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Abstract: We construct a parsimonious test of constancy of the correlation matrix in the multivari-
ate conditional correlation GARCH model, where the GARCH equations are time-varying. The
alternative to constancy is that the correlations change deterministically as a function of time. The
alternative is a covariance matrix, not a correlation matrix, so the test may be viewed as a general
test of stability of a constant correlation matrix. The size of the test in finite samples is studied by
simulation. An empirical example involving daily returns of 26 stocks included in the Dow Jones
stock index is given.
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1. Introduction

Successors of the Constant Conditional Correlation (CCC-)GARCH model by
Bollerslev (1990) have become quite popular in financial applications. For overviews
of multivariate GARCH models, see Bauwens et al. (2006) and Silvennoinen and Teräsvirta
(2009). The most popular time-varying conditional correlation GARCH model is the DCC-
GARCH model by Engle (2002). Tse and Tsui (2002) independently developed a rather
similar model called the Varying Correlation (VC-)GARCH model. Both nest the CCC-
GARCH model. However, there do not exist tests for testing the CCC model against either
one of them. The reason may be that when the data-generating process is the CCC-GARCH
model, neither the DCC- nor the VC-GARCH model is identified. This causes problems in
deriving an appropriate test.

Among multivariate regime-switching GARCH models, both the Markov-switching
multivariate GARCH model (Pelletier 2006), and the Smooth Transition Conditional Corre-
lation (STCC-)GARCH model (Berben and Jansen 2005; Silvennoinen and Teräsvirta 2005,
2015) nest the CCC-GARCH model. Neither of them is identified when data are generated
from the smaller model. The latter authors circumvented the identification problem and
developed a Lagrange multiplier type test of CCC-GARCH against STCC-GARCH.

In the meantime, GARCH equations of the CCC-GARCH model have been extended
to accommodate potential nonstationarity in the series to be modelled. This has, to a large
extent, been done through the so-called multiplicative decomposition of the variance of an
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individual series into the customary conditional variance and a deterministic component.
Contributions include Feng (2004, 2018); van Bellegem and von Sachs (2004); Engle and
Rangel (2008); Amado and Teräsvirta (2008, 2013, 2017); Brownlees and Gallo (2010) and
Mazur and Pipień (2012). Amado and Teräsvirta (2014) incorporated this feature into
CCC-, DCC- and VC-GARCH models. For a recent review, see Amado et al. (2019). The
problem for which multiplicative decomposition offers a solution is that many sufficiently
long return series are nonstationary in the sense that the amplitude of volatility clusters
that GARCH is designed to parameterise is not constant over time. The purpose of the
deterministic component in the decomposition is to rescale the observations such that the
rescaled series can be described by a standard weakly stationary GARCH model.

Silvennoinen and Teräsvirta (2021) retained the multiplicative decomposition of vari-
ances and, in addition, assumed that the correlations of their smooth transition correlation
model were changing deterministically over time. As opposed to the DCC- and VC-
GARCH, this allows systematic changes in correlations. For example, correlations may
change from one level to another and remain there. Hall et al. (2021) derived a test of
CCC-GARCH against this Time-Varying Correlation (TVC-)GARCH model. A drawback
of their test, called the HST-test for short, is that if the dimension of the model is large,
the null hypothesis of the test will also be quite large. This limits the applicability of the
HST-test in practical, large dimensional applications. In this paper we develop a parsimo-
nious alternative to the HST-test. The main thrust is to use the spectral decomposition of
the correlation matrix, thereby making the eigenvalues rather than individual correlation
parameters the focal point of the test. As with the HST-test, while the statistic here has
been derived using a linear time trend as a transition variable, it can be generalised to
detect variation in correlations according to other variables of interest, see Silvennoinen and
Teräsvirta (2015). As a consequence, both of these tests are designed to detect correlation
movement as a function of the chosen transition variable, making them flexible in practical
applications. The test presented in this paper does have a difference compared to the HST
test: the alternative hypothesis is generally not a correlation matrix. The resulting test may
therefore be viewed as a general misspecification test of the CCC-GARCH model when the
correlations are allowed to change systematically over time.

The plan of the paper is as follows. Section 2 contains an overview of previous tests
of constant GARCH equations and correlations. The model and the null hypothesis to
be tested are also presented there. The log-likelihood, score and the information matrix
can be found in Sections 3 and 4 and the test statistic in Section 5. In Section 6, the
performance of the test in finite samples is examined by simulation, including a few
cases in which the GARCH equations are misspecified. Section 7 contains a real-world
application. Conclusions can be found in Section 8. Proofs and further simulation evidence
are relegated to an appendix.

2. Previous Literature and the Time-Varying Smooth Transition Correlation
GARCH Model

Before considering our Time-Varying Smooth Transition Correlation (TV-STC-GARCH)
model, we take a quick look at the literature on tests of constancy of the error covariance
matrix of a possibly nonlinear vector model. This literature is not very large, and rather
few tests actually focus on the correlation matrix. There exist tests against conditional
heteroskedasticity. Lütkepohl (2004, pp. 130–131) constructed a test of no multivariate
ARCH against multivariate ARCH of order q. This Lagrange multiplier test works best
when q and N, the dimension of the model, are small. The test statistic has an asymptotic
χ2-distribution with qN2(N + 1)2/4 degrees of freedom when the null hypothesis of no
ARCH holds.

Eklund and Teräsvirta (2007) designed a test in which the covariance matrix Σt is
decomposed as in Bollerslev (1990) such that Σt = DtPDt where Dt = diag(d1t, . . . , dNt)
is a time-varying matrix with positive diagonal elements and P is a positive definite
correlation matrix. The null hypothesis is that Dt = D = diag(d1, . . . , dN) where di > 0,



Econometrics 2022, 10, 30 3 of 41

i = 1, . . . , N. The alternative is dit 6= di at least for one i. Typically dit = di + d(xt), where
both the (parametric) function d(·) and the argument xt can be defined in various ways.
The restriction that P is constant saves degrees of freedom but in some situations has a
negative effect on the power of the test.

A similar decomposition is employed by Catani et al. (2017), but the purpose of
their test is more limited. The decomposition has the form Σt = DtStPStDt, where
Dt = diag(h1/2

1t , . . . , h1/2
Nt ) such that hit, i = 1, . . . , N, are ARCH- or GARCH-type con-

ditional variances. For example,

hit = αi0 + αi1
ε2

i,t−1

gi,t−1
+ κi1

ε2
i,t−1

gi,t−1
I(εi,t−1 < 0) + βi1hi,t−1, (1)

where I(·) is an indicator variable, with αi0 > 0, αi1 ≥ 0, αi1 + κi1 > 0, and βi1 ≥ 0, so (1) has
a GJR-GARCH structure, see Glosten et al. (1993). Furthermore St = diag(g1/2

1t , . . . , g1/2
Nt )

where git = 1 + ∑
qi
j=1 δijz2

i,t−j, and zt = (z1t, . . . , zNt)
′ ∼ iid(0, P). The null hypothesis H0:

St = IN , or git = 1, i = 1, . . . , N, which means that after estimating the CCC-GARCH
model, there is no structure unmodelled in conditional variances. When Dt = D, this test
may be viewed as a parsimonious version of Lütkepohl’s test of no multivariate ARCH.
The authors point out that their test can also be interpreted as a generalisation of the more
parsimonious test by Ling and Li (1997).

The aforementioned tests are tests of Σt such that in the decomposition Σt = DtPtDt
or Σt = DtStPtStDt, it is assumed Pt = P, and the hypothesis to be tested has been Dt = D.
In this work the focus is on testing H0: Pt = P. Assuming St = I, Tse (2000) derived a
portmanteau type constancy test of this hypothesis and found that it has reasonable power
against the alternatives he was interested in. Péguin-Feissolle and Sanhaji (2016) proposed
two portmanteau tests that are in fact extensions to Tse’s test. The authors showed by
simulation that the power of their tests is superior to that of Tse. A common feature of
these tests is that the alternative is not a correlation matrix.

The TV-STC-GARCH model is a multivariate GARCH model with time-varying
GARCH equations and correlations

εt = H1/2
t ζt = DtStP1/2

t ζt, (2)

where εt = (ε1t, . . . , εNt)
′ is a stochastic N × 1 vector and Ht = DtStPtStDt is an N × N

conditional covariance matrix of εt, typically the vector of returns in applications. The
diagonal matrix St = diag(g1/2

1t (θg1), . . . , g1/2
Nt (θgN)) is a matrix of square roots of positive-

valued deterministic components to be defined below and Dt = diag(h1/2
1t (θg1, θh1), . . . ,

h1/2
Nt (θgN , θhN)) contains the conditional standard deviations of φt = S−1

t εt = (φ1t, . . . ,
φNt)

′, where φit = εit/g1/2
it , i = 1, . . . , N. In what follows it is assumed that the elements of

φt have a first-order GJR-GARCH representation, see Glosten et al. (1993):

hit(θgi, θhi) = αi0 + αi1φ2
i,t−1 + κi1 I(φi,t−1 < 0)φ2

i,t−1 + βi1hi,t−1,

i = 1, . . . , N. Furthermore, in St,

git = δi0 +
ri

∑
j=1

δijGij(t/T, γij, cij) (3)

with

Gij(t/T) = Gij(t/T, γij, cij) = (1 + exp{−γij

Kij

∏
k=1

(t/T − cijk)})−1, (4)

i = 1, . . . , N, where γij > 0 and cij = (cij1, . . . , cijKij)
′ such that cij1 ≤ . . . ≤ cijKij . Note

that δi0 > 0 is assumed known to solve the identification problem arising from both hit
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and git having an intercept. It is often convenient to set δi0 = 1, but any positive constant
will do. Finally, Pt is a positive definite deterministically varying covariance matrix of
zt = D−1

t S−1
t εt, and ζt ∼ iid(0, IN). For the purposes of this paper it is assumed that

Pt is rotation invariant: Pt = QΛtQ′, where the matrix Q = (q1, . . . , qn)′ holds the time-
invariant eigenvectors as its columns, and the time-varying eigenvalues are

Λt = (1− G(t/T))(Λ−Λ∗) + G(t/T)(Λ + Λ∗)

= Λ + {2G(t/T)− 1}Λ∗ (5)

with
G(t/T) = (1 + exp{−γ(t/T − c1)(t/T − c2)})−1, γ > 0. (6)

If changes in the elements of Λt = diag(λ1t, . . . , λNt) are assumed monotonic, the exponent
of order one in (6) is sufficient. If nonmonotonicity is allowed, a second-order exponent is
necessary. Further note that these elements are required to be positive and sum up to N. It
is assumed that the elements of the diagonal matrix Λ satisfy the same conditions, and the
elements of the diagonal matrix Λ∗ sum up to zero. When Pt = P, it is assumed that P is a
positive definite correlation matrix, in which case Ht is a slightly generalised version of the
decomposition of the conditional covariance matrix Bollerslev (1990) suggested.

Hall et al. (2021) derived a constancy test in a more general situation in which

Pt = {1− G(t/T)}P(1) + G(t/T)P(2),

where G(t/T) is defined as in (6) and P(1) and P(2) are two positive definite correlation
matrices. In that set-up, as a convex combination of these two matrices Pt is always a
positive definite correlation matrix . Their Lagrange multiplier test statistic of the null
hypothesis γ = 0, i.e., Pt = P, is asymptotically χ2-distributed with N(N − 1) degrees of
freedom when the null hypothesis holds.

Even here, the focus is on testing Pt = P against the alternative that the matrix varies
deterministically with time. As already indicated, Pt is not a correlation matrix when
Pt 6= P. Testing constancy of Pt in this framework is motivated by the fact that the test of
the null hypothesis H0: γ = 0 in (6) involves fewer parameters than the test of Hall et al.
(2021) when N > 2. It may be viewed as a parsimonious version of their test, which is an
advantage when N becomes large. When H0 holds, G(t/T) = 1/2, and Λt ≡ Λ. It is seen
from (5) and (6) that in that situation the covariance matrix (5) is not identified. Both Λ∗, c1
and c2 are unidentified nuisance parameters.

In order to derive a test of this null hypothesis, we circumvent the identification
problem as in Luukkonen et al. (1988) and develop G(t/T) into a Taylor series around the
null hypothesis. After reparameterising, (5) becomes

Ψt = Ψ(0) + Ψ(1)t/T + Ψ(2)(t/T)2 + Ψ(R), (7)

where Ψ(R) is a residual matrix and Ψ(j) = diag(ψj1, . . . , ψjN), j = 0, 1, 2. Requiring the diag-
onal elements of Ψt to sum up to N implies that ψ0N = N−∑N−1

i=1 ψ0i and ψjN = −∑N−1
i=1 ψji

for j = 1, 2. Under H0, Ψ(0) = Λ. The elements ψji, i = 1, . . . , N; j = 1, 2, in (7) are of the
form ψji = γjψ̃ji, ψ̃ji 6= 0, j = 1, 2, so the new 2(N − 1)-dimensional null hypothesis is H′0:
Ψ(1) = Ψ(2) = 0.

Since we shall construct a Lagrange multiplier test that only requires estimating the
model under the null hypothesis we can ignore the diagonal residual matrix Ψ(R) because
its diagonal is a null vector when H0 (or H′0) holds. It does contribute to the power of the
test when the alternative is true. This leads to the following auxiliary covariance matrix:

PA
t = Q(Ψ(0) + Ψ(1)t/T + Ψ(2)(t/T)2)Q′. (8)

Matrix (8) is a correlation matrix only under H′0, and its purpose is to function as a basis
for a test of constant correlations. We call the model (2) in which (5) is replaced by (8), the
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auxiliary time-varying correlation GARCH model. It is a device constructed to derive the
test and not a data-generating process. Its log-likelihood and score are considered in the
next section.

The test we propose is similar to the one by Yang (2014) in that both make use of
the spectral decomposition of Σt. It should be noted, however, that Yang (2014) did not
decompose the covariance matrix further into conditional variances and correlations. He
constructed instead a test of constancy of the covariance matrix based on this decomposition.
Our work may therefore be also seen as a variant of or an extension to Yang (2014).

