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Abstract: This paper proposes enhanced studies on a model consisting of a finite mixture framework
of generalized linear models (GLMs) with gamma-distributed responses estimated using the Bayesian
approach coupled with the Markov Chain Monte Carlo (MCMC) method. The log-link function,
which relates the mean and linear predictors of the model, is implemented to ensure non-negative
values of the predicted gamma-distributed responses. The simulation-based inferential processes
related to the Bayesian-MCMC method is carried out using the Gibbs sampler algorithm. The
performance of proposed model is conducted through two real data applications on the gross
domestic product per capita at purchasing power parity and the annual household income per capita.
Graphical posterior predictive checks are carried out to verify the adequacy of the fitted model for
the observed data. The predictive accuracy of this model is compared with other Bayesian models
using the widely applicable information criterion (WAIC). We find that the Bayesian mixture of GLMs
with gamma-distributed responses performs properly when the appropriate prior distributions are
applied and has better predictive accuracy than the Bayesian mixture of linear regression model and
the Bayesian gamma regression model.

Keywords: finite mixture; generalized linear model; gamma distribution; Bayesian; Markov Chain
Monte Carlo

1. Introduction

The finite mixture model, as a class of model-based clustering methods, provides
a flexible model for capturing heterogeneous data in a data-driven manner. The finite
mixture of statistical distribution, commonly called the finite mixture distribution, is the
most basic type of finite mixture model. Due to its flexibility for modeling heterogeneous
data, the finite mixture model with its various developments has been widely studied
in the research. The finite mixture model of the exponential family of distributions is
one of the models included in that study. Wiper et al. (2001) determined a mixture of
gamma distribution for estimating some quantities for a M/G/1 queue. Lopera et al.
(2011) introduced a Bayesian analysis for the mixture of normal-exponential distributions
including joint modeling of the mean and variance. Garrido and Cepeda (2012) proposed
the mixtures of normal and gamma distributions belonging to the biparametric exponential
family. The simulated studies and applications of heteroscedastic Weibull-Normal mixture
models with the Bayesian approach were discussed in Garrido and Cuervo (2014).

Further advanced models have been established by including generalized linear mod-
els (GLMs) in each mixture component. The finite mixture of GLMs allows the construction
of different parameters in each mixture component, hence, it can accommodate different
heterogeneous cases that occur in the data. Wedel and Kamakura (2000) defined this model
as the Generalized Mixture Regression Models (GLIMMIX), whereas Grün and Leisch
(2008) called it the Finite Mixtures of Generalized Linear Regression Models.
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Inferential methods, through frequentist or Bayesian approaches, can be implemented
to estimate the finite mixture of GLMs. The Bayesian framework, which performs an
estimating procedure concerning the posterior distribution of parameters, has some ad-
vantages when used to determine the parameter of the finite mixture model. One of the
advantages of the Bayesian approach is that when regularity conditions are not fulfilled,
i.e., when sample size and mixture component proportions are small, the Bayesian pa-
rameter estimation still delivers a valid inference and does not need asymptotic normality
(Frühwirth-Schnatter 2006). Since the joint posterior distribution incorporates all possible
sample observations into the maximum number of mixture components, its determining
process through the Bayesian framework is most difficult to solve analytically. A numerical
approach, the well-known Markov Chain Monte Carlo (MCMC) method, needs to be imple-
mented to deal with that problem. The Gibbs sampler algorithm carried out by augmenting
the data is one of the algorithms in MCMC that is commonly applied to generate iteratively
random samples from the posterior distribution of parameters. The iterative computing
procedure conducted within the MCMC makes a structured simulation-based inference
when the Bayesian framework is coupled with the MCMC.

Many papers studied the finite mixture of GLMs estimated by the Bayesian-MCMC
approach. Lenk and DeSarbo (2000) introduced the finite mixture of GLMs with random
effects and implemented the Gibbs sampler algorithm to fit the regression coefficients
formed as a finite mixture of normal distributions. Hurn et al. (2003) developed a mixture
of the Poisson and the logistic regression models, which were estimated through the Gibbs
sampler and the Metropolis-Hastings algorithms. The application of a finite mixture of
negative binomial regression for modeling heterogeneity in accident data was analyzed by
Park and Lord (2009). Meanwhile, the mixture of Bernoulli regression was proposed by
Iriawan et al. (2018) to determine the admission conditions of the Bidikmisi scholarship for
students wanting to enroll in universities.

The purpose of this study is to examine more extensively a finite mixture of GLMs with
gamma-distributed responses with a known number of mixture components estimated
by using the Bayesian-MCMC approach. GLMs with gamma-distributed responses are
commonly applied to model non-negative, continuous, and positive-skewed data, which
are characteristics of economic distribution data. The study focuses on the application
side rather than the theoretical side to find out the advantages of the proposed model.
We consider appropriate descriptions of how Bayesian-MCMC is used to estimate the
proposed model; then, we demonstrate the particular performances of the proposed model
using two real applications with distinct response distributions. In the first real case,
i.e., modeling the gross domestic product at purchasing power parity per capita, we study
the responses that have a gamma distribution. In contrast, in the second real case, i.e.,
modeling the household income clustered in different sub-populations, we examine the
responses that do not fit the gamma distribution but satisfy the essential characteristics
required for developing the proposed model. Furthermore, specific extreme responses
are detected in each mixture component in this second real case. Those two case studies
are expected to strengthen the proposed model’s application. The performance of the
proposed model in prediction accuracy is compared with the Bayesian mixture of linear
regression and the Bayesian gamma regression model through the WAIC. The Bayesian-
MCMC computations are performed using the BUGS language through MultiBUGS, a
software that supports the parallel computation of MCMC chains (Goudie et al. 2020). The
convergence diagnostic of MCMC chains is verified through a CODA package which was
developed by Plummer et al. (2006).

This paper is arranged in the following steps: in Section 2, the flowchart diagram of the
research methodology is described. In Section 3, the Bayesian framework for inferencing the
finite mixture of GLMs with gamma-distributed responses is provided with the required
computation schemes for the MCMC method. In addition to describe the WAIC, we
also present the Gelman-Rubin method, which is considered to be a suitable method
for assessing the convergent condition of MCMC chains. The real data applications are
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presented in Section 4; Section 5 provides some discussions; and the main conclusions are
given in Section 6.

2. Materials and Methods

The workflow of the research methodology that is applied in this paper is presented
in Figure 1.
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Figure 1. The flowchart of the research methodology implemented in this study.

3. Bayesian Approach for the Finite Mixture of GLMs

In a generalized linear model, a framework is constructed through a relationship
between random samples yi as a response and a vector of predictors xi = (1, xi1, . . . , xip)

t

with xij as a j-th predictor on the i-th observation, j = 1, 2, . . . , p, and i = 1, 2, . . . , n. The
responses are considered to be generated from a family of exponential distributions. The
structure of the GLMs is formulated as (1).

ηi = g(µi) = g(E(yi|xi)) = xt
i β = β0 +

p

∑
j=1

β jxij (1)

where ηi is a linear predictor; g(.) is a link function; µi is an expected value of the response yi;
and β is a vector of unknown coefficients; β = (β0, β1, . . . , βp)t. The vector β can represent
the unknown parameters that describe the relationship between predictor variables and
the response.

Grün and Leisch (2008) developed a finite mixture of a generalized linear regression
model by inserting the generalized linear model (1) into mixture components. A finite
mixture of GLMs with K known mixture components is defined by (2):

h(yi|xi, ϑ) =
K

∑
k=1

wk fk(yi|xi, θk) (2)
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where ϑ denotes a vector of all parameters included in the model; fk(yi|xi, θk) represents
the density function which is assumed to be a family of exponential distributions having a
particular vector of parameter θk; and wk is a mixing parameter that satisfies ∑K

k=1 wk = 1
and wk > 0, ∀k, k = 1, 2, . . . , K. Thus, the mean on the k-th mixture component is provided
by (3):

µik = g−1(xt
i βk) (3)

where βk = (β0k, β1k, . . . βpk)
t is a vector of unknown coefficients β on the k-th mixture

component. The extension of the model can be taken based on the mixing parameter wk,
the specific density function fk(yi|xi, θk), and the link function g(.). The mixing parameter
can be formed as a function that depends on a set of predictors recognized as concomitant
variables (Grün and Leisch 2008):

h(yi|xi, ϑ) =
K

∑
k=1

wk(xi) fk(yi|xi, θk)

It is commonly considered that all mixture components have the same link functions
and the same statistical distribution family. In this paper, we limit our study based on
model (2), where the mixing parameter is not a function of the predictors.

The finite mixture of GLMs with gamma-distributed response is defined by suppos-
ing the response Y be a random variable distributed as a gamma distribution. It has a
probability density function (pdf) specified as follows:

f (y|α, λ) =
λα

Γ(α)
y α−1 e−λy I(0,∞)(y) (4)

where Γ(.) denotes the gamma function; α is a shape parameter; λ is an inverse scale
parameter; α, λ > 0; and I(.) is the indicator function (Corrales and Cepeda-Cuervo 2019).
The mean and variance of Y are given by E(Y) = µ = α/λ and Var(Y) = α/λ2. As
proposed by Wiper et al. (2001), who considered that λ = α/µ, Equation (4) can be re-
parameterized as a function of shape α and parameter µ; then, the pdf for the gamma
distribution can be rewritten as follows:

f (y|α, λ) = G(y|α, α/µ) =
(α/µ)α

Γ(α)
yα−1e−(α/µ) y I(0,∞)(y) (5)

Let y1, y2, . . . , yn be positive independent random samples that follow a gamma
distribution as defined by mean µi and shape parameter α:

yi ∼ Gamma(α, α/µi)

with two appropriated link functions: g(µi) = 1/µi, as the canonical link or the inverse-link
function and g(µi) = log(µi) as the log-link function. Model (2) can be reformed by the
following equation:

h(yi|xi, ϑ) =
K

∑
k=1

wkGk(yi|αk, αk/µik) (6)

where ϑ = (α, β1, β2, . . . , βK, w)t; and α = (α1, α2, . . . , αK)
t is a vector of shape

parameters for the pdf of gamma distribution on k-th mixture component Gk(yi|αk, αk/µik),
βk = (β0k, β1k, . . . , βpk)

t, k = 1, 2, . . . , K for µik defined in (3), and w = (w1, w2, . . . , wK)
t

is a vector of mixing parameters. When the inverse-link function and the log-link function
are implemented, the mean µik is reformulated, respectively, as (7) and (8):

µik(inv) =
1

β0k +
p
∑

j=1
β jkxijk

(7)
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for the inverse-link function and

µik(log) = exp

(
β0k +

p

∑
j=1

β jkxijk

)
(8)

for the log-link function. β jk and xijk are the coefficients of regression and the predictor of
the k-th mixture component, respectively, where i = 1, 2, . . . , n, and j = 1, 2, . . . , p.

In spite of the fact that the inverse-link function is a canonical link function for gamma
distribution, its implementation can produce a negative value for the predictive mean.
Therefore, it does not assure a positive value of the mean as required by a response
that has a gamma distribution. Unlike the inverse-link function, the use of the log-link
function ensures the positivity of the predictive mean (Myers et al. 2012). Based on our
implementation studies, we find computationally that the inverse-link function can not
fulfill required results related to an appropriate positive mean. Hence, this paper focuses
only on the finite mixture of GLMs with gamma-distributed responses and the log-link
function, which is formulated as follows:

hlog(yi|xi, ϑ) =
K

∑
k=1

wkGk

(
yi|αk, αk/µik(log)

)
(9)

with

Gk

(
yi|αk, αk/µik(log)

)
=

(
αk/µik(log)

)αk

Γ(αk)
yi

αk−1 e−(αk/µik(log)) yi I(0,∞)(y)

where µik(log) is defined by Equation (8). We assume that the number of mixture components
K is known and the same predictors are implemented in each mixture component. It can
have a different number of observations. In the next section, we shorten the term of model
(9) as a finite mixture of the log-link gamma GLMs.

3.1. Bayesian Framework for Inference

Concerning the Bayesian approach for estimating unknown parameters of model (9),
unknown parameters are regarded as random variables that should be estimated through
the posterior distribution of parameters. The joint posterior distribution for ϑ, π(ϑ|y, x),
can be formed mathematically in proportional form:

π(ϑ|y, x) ∝ p(ϑ)p(y|ϑ, x) (10)

where p(ϑ) is the joint prior distribution of ϑ, and p(y|ϑ, x) is the likelihood, which is
defined by

p(y|x, ϑ) =
n

∏
i=1

hlog(yi|xi, ϑ) (11)

thus, the joint posterior distribution with a log-link function is given by

π(ϑ |y, x) ∝ p(ϑ)
n

∏
i=1

(
K

∑
k=1

wkGk

(
yi|αk, αk/µik(log)

))
(12)

where µik(log) is defined by Equation (8).
Since ϑ = (α, β1, β2, . . . , βK, w)t by assuming an independent relationship between

mixing parameter w and component parameters, as stated by Frühwirth-Schnatter (2006),
then the joint posterior distribution (12) can be reconstructed as follows:

π(α, β1, . . . , βK, w|y, x) ∝ p(α)p(β1) . . . p(βK)p(w)

×
n
∏
i=1

(
K
∑

k=1
wkGk

(
yi|αk, αk/µik(log)

))
,

(13)
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where p(α) is a prior distribution for α; p(β1), . . . , p(βK) are the prior distