interpretation.

The setup is the linear normal system (21) with two distinct catalysts. When the restric-
tions H1 and H2 defined in (26) and (27) are both satisfied, we obtain causal transmissions
in opposite directions: w1 z y w2. The restricted reduced-form model (29)
is then (

y
z

)
=

(
σyz/σzz

1

)
γz1w1 +

(
1

σzy/σyy

)
γy2w2 +

(
εy
εz

)
. (41)

Following the considerations in Section 4.1, a corresponding structural model is(
1 −γyz
−γzy 1

)(
y
z

)
=

(
0

δ21

)
w1 +

(
δ12
0

)
w2 +

(
e1
e2

)
, (42)
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where γyz = σyz/σzz and γzy = σzy/σyy are multipliers for the catalysts, while
δ21 = (1 − ρ2)γz1 and δ12 = (1 − ρ2)γy2, with ρ2 = σ2

yz/(σyyσzz). The innovations of
the structural Equation (42) satisfy(

e1
e2

)
D
= N

{(
0
0

)
,
(

σyy·z −σyz
(
1− ρ2)

−σzy
(
1− ρ2) σzz·y

)}
, (43)

with correlation −ρ = −σyz(1− ρ2)/(σyy·zσzz·y)1/2. We have identified a structural model
with respect to catalysts w1 and w2 without imposing any ad hoc restrictions on the causal
ordering through the covariance matrix. The catalysts are orthogonal to each other in
the structural model in the sense that w1 is omitted from the first structural equation and
w2 is omitted from the second structural equation. Structure is, therefore, identified as a
linear relationship that remains invariant to large shocks. Rather than imposing structure
to identify orthogonal shocks, we use shocks to identify structure. Instead of having a
structural model that is ordered for an entire sample, we are only concerned with ordering
during periods when large interventions take place. We note that if the parameters γyz,
γzy of the system (42) were unrelated to the covariance parameters σyy, σyz, σzz in (43), we
would have a just identified and undirected, bivariate simultaneous equations model.

Causal transmissions in both directions depending on the type of shock seems compat-
ible with the discussion of shocks in macroeconomics. In many situations, we use indicator
variables to represent large external shocks to the economy. When large external shocks
arrive in quick succession, it may be difficult to separate the effect of the individual shocks.
A pertinent example is the beginning of the financial crisis in 2007–2008 when oil shocks,
financial collapse and large fiscal and monetary policy interventions occurred in quick
succession. We envisage that it would be possible to disentangle the effect of these shocks
by lining these up, individually, with shocks at other points in time.

4.5. Super Exogeneity

The concept of super exogeneity by Engle et al. (1983) is formulated in the context
of a statistical model with density fλ1(yt|zt) fλ2(zt) for t = 1, . . . , T and with parameters
varying in some parameter space. The parameters λ1, λ2 satisfy a sequential cut property if
they are variation free so that maximizing the conditional (partial) likelihood for yt given
zt and the marginal (partial) likelihood for zt separately delivers the overall maximum
likelihood. This idea was exploited by Fisher (1922) in a non-dynamic context. A model
user may only be interested in a subset of the parameters ψ = f (λ1, λ2). If the parameters
are variation free and the parameter of interest is only a function of λ1, the variable zt is
said to be weakly exogenous for ψ. Engle et al. (1983) proceed to say that the parameters
may change over time. A conditional model is said to be structurally invariant if all its
parameters are invariant to any change in the distribution of the conditioning variables.
Further, zt is said to be super exogeneous for ψ if zt is weakly exogeneous for ψ and the
conditional model is structurally invariant.

It is useful to contrast our theory and the notion of super exogeneity. Our theory is
concerned with a single distribution rather than a statistical model, which is a parametrized
family of distributions. Parameters are therefore not involved. In the examples, distri-
butions have been expressed in terms of coefficients which are thought of as having a
single value. In practical implementation, these coefficients will usually be replaced by
parameters which are to be estimated. By avoiding a link between causal transmission and
parameters, the sequential cut property is not essential and causal transmission can run
counter to a sequential cut direction. It will also be possible to have causal transmission of
different types of shocks in different directions.

Co-breaking is related to both super-exogeneity and causal transmission, see Hendry
and Massmann (2007). If the variables yt, zt have level shifts, but a linear relation of the
variables does not have level shifts, the variables are said to co-break. With co-breaking,
the linear relation need not coincide with a conditional relation.
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5. The Multiple Causal Transmissions Model

The most complicated construction in this paper is the multiple causal transmissions
explored in Sections 3.3 and 4.4, as this involves two endogenous variables and two shocks.
We draw some parallels to the graphical model literature and give some remarks on
exponential family properties and, hence, on estimation.

We consider the linear, normal system (21)(
y
z

)
=

(
γy1
γz1

)
w1 +

(
γy2
γz2

)
w2 +

(
εy
εz

)
, (44)

where f(εy, εz|w) = f(εy, εz) is normal as in (2).

5.1. Graphical Models

Our terminology of causal transmissions leads to the following considerations con-
cerning graphical notation. Assuming w1, w2 are catalysts, we write

w1 z y w2 (45)

under the conditional independence constraints

γy1·z = γy1 − σyzσ−1
zz γz1 = 0 and γz2·y = γz2 − σzyσ−1

yy γy2 = 0 (46)

along with the dependence conditions

γz1 6= 0, γy2 6= 0, γyz = σyzσ−1
zz 6= 0 and γzy = σzyσ−1

yy 6= 0. (47)

Markov properties for chain graphs take various forms in the literature, see Drton (2009).
Here, we focus on the first two types described by Drton. We start with the alternative
Markov property by Andersson et al. (2001), as these authors have an introductory example
resembling the present situation. They operate in the joint distribution of y, z, w1, w2
starting from (44) and the assumption that w1, w2 are bivariately normal. They use the
graph notation

w1 z y w2 (48)

to describe the situation where

γy1 = 0 and γz2 = 0 while Cov(w1, w2) = 0. (49)

These constraints pertain to the parameters in the joint model for y, z in (44), rather
than the parameters in the conditional distributions.

Lauritzen and Wermuth (1989) and Frydenberg (1990) present a block concentration
Markov property. Following Andersson et al. (2001), this would imply using the graph
in (48) to describe the situation where

γy1·z = 0 and γz2·y = 0 while Cov(w1, w2) = 0. (50)

The zero constraints to two regression coefficients match the constraints in (46) and
produce a Markov structure. Our approach, however, requires the dependencies (47), so
the graph (45) indicates the flow of catalysts through y, z under a causal assumption. By
contrast, the graph (48) indicates certain Markov structures. However, our approach is
silent on the distribution of the catalysts.
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5.2. Exponential Family Properties

The unrestricted model (44) is known to be a regular exponential family. To see this,
introduce the vector notation x = (y, z)′ and w = (w1, w2)

′ for the observations and matrix
notation for the parameters so that

γ =

(
γy1 γy2
γz1 γz2

)
, Σ = Var

(
εy
εz

)
=

(
σyy σyz
σzy σzz

)
. (51)

We can then write the unrestricted density as

f(y, z|w) = {det(2πΣ)}−1/2 exp{−1
2
(x− γw)′Σ−1(x− γw)}

= {det(2πΣ)}−1/2 exp{−1
2

tr (Σ−1xx′ − 2Σ−1γwx′ + Σ−1γww′γ)}. (52)

The canonical parameter consists of Σ−1 and Σ−1γ. With i.i.d. repetitions of yi, zi, wi,
the sufficient statistic consists of ∑n

i=1 xix′i and ∑n
i=1 wix′i . The dimensions of the canonical

parameter and the sufficient statistic match, so the exponential family is regular.
We note that the canonical parameter has the detailed expression

Σ−1 =

(
σ−1

yy·z 0
0 σ−1

zz·y

)(
1 −σyz/σzz

−σzy/σyy 1

)
, (53)

Σ−1γ =

(
σ−1

yy·z 0
0 σ−1

zz·y

)(
γy1 − σyzσ−1

zz γz1 γy2 − σyzσ−1
zz γz2

γz1 − σzyσ−1
yy γy1 γy1 − σzyσ−1

yy γz1

)
. (54)

The conditional independence constraints (46) set the off-diagonal elements of Σ−1γ to
zero, see also Andersson et al. (2001). The exponential family constrained by (46) therefore
remains regular. The restricted density is now

f(y, z|w) = {det(2πΣ)}−1/2 exp{−1
2

tr (Σ−1xx′ − 2θt′ + Σ−1γww′γ)}, (55)

where θ is the vector of diagonal elements in Σ−1γ and t = (w1y, w2z)′. Thus, the dimen-
sions of the canonical parameter and the sufficient statistic match in an i.i.d. model. In
particular, the likelihood is concave with a unique maximum, see Sundberg (2019, §3.2).

We note in passing that the first two constraints under the alternative Markov property
model (49) correspond to setting the off-diagonal elements of γ to zero. We therefore
obtain a system of seemingly unrelated regressions. The constraints amount to a non-
linear constraint on the canonical parameter Σ−1, Σ−1γ, resulting in a curved exponential
family. The concavity property of likelihood is lost, and it may have multiple maxima,
see van Garderen (1997) and Drton and Richardson (2004).

6. Empirical Example

We illustrate the causal transmission using the simplified bivariate model of money
demand for the UK in Hendry and Nielsen (2007). This has the convenient features of
being bivariate, reasonably well-specified and with two catalysts operating in opposite
directions. The data are formed from quarterly observations of log M1 money m, log real
total final expenditure x, its log deflator p and a constructed net interest rate Rn taken
from Hendry and Mizon (1993) over the period from 1963:2 to 1989:2. This in turn builds
on Hendry and Ericsson (1991). To simplify the analysis, we convert the four variables into
a bivariate system, modeling the velocity of circulation of money v and the cost of holding
money C through

vt = xt −mt + pt, Ct = ∆pt + Rn,t.
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We show how the results from the previous sections may be applied in practice to
identify multiple causal transmissions. Subsequently, we provide impulse responses for
the interventions that are identified. Finally, we address the Lucas critique that asserts
that an econometric model may be unstable under changing conditions. The subsequent
computations were carried out in MATLAB (2014) and PcGive (Doornik and Hendry 2013).

6.1. The Unrestricted Reduced-Form

Figure 1 shows vt, Ct in levels and differences. The transformed data series are
non-stationary, but their first-order differences have a more stationary appearance. The
plots also show two dummy variables wout,t, woil,t representing large fiscal expansions in
1972:4–1973:1 and 1979:2 as well as the oil price shocks in 1973:3–4 and 1979:3. They will
later be interpreted as catalysts.
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Figure 1. Levels and first-differences of the variables in the system (v, C) plotted with the selected
outliers (wout, woil).

Whereas the oil shocks are clearly exogenous to the UK economy, this is less obvious
for the fiscal expansions. In fact, what we call fiscal shocks are the expansionary budget
of 1972 proposed by Anthony Barber, then Chancellor of the Exchequer, and a significant
VAT reduction in 1979. While both are likely endogenous to the UK economy, neither shock
was set up to influence money demand, and so both can be considered exogenous for the
bivariate model of (v, C). Furthermore, while the shocks are different in principle, the effect
is the same so that it becomes possible to extend our conclusions over several types of
shocks that are expansionary in nature.

The dummy variables are taken from Hendry and Mizon (1993). They were originally
found through a residual analysis as large outliers. By including dummies for these
particular observations, the remaining observations appear to match a normal reference
distribution, and the model passes standard specification tests including recursive tests. At
the same time, these dummies have interpretation as interventions and are in this respect
related to the historical narrative approach of Romer and Romer (2010).
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The initial specification is a second-order vector autoregressive model including the
two dummy variables wout,t and woil,t, that is

∆vt = πvvvt−1 + πvCCt−1 + ψvv∆vt−1 + ψvC∆Ct−1 + µv (56)

+γv,outwout,t + γv,oilwoil,t + εv,t,

∆Ct = πCvvt−1 + πCCCt−1 + ψCv∆vt−1 + ψCC∆Ct−1 + µC (57)

+γC,outwout,t + γC,oilwoil,t + εC,t.

The estimated model is the joint model reported in equilibrium-correction form in the first
two columns of Table 1. The innovations εv,t, εC,t are assumed i.i.d. jointly normal with
zero mean and independent of the current and past regressors.

Table 1. Three models estimated over the period 1963:4 to 1989:2. Standard errors reported in parentheses.

Joint Conditional Structural
Model Models Model

∆vt ∆Ct ∆vt|∆Ct ∆Ct|∆vt ∆vt ∆Ct

∆vt – – – 0.433
(0.075)

* – 0.402
(0.068)

*

∆Ct – – 0.606
(0.104)

* – 0.579
(0.093)

* −

∆vt−1 −0.343
(0.095)

* −0.048
(0.081)

−0.314
(0.082)

* 0.100
(0.074)

−0.317
(0.091)

* 0.092
(0.076)

∆Ct−1 0.086
(0.117)

0.046
(0.099)

0.058
(0.100)

0.009
(0.085)

0.064
(0.108)

0.003
(0.090)

vt−1 −0.097
(0.014)

* −0.005
(0.012)

−0.094
(0.012)

* 0.037
(0.013)

* −0.095
(0.012)

* 0.035
(0.013)

*

Ct−1 0.529
(0.071)

* −0.077
(0.060)

0.575
(0.062)

* −0.306
(0.065)

* 0.575
(0.066)

* −0.293
(0.068)

*

1 −0.004
(0.006)

0.009
(0.005)

−0.009
(0.005)

0.011
(0.004)

* −0.009
(0.005)

0.011
(0.004)

*

wout,t 0.051
(0.012)

* 0.013
(0.010)

0.044
(0.010)

* −0.010
(0.009)

0.039
(0.010)

* 0

woil,t 0.030
(0.012)

* 0.051
(0.010)

* −0.001
(0.011)

0.038
(0.009)

* 0 0.039
(0.008)

*

σ̂1/2
vv 0.019 – – – – –

σ̂1/2
CC – 0.016 – – – –

ρ̂ 0.512 – 0.482
σ̂1/2

vv·C – – 0.017 – 0.016 –
σ̂1/2

CC·v – – − 0.014 – 0.014

Likelihood 559.31 558.74
* indicates significance at the 5% level.

Specification tests are reported in Table 2. The residual specification tests include a
cumulant based test χ2

norm for normality, a test Far for autoregressive temporal dependence
(Godfrey 1978), a test Farch for autoregressive conditional heteroscedasticity (Engle 1982), a
test Fhet for heteroscedasticity (White 1980) and a test max Chow based on the maximum of
recursive 1-step-ahead Chow (1960) forecast test statistics. We will benefit from this recursive
test in Section 6.6. The above references only consider static or stationary models, but the spec-
ification tests also apply for non-stationary autoregressions, see Kilian and Demiroglu (2000)
for χ2

norm, Nielsen (2006) for Far and Nielsen and Whitby (2015) for max Chow. We see that
the specification for the velocity equation is very good, while the specification for the cost
equation is less good but tolerable. The two Chow tests take their maximum values in
1971:1 and in 1976:4. These dates correspond to the decimalization of the Pound and the
debt intervention by the International Monetary Fund. Overall, these tests indicate that we
cannot reject the model and that the innovations are independent, identically normal.

The dummy variables play a dual role in the subsequent analysis. First, we need the
dummy variables to achieve a reasonable specification of the econometric model. Without
these, the residuals appear too irregular and we cannot perform valid inference. The chosen
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statistical model is based on the normal distribution and the observations captured by the
dummy variables are outliers relative to this reference distribution. Second, the dummy
variables help us to distinguish between large and small shocks. The large shocks occur
infrequently, and they are often interpretable as catalysts.

Table 2. Specification tests for unrestricted joint model. p-values reported in brackets.

Test χ2
norm[2] Far(1−5)[5, 91] Farch(1−4)[4, 95] Fhet[10, 92] max Chow

∆vt 2.2 [0.33] 0.4 [0.86] 1.2 [0.32] 0.6 [0.81] 8.4 [0.29]
∆Ct 1.9 [0.39] 1.9 [0.10] 2.1 [0.08] 1.5 [0.15] 12.3 [0.04]

The above specification analysis indicates that the largest shocks after the oil crises
and output expansions are the decimalization of the Pound in 1971:1 and the turmoil
around the IMF intervention in 1976:4. In terms of fit, the results in Table 2 do not suggest
that it is necessary to include dummies to represent these events. This could be followed
up with a sensitivity analysis for the inference we draw about the oil shocks and the
output expansion. For instance, does it make a difference to include a dummy for the
decimalization? At the same time, we could include dummies for the decimalization and
the IMF intervention to explore the transmission of those events. In other words, if we are
concerned with a particular macroeconomic intervention we can to some extent search for
similar interventions in the past and explore their transmission.

6.2. Causal Transmission in UK Money Demand Data

We now explore causal transmission. Table 1 reports the unrestricted reduced-form
model in columns 1 and 2. This is a model for vt, Ct given dummies and the past. In the
estimated model (56) and (57), we have assumed that the joint density of the innovations
εv,t, εC,t given contemporaneous and past regressors is i.i.d. zero mean jointly normal.
When applying the theory of Section 3, the density f(y, z|w) will represent the estimated
innovation density. Depending on the context, y, z will refer to εv,t, εC,t in some order, w will
refer to one of the dummy variable wout,t, woil,t and the remaining regressors are ignored.

The effect of the oil price shocks can be explored by conditioning vt on Ct and follow
Example 2. The conditional equation for vt given Ct and the marginal equation for Ct are
reported in columns 3 and 2, respectively, in Table 1. The coefficient for woil,t is insignificant
in the conditional equation but significant in the marginal equation. Theorem 1 shows there
exists a unique Markov structure such that vt and woil,t are conditionally independent given
Ct. Further, the coefficient for ∆Ct is significant in the conditional equation. Theorem 2 then
shows the Markov structure is non-trivial so woil,t—Ct—vt. Lemma 3 then shows that the
transmission between woil,t and vt is non-trivial. Correspondingly, the coefficient for woil,t is
significant in the marginal vt equation. From an economic perspective, it seems reasonable
to interpret the oil shocks as catalysts so that woil,t → Ct → vt. The interpretation is that
large oil price shocks move the cost of holding money and in turn the velocity.

To illustrate the uniqueness result, we now consider the conditional equation for Ct
given vt in column four of Table 1. Here, woil,t is significant, so we cannot have a Markov
structure from woil,t through vt to Ct. This is in line with Theorem 1.

Turning to the output shock, we condition Ct on vt. The conditional equation for Ct
given vt and the marginal equation for vt are reported in columns 4 and 1, respectively. We
follow Example 2 again. The output dummy wout,t is significant in the marginal equation
and insignificant in the conditional equation. Moreover, velocity, ∆vt, is significant in
the conditional equation. Theorems 1 and 2 then show a non-trivial Markov structure
wout,t—vt—Ct. Lemma 3 shows that the transmission is non-trivial. Interpreting wout,t as a
catalyst, we then have wout,t → vt → Ct. Economically, large fiscal expansions may impact
the velocity of money without having an impact on inflation straight away. The conclusion
is, however, less clear than the causal transmission of the oil shocks. Indeed, in line with the
discussion in Section 3.1.3, we check if the fiscal shock wout,t actually has a non-negligible
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effect on the cost of holding money. The coefficient in the Ct equation has a t-statistic of 1.3,
which at best shows marginal significance. Thus, we may very well have wout,t → vt → Ct,
but evidence for this transmission is weaker than the evidence for the transmission of the
oil shocks.

6.3. Imposing Multiple Catalysts

The two causal transmissions woil,t → Ct → vt and wout,t → vt → Ct can be imposed
individually. These are the hypotheses H1, H2 of (26) and (27). Imposing both gives
w1 z y w2 as described in Section 3.3. This is a system of seemingly
unrelated regressions. When maximizing the likelihood, we chose to parametrize it in
terms of σyy·z, σzz·y, ρ and derive standard errors for γyz and γzy using the δ-method.

The restricted model is reported in columns 5 and 6 of Table 1 in the structural
form derived from Section 3.3. The likelihood ratio statistic for the two restrictions is
2(559.31− 558.74) = 1.14, which is not significant when compared to a χ2

2 distribution.
The structural estimates largely match those of the conditional models in Table 1. Writing
the model in structural form, it becomes very clear that the dummies wout,t, woil,t affect
distinct linear combinations of the endogenous variables. The first structural equation is
interpretable as the monetary quantity relation, showing how money demand reacts to
output shocks, while the second structural equation is interpretable as a cost-push relation
showing how money demand is driven by price shocks.

6.4. Cointegration

The velocity and cost of holding money variables are non-stationary and should possi-
bly be subjected to a cointegration analysis. This is compatible with causal transmission.

Following the maximum likelihood setup of Johansen (1995), the cointegration model
with rank one is given by the equilibrium-correction model(

∆vt
∆Ct

)
=

(
αv
αC

)
(βvvt−1 + βCCt−1 + β1)

+

(
γvv γvC
γCv γCC

)(
∆vt−1
∆Ct−1

)
+

(
γv1 γv2
γC1 γC2

)(
wout,t
woil,t

)
+

(
εv,t
εC,t

)
(58)

The model with multiple causal transmissions and cointegration imposed has a like-
lihood 555.44. For present purposes, we merely consider the likelihood ratio test for the
cointegration restriction within the model with multiple causal transmission imposed. The
test statistic is 2(558.74− 555.44) = 6.60, which should be compared to a 95% critical value
of 9.1, see Johansen (1995, Table 15.2).

With a unit cointegration rank, the coefficients to vt−1, Ct−1 are proportional across the
equations. This results in the cointegrating relation vt−1 = 6.239Ct−1, which is interpretable
as long-run money demand. The adjustment coefficient in the conditional equation for vt
given Ct is a modest 9.5% per quarter, whereas the adjustment in the marginal equation for
Ct is insignificant. We note that in a model without multiple causal transmissions imposed,
the constraint αC = 0 would be a hypothesis of weak exogeneity, Johansen (1995, §8), but
the weak exogeneity is broken when imposing the cross-equation restrictions implied by
causal transmission.

6.5. Impulse Responses

We now carry out an impulse response analysis with respect to the economic shocks
represented by wout,t and woil,t. We reconstruct empirical scenarios and compare our
results to the data. Thereby, the impulse responses are associated with particular shocks at
particular points in time and their trajectories can be compared with the actual development
of the data. This offers a distinct advantage over impulse responses created by placing
identifying restrictions on the covariance matrix. Figure 2a,b explores the period around
the first oil crisis, where the fiscal expansions in 1972:4–73:1 are followed by the oil shock in
1973:3–4. Likewise, Figure 2c,d explores the period around the second oil crisis, where the
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fiscal expansions in 1979:2 are followed by the oil shock in 1979:3. In both cases, we provide
joint impulse responses and compare these to real data over a five-year horizon in Figure 2.
All joint impulses perform remarkably well compared to the scenario under consideration.
What is more, the impulse response functions do not decline in performance across each
scenario, indicating a temporal stability in causal transmission. This is addressed further in
Section 6.6.
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Figure 2. Impulse responses matched with the data for the early and late 1970s output and oil shocks.
Panels (a,b) consider the period after the first episode. Panels (c,d) consider the period after the
second episode. Panels (a,c) show impulse response for v. Panels (b,d) show impulse response for C.
Dashed lines are simulated 90% confidence bands.

6.6. Lucas Critique

Major shocks such as the oil crises and fiscal expansions change the policy environ-
ment and, in turn, may influence the behavior of individual agents. It has long been a
concern whether this results in instability for the parameters of an economic model, ren-
dering it useless for analyzing the effect of implementing the policy. This is known as
the Lucas (1976) critique, although the concern goes back to Frisch and Haavelmo. Engle
and Hendry (1993) argue that tests of super exogeneity are of interest when seeking to
address the Lucas critique. Causal transmission is relevant in a similar way. We illustrate
the use of causal transmission in policy analysis by performing a recursive analysis of the
money data.

Previously, woil,t was constructed as the sum of impulse indicators across the two
oil crises. Now, we construct dummies woil1,t, woil2,t for 1973:3–4 and 1979:3, respectively,
so that woil,t = woil1,t + woil2,t. We re-estimate the equations for (vt|Ct), (Ct) reported
in Table 3 over subsamples 1963:4–1977:2 and 1963:4-1989:3 using the split oil dummy.
It is clear that the transmission of the first catalyst woil1 → C → v does not differ in a
statistically significant way from the transmission of the second catalyst woil2 → C → v.
Deconstructing the catalyst wout provides similar evidence for the stability of the causal
transmission of the output shocks. The search for causal transmission in well-specified
models therefore seems relevant when considering the Lucas critique. This does, of course,
go hand in hand with the fact that the model in Table 1 passes recursive specification tests,
such as the max Chow test.
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Table 3. Estimation for UK M1 data based on a subsample and the full sample.

1963:4-1977:2 1963:4-1989:2
∆vt|∆Ct ∆Ct ∆vt|∆Ct ∆Ct

∆Ct 0.542
(0.189)

* – 0.605
(0.105)

* –

∆vt−1 −0.359
(0.123)

* −0.060
(0.094)

−0.311
(0.087)

* −0.031
(0.084)

∆Ct−1 −0.004
(0.185)

−0.092
(0.142)

0.057
(0.101)

0.036
(0.099)

vt−1 −0.097
(0.032)

* 0.007
(0.025)

−0.094
(0.013)

* −0.003
(0.012)

Ct−1 0.626
(0.145)

* −0.146
(0.111)

0.574
(0.063)

* −0.084
(0.061)

1 −0.012
(0.008)

0.012
(0.006)

* −0.009
(0.005)

0.009
(0.005)

wout,t 0.042
(0.015)

* 0.016
(0.011)

0.044
(0.010)

* 0.013
(0.010)

woil1,t 0.001
(0.018)

0.058
(0.011)

* 0.000
(0.014)

0.055
(0.012)

*

woil2,t – – −0.002
(0.018)

0.043
(0.017)

*

* indicates significance at the 5% level.

7. Concluding Remarks

Causal transmission has been introduced to capture the idea that large economic
shocks may transmit gradually through the macroeconomy.

There are three ingredients to the definition of causal transmission of catalyst w
through z to y. First, we need a non-trivial Markov structure w—z—y, that is, the Markov
structure f(y, z|w) = f(y|z)f(z|w) needs to be non-trivial in the sense that y, z are dependent
and z, w are dependent. Secondly, we need a non-trivial transmission between w, y so that
w, y are dependent. Thirdly, we need a causal assumption for the catalyst w. When these
conditions are satisfied, we write w→ z→ y. We have shown how this definition can be
extended to the transmission of two unrelated catalysts.

Causal transmission is defined for general densities and it does not require normality.
The first two conditions to the definition of causal transmission are testable using obser-
vational data. In standard models, the first condition of a non-trivial Markov structure
implies the second condition of a non-trivial transmission. These standard models include
normal models and mixtures of normal and logit/probit models.

Causal transmissions also require a catalyst. As in instrumental variable analysis, the
catalyst can be found as a natural experiment formulated prior to the empirical analysis or
it may be discoverable from the empirical analysis of observational data. Outlier detection
algorithms such as Autometrics by Doornik (2009) may be helpful in this respect. The
causal transmission relies on an economic interpretation of the catalyst where the narrative
approach of Romer and Romer (2010) may prove helpful. Catalysts have to be statistically
significant to be discoverable, and the evidence of causal transmission is stronger if found in
several instances. In these ways, the empirical analysis of causal transmission is consistent
with the criteria for causation in Hill (1965).

The present analysis was inspired by Bårdsen et al. (2017), who construct 3-year ahead
quarterly forecasts from March 2007 generated from their macro-econometric model for
Norway. In 2008, policymakers in Norway and abroad changed the policy rate dramatically
in response to the financial crisis, creating a large shift of the short-term interest rate. It
appears that this had the causal impact of offsetting potential big shifts in the labor market
in such a way that the macro-econometric model produces good forecasts of unit labor cost,
inflation and unemployment despite the financial crisis. It is plausible that the effects seen
in the forecasts of the Norwegian macro-econometric models of Bårdsen et al. (2017) could
be described as a combination of a major financial shock and a subsequent policy reaction
calibrated to offset the financial shock in the labor market.

It would be interesting to develop the ideas on causal transmission in larger statistical
models of the economy. First, to what extent does a causal transmission analysis of f(y, z|w)
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extend to f(x, y, z|w)? Second, where interventions can be identified as catalysts that induce
a particular dependence structure or causal transmission among modeled variables, these
can be deployed out of sample to attenuate adverse shocks by targeting dependence chains,
as opposed to single variables.
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Appendix A. Proofs

The result in Theorem 1 hinges on the equivalence in the following lemma, of which
the left to right implications are related to Lauritzen (1996, Proposition 2.1).

Lemma A1. Suppose f(y, z|w) has support on a product space and that it is positive on this
support. Then,

f(y|z, w) = f(y|z) and f(z|y, w) = f(z|y) for all y, z⇔ f(y, z|w)=f(y, z) for all y, z. (A1)

Proof of Lemma A1. Since the density is positive on a product space, then the marginal
densities are also positive.

⇒: By the definition of conditional densities, the first statement on the left hand side
of (A1), and the definition of conditional densities

f(y, z|w) = f(y|z, w)f(z|w) = f(y|z)f(z|w) = f(y, z)f(z|w)/f(z).

Swap y, z and use the second statement on the left hand side of (A1) to obtain

f(y, z|w) = f(y, z)f(y|w)/f(y). (A2)

Equating the two expressions, we obtain

f(y|w) = f(y)f(z|w)/f(z).

Fixing z, this shows that f(y|w) = cf(y) for some constant c = f(z|w)/f(z), which
must be one so that the densities f(y|w), f(y) integrate to unity. Insert this in (A2) to obtain
the desired right hand side of (A1).

⇐: We prove the first left hand side statement. Note that

f(y|z, w) = f(y, z|w)/f(z|w).

The right hand side of (A1) shows f(y, z|w) = f(y, z). Integrate over y to obtain f(z|w) =
f(z). Insert these statements above to obtain

f(y|z, w) = f(y, z)/f(z) = f(y|z),

as desired. The other left hand side statement is proved in a similar fashion.

https://www.mdpi.com/article/10.3390/econometrics10020014/s1
https://www.mdpi.com/article/10.3390/econometrics10020014/s1
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Proof of Theorem 1. Condition (12) shows f(y|z, w) = f(y|z). Thus,

f(y, z|w) = f(y|z, w)f(z|w) = f(y|z)f(z|w). (A3)

First, rearrange to obtain

f(y|z, w) = f(y, z|w)/f(z|w) = f(y|z). (A4)

Then, note that Condition (13) has f(z|w) 6= f(z). Insert this in (A3) to obtain

f(y, z|w) 6= f(y|z)f(z) = f(y, z). (A5)

Now, apply Lemma A1. The first statement on the left of (A1) holds through (A4),
while the right hand side fails through (A5). Thus, the second statement on the left hand
side of (A1) fails as desired.

Proof of Theorem 2. Combine Theorem 1 and Definition 1.

Proof of Lemma 1. Consider the compound distribution integral (20).
If f(z|w) = f(z), then f(y|w) =

∫
f(y|z)f(z)dz =

∫
f(y, z)dz = f(y).

If f(y|z) = f(y), then f(y|w) =
∫
f(y)f(z|w)dz = f(y)

∫
f(z|w)dz = f(y).

Proof of Lemma 2. It is assumed that w — z — y so that f(y, z|w) = f(y|z)f(z|w) with
f(y|z) 6= f(y) and f(z|w) 6= f(z). It has to be argued that f(y|w) 6= f(y). We prove by
contradiction and show that f(y|w) = f(y) implies that f(y|z) = f(y) or f(z|w) = f(z).

Let pw = P(z = 0|w). When z is binary the compound integral (20) reduces to
f(y|w) = f(y|z = 0)pw + f(y|z = 1)(1 − pw). By the assumption f(y|w) = f(y), then
Dw,w† = f(y|w)− f(y|w†) = 0 for all y, w, w†. Inserting the previous expressions gives that
Dw,w† = {f(y|z = 0)− f(y|z = 1)} (pw − pw†) = 0. Thus, we either have pw = pw† for all
w, w† so that P(z = 0|w) = P(z = 0) or f(y|z = 0) = f(y|z = 1) so that f(y|z) = f(y).

Proof of Lemma 3. Referring to Equations (3) and (4), the Markov assumption implies
0 = γyw·z = γyw − γyzγzw. Thus, if γyz 6= 0 and γzw 6= 0 then γyw 6= 0.

Proof of Lemma 4. We show that f(y = 0|w) is strictly decreasing in w if and only if
γyz 6= 0 and γzw 6= 0. The partial derivatives of the normal density f(z|w) and the
logit/probit probabilities f(y = 0|w) satisfy, using D as partial derivative symbol,

Dwf(z|w) = (−γzw/σ2
z )Dzf(z|w),

logit: Dzf(y = 0|z) = −γyzf(y = 0|z){1− f(y = 0|z)},
probit: Dzf(y = 0|z) = −γyzφ(γyzz),

which are bounded. We can then differentiate the probability f(y = 0|w) and use integration
by parts to obtain

Dwf(y = 0|w) =
∫ ∞

−∞
f(y = 0|z)Dwf(z|w)dz

=
−γzw

σ2
z

∫ ∞

−∞
f(y = 0|z)Dzf(z|w)dz

=
γzw

σ2
z

∫ ∞

−∞
f(z|w)Dzf(y = 0|z)dz,

which is zero if and only if γyzγzw = 0.
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