3. Log-Likelihood and Score of the Auxiliary Model

The log-likelihood of the auxiliary TV-STC-GARCH model for observation t equals

`t(θ) = k− 1
2

N

∑
i=1

ln git −
1
2

N

∑
i=1

ln hit −
1
2

N−1

∑
i=1

ln ψi(t/T)

−1
2

ln(N −
N−1

∑
k=1

ψk(t/T))− 1
2

N−1

∑
i=1

ψ−1
i (t/T)w2

it

−1
2
(N −

N−1

∑
k=1

ψk(t/T))−1w2
Nt, (9)

where ψi(t/T) = ψ0i + ψ1it/T + ψ2i(t/T)2, and wit = q′izt, i = 1, . . . , N, with zt =

D−1
t S−1

t εt, so cov(zt) = Pt. The vector θ = (θ′g, θ′h, θ′ψ)
′, where its components are de-

fined as follows: θg = (θ′g1, . . . , θ′gN)
′ with θgi = (δ′i , γ′i , c′i)

′, where δi = (δi1, . . . , δiri )
′,

γi = (γi1, . . . , γiri )
′, and ci = (c′i1, . . . , c′iri

)′; θh = (θ′h1, . . . , θ′hN)
′ with θhi = (αi0, αi1, κi1,

βi1)
′; and θψ = (ψ′0, ψ′1, ψ′2)

′, contains the parameters of (8). Let ei be the ith column of
the N × N identity matrix and 1N = (1, . . . , 1)′ an N × 1 vector of ones. For notational
purposes define the following N − 1× 3 parameter matrix

Ψ =

 ψ01 ψ11 ψ21
· · ·

ψ0,N−1 ψ1,N−1 ψ2,N−1

 =
[

ψ0 ψ1 ψ2
]

and let ψ = vec(Ψ) = (ψ′0, ψ′1, ψ′2)
′ and ψ = vec(Ψ′) = (ψ

′
1, . . . , ψ

′
N−1)

′, where ψj =

(ψ0j, ψ1j, ψ2j)
′, j = 1, . . . , N − 1. We now state the following result:

Theorem 1. Consider the auxiliary TV-STC-GARCH model (2) with (8) whose log-likelihood for
observation t is defined in (9). The blocks of the average score of the auxiliary log-likelihood are

1
T

T

∑
t=1

∂`t(θ)

∂θgi
=

1
2T

T

∑
t=1

(
1

git

∂git
∂θgi

+
1

hit

∂hit
∂θgi

){e′iztz′t(P
A
t )−1ei − 1} (10)

and
1
T

T

∑
t=1

∂`t(θ)

∂θhi
=

1
2T

T

∑
t=1

1
hit

∂hit
∂θhi
{e′iztz′t(P

A
t )−1ei − 1} (11)

for i = 1, . . . , N, and

1
T

T

∑
t=1

∂`t(θ)

∂ψi
=

1
2T

T

∑
t=1
{ 1

ψi(t/T)
(

w2
it

ψi(t/T)
− 1)

− 1
N −∑N−1

k=1 ψk(t/T)

(
w2

Nt

N −∑N−1
k=1 ψk(t/T)

− 1

)
}τt (12)

for i = 1, . . . , N − 1, where τt = (1, t/T, (t/T)2)′. Under H0, (10)–(12) become
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1
T

T

∑
t=1

∂`t(θ)

∂θgi
|H0 =

1
2T

T

∑
t=1

(
1

git

∂git
∂θgi

+
1

hit

∂hit
∂θgi

){e′iztz′tP
−1ei − 1},

1
T

T

∑
t=1

∂`t(θ)

∂θhi
|H0 =

1
2T

T

∑
t=1

1
hit

∂hit
∂θhi
{e′iztz′tP

−1ei − 1}

and

1
T

T

∑
t=1

∂`t(θ)

∂ψi
|H0 =

1
2T

T

∑
t=1
{ 1

ψ0i
(

w2
it

ψ0i
− 1)

− 1
N −∑N−1

k=1 ψ0k

(
w2

Nt

N −∑N−1
k=1 ψ0k

− 1

)
}τt.

Proof. See Appendix B.

4. Information Matrix

In order to form the test statistic, we need the information matrix of LT = 1
T ∑T

t=1 `t(θ).
Define ∂g0

it/∂θgi = ∂git/∂θgi|θgi=θ0
gi

and ∂h0
it/∂θhi = ∂hit/∂θhi|θhi=θ0

hi
, where θ0

gi =

(δ0′
i , γ0′

i , c0′
i )
′ and θ0

hi = (α0
i0, α0

i1, κ0
i1, β0

i1)
′ are the true parameter vectors. Let ψ0

01 =

λ0
1, . . . , ψ0

0,N−1 = λ0
N−1, ψ0

0N = N − ∑N−1
k=1 ψ0

0k, be the true eigenvalues, so the matrix
of true eigenvalues equals Ψ0 = diag(ψ0

01, . . . , ψ0
0N). The true correlation matrix is denoted

by P0. The information matrix is divided into blocks as follows:

J = lim
T→∞

1
T

T

∑
t=1

E
∂`t

∂θ

∂`t

∂θ′
|H0 =

 Jθgθg Jθgθh Jθgψ

Jθhθh Jθhψ

Jψψ

. (13)

The following result defines the blocks of (13).

Theorem 2. The blocks of the information matrix (13) are as follows: The (i, j) block, i 6= j, of
Jθgθg equals

[Jθgθg ]ij = lim
T→∞

1
T

T

∑
t=1

E
∂`t

∂θgi

∂`t

∂θ′gj
|H0

=
1
4
[
∫ 1

0

1
g0

irg0
jr

∂g0
ir

∂θgi

∂g0
jr

∂θ′gj
dr

+ lim
T→∞

1
T

T

∑
t=1
{ 1

g0
ith

0
it

∂g0
it

∂θgi

∂h0
it

∂θ′gi
+

1
h0

it

∂h0
it

∂θgi
(

1
g0

jt

∂g0
jt

∂θ′gj
+

1
h0

jt

∂h0
jt

∂θ′gj
)}]

×e′i(P
0)−1eje′iP

0ej

and

[Jθgθg ]ii = lim
T→∞

1
T

T

∑
t=1

E
∂`t

∂θgi

∂`t

∂θ′gi
|H0

=
1
4
[
∫ 1

0
(

1
(g0

ir)
2

∂g0
ir

∂θgi

∂g0
ir

∂θ′gi
dr + lim

T→∞

1
T

T

∑
t=1

1
h0

it

∂h0
it

∂θgi
(

1
g0

it

∂g0
it

∂θ′gi
+

1
h0

it

∂h0
it

∂θ′gi
)]

×{e′i(P0)−1ei + 1}.

The (i, j) block, i 6= j, of Jθhθh equals
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[Jθhθh ]ij = lim
T→∞

1
T

T

∑
t=1

E
∂`t

∂θhi

∂`t

∂θ′hj
|H0

= lim
T→∞

1
4T

T

∑
t=1

1
h0

ith
0
jt

∂h0
it

∂θhi

∂h0
jt

∂θ′hj
e′i(P

0)−1eje′iP
0ej

and

[Jθhθh ]ii = lim
T→∞

1
T

T

∑
t=1

E
∂`t

∂θhi

∂`t

∂θ′hi
|H0

= lim
T→∞

1
4T

T

∑
t=1

1
(h0

it)
2

∂h0
it

∂θhi

∂h0
it

∂θ′hi
{e′i(P0)−1ei + 1}.

The (i, j) sub-block, i 6= j, of Jθgθh equals

[Jθgθh ]ij = lim
T→∞

1
T

T

∑
t=1

E
∂`t

∂θgi

∂`t

∂θ′hj
|H0

= lim
T→∞

1
4T

T

∑
t=1

(
1

g0
it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)

1
h0

jt

∂h0
jt

∂θ′hj
{e′i(P0)−1eje′iP

0ej}

and

[Jθgθh ]ii = lim
T→∞

1
T

T

∑
t=1

E
∂`t

∂θgi

∂`t

∂θ′hi
|H0

= lim
T→∞

1
4T

T

∑
t=1

(
1

g0
it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)

1
h0

it

∂h0
it

∂θ′hi
{e′i(P0)−1ei + 1}.

Furthermore, the (i, j) sub-block of Jθgψ, i, j = 1, . . . , N, has the form

[Jθgψ]ij = lim
T→∞

1
T

T

∑
t=1

E
∂`t

∂θgi

∂`t

∂ψ
′
j
|H0

=
1
4
(
∫ 1

0

1
g0

ir

∂g0
ir

∂θgi
r′dr + lim

T→∞

1
T

T

∑
t=1

1
h0

it

∂h0
it

∂θgi
τ′t )

×{ 1
ψ0j

e′iqjq′iej −
1

N −∑N−1
k=1 ψ0k

e′iqNq′ieN},

where r = (1, r, r2)′, and the corresponding sub-block of Jθhψ equals

[Jθhψ]ij = lim
T→∞

1
T

T

∑
t=1

E
∂`t

∂θhi

∂`t

∂ψ
′
j
|H0

= lim
T→∞

1
4T

T

∑
t=1

1
h0

it

∂h0
it

∂θhi
τ′t{

1
ψ0j

e′iqjq′iej −
1

N −∑N−1
k=1 ψ0k

e′iqNq′ieN}.

Finally,

Jψψ = E
∂`t

∂ψ

∂`t

∂ψ
′ |H0 =

1
2
(Ψ−2

0 +
1

(N −∑N−1
k=1 ψ0k)2

1N−11′N−1)⊗

 1 1/2 1/3
1/3 1/4

1/5

,

where Ψ0 = diag(ψ01, . . . , ψ0,N−1).
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Proof. See Appendix B.

5. Test Statistic

Under regularity conditions, Silvennoinen and Teräsvirta (2021) showed that the maxi-
mum likelihood estimators of the parameters of the null model (time-varying GARCH equa-
tions and constant correlations) are consistent and asymptotically normal. Rewrite (13) as

J = lim
T→∞

1
T

T

∑
t=1

E
∂`t

∂θ

∂`t

∂θ′
|H0 =


Jθgθg Jθgθh Jθgψ0 Jθgψ12

Jθhθh Jθhψ0 Jθhψ12
Jψ0ψ0 Jψ0ψ12

Jψ12ψ12

, (14)

where ψ12 = (ψ
′
12,1, . . . , ψ

′
12,N−1) with ψ12,j = (ψ1j, ψ2j)

′, j = 1, . . . , N − 1. Then

Jψ0ψ0 =
1
2
(Ψ−2

0 +
1

(N −∑N−1
k=1 ψ0k)2

1N−11′N−1),

Jψ0ψ12
=

1
2
(Ψ−2

0 +
1

(N −∑N−1
k=1 ψ0k)2

1N−11′N−1)⊗
[

1/2 1/3
]

and

Jψ12ψ12
=

1
2
(Ψ−2

0 +
1

(N −∑N−1
k=1 ψ0k)2

1N−11′N−1)⊗
[

1/3 1/4
1/5

]
.

Let

J00 =

 Jθgθg Jθgθh Jθgψ0

Jθhθh Jθhψ0

Jψ0ψ0


and

J0ψ12
=

 Jθgψ12

Jθhψ12
Jψ0ψ12

.

Using the Lagrange multiplier principle and the assumption that zt is multivariate normal,
we obtain the following statistic for testing H′0: ψ12,j = 0, j = 1, . . . , N − 1:

LM =
T
4
{ 1

T

T

∑
t=1

(x̂0
1tτ
′
12t, . . . , x̂0

Ntτ
′
12t)}{Jψ12ψ12

− Jψ120 J−1
00 J0ψ12

}

×{ 1
T

T

∑
t=1

(x̂0
1tτ
′
12t, . . . , x̂0

Ntτ
′
12t)
′}, (15)

where τ12t = (t/T, (t/T)2)′, and

x̂jt =
1

ψ̂0j
(

ŵ2
jt

ψ̂0j
− 1)− 1

N −∑N−1
k=1 ψ̂0j

(
ŵ2

Nt

N −∑N−1
k=1 ψ̂0j

− 1), (16)

where ψ̂0j is the estimate of ψ0j under H′0. In addition, in (16) ŵit = q̂′i Ŝ
−1
t D̂−1

t εt, where
Ŝt = diag(ĝ1/2

1t , . . . , ĝ1/2
Nt ) contains square roots of the estimated deterministic components,

D̂t = diag(ĥ1/2
1t , . . . , ĥ1/2

Nt ) contains the estimated conditional standard deviations of φt,
and q̂j is the jth eigenvector of the estimated correlation matrix P̂ under H′0. Based on the
results in Silvennoinen and Teräsvirta (2021), this statistic has an asymptotic χ2-distribution
with 2(N − 1) degrees of freedom when H′0 holds. To make it operational, the blocks of the
information matrix in (15) have to be replaced by their consistent estimators.
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If the transition function (6) is assumed monotonic in t/T, that is, t/T − c2 ≡ 1,
the second-order component can be omitted from the approximation (7), and the N − 1-
dimensional null hypothesis becomes ψ1 = 0. If this assumption holds, the power of the
test increases compared to the situation in which the second-order component is included
in the test.

As already discussed, the matrix Pt = QΛtQ′ is a correlation matrix only when Pt = P,
that is, when Λt ≡ Λ. There is one exception to this rule, however. When all correlations
are equal, the time-varying matrix Pt = QΛtQ′ remains a correlation matrix when Λt is
defined as in (5). In the GARCH context this type of equicorrelation is discussed in Engle
and Kelly (2012).

The test statistic (15) can be applied in the general case in which the GARCH compo-
nent is multiplicative and contains a smooth deterministically varying component. The
purpose of this component, St in (2), is to account for nonstationarity in variance that
manifests itself in changing amplitudes of the volatility clusters that ARCH and GARCH
models are designed to explain. A cruder way of describing this type of variability is to
assume that there are breaks in the variance. This alternative does not fit into the present
analysis, however, because breaks at unknown points of time make the log-likelihood ill-
behaved. Nevertheless, the statistic (15) does have power against that alternative, although
the standard asymptotic theory does not cover it.

If it is assumed that St = IN and that the GARCH process is weakly stationary, the
test statistic continues to be valid. This simplifies the expressions, while the null hypothesis
remains unchanged. Setting Dt = IN makes it possible to test constancy of Pt before
specifying the conditional variances. This is discussed in Silvennoinen and Teräsvirta
(2021). If both Dt = St = IN , the test is a parsimonious test of constancy of a correlation
matrix against the alternative that the correlations change over time. In that case, Pt may
be a covariance matrix and not necessarily a correlation matrix. The statistic (15) must,
however, be modified because the restriction that the eigenvalues sum up to N does not
hold for the covariance matrix. With this modification, the test can for instance be used for
testing constancy of the error covariance matrix of a vector autoregressive model against
deterministically changing covariances; see also Yang (2014).

6. Simulations

In this section we investigate the properties of our test via several simulations. The
finer details of the various experiments as well as the tabulated results are found in
Appendix C.

We first simulate the size of our test. For this purpose, we choose N = 2, 5, 10, 20 and
T = 500, 1000, 2000 in (2). All GARCH(1, 1) equations are standard symmetric GARCH
ones, parameterised such that the persistence is 0.95 and kurtosis of εit = 4, i = 1, . . . , N,
or in the next set up, kurtosis of εit = 6, i = 1, . . . , N. For these simulations, git ≡ 1,
and the unconditional variance is fixed to one by defining αi0 = 1− αi1 − βi1. The cor-
relation matrix is an equicorrelation matrix (Engle and Kelly 2012) with either ρ = 0.33
or ρ = 0.67, and we call the model the Constant Equicorrelation (CEC-) GARCH model.
Finally, ζt ∼ iidN (0, IN).

The test statistic has been derived such that the highest order in the Taylor expansion
equals two. In simulations, we include the orders up to four. This is done to find out how
the empirical size of the test behaves when flexibility of the statistic (and the dimension
of the null hypothesis) is increased to cover more variable and nonmonotonic shifts in
correlations. In practice this means that (7) becomes

Ψt = Ψ(0) +
4

∑
i=1

Ψ(i)(t/T)i + Ψ(R4),

where Ψ(R4) is the residual. The null hypothesis is H′0: Ψ(1)(t/T) = . . . = Ψ(4)(t/T)4 = 0.



Econometrics 2022, 10, 30 10 of 41

The p-value size discrepancy, see Davidson and MacKinnon (1998), results for git = 1
and for kurtosis of εit equal to 4 and 6, when ρ = 0.33 appear in Figure 1 and Table A6.
Although estimating GARCH equations when T = 500 cannot be recommended in practice,
this sample size is included in simulations to find out how the test behaves in that situation.
The empirical size of the test is very close to its nominal size. In particular, the change in
kurtosis does not have any effect on the empirical size. The only exception where the test is
slightly oversized is the design in which T = 500 and the order of the polynomial is four.
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Figure 1. p-Value size discrepancy of the test statistic (15) of orders 1 (red), 2 (purple), 3 (blue), and 4
(green). The test is based on the correctly specified DGP, which is CEC-GARCH with persistence of
0.95, kurtosis of 4 (Panel A) and 6 (Panel B), and equicorrelation of 0.33. The dashed line indicates
the upper 95% confidence level of 1.96/

√
2500.

We move on to the strongly correlated situation, that is, ρ = 0.67. The size discrepan-
cies are in Figure 2, see also Table A7. The story remains, for most parts, similar to that of
the weakly correlated system. Now the test is somewhat oversized when T = 500 and the
Taylor polynomial is at least equal to two. The equicorrelation matrix becomes gradually
more ill-conditioned as its dimension grows but is still reasonably accurately inverted when
N = 20.

Furthermore, we consider a situation where we replace the equicorrelation matrix with
a positive definite matrix comprised of equicorrelation blocks. The block-equicorrelation
structure (Engle and Kelly 2012) imposes different equicorrelations between and within
blocks of series. We choose N = 12 and N = 16 and blocks of size four. The chosen
correlation strengths mimic those of the equicorrelated (weak and strong) levels while
maintaining similar condition numbers to ensure fair comparison.1 The only difference in
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Table A8 compared to the equicorrelation case (Tables A6 and A7) is that the test is slightly
oversized when the order of the polynomial exceeds one.
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Figure 2. p-Value size discrepancy of the test statistic (15) of orders 1 (red), 2 (purple), 3 (blue), and 4
(green). The test is based on the correctly specified DGP, which is CEC-GARCH with persistence of
0.95, kurtosis of 4 (Panel A) and 6 (Panel B), and equicorrelation of 0.67. The dashed line indicates
the upper 95% confidence level of 1.96/

√
2500.

The remaining results address misspecified GARCH equations. Such misspecification
may show up in the covariance as time-variation, even if the correlations happen to be
constant. The purpose of these simulations is to find out how well our test is able to detect
the resulting time-variation in the eigenvalues.

When git is time-varying but this variance is ignored, the model is indeed misspecified.
In these simulations, the GARCH equations are TV-GARCH equations with δ0 = 1, δ1 = 3,
γ = 20 and c = 0.5, with equicorrelation coefficient equal to 0.33 and 0.67. The slope
parameter γi has been calibrated such that the monotonically increasing Gi(t/T, γi, ci) re-
mains practically equal to zero until t/T = 0.25 and (almost) reaches one when t/T = 0.75.
This means that there is a rather mild shift in the (local) unconditional variance in these
equations over time, resulting in the amplitude of clusters doubling in size over time. The
error covariance matrix is thereby time-varying, whereas the error correlation matrix is
constant over time. The reported rejection frequencies in Table A9 indicate that the test
detects time-variation even for weakly correlated system (see also Figure 3), and even more
so with the correlation of 0.67 (Table A10), which stresses the importance of specifying
the GARCH equations properly before testing constancy of correlations. The rejection
frequency increases with the sample size and the dimension of the system, and becomes
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overwhelming when more information against the null hypothesis becomes available.
We also experimented with higher values of δ1, but because the feature is already well
illustrated for δ1 = 3, we do not report any additional results here.
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Figure 3. Rejection frequencies of the test statistic (15) of orders 1 to 4. The test is based on CEC-
GARCH, while the DGP is TV-CEC-GARCH with persistence of 0.95, kurtosis of 4 (Panel A) and
6 (Panel B), equicorrelation of 0.33, and TV-parameters δ0 = 1, δ1 = 3, c = 0.5, and γ = 20 with
st = t/T.

GARCH can also be misspecified such that asymmetry in the form of GJR-GARCH
is ignored. The simulation design concerning this sets the α1 = 0 leaving the asymmetric
component κ1 solely responsible for the effect of the past shocks. The parameterisation
follows the targets of the previous simulations, that is, the implied kurtosis of four and six,
unconditional variance of one and persistence is kept at 0.95. When the equicorrelation is
0.33, there is positive size distortion for N ≥ 5, and for each N, an increase in sample size
makes very little difference in terms of improving the size. This is seen from the rejection
frequencies reported in Table A11, see also Figure 4. The size distortion is already present
when N = 2 for the 0.67 equicorrelated case, see Table A12. In situations where the past
shocks feed into the volatility via both symmetric and asymmetric channels, the size distor-
tion is milder than in the extreme case discussed here, and will lie somewhere between the
results here and those in Tables A6 and A7. Regardless, it may be concluded that a misspec-
ification in the GARCH equation has a minor impact on constant correlation detection in
comparison to the case when the deterministic shift in GARCH is erroneously ignored.
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Figure 4. Rejection frequencies of the test statistic (15) of orders 1 (red), 2 (purple), 3 (blue), and 4
(green). The test is based on CEC-GARCH, while the DGP is CEC-GJR-GARCH with persistence of
0.95, kurtosis of 4 (Panel A) and 6 (Panel B), and equicorrelation of 0.33.

Yet another type of misspecification occurs when there are volatility spillovers between
equations that are ignored while correlations remain constant. To this end we employ an
equicorrelation version of the Extended CCC-GARCH (ECCC-GARCH) model of Jeantheau
(1998) that use CEC with ρ = 0.33 and 0.67. Applications of the ECCC-GARCH model
typically involve rather few series, and we therefore limit our simulations to systems of
dimension 2, 3, and 5. The first spillover pattern is a circular one, where the past shocks
travel from one volatility to another in a sequence through the system. In the second
pattern the spillover shock comes from a single series and enters volatility of all the other
series. For details, see Appendix C. The results in Tables A13 and A14 indicate some size
distortion which is, as before, larger the stronger the correlation and also increases with
the order of the polynomial used in the test. In these simulations the size distortion is of
lesser magnitude than what it was in the previous experiment, where the asymmetry of
the GARCH was ignored. It can, however, be expected to vary with the strength of the
spillover effect.

Finally, Tables A15 and A16 and Figure 5 show what happens when, instead of normal,
the error vectors are t-distributed with d f = 5 and d f = 8. Not accounting for this
and assuming that the errors are multinormal, causes positive size distortion. Again, the
distortion is not very large compared to what is observed in connection with ignoring the
time-variation. It increases when the tails grow fatter (degrees of freedom decrease from
eight to five) and when the order of the polynomial in the test grows. It may be noted,
however, that this design may not be completely realistic. In practice it is quite possible
that the GARCH residuals of equation i may seem to follow a t-distribution just because the
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GARCH component is misspecified, for example by ignoring the deterministic component
git. Here we simulate the case in which the standard GARCH equation with normal errors
for some unknown reason does not adequately describe the conditional variances. Once
again, these results suggest that the GARCH equations have to be correctly specified before
testing constancy of correlations can be attempted.
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Figure 5. Rejection frequencies of the test statistic (15) of orders 1 (red), 2 (purple), 3 (blue), and 4
(green). The test is based on CEC-GARCH with normal errors, while the DGP has t-distributed errors,
with persistence of 0.95, d f = 8 (Panel A) and d f = 5 (Panel B), and equicorrelation of 0.33.

It is worth mentioning that when (3) is valid, the error covariance matrix is nonconstant
even when the correlations are constant. In that case, the test by Yang (2014) would no
doubt reject the null hypothesis of a constant error covariance matrix, whereas our test,
after modelling the time-varying error variances, would not reject constancy of the error
correlation matrix.

Results of these simulations underline the need of testing adequacy of the GARCH
model (constancy, asymmetry spillover effects) before embarking on testing constancy of
correlations. There is another very large class of extensions to the standard GARCH model
not mentioned yet, namely the GARCH-X model, see Han and Kristensen (2014). Within
this class the possibilities of misspecification are almost limitless, and in practice the set
of potential exogenous variables has to be restricted by theory considerations. We have
therefore refrained from simulating designs involving ignored exogenous variables in the
GARCH framework.
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7. Application

In order to demonstrate the use of the test we select 26 stocks that have been included
in the Dow Jones index during the whole observation period from 2 January 2001 to
31 December 2020 and consider their daily returns. The names, symbols and respective
categories of the stocks are listed in Table A1 in Appendix A. We split the observation period
into two halves such that the returns from 2001 to the end of 2010 form the first period and
the rest belong to the second one. Both samples contain approximately 2500 observations.
The first part of the sample includes the periods of turbulence due to the dot-com bubble
and GFC, the second is tranquil with a lead-up into the recent Covid-19 events. To perform
the tests we first determine the number of transitions in the Multiplicative Time-Varying
(MTV) GJR-GARCH equations (it can be zero) using the sequential procedure described in
Hall et al. (2021). The 26 estimated GARCH equations (or their git specification test results)
are not reported here, but the plots of the multiplicative component (3) together with the
daily returns appear in Figures 6–10.
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Figure 6. Daily returns of the Dow Jones stocks from Apple (AAPL) to Cisco (CSCO) (grey) and the
corresponding deterministic component (red) from the MTV-GJR-GARCH equation for the period 2
January 2001–31 December 2010 (left column) and for 3 January 2011–31 December 2020 (right column).
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Figure 7. Daily returns of the Dow Jones stocks from Chevron (CVX) to Intel (INTC) (grey) and the
corresponding deterministic component (red) from the MTV-GJR-GARCH equation for the period 2
January 2001–31 December 2010 (left column) and for 3 January 2011–31 December 2020 (right column).

The first-order test clearly rejects the null of constant correlations. Increasing the
order of the polynomial in the test statistic does not affect the conclusions. Although
the dimension of the null hypothesis increases from 25 to 100, all tests strongly reject the
hypothesis of stable correlations for both observation periods. The p-values of the test are
practically zero. If this had been attempted for the HST-test, the corresponding degrees of
freedom would have increased from 325 to 1300.

While the main purpose of this example is to demonstrate the use of our tests for a
relatively large set of stocks, we also consider stability of the pairwise correlations. The
magnitudes of the resulting p-values from the pairwise tests applied to the first part of
the sample can be found in Tables A2 and A3 for the polynomial orders of one and two,
respectively. Tables A4 and A5 contain the corresponding ones for the second part of the
sample. In the former, the evidence of time-variation in the correlations is very clear. In the
latter, there are more cases where the first-order test fails to reject constancy of correlations.
The second-order test, however, does find evidence of time-varying correlations between
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most pairs of stocks. It appears that the change during the second period can often be
nonmonotonic rather than monotonic.
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Figure 8. Daily returns of the Dow Jones stocks from Johnson and Johnson (JNJ) to 3M (MMM) (grey)
and the corresponding deterministic component (red) from the MTV-GJR-GARCH equation for the
period 2 January 2001–31 December 2010 (left column) and for 3 January 2011–31 December 2020
(right column).

This paper clearly demonstrates that our test is the most practical option when the
number of assets is large. When it is small so that both tests are available, we can make
comparisons and see how much power may be lost when our parsimonious test is applied
instead of the HST-test. To this end, groups of three to four stocks are subsequently
examined. The results are consistent in most all cases. Two exceptions are discussed next.

The four stocks representing consumer staples (WMT, WBA), services (VZ), and energy
(XOM) form the first example. Our test for 2001–2010 results in p-values of 0.0134 and
0.0000 for test orders one (three degrees of freedom, df) and two (six df), respectively. In
2011–2020, the corresponding p-values are 0.1059 and 0.0001. For the HST-test, the p-values
for 2001–2010 are 0.0000 for both polynomial orders (six and 12 df), and for 2011–2020 they
are 0.0001 and 0.0000, respectively. The obvious conclusion is that the parsimonious test
should mainly be used when the other test is no longer applicable.
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Figure 9. Daily returns of the Dow Jones stocks from Merck (MRK) to Procter & Gamble (PG) (grey)
and the corresponding deterministic component (red) from the MTV-GJR-GARCH equation for the
period 2 January 2001–31 December 2010 (left column) and for 3 January 2011–31 December 2020
(right column).

The three information technology companies AAPL, IBM and INTC, form an exam-
ple of the smallest collection of stocks such that our test differs from the HST-test. For
2001–2010, the p-values for the first and second-order versions of our tests with two and
four df are 0.0103 and 0.0000. The p-values of the corresponding HST-test (three and six df)
are 0.0413 and 0.0000. For the second part of the sample, the p-values of our parsimonious
test are 0.3459 and 0.0001, compared to 0.0000 for both orders for the HST-test. Here we
note the rather rare occasion (2001–2010, first-order test) in which our test is more powerful
than its competitor. An explanation may be found in Table A2. It is seen that only one of
the p-values of the three pairwise tests lies below 0.1. Thus, in the HST-test only one pair
weighs towards a rejection, whereas the evidence against the null is more spread out in the
test based on the eigenvalues, and the test has one df less than the HST-test.

In this example, the alternative to constancy of correlations is that the correlations vary
as a function of time. However, both the parsimonious and the HST test are conditioned
on the choice of the transition variable which need not be deterministic. This means that
they are equally useful for practitioners who may wish to examine correlation stability over
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some other indicator than time. The underlying theoretical foundations of the tests are
unaffected by such considerations, and hence the integrity of the tests is not compromised.
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Figure 10. Daily returns of the Dow Jones stocks from Travelers Companies (TRV) to Exxon (XOM)
(grey) and the corresponding deterministic component (red) from the MTV-GJR-GARCH equation
for the period 2 January 2001–31 December 2010 (left column) and for 3 January 2011–31 December
2020 (right column).

8. Conclusions

In this paper we derive a test for testing constancy of the correlation matrix in the
multivariate time-varying GARCH model. It bears some similarity to the test of constancy
of the error covariance matrix in a multivariate model by Yang (2014). However, there are
substantial differences between the two tests. In Yang’s test, the model for covariances need
not be a GARCH model, whereas our test is designed for a class of multivariate GARCH
models. It is based on the decomposition of the error covariance matrix into variances
and the correlation matrix as in Bollerslev (1990). The advantage of this decomposition is
that one can test constancy of the conditional variances one by one as described in Amado
and Teräsvirta (2017) or Hall et al. (2021), and estimate the time-varying variances before
considering the constancy of correlations. This makes it possible to examine potential
nonconstancy in the error correlation matrix such that time-variation in variances has
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already been taken care of. The simulation results emphasise the importance of correct
specification of GARCH equations before constancy of the correlation matrix is tested.

The test is intended for use in situations in which the number of variables, typically
asset returns, is large, and where for this reason the test by Hall et al. (2021) is either
not available or suffers from numerical problems. Our simulations evidence the test is
reasonably well-behaved as long as the conditional variances are correctly specified. The
Dow-Jones example illustrates the use of the test in the entire 26-dimensional system, as
well as conducting 325 pairwise tests and tests on some selected subgroups. Pairwise tests,
while not the main topic of this paper, would help locate those pairs whose correlations are
constant. This in turn would help specifying and estimating the final model.
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Appendix A. Application

Table A1. The 26 stocks that have been continuously part of Dow Jones Industrial Average from
2 January 2001 to 31 December 2020.

AAPL Apple Inc. Information technology
AXP American Express Company Financial services
BA The Boeing Company Aerospace and defense
CAT Caterpillar Inc. Construction and Mining
CSCO Cisco Systems, Inc. Information technology
CVX Chevron Corporation Petroleum industry
DIS The Walt Disney Company Broadcasting and entertainment
HD The Home Depot, Inc. Home Improvement
IBM International Business Machines Corporation Information technology
INTC Intel Corporation Semiconductor industry
JNJ Johnson & Johnson Pharmaceutical industry
JPM JPMorgan Chase & Co. Financial services
KO The Coca-Cola Company Soft Drink
MCD McDonald’s Corporation Food industry
MMM 3M Company Conglomerate
MRK Merck & Co., Inc. Pharmaceutical industry
MSFT Microsoft Corporation Information technology
NKE Nike, Inc. Apparel
PFE Pfizer Inc. Pharmaceutical industry
PG The Procter & Gamble Company Fast-moving consumer goods
TRV The Travelers Companies, Inc. Insurance
UNH UnitedHealth Group Incorporated Managed health care
VZ Verizon Communications Inc. Telecommunication
WBA Walgreens Boots Alliance, Inc. Retailing
WMT Walmart Inc. Retailing
XOM Exxon Mobil Corporation Energy

https://econ.au.dk/research/researchcentres/creates/research/ creates-research-papers/supplementary-downloads/rp-2022-01/
https://econ.au.dk/research/researchcentres/creates/research/ creates-research-papers/supplementary-downloads/rp-2022-01/
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Table A2. Pairwise tests of constant correlation. Time period 2 January 2001–31 December 2010. Order of the test = 1. The entries are the magnitudes of the p-values
of the test: *** (p < 0.01), ** (0.01 < p < 0.05), and * (0.05 < p < 0.10).
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AXP **
BA *** ***
CAT *** *** ***
CSCO *** ***
CVX *** *** *** *** ***
DIS * *** *** *** ***
HD *** *** *** ** ** *** ***
IBM *** * *** *** *** * ***
INTC ** *** *** *** *
JNJ *** ** *** *** *** *** *** *** *** ***
JPM * ** *** *** * *** ***
KO *** ** *** *** *** *** *** * *** *** *** ***
MCD *** *** *** *** ** *** *** *** *** *** *** *** ***
MMM *** ** *** * *** *** *** ** *** *** *** *** ** ***
MRK *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
MSFT *** *** *** ** *** *** *** *** *** ***
NKE *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
PFE *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** ***
PG *** *** *** *** *** *** *** *** *** *** *** *** ** *** ** *** *** *** **
TRV *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
UNH *** ** *** ** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** **
VZ ** *** *** * *** *** *** ** *** *** *** *** *** *** *** *** *** ***
WBA *** *** ** *** *** *** * *** ** *** ** *** *** ** ** *** * *** *** * **
WMT *** ** *** *** ** *** *** ** *** ** ** *** ** *
XOM *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** **
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Table A3. Pairwise tests of constant correlation. Time period 2 January 2001–31 December 2010. Order of the test = 2. The entries are the magnitudes of the p-values
of the test: *** (p < 0.01), ** (0.01 < p < 0.05), and * (0.05 < p < 0.10).
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AXP ***
BA *** ***
CAT *** *** ***
CSCO *** *** *** ***
CVX *** *** *** *** ***
DIS *** *** *** *** *** ***
HD *** *** *** *** ** *** ***
IBM *** *** *** *** ** *** *** ***
INTC *** *** *** *** *** *** *** *** ***
JNJ *** *** *** *** *** *** *** *** *** ***
JPM *** *** *** *** *** *** *** *** *** ***
KO ** ** *** *** *** *** *** *** ** *** ***
MCD *** *** *** *** ** *** *** *** *** *** *** *** ***
MMM *** *** *** *** *** *** *** *** *** *** *** *** * ***
MRK *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
MSFT *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
NKE *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
PFE *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
PG *** ** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** **
TRV *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
UNH *** ** *** ** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** **
VZ *** ** *** *** *** ** *** *** ** *** *** *** *** *** *** *** *** *** ***
WBA *** ** *** *** *** *** *** *** ** *** ** *** *** * *** ** *** *** *** *** **
WMT *** ** * *** *** *** *** ** *** ** *** *** *** *
XOM *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***



Econometrics 2022, 10, 30 23 of 41

Table A4. Pairwise tests of constant correlation. Time period 3 January 2011–31 December 2020. Order of the test = 1. The entries are the magnitudes of the p-values
of the test: *** (p < 0.01), ** (0.01 < p < 0.05), and * (0.05 < p < 0.10).
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AXP
BA ***
CAT **
CSCO *** *** *
CVX **
DIS ** *** *** ***
HD ** *** *** ***
IBM ** *** *** *
INTC *** *** ** *** **
JNJ *** *** *** *** *** *** *** *** **
JPM ** ** * ***
KO ** *** ** *** *** *** *** *** *** ***
MCD ** *** *** *** *** *** *** *** *** ***
MMM *** *** *** *** * ** *** ** *** ***
MRK ** *** *** * *** *** *** *** *** ***
MSFT *** * ** ** *** * *** ** ** ** ***
NKE *** *** *** ** ** *** **
PFE *** *** *** * *** *** *** * *** *** *** *** *** *** * **
PG * *** *** ** *** *** * * *** *** ** *** ** ***
TRV *** *** *** *** ** *** *** * *** *** ***
UNH ** ** * *** * * * *** *
VZ *** *** *** ** *** ** *** ** *** * *** *** ** ** **
WBA * *** * ** * *** ** *** ***
WMT *** *** ** ** *** * *** *** *** *** *** *** ** *** ***
XOM ** *** *** ** *** *** *** *** *** ** *** *** *** *** ** **
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Table A5. Pairwise tests of constant correlation. Time period 3 January 2011–31 December 2020. Order of the test = 2. The entries are the magnitudes of the p-values
of the test: *** (p < 0.01), ** (0.01 < p < 0.05), and * (0.05 < p < 0.10).
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AXP ***
BA
CAT *** *** ***
CSCO *** *** ***
CVX *** *** *** *** ***
DIS *** *** *** *** ** ***
HD *** *** *** *** *** *** ***
IBM *** *** *** *** *** *** *** *
INTC *** *** *** *** *** ** ** ***
JNJ *** *** *** *** *** *** *** *** *** **
JPM *** *** *** *** *** * ** ***
KO ** *** *** *** *** *** *** *** *** *** ***
MCD * *** *** *** *** *** ** *** *** *** ** ***
MMM *** *** *** ** *** *** ** *** ** *** *** *** ***
MRK ** *** *** *** * *** *** ** *** ** *** *** *** *** ***
MSFT *** *** *** *** *** *** *** *** *** ** *** * *** * *** ***
NKE *** *** *** *** *** *** *** *** *** * *** *** *** ** ***
PFE *** *** *** *** *** *** *** ** *** *** *** *** *** * *
PG ** *** *** *** *** *** *** ** *** *** ** * *** *** ***
TRV *** *** *** *** *** * ** ** *** * *** *** ** *** ***
UNH *** *** *** *** *** ** ** *** * ** *** * *** *
VZ ** *** *** *** * *** *** ** *** *** *** *** * * *** ** ** ** *** * ** ***
WBA *** *** *** *** *** *** *** ** *** *** * ** ***
WMT ** *** *** *** *** *** *** * ** *** *** *** *** *** *** *** *** *** *** ***
XOM *** *** *** *** *** *** *** *** *** * *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
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Appendix B. Proofs

Proof of Theorem 1. First, recall from (2) that zit = εit/(h
1/2
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it ). Then
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it

(
1

git

∂git
∂θgi

+
1

hit

∂hit
∂θgi

)

= − zit
2
(

1
git

∂git
∂θgi

+
1

hit

∂hit
∂θgi

). (A1)

Blocks of the score for the observation t are as follows. First,

∂`t

∂θgi
= −( 1

2git

∂git
∂θgi

+
1

2hit

∂hit
∂θgi

)− 1
2

N

∑
j=1

2wjt
∂wjt

∂θgi
ψ−1

j (t/T)

= −1
2
(

1
git

∂git
∂θgi

+
1

hit

∂hit
∂θgi

)−
N

∑
j=1

wjtq′j
∂zt

∂θgi
ψ−1

j (t/T)

and, using (A1),

∂`t

∂θgi
= − 1

2
(

1
git

∂git
∂θgi

+
1

hit

∂hit
∂θgi

) +
1
2

N

∑
j=1

wjtq′j(0, . . . , 0, zit, 0, . . . , 0)′

× (
1

hit

∂hit
∂θgi

+
1

git

∂git
∂θgi

)ψ−1
j (t/T)

=
1
2
(

1
git

∂git
∂θgi

+
1

hit

∂hit
∂θgi

)(
N

∑
j=1

zitwjtq′jeiψ
−1
j (t/T)− 1)

=
1
2
(

1
git

∂git
∂θgi

+
1

hit

∂hit
∂θgi

)(e′iztz′t
N

∑
j=1

qjψ
−1
j (t/T)q′jei − 1)

=
1
2
(

1
git

∂git
∂θgi

+
1

hit

∂hit
∂θgi

)(e′iztz′t(P
A
t )−1ei − 1), (A2)

where PA
t = QΨtQ′. In a similar fashion,

∂`t

∂θhi
=− 1

2hit

∂hit
∂θhi
− 1

2

N

∑
j=1

2wjt
∂wjt

∂θgi
ψ−1

j (t/T)

=
1
2

1
hit

∂hit
∂θhi

(e′iztz′t(P
A
t )−1ei − 1).

Next,

∂`t

∂ψj
= − 1

2
∂

∂ψj
[
N−1

∑
k=1

ln ψk(t/T) + ln(N −
N−1

∑
k=1

ψk(t/T)) +
N−1

∑
k=1

w2
ktψ
−1
k (t/T)

+ w2
Nt(N −

N−1

∑
k=1

ψk(t/T))−1]

=
1
2
{ 1

ψj(t/T)
(

w2
jt

ψj(t/T)
− 1)− 1

N −∑N−1
k=1 ψk(t/T)

(
w2

Nt

N −∑N−1
k=1 ψk(t/T)

− 1)τt
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for j = 1, . . . , N − 1. Under H′0: ψ1 = ψ2 = 0, and so the corresponding blocks are

∂`t

∂θgi
|H0 =

1
2
(

1
git

∂git
∂θgi

+
1

hit

∂hit
∂θgi

)(e′iztz′t(P
0)−1ei − 1),

where P0 = QΨ0Q′,

∂`t

∂θhi
|H0 =

1
2

1
hit

∂hit
∂θhi

(e′iztz′t(P
0)−1ei − 1)

and
∂`t(θ)

∂ψj
|H0 =

1
2
{ 1

ψ0j
(

w2
jt

ψ0j
− 1)− 1

N −∑N−1
k=1 ψ0k

(
w2

Nt

N −∑N−1
k=1 ψ0k

− 1)}τt.

This completes the proof.

In order to prove Theorem 2 we formulate and prove five lemmas.

Lemma A1. For i 6= j,

E
∂`t

∂θgi

∂`t

∂θ′gj
|H0 =

1
4
(

1
g0

it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)(

1
g0

jt

∂g0
jt

∂θ′gj
+

1
h0

jt

∂h0
jt

∂θ′gj
)e′i(P

0)−1eje′iP
0ej.

When i = j, i = 1, . . . , N,

E
∂`t

∂θgi

∂`t

∂θ′gi
|H0 =

1
4
(

1
g0

it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)(

1
g0

it

∂g0
it

∂θ′gi
+

1
h0

it

∂h0
it

∂θ′gi
){e′i(P0)−1eie′iP

0ei + 1}.

Proof. From (A2) it follows that we have to consider

µ1 = E(e′iztz′t(P
0)−1ei − 1)(e′jztz′t(P

0)−1ej − 1). (A3)

Write
e′iztz′t(P

0)−1ei = (e′i(P
0)−1 ⊗ e′i)vec(ztz′t),

so (A3) becomes

µ1 =((e′iP
0)−1 ⊗ e′i)Evec(ztz′t)vec(ztz′t)

′((P0)−1ej ⊗ ej)

− e′iEztz′t(P
0)−1ei − e′jEztz′t(P

0)−1ej + 1. (A4)

Consider the first term on the right-hand size of (A4). From Anderson (2003, p. 64)
one obtains

Evec(ztz′t)vec(ztz′t)
′ = (P0 ⊗ P0) + (IN ⊗ P0)K(IN ⊗ P0) + vec(P0)vec(P0)′, (A5)

where K is an N2 × N2 commutation matrix, see Magnus and Neudecker (1979). Apply-
ing (A5) to the right-hand size of (A4) yields µ1 = µ11 + µ12 + µ13, where

µ11 = (e′i(P
0)−1 ⊗ e′i)(P

0 ⊗ P0)((P0)−1ej ⊗ ej)

= (e′i(P
0)−1 ⊗ e′i)(ej ⊗ P0ej) = e′i(P

0)−1eje′iP
0ej, (A6)

µ12 = (e′i(P
0)−1 ⊗ e′i)(IN ⊗ P0)K(IN ⊗ P0)((P0)−1ej ⊗ ej)

= (e′i(P
0)−1 ⊗ e′iP

0)K((P0)−1ej ⊗ P0ej)

= (e′i(P
0)−1 ⊗ e′iP

0)(P0ej ⊗ (P0)−1ej) = 0 (A7)

for i 6= j, and 1 for i = j, i = 1, . . . , N, and
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µ13 = (e′iP
0)−1 ⊗ e′i)vec(P0)vec(P0)′((P0)−1ei ⊗ ei) = 1. (A8)

Furthermore,
e′mEztz′t(P

0)−1em = e′mem = 1

for m = i, j, so, in total

E(e′iztz′t(P
0)−1ei − 1)(e′jztz′t(P

0)−1ej − 1) = e′i(P
0)−1eje′iP

0ej

for i 6= j. When i = j, consider

µ1 = E(e′iztz′t(P
0)−1ei − 1)2 = 1− 2Ee′iztz′tP

0ei + E(e′iztz′t(P
0)−1ei)

2.

Then the three terms in E(e′iztz′t(P
0)−1ei)

2 corresponding to (A6)–(A8) become e′i(P
0)−1

eie′iP
0ei, 1 and 1, respectively, and the result follows.

Lemma A2. For i 6= j,

E
∂`t

∂θgi

∂`t

∂θ′hj
|H0 =

1
4
(

1
g0

it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)

1
h0

jt

∂h0
jt

∂θ′hj
e′i(P

0)−1eje′iP
0ej.

When i = j,

E
∂`t

∂θgi

∂`t

∂θ′hi
|H0 =

1
4
(

1
g0

it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)

1
h0

it

∂h0
it

∂θ′hi
{e′i(P0)−1ei + 1}.

Proof. Similar to the proof of Lemma A1 and therefore omitted.

Lemma A3. For i 6= j,

E
∂`t

∂θhi

∂`t

∂θ′hj
|H0 =

1
4

1
h0

ith
0
jt

∂h0
it

∂θhi

∂h0
jt

∂θ′hj
e′i(P

0)−1eje′i(P
0)−1ej.

When i = j,

E
∂`t

∂θhi

∂`t

∂θ′hi
|H0 =

1
4

1
(h0

it)
2

∂h0
it

∂θhi

∂h0
it

∂θ′hi
{e′i(P0)−1ei + 1}.

Proof. Similar to the proof of Lemma A1 and therefore omitted.

Lemma A4. The expectation E ∂`t
∂θgi

∂`t
∂ψ
′
j
|H0 equals

E
∂`t

∂θgi

∂`t

∂ψ
′
j
|H0 =

1
2
(

1
g0

it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)τ′t

× {ψ−1
0j e′iqje′jqi + (N −

N−1

∑
k=1

ψ0k)
−1e′iqNe′Nqi} (A9)

and, similarly,

E
∂`t

∂θhi

∂`t

∂ψ
′
j
|H0 =

1
2

1
hit

∂h0
it

∂θhi
τ′t{ψ−1

0j e′iqje′jqi + (N −
N−1

∑
k=1

ψ0k)
−1e′iqNe′Nqi}, (A10)

j = 1, . . . , N − 1.

Proof. In order to prove (A9), consider the expectation
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µ2 =E(e′iztz′t(P
0)−1ei − 1){(qj ⊗ qj)

′vec(ztz′t)
1

ψ0j
− 1}

= (e′i(P
0)−1 ⊗ e′i)Evec(ztz′t)vec(ztz′t)

′(qj ⊗ qj)
1

ψ0j

− e′iEztz′t(P
0)−1ei − (qj ⊗ qj)

′vec(Eztz′t)
1

ψ0j
+ 1

= (e′i(P
0)−1 ⊗ e′i)Evec(ztz′t)vec(ztz′t)

′(qj ⊗ qj)
1

ψ0j
− 1. (A11)

Inserting (A5) to (A11) yields µ2 = µ21 + µ22 + µ23 − 1, where

µ21 = (e′i(P
0)−1 ⊗ e′i)(P

0 ⊗ P0)(qj ⊗ qj)
1

ψ0j

= (e′i ⊗ e′iP
0)(qj ⊗ qj)

1
ψ0j

= e′iqje′iP
0qj

1
ψ0j

= e′iqjq′iej,

µ22 = (e′i(P
0)−1 ⊗ e′i)(IN ⊗ P0)K(IN ⊗ P0)(qj ⊗ qj)

1
ψ0j

= (e′i(P
0)−1 ⊗ e′iP

0)K(qj ⊗ P0qj)
1

ψ0j

= (e′i(P
0)−1 ⊗ e′iP

0)(P0qj ⊗ qj)
1

ψ0j
= e′iqjq′iej

and

µ23 = (e′i(P
0)−1 ⊗ e′i)vec(P0)vec(P0)′(qj ⊗ qj)

1
ψ0j

= (e′iei)(q′jP
0qj)

1
ψ0j

= 1.

In total,

(e′i(P
0)−1 ⊗ e′i)Evec(ztz′t)vec(ztz′t)

′(qj ⊗ qj)
1

ψ0j
= 2e′iqjq′iej + 1. (A12)

Thus, from (A12),

E(e′iztz′t(P
0)−1ei − 1)(qj ⊗ qj)

′vec(ztz′t)
1

ψ0j
− 1 = 2e′iqjq′iej.

Equation (A10) is proved in a similar fashion.

Lemma A5.

E
∂`t

∂ψ

∂`t

∂ψ
′ =

1
2
(Ψ−2

0 +
1

(N −∑N−1
k=1 ψ0k)2

1N−11′N−1)⊗ (τtτ
′
t ),

where ψ = (ψ
′
1, . . . , ψ

′
N−1)

′ with ψj = (ψ0j, ψ1j, ψ2,j)
′, j = 1, . . . , N − 1, and Ψ0 = diag(ψ01,

. . . , ψ0,N−1).

Proof. Under H′0, wjt = q′jzt ∼ iidN (0, ψ0j) and w2
jt/ψ0j ∼ χ2(1). Thus,

1
ψ2

0j
E(

w2
jt

ψ0j
− 1)2 =

2
ψ2

0j
,
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j = 1, . . . , N, where ψ0N = N −∑N−1
k=1 ψ0k, and

1
ψ0lψ0j

E(
w2

it
ψ0l
− 1)(

w2
jt

ψ0j
− 1) = 0

for l 6= j. Then,

E
∂`t

∂ψkj

∂`t

∂ψij
|H0 =

1
4
(

t
T
)k+i[

1
ψ2

0j
E(

w2
jt

ψ0j
− 1)2 +

1
(N −∑N−1

k=1 ψ0k)2
E(

w2
Nt

N −∑N−1
k=1 ψ0k

− 1)2]

=
1
2
(

t
T
)k+i(

1
ψ2

0j
+

1
(N −∑N−1

k=1 ψ0k)2
)

for j = 1, . . . , N − 1, and

E
∂`t

∂ψkl

∂`t

∂ψij
|H0 =

1
2
(

t
T
)k+i 1

(N −∑N−1
k=1 ψ0k)2

for l 6= j. In matrix form,

E
∂`t

∂ψ

∂`t

∂ψ
′ =

1
2
(Ψ−2

0 +
1

(N −∑N−1
k=1 ψ0k)2

1N−11′N−1)⊗ (τtτ
′
t ),

which is the desired result.

Proof of Theorem 2. In order to prove the theorem, begin by considering the limit of
1
T ∑T

t=1 E
∂`t
∂θgi

∂`t
∂θ′gj

as T → ∞. From Lemma A1, rescaling time to the unit interval and

denoting t/T = [Tr]/T, 0 < r ≤ 1, one obtains

1
T

T

∑
t=1

E
∂`t

∂θgi

∂`t

∂θ′gj
|H0 =

1
4T

T

∑
t=1

(
1

g0
it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)(

1
g0

jt

∂g0
jt

∂θ′gj
+

1
h0

jt

∂h0
jt

∂θ′gj
)e′i(P

0)−1eje′iP
0ej

= [
1

4T

T

∑
t=1

1
(g0

it)
2

∂g0
it

∂θgi

∂g0
jt

∂θ′gj
+

1
4T

T

∑
t=1
{ 1

g0
ith

0
jt

∂g0
it

∂θgi

∂h0
jt

∂θ′gj

+
1

h0
it

∂h0
it

∂θgi
(

1
g0

jt

∂g0
jt

∂θ′gj
+

1
h0

jt

∂h0
jt

∂θ′gj
)}]e′i(P0)−1eje′iP

0ej. (A13)

Consider the first term on the r.h.s. of (A13) and denote t/T = [Tr]/T, 0 < r ≤ 1.
One obtains

1
4

T

∑
t=1

∫ (t+1)/T

t/T

1
(g0

i[Tr]/T)
2

∂g0
i[Tr]/T

∂θgi

∂g0
i[Tr]/T

∂θ′gi
dr =

1
4

∫ (T+1)/T

1/T

1
(g0

i[Tr]/T)
2

∂g0
i[Tr]/T

∂θgi

∂g0
i[Tr]/T

∂θ′gi
dr

→ 1
4

∫ 1

0

1
(g0

ir)
2

∂g0
ir

∂θgi

∂g0
ir

∂θ′gi
dr

as T → ∞. Consequently,
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1
T

T

∑
t=1

E
∂`t

∂θgi

∂`t

∂θ′gj
|H0 →

1
4
[
∫ 1

0

1
(g0

ir)
2

∂g0
ir

∂θgi

∂g0
ir

∂θ′gi
dr + lim

T→∞

1
T

T

∑
t=1
{ 1

g0
ith

0
jt

∂g0
it

∂θgi

∂h0
jt

∂θ′gj

+
1

h0
it

∂h0
it

∂θgi
(

1
g0

jt

∂g0
jt

∂θ′gj
+

1
h0

jt

∂h0
jt

∂θ′gj
)}]{e′i(P0)−1eje′iP

0ej − 1}

= [Jθgθg ]ij

and when i = j,

1
T

T

∑
t=1

E
∂`t

∂θgi

∂`t

∂θ′gi
|H0 →

1
4
[
∫ 1

0

1
(g0

ir)
2

∂g0
ir

∂θgi

∂g0
ir

∂θ′gi
dr + lim

T→∞

1
T

T

∑
t=1

(
1

h0
itg

0
ir

∂g0
it

∂θgi

∂h0
ir

∂θ′gi

+
1

h0
it

∂h0
it

∂θgi
(

1
g0

jt

∂g0
it

∂θ′gi
+

1
h0

jt

∂h0
it

∂θ′gi
)]{e′i(P0)−1ei + 1} = [Jθgθg ]ii

as T → ∞. In a similar fashion, from Lemma A3, for i 6= j one obtains

1
T

T

∑
t=1

E
∂`t

∂θhi

∂`t

∂θ′hj
|H0 → lim

T→∞

1
4T

T

∑
t=1

1
h0

ith
0
jt

∂h0
it

∂θhi

∂h0
jt

∂θ′hj
e′i(P

0)−1eje′iP
0ej = [Jθhθh ]ij

and when i = j,

1
T

T

∑
t=1

E
∂`t

∂θhi

∂`t

∂θ′hi
|H0 → lim

T→∞

1
4T

T

∑
t=1

1
(h0

it)
2

∂h0
it

∂θhi

∂h0
it

∂θ′hi
{e′i(P0)−1ei + 1} = [Jθhθh ]ii

as T → ∞. Applying Lemma A2, for i 6= j, one obtains

1
T

T

∑
t=1

E
∂`t

∂θgi

∂`t

∂θ′hj
|H0 → lim

T→∞

1
4T

T

∑
t=1

(
1

g0
it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)

1
h0

jt

∂h0
jt

∂θ′gj
e′i(P

0)−1eje′iP
0ej

= [Jθgθh ]ij

and when i = j,

1
T

T

∑
t=1

E
∂`t

∂θgi

∂`t

∂θ′hi
|H0 → lim

T→∞

1
4T

T

∑
t=1

(
1

g0
it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)

1
h0

it

∂h0
it

∂θ′gi
{e′i(P0)−1ei + 1}

= [Jθgθh ]ii

as T → ∞. Applying Lemma A4 and using the same arguments as above, one obtains

1
T

T

∑
t=1

E
∂`t

∂θgi

∂`t

∂ψ
′
j
|H0 =

1
2T

T

∑
t=1

(
1

g0
it

∂g0
it

∂θgi
+

1
h0

it

∂h0
it

∂θgi
)τ′t

× (
1

ψ0j
e′iqjq′iej −

1
N −∑N−1

k=1 ψ0k
e′iqNq′ieN)

→ 1
2
(
∫ 1

0

1
g0

ir

∂g0
ir

∂θgi
r′dr + lim

T→∞

1
T

T

∑
t=1

1
h0

it

∂h0
it

∂θgi
τ′t )

× (
1

ψ0j
e′iqjq′iej −

1
N −∑N−1

k=1 ψ0k
e′iqNq′ieN) = [Jθgψ]ij,

where r = (1, r, r2)′, and
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1
T

T

∑
t=1

E
∂`t

∂θhi

∂`t

∂ψ
′
j
|H0 →

1
2T

T

∑
t=1

1
h0

it

∂h0
it

∂θhi
τ′t

× (
1

ψ0j
e′iqjq′iej −

1
N −∑N−1

k=1 ψ0k
e′iqNq′ieN) = [Jθhψ]ij

as T → ∞. Finally, from Lemma A5 it follows that

T

∑
t=1

E
∂`t

∂ψ

∂`t

∂ψ
′ → (Ψ−2

0 +
1

(N −∑N−1
k=1 ψ0k)2

1N−11′N−1)⊗
∫ 1

0

 1 r r2

r2 r3

r4

dr

= (Ψ−2
0 +

1
(N −∑N−1

k=1 ψ0k)2
1N−11′N−1)⊗

 1 1/2 1/3
1/3 1/4

1/5


as t→ T and T → ∞. This completes the proof of Theorem 2.

Appendix C. Simulation Details and Results

In this Section we present further details of the various simulations discussed in the
paper, as well as further investigations of the proposed test. All simulations presented
here are based on 2500 replications. The version of R used is 4.1.0. We have developed
our own R package, ‘mtvgarch’ to support this research into multivariate, time-varying
GARCH models. The package is not currently available on CRAN, but is available upon
request. The version used on this paper is 0.8.54. The code is maintained in a private
GitHub repository.

The processing of the simulations is very compute-resource intensive. The mtvgarch
package uses the doParallel package (available on CRAN) to parallelise the processing.
This should be done using a MPP (massively-parallel-processing) array, but will also work
on a multi-core desktop PC. A minimum of 8 logical processors and 32GB RAM is sufficient
to run most simulations, but will be slow and will not handle the higher dimensional
cases. We recommended reducing (or removing) the parallelisation when the execution
of the code results in CPU or Memory usage approaching 100 percent. MS Azure Virtual
Machines (VM) were used to do a lot of the processing. The operating system was Windows
Server 2019 and the size was Standard-F8s-v2 with 8 vCPU’s and 64GB RAM.2 Our VM’s
took approximately 10 hours to process simulations where N = 20 and T = 2000.

Appendix C.1. Size

Tables A6 and A7 contain the size simulations, where the DGP is a CEC-GARCH
(constant equicorrelation). For each series, gt = 1 and the parameterisation of the GARCH
equation is such that the persistence is 0.95 and kurtosis is set to 4 in the first experiment,
and to 6 in the second. That is, α1 = 0.1104, β1 = 0.8396 in the former, and α1 = 0.1561,
β1 = 0.7939 for the latter. The GARCH intercept is set to 1− α1 − β1 to standardise the
unconditional variance to unity. The equicorrelation coefficient is equal to 0.33 in the former
and 0.67 in the latter. The transition variable in the test is a linear time trend. The dimension
N ranges from 2 to 20, and sample size T from 500 to 2000. Note that the smallest size
T = 500 is no longer feasible for N = 20.

We extend the previous set-up by defining the constant correlation matrix as having a
block structure. The system of N series is divided into subgroups consisting of four series.
Group i is described as having an equicorrelated state with ρi as the correlation parameter,
i = 1, . . . , N/4. The correlation between groups i and j is defined as √ρiρj. This structure
ensures positive definiteness of the resulting correlation matrix. We consider N = 12
(three groups of four series), first with ρ = (0.2, 0.3, 0.4) and then ρ = (0.25, 0.5, 0.75). The
condition numbers of the resulting matrices are similar (7.13 and 25.69) to the ones for
equicorrelated matrices of the same dimension with correlation 0.33 (condition number
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C = 7) and 0.67 (condition number C = 25), respectively. This is important, because
there is an introduced error associated with the matrix inversions that take place during
the computation of the test statistic, and the error gets larger the higher the dimension
N and the closer the matrix is to singularity. Setting the condition numbers equal will
ensure the error is at par across the models and the results are comparable. We further
extend the set up to N = 16 (four groups of four series), with ρ = (0.10, 0.20, 0.35, 0.45)
and ρ = (0.25, 0.35, 0.55, 0.75). The condition numbers for these matrices are 9.20 and
32.21, again aligning with those of equicorrelated systems of the same size (C = 9 when
ρ = 0.33, and C = 33 when ρ = 0.67). The GARCH parameterisation is the same as in the
first experiment, targeting persistence 0.95 and kurtosis 4 and 6. The simulation results are
presented in Table A8.

Appendix C.2. Misspecified Variance

The next experiment investigates the effect of neglecting the TV-component. That is,
the DGP is a TV-CEC-GARCH, but the baseline volatility shift is ignored at the estimation
stage, and only a CEC-GARCH model is estimated. As before, the GARCH equations are
set up with persistence of 0.95, kurtosis of 4 and 6, α0 = 1− α1 − β1 for each series, and
two strengths of equicorrelation are examined, 0.33 and 0.67. The TV-component has a
transition located at the center of the sample, and the transition variable is a linear time
trend. The speed of the transition is set to γ = 20, which translates to a transition that
gradually begins at the first quartile and finishes at the third. The magnitude of the increase
in the volatility from the initial level of δ0 = 1 is set to δ1 = 3 in the first simulation, and
to δ1 = 8 in the second one, which effectively doubles and triples the standard deviations,
respectively. The results for δ1 = 3 are presented in Tables A9 and A10. Because the result
indicates a very strong tendency to reject the null even at the rather modest increase in
variance, the results for δ1 = 8 are omitted.

Another experiment investigates the sensitivity of the test to the correctness of the
GARCH model specification. In this case the GARCH equation is misspecified such
that it includes an asymmetry component (GJR-GARCH), but this is ignored when the
model is estimated and the test statistic computed. To keep the results comparable, the
parameters are chosen such that the implied kurtosis levels are 4 and 6, in addition to
keeping the unconditional variance equal to one (α0 = 1− α1 − 0.5κ1 − β1 for each series)
and persistence at 0.95. We choose to look at the extreme case where the effect of the
past shock is inherited only from the negative shocks (i.e., α1 = 0). This yields κ1 = 0.14,
β1 = 0.88 for the case of kurtosis = 4 and κ1 = 0.198, β1 = 0.851 when kurtosis = 6. The
results are tabulated in Tables A11 and A12 for the two levels of correlation (0.33 and 0.67,
respectively).

To investigate the sensitivity of the test to volatility spillovers we use the Extended
CEC (ECEC) model which is a special case of the Extended CCC (ECCC) model of Jeantheau
(1998). We consider two patterns for the spillover effects for the past shocks (excluding
spillovers from past volatilities). First is a circular pattern, where the past shock of the first
series enters the next period’s volatility of the second series, the past shock of the second
enters the volatility of the third, and so on. The past shock of the last series then enters the
volatility of the first series. The second set up is a spillover from a single source to all other
series. The parameterisation mimics the earlier simulations in that persistence is set to 0.95,
and kurtosis is 4. That is, β1 = 0.8396 and α1 = 0.0704, and the spillover coefficient is 0.04.
For the single source case, the first series has no spillover effect, and thus its α1 = 0.1104.
The intercept is again set to 0.05 for unit conditional variance for each series. For the
correlation part we use the CEC models with weak and strong correlations (ρ = 0.33 and
0.67, respectively). In practice, the ECCC models are used in low-dimensional applications,
and therefore we choose to use N = 2, 3, 5. The results are found in Tables A13 and A14.
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Appendix C.3. Misspecified Error Distribution

As the last investigation we look into the effect of nonnormality of the error distribu-
tion. We choose t-distribution with d f = 8 and d f = 5. To create multivariate t-distributed
data, the individual noise series are first standardised to have unit variance. The correlation
matrix is again an equicorrelated one, with ρ = 0.33 and ρ = 0.67, as before. The resulting
data is thus correlated multivariate t, with t-distributed (standardised) marginals. The
GARCH parameters are chosen such that the fourth moment still exists, and the resulting
kurtosis is reasonable. We also wish to keep the persistence at 0.95 to allow for comparison
with the normal cases discussed earlier, and the GARCH intercept is set to 1− α1 − β1. To
this end, we choose α1 = 0.06 and β1 = 0.89 when d f = 8 (the implied kurtosis is 5.17),
and α1 = 0.03 and β1 = 0.92 for d f = 5 (the implied kurtosis is 9.72). The results of the size
simulations are presented in Tables A15 and A16.

Table A6. Size of the test. The data is generated from a CEC-GARCH with persistence of 0.95, kurtosis
of 4 (Panel A) and 6 (Panel B), and equicorrelation coefficient of 0.33. 2500 replications.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A

2 500 0.010 0.048 0.108 0.009 0.053 0.102 0.008 0.049 0.107 0.013 0.054 0.099
2 1000 0.012 0.041 0.087 0.010 0.046 0.091 0.012 0.048 0.102 0.009 0.049 0.093
2 2000 0.008 0.045 0.097 0.008 0.047 0.088 0.009 0.045 0.092 0.010 0.046 0.090
5 500 0.013 0.058 0.107 0.015 0.068 0.124 0.019 0.070 0.130 0.017 0.071 0.126
5 1000 0.010 0.051 0.101 0.014 0.052 0.102 0.014 0.060 0.113 0.017 0.057 0.110
5 2000 0.010 0.052 0.103 0.008 0.050 0.107 0.011 0.048 0.106 0.013 0.055 0.109
10 500 0.009 0.050 0.106 0.010 0.062 0.121 0.013 0.070 0.122 0.019 0.064 0.125
10 1000 0.010 0.054 0.101 0.010 0.056 0.107 0.012 0.054 0.118 0.012 0.058 0.108
10 2000 0.010 0.054 0.102 0.012 0.055 0.114 0.014 0.058 0.104 0.014 0.064 0.118
20 1000 0.012 0.050 0.088 0.009 0.052 0.099 0.009 0.052 0.103 0.009 0.051 0.101
20 2000 0.015 0.048 0.094 0.012 0.050 0.103 0.010 0.050 0.100 0.011 0.056 0.107

Panel B

2 500 0.010 0.049 0.104 0.012 0.056 0.104 0.010 0.052 0.106 0.014 0.058 0.102
2 1000 0.012 0.040 0.085 0.010 0.045 0.092 0.012 0.048 0.102 0.009 0.050 0.094
2 2000 0.008 0.045 0.094 0.007 0.048 0.087 0.010 0.044 0.095 0.009 0.044 0.092
5 500 0.013 0.059 0.108 0.018 0.072 0.126 0.020 0.074 0.135 0.021 0.075 0.134
5 1000 0.011 0.050 0.101 0.012 0.051 0.100 0.014 0.056 0.108 0.014 0.053 0.109
5 2000 0.010 0.054 0.102 0.008 0.054 0.110 0.011 0.051 0.110 0.015 0.058 0.108
10 500 0.010 0.053 0.104 0.010 0.066 0.128 0.016 0.076 0.133 0.021 0.072 0.133
10 1000 0.012 0.054 0.104 0.012 0.053 0.108 0.012 0.054 0.116 0.016 0.063 0.112
10 2000 0.010 0.051 0.101 0.012 0.058 0.119 0.016 0.060 0.107 0.016 0.066 0.124
20 1000 0.012 0.050 0.090 0.010 0.052 0.102 0.010 0.055 0.103 0.010 0.054 0.103
20 2000 0.014 0.048 0.093 0.012 0.048 0.107 0.009 0.055 0.101 0.013 0.056 0.116
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Table A7. Size of the test. The data is generated from a CEC-GARCH with persistence of 0.95, kurtosis
of 4 (Panel A) and 6 (Panel B), and equicorrelation coefficient of 0.67. 2500 replications.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A

2 500 0.011 0.060 0.112 0.015 0.063 0.124 0.016 0.064 0.124 0.018 0.069 0.117
2 1000 0.010 0.045 0.090 0.013 0.050 0.094 0.013 0.052 0.104 0.013 0.055 0.105
2 2000 0.008 0.048 0.093 0.010 0.048 0.094 0.012 0.043 0.102 0.012 0.048 0.094
5 500 0.016 0.059 0.107 0.023 0.074 0.134 0.026 0.086 0.152 0.028 0.088 0.154
5 1000 0.010 0.053 0.108 0.017 0.060 0.107 0.022 0.067 0.120 0.020 0.070 0.126
5 2000 0.013 0.050 0.102 0.012 0.062 0.116 0.014 0.068 0.120 0.017 0.061 0.128
10 500 0.012 0.056 0.108 0.017 0.075 0.144 0.020 0.079 0.147 0.024 0.089 0.160
10 1000 0.012 0.060 0.116 0.016 0.061 0.120 0.016 0.066 0.126 0.023 0.070 0.129
10 2000 0.014 0.056 0.104 0.012 0.062 0.120 0.014 0.060 0.113 0.017 0.070 0.124
20 1000 0.011 0.056 0.108 0.013 0.063 0.115 0.012 0.065 0.130 0.018 0.072 0.133
20 2000 0.012 0.048 0.104 0.011 0.052 0.108 0.012 0.051 0.107 0.014 0.056 0.113

Panel B

2 500 0.012 0.061 0.112 0.017 0.071 0.128 0.021 0.068 0.130 0.021 0.072 0.126
2 1000 0.010 0.045 0.091 0.013 0.050 0.100 0.013 0.053 0.106 0.012 0.058 0.108
2 2000 0.009 0.048 0.094 0.010 0.050 0.095 0.012 0.049 0.105 0.012 0.050 0.102
5 500 0.017 0.061 0.113 0.025 0.083 0.143 0.031 0.094 0.166 0.036 0.098 0.162
5 1000 0.010 0.053 0.108 0.019 0.063 0.113 0.024 0.071 0.126 0.021 0.075 0.132
5 2000 0.013 0.050 0.102 0.016 0.068 0.122 0.018 0.071 0.128 0.022 0.073 0.138
10 500 0.014 0.056 0.115 0.024 0.086 0.156 0.032 0.100 0.164 0.036 0.113 0.184
10 1000 0.014 0.060 0.118 0.020 0.066 0.121 0.021 0.073 0.135 0.025 0.081 0.145
10 2000 0.015 0.054 0.106 0.016 0.066 0.126 0.018 0.066 0.122 0.020 0.080 0.136
20 1000 0.011 0.060 0.110 0.017 0.068 0.124 0.018 0.071 0.130 0.023 0.079 0.144
20 2000 0.011 0.052 0.102 0.014 0.060 0.118 0.015 0.059 0.119 0.019 0.069 0.128

Table A8. Size of the test. The data is generated from a block-correlation-GARCH with persistence of
0.95, kurtosis of 4 (Panel A) and 6 (Panel B). The condition numbers (C) in the top and bottom section
of each panel correspond to a weak and strong correlation, respectively. 2500 replications.

Order 1 Order 2 Order 3 Order 4

N T C 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A

12 1000 7.13 0.013 0.058 0.116 0.014 0.058 0.117 0.012 0.062 0.117 0.015 0.064 0.120
12 2000 7.13 0.009 0.054 0.100 0.011 0.051 0.108 0.015 0.060 0.111 0.018 0.064 0.119
16 1000 9.20 0.013 0.053 0.114 0.019 0.064 0.125 0.014 0.062 0.122 0.014 0.063 0.126
16 2000 9.20 0.010 0.052 0.109 0.014 0.064 0.119 0.010 0.068 0.118 0.018 0.067 0.121

12 1000 25.69 0.015 0.062 0.111 0.019 0.072 0.139 0.022 0.074 0.132 0.022 0.075 0.138
12 2000 25.69 0.010 0.052 0.103 0.017 0.063 0.124 0.012 0.075 0.125 0.020 0.075 0.135
16 1000 32.21 0.009 0.060 0.120 0.015 0.070 0.128 0.017 0.073 0.130 0.017 0.076 0.138
16 2000 32.21 0.010 0.055 0.112 0.014 0.071 0.116 0.011 0.069 0.124 0.016 0.070 0.133

Panel B

12 1000 7.13 0.013 0.059 0.118 0.016 0.064 0.122 0.014 0.066 0.126 0.016 0.068 0.122
12 2000 7.13 0.008 0.053 0.098 0.014 0.064 0.116 0.018 0.064 0.122 0.027 0.076 0.132
16 1000 9.20 0.014 0.058 0.114 0.021 0.070 0.130 0.017 0.074 0.129 0.016 0.068 0.134
16 2000 9.20 0.010 0.053 0.107 0.017 0.070 0.129 0.013 0.075 0.124 0.024 0.078 0.136

12 1000 25.69 0.014 0.064 0.114 0.020 0.079 0.141 0.024 0.080 0.142 0.029 0.084 0.150
12 2000 25.69 0.011 0.053 0.107 0.020 0.069 0.140 0.016 0.081 0.136 0.029 0.089 0.159
16 1000 32.21 0.008 0.060 0.120 0.021 0.076 0.138 0.019 0.081 0.140 0.023 0.087 0.149
16 2000 32.21 0.011 0.058 0.114 0.021 0.079 0.134 0.017 0.076 0.138 0.028 0.093 0.157
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Table A9. Rejection frequencies: misspecified deterministic variance component. The data is gener-
ated from a TV-CEC-GARCH with the GARCH equation parameterised such that persistence is 0.95
and kurtosis is 4 (Panel A) and 6 (Panel B), and the TV-component has δ0 = 1, δ1 = 3, c = 0.5 and
γ = 20, and equicorrelation coefficient of 0.33. The test ignores the TV-component. 2500 replications.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A

2 500 0.052 0.148 0.241 0.037 0.134 0.229 0.030 0.112 0.199 0.031 0.091 0.178
2 1000 0.072 0.209 0.316 0.053 0.173 0.289 0.043 0.140 0.239 0.039 0.127 0.209
2 2000 0.125 0.307 0.417 0.095 0.253 0.376 0.079 0.218 0.336 0.064 0.195 0.297
5 500 0.293 0.517 0.630 0.310 0.559 0.680 0.221 0.450 0.590 0.168 0.368 0.514
5 1000 0.486 0.680 0.775 0.452 0.680 0.776 0.343 0.583 0.703 0.280 0.500 0.630
5 2000 0.718 0.862 0.915 0.678 0.849 0.911 0.595 0.782 0.862 0.517 0.719 0.808
10 500 0.768 0.894 0.928 0.861 0.954 0.972 0.762 0.902 0.951 0.651 0.842 0.902
10 1000 0.914 0.959 0.976 0.942 0.981 0.990 0.884 0.960 0.978 0.810 0.927 0.959
10 2000 0.990 0.995 0.998 0.990 0.997 0.999 0.980 0.993 0.997 0.963 0.989 0.995
20 1000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000
20 2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel B

2 500 0.050 0.141 0.228 0.036 0.123 0.211 0.028 0.104 0.186 0.028 0.083 0.164
2 1000 0.075 0.214 0.320 0.053 0.170 0.282 0.044 0.140 0.238 0.038 0.129 0.204
2 2000 0.146 0.340 0.458 0.109 0.274 0.400 0.093 0.241 0.361 0.075 0.219 0.326
5 500 0.276 0.490 0.604 0.254 0.486 0.615 0.183 0.383 0.524 0.137 0.316 0.448
5 1000 0.498 0.708 0.785 0.421 0.664 0.761 0.331 0.569 0.687 0.272 0.481 0.622
5 2000 0.802 0.913 0.948 0.752 0.893 0.939 0.675 0.844 0.906 0.602 0.789 0.856
10 500 0.746 0.880 0.921 0.779 0.916 0.956 0.652 0.835 0.903 0.554 0.763 0.846
10 1000 0.928 0.970 0.984 0.936 0.976 0.988 0.864 0.952 0.972 0.792 0.914 0.954
10 2000 0.996 1.000 1.000 0.996 0.999 0.999 0.991 0.998 0.999 0.984 0.997 0.998
20 1000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000
20 2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table A10. Rejection frequencies: misspecified deterministic variance component. The data is
generated from a TV-CEC-GARCH with the GARCH equation parameterised such that persistence is
0.95 and kurtosis is 4 (Panel A) and 6 (Panel B), and the TV-component has δ0 = 1, δ1 = 3, c = 0.5 and
γ = 20, and equicorrelation coefficient of 0.67. The test ignores the TV-component. 2500 replications.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A

2 500 0.227 0.430 0.537 0.226 0.465 0.600 0.182 0.405 0.547 0.158 0.353 0.488
2 1000 0.342 0.547 0.664 0.328 0.568 0.677 0.284 0.521 0.642 0.242 0.464 0.601
2 2000 0.502 0.699 0.777 0.486 0.698 0.790 0.449 0.645 0.750 0.413 0.612 0.712
5 500 0.688 0.828 0.876 0.818 0.924 0.955 0.764 0.901 0.942 0.695 0.860 0.919
5 1000 0.819 0.900 0.930 0.883 0.948 0.969 0.843 0.936 0.962 0.800 0.911 0.952
5 2000 0.941 0.973 0.983 0.962 0.985 0.991 0.944 0.978 0.987 0.919 0.972 0.983
10 500 0.890 0.934 0.955 0.974 0.993 0.995 0.964 0.988 0.996 0.948 0.984 0.990
10 1000 0.948 0.974 0.980 0.988 0.994 0.997 0.982 0.994 0.996 0.973 0.992 0.995
10 2000 0.991 0.994 0.996 0.996 0.999 0.999 0.995 0.999 0.999 0.991 0.997 0.998
20 1000 0.986 0.994 0.998 0.998 1.000 1.000 0.998 0.999 1.000 0.999 0.999 1.000
20 2000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table A10. Cont.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel B

2 500 0.200 0.411 0.521 0.185 0.415 0.542 0.154 0.356 0.491 0.128 0.302 0.433
2 1000 0.345 0.556 0.672 0.308 0.548 0.657 0.270 0.506 0.620 0.235 0.445 0.582
2 2000 0.571 0.754 0.826 0.524 0.735 0.823 0.494 0.693 0.790 0.461 0.656 0.752
5 500 0.668 0.816 0.871 0.743 0.883 0.929 0.668 0.842 0.902 0.598 0.794 0.871
5 1000 0.836 0.913 0.942 0.868 0.939 0.962 0.816 0.916 0.950 0.780 0.894 0.934
5 2000 0.975 0.986 0.990 0.977 0.991 0.995 0.966 0.986 0.992 0.951 0.983 0.991
10 500 0.884 0.934 0.954 0.956 0.981 0.991 0.936 0.976 0.986 0.903 0.961 0.981
10 1000 0.957 0.979 0.984 0.982 0.992 0.996 0.974 0.990 0.994 0.960 0.987 0.991
10 2000 0.996 0.998 0.999 0.999 1.000 1.000 0.998 0.999 0.999 0.996 0.998 0.999
20 1000 0.992 0.998 0.999 0.999 1.000 1.000 0.997 1.000 1.000 0.997 0.999 1.000
20 2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table A11. Rejection frequencies: misspecified GARCH equation. The data is generated from a
CEC-GJR-GARCH with the GJR-GARCH equation parameterised such that persistence is 0.95 and
kurtosis is 4 (Panel A) and 6 (Panel B), and equicorrelation coefficient of 0.33. The test ignores the
asymmetric GJR-component. 2500 replications.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A

2 500 0.010 0.054 0.104 0.011 0.056 0.113 0.011 0.054 0.109 0.012 0.054 0.109
2 1000 0.012 0.052 0.094 0.011 0.047 0.092 0.015 0.056 0.106 0.014 0.052 0.098
2 2000 0.009 0.053 0.103 0.011 0.049 0.100 0.010 0.052 0.109 0.009 0.051 0.112
5 500 0.018 0.071 0.120 0.025 0.082 0.149 0.028 0.089 0.149 0.028 0.090 0.156
5 1000 0.016 0.069 0.131 0.020 0.080 0.143 0.024 0.086 0.155 0.024 0.093 0.157
5 2000 0.017 0.064 0.134 0.015 0.079 0.147 0.019 0.086 0.157 0.022 0.083 0.153
10 500 0.022 0.089 0.146 0.032 0.113 0.197 0.038 0.126 0.209 0.034 0.117 0.199
10 1000 0.024 0.090 0.151 0.029 0.106 0.179 0.031 0.110 0.197 0.035 0.116 0.198
10 2000 0.019 0.082 0.144 0.029 0.101 0.182 0.030 0.114 0.188 0.039 0.124 0.210
20 1000 0.030 0.094 0.155 0.046 0.137 0.228 0.058 0.168 0.267 0.061 0.179 0.285
20 2000 0.034 0.106 0.170 0.049 0.155 0.236 0.058 0.160 0.261 0.063 0.178 0.274

Panel B

2 500 0.011 0.056 0.105 0.012 0.056 0.116 0.013 0.056 0.109 0.014 0.057 0.109
2 1000 0.011 0.054 0.094 0.012 0.050 0.095 0.016 0.060 0.109 0.016 0.054 0.101
2 2000 0.012 0.055 0.105 0.012 0.051 0.104 0.012 0.056 0.112 0.009 0.055 0.115
5 500 0.020 0.076 0.130 0.024 0.088 0.156 0.030 0.098 0.163 0.032 0.100 0.169
5 1000 0.020 0.073 0.134 0.023 0.087 0.152 0.026 0.093 0.166 0.026 0.099 0.169
5 2000 0.017 0.071 0.140 0.016 0.086 0.158 0.025 0.094 0.170 0.026 0.094 0.169
10 500 0.025 0.090 0.156 0.038 0.123 0.210 0.044 0.138 0.232 0.034 0.133 0.222
10 1000 0.032 0.096 0.164 0.035 0.118 0.203 0.036 0.130 0.220 0.044 0.139 0.225
10 2000 0.026 0.089 0.153 0.039 0.119 0.196 0.040 0.129 0.210 0.053 0.148 0.231
20 1000 0.035 0.102 0.170 0.054 0.166 0.257 0.073 0.192 0.293 0.080 0.214 0.314
20 2000 0.040 0.114 0.188 0.065 0.169 0.259 0.078 0.201 0.293 0.086 0.215 0.313
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Table A12. Rejection frequencies: misspecified GARCH equation. The data is generated from a
CEC-GJR-GARCH with the GJR-GARCH equation parameterised such that persistence is 0.95 and
kurtosis is 4 (Panel A) and 6 (Panel B), and equicorrelation coefficient of 0.67. The test ignores the
asymmetric GJR-component. 2500 replications.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A

2 500 0.020 0.078 0.138 0.022 0.096 0.168 0.028 0.102 0.183 0.033 0.111 0.183
2 1000 0.019 0.064 0.120 0.021 0.077 0.135 0.026 0.092 0.155 0.024 0.086 0.156
2 2000 0.020 0.078 0.127 0.020 0.080 0.152 0.024 0.088 0.158 0.022 0.097 0.172
5 500 0.044 0.118 0.190 0.066 0.166 0.264 0.080 0.190 0.279 0.084 0.198 0.298
5 1000 0.036 0.107 0.182 0.048 0.150 0.232 0.074 0.183 0.270 0.078 0.192 0.291
5 2000 0.027 0.109 0.187 0.047 0.142 0.241 0.059 0.168 0.274 0.072 0.185 0.293
10 500 0.066 0.164 0.233 0.108 0.246 0.345 0.137 0.287 0.391 0.145 0.306 0.416
10 1000 0.063 0.151 0.236 0.094 0.234 0.338 0.127 0.274 0.380 0.134 0.304 0.414
10 2000 0.061 0.152 0.227 0.084 0.213 0.303 0.110 0.250 0.361 0.137 0.290 0.395
20 1000 0.091 0.192 0.272 0.152 0.304 0.406 0.200 0.366 0.468 0.236 0.412 0.511
20 2000 0.097 0.194 0.267 0.158 0.301 0.398 0.196 0.358 0.472 0.229 0.406 0.526

Panel B

2 500 0.021 0.082 0.140 0.026 0.102 0.184 0.032 0.112 0.194 0.036 0.120 0.197
2 1000 0.020 0.069 0.124 0.023 0.082 0.146 0.029 0.102 0.164 0.029 0.100 0.170
2 2000 0.022 0.083 0.138 0.023 0.090 0.158 0.029 0.106 0.173 0.027 0.111 0.189
5 500 0.048 0.124 0.202 0.074 0.196 0.286 0.093 0.216 0.317 0.103 0.231 0.334
5 1000 0.040 0.119 0.199 0.062 0.170 0.252 0.089 0.208 0.305 0.100 0.225 0.321
5 2000 0.033 0.123 0.201 0.058 0.165 0.266 0.076 0.198 0.304 0.088 0.219 0.326
10 500 0.078 0.179 0.250 0.131 0.277 0.381 0.172 0.329 0.439 0.176 0.358 0.480
10 1000 0.075 0.175 0.257 0.122 0.271 0.374 0.163 0.314 0.422 0.180 0.350 0.468
10 2000 0.074 0.171 0.252 0.105 0.246 0.343 0.138 0.298 0.411 0.174 0.336 0.457
20 1000 0.108 0.220 0.308 0.193 0.344 0.450 0.250 0.424 0.532 0.301 0.485 0.596
20 2000 0.116 0.223 0.304 0.194 0.341 0.437 0.245 0.426 0.531 0.300 0.485 0.591

Table A13. Rejection frequencies: misspecified GARCH equation. The data is generated from a
ECEC-GARCH with the GARCH equation parameterised such that persistence is 0.95 and kurtosis is
4, the spillover pattern is circular (Panel A) and single source (Panel B), and equicorrelation coefficient
of 0.33. The test ignores the spillover component. 2500 replications.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A

2 500 0.012 0.055 0.109 0.013 0.070 0.120 0.013 0.067 0.124 0.019 0.076 0.131
2 1000 0.010 0.046 0.095 0.012 0.061 0.110 0.011 0.060 0.116 0.014 0.055 0.110
2 2000 0.008 0.056 0.102 0.020 0.069 0.123 0.020 0.070 0.126 0.015 0.067 0.122
3 500 0.010 0.056 0.099 0.014 0.067 0.130 0.014 0.066 0.129 0.015 0.064 0.120
3 1000 0.011 0.059 0.110 0.010 0.061 0.119 0.012 0.059 0.119 0.013 0.053 0.110
3 2000 0.010 0.050 0.112 0.015 0.055 0.111 0.016 0.053 0.101 0.016 0.061 0.104
5 500 0.014 0.061 0.114 0.021 0.090 0.156 0.025 0.095 0.168 0.022 0.083 0.161
5 1000 0.014 0.069 0.119 0.014 0.075 0.143 0.017 0.077 0.152 0.018 0.080 0.146
5 2000 0.012 0.056 0.110 0.026 0.081 0.134 0.027 0.084 0.146 0.026 0.084 0.151
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Table A13. Cont.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel B

2 500 0.014 0.060 0.107 0.012 0.057 0.105 0.012 0.049 0.100 0.012 0.047 0.097
2 1000 0.007 0.056 0.105 0.013 0.061 0.129 0.010 0.062 0.123 0.011 0.062 0.116
2 2000 0.011 0.053 0.108 0.015 0.053 0.101 0.011 0.051 0.102 0.012 0.049 0.096
3 500 0.010 0.058 0.115 0.016 0.071 0.135 0.017 0.072 0.130 0.016 0.070 0.132
3 1000 0.015 0.065 0.113 0.014 0.066 0.124 0.017 0.061 0.120 0.016 0.062 0.118
3 2000 0.016 0.061 0.116 0.020 0.071 0.128 0.020 0.072 0.132 0.024 0.066 0.123
5 500 0.025 0.091 0.157 0.034 0.119 0.207 0.037 0.125 0.224 0.036 0.118 0.210
5 1000 0.022 0.079 0.141 0.024 0.099 0.185 0.034 0.109 0.189 0.034 0.112 0.193
5 2000 0.021 0.074 0.131 0.033 0.104 0.174 0.036 0.112 0.198 0.040 0.114 0.191

Table A14. Rejection frequencies: misspecified GARCH equation. The data is generated from a ECEC-
GARCH with the GARCH equation parameterised such that persistence is 0.95 and kurtosis is 4, the
spillover pattern is circular (Panel A) and single source (Panel B), and equicorrelation coefficient of
0.67. The test ignores the spillover component. 2500 replications.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A

2 500 0.024 0.083 0.151 0.032 0.124 0.201 0.032 0.124 0.206 0.030 0.115 0.198
2 1000 0.022 0.080 0.137 0.024 0.104 0.176 0.022 0.101 0.180 0.019 0.097 0.178
2 2000 0.016 0.069 0.123 0.025 0.093 0.159 0.024 0.092 0.160 0.023 0.093 0.165
3 500 0.008 0.033 0.056 0.008 0.030 0.061 0.003 0.020 0.040 0.004 0.014 0.029
3 1000 0.018 0.088 0.150 0.036 0.126 0.208 0.041 0.138 0.224 0.039 0.136 0.225
3 2000 0.019 0.070 0.138 0.029 0.097 0.171 0.032 0.100 0.180 0.031 0.104 0.180
5 500 0.040 0.124 0.200 0.085 0.214 0.324 0.108 0.259 0.372 0.097 0.259 0.369
5 1000 0.027 0.087 0.156 0.058 0.167 0.257 0.070 0.195 0.304 0.066 0.193 0.296
5 2000 0.026 0.085 0.154 0.051 0.134 0.226 0.056 0.148 0.238 0.058 0.150 0.243

Panel B

2 500 0.024 0.085 0.141 0.027 0.113 0.192 0.033 0.124 0.205 0.030 0.119 0.194
2 1000 0.018 0.066 0.125 0.027 0.097 0.169 0.030 0.092 0.168 0.027 0.094 0.162
2 2000 0.016 0.064 0.120 0.022 0.076 0.143 0.022 0.090 0.151 0.025 0.091 0.163
3 500 0.032 0.104 0.175 0.049 0.150 0.250 0.058 0.176 0.273 0.053 0.175 0.278
3 1000 0.017 0.081 0.148 0.035 0.129 0.203 0.038 0.138 0.221 0.037 0.129 0.232
3 2000 0.024 0.087 0.142 0.031 0.106 0.177 0.043 0.115 0.195 0.040 0.129 0.207
5 500 0.056 0.146 0.224 0.107 0.252 0.371 0.135 0.303 0.426 0.127 0.299 0.430
5 1000 0.038 0.113 0.188 0.081 0.197 0.290 0.099 0.233 0.351 0.090 0.240 0.354
5 2000 0.036 0.096 0.166 0.059 0.160 0.245 0.066 0.180 0.265 0.080 0.188 0.284
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Table A15. Rejection frequencies: misspecified error distribution. The data is generated from a
CEC-GARCH with the equicorrelation coefficient of 0.33. The errors are t-distributed with d f = 8
(Panel A) and d f = 5 (Panel B). 2500 replications.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A

2 500 0.016 0.058 0.107 0.016 0.070 0.122 0.014 0.075 0.130 0.020 0.073 0.134
2 1000 0.011 0.049 0.095 0.015 0.059 0.109 0.016 0.061 0.118 0.016 0.068 0.116
2 2000 0.011 0.054 0.108 0.012 0.065 0.117 0.013 0.061 0.117 0.013 0.068 0.121
5 500 0.024 0.098 0.165 0.044 0.127 0.213 0.056 0.158 0.240 0.065 0.170 0.259
5 1000 0.027 0.090 0.167 0.039 0.121 0.206 0.053 0.155 0.235 0.060 0.164 0.249
5 2000 0.027 0.100 0.160 0.036 0.108 0.197 0.042 0.134 0.226 0.052 0.154 0.243
10 500 0.024 0.088 0.158 0.040 0.125 0.215 0.058 0.161 0.242 0.070 0.178 0.267
10 1000 0.029 0.094 0.167 0.044 0.119 0.200 0.049 0.151 0.229 0.059 0.172 0.256
10 2000 0.030 0.098 0.166 0.038 0.121 0.198 0.044 0.137 0.226 0.056 0.154 0.234
20 1000 0.022 0.086 0.152 0.026 0.107 0.183 0.038 0.120 0.206 0.047 0.144 0.229
20 2000 0.023 0.088 0.162 0.034 0.118 0.195 0.038 0.130 0.228 0.044 0.145 0.238

Panel B

2 500 0.016 0.072 0.141 0.022 0.076 0.144 0.022 0.081 0.142 0.027 0.092 0.150
2 1000 0.017 0.065 0.125 0.024 0.079 0.142 0.028 0.092 0.154 0.035 0.095 0.159
2 2000 0.022 0.080 0.146 0.020 0.095 0.159 0.026 0.100 0.172 0.029 0.106 0.184
5 500 0.064 0.180 0.262 0.117 0.262 0.356 0.156 0.305 0.413 0.198 0.340 0.450
5 1000 0.081 0.186 0.266 0.134 0.271 0.365 0.168 0.320 0.433 0.206 0.362 0.465
5 2000 0.090 0.194 0.288 0.138 0.277 0.385 0.185 0.345 0.454 0.224 0.390 0.505
10 500 0.074 0.191 0.292 0.137 0.283 0.394 0.180 0.350 0.460 0.214 0.404 0.519
10 1000 0.080 0.211 0.303 0.156 0.313 0.414 0.208 0.378 0.491 0.236 0.426 0.534
10 2000 0.098 0.227 0.327 0.172 0.332 0.432 0.223 0.414 0.530 0.276 0.474 0.591
20 1000 0.078 0.196 0.285 0.132 0.293 0.395 0.175 0.358 0.486 0.220 0.412 0.527
20 2000 0.089 0.208 0.312 0.143 0.306 0.428 0.199 0.375 0.493 0.254 0.443 0.566

Table A16. Rejection frequencies: misspecified error distribution. The data is generated from a
CEC-GARCH with the equicorrelation coefficient of 0.67. The errors are t-distributed with d f = 8
(Panel A) and d f = 5 (Panel B). 2500 replications.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A

2 500 0.026 0.078 0.144 0.033 0.100 0.161 0.036 0.107 0.180 0.042 0.113 0.185
2 1000 0.019 0.070 0.136 0.025 0.089 0.150 0.025 0.095 0.164 0.031 0.107 0.179
2 2000 0.020 0.072 0.140 0.025 0.086 0.152 0.028 0.091 0.163 0.031 0.105 0.175
5 500 0.040 0.115 0.190 0.064 0.174 0.258 0.087 0.201 0.288 0.100 0.220 0.325
5 1000 0.033 0.116 0.186 0.051 0.155 0.241 0.077 0.196 0.289 0.094 0.211 0.307
5 2000 0.035 0.117 0.190 0.051 0.152 0.240 0.063 0.176 0.269 0.076 0.203 0.304
10 500 0.031 0.100 0.184 0.054 0.154 0.240 0.076 0.192 0.286 0.096 0.218 0.324
10 1000 0.033 0.108 0.177 0.046 0.146 0.230 0.066 0.178 0.265 0.086 0.212 0.307
10 2000 0.039 0.118 0.206 0.052 0.160 0.246 0.058 0.174 0.277 0.076 0.193 0.290
20 1000 0.029 0.100 0.168 0.039 0.124 0.210 0.047 0.151 0.236 0.058 0.174 0.275
20 2000 0.021 0.092 0.170 0.035 0.123 0.214 0.050 0.156 0.251 0.056 0.173 0.269
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Table A16. Cont.

Order 1 Order 2 Order 3 Order 4

N T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel B

2 500 0.038 0.118 0.190 0.056 0.153 0.230 0.065 0.168 0.251 0.080 0.191 0.276
2 1000 0.036 0.110 0.181 0.063 0.152 0.230 0.082 0.181 0.272 0.092 0.203 0.287
2 2000 0.053 0.134 0.210 0.065 0.171 0.257 0.084 0.202 0.286 0.100 0.214 0.320
5 500 0.104 0.228 0.324 0.176 0.344 0.446 0.229 0.400 0.510 0.273 0.448 0.565
5 1000 0.112 0.244 0.337 0.199 0.354 0.464 0.255 0.426 0.530 0.303 0.474 0.592
5 2000 0.128 0.261 0.356 0.197 0.359 0.480 0.262 0.451 0.561 0.332 0.531 0.633
10 500 0.103 0.238 0.338 0.190 0.349 0.462 0.240 0.432 0.544 0.304 0.494 0.605
10 1000 0.118 0.256 0.373 0.220 0.388 0.498 0.283 0.460 0.573 0.334 0.521 0.631
10 2000 0.145 0.278 0.380 0.235 0.398 0.512 0.305 0.492 0.599 0.365 0.579 0.677
20 1000 0.111 0.246 0.338 0.193 0.354 0.464 0.251 0.424 0.544 0.310 0.484 0.598
20 2000 0.110 0.250 0.356 0.193 0.376 0.492 0.260 0.464 0.585 0.328 0.545 0.657

Notes
1 See Appendix C for details.
2 The Standard-F8s-v2-series currently run on the 3rd Generation Intel Xeon Platinum 8370C (Ice Lake), the Intel Xeon Platinum

8272CL (Cascade Lake) processors or the Intel Xeon Platinum 8168 (Skylake) processors. It features a sustained all core Turbo
clock speed of 3.4 GHz and a maximum single-core turbo frequency of 3.7 GHz.
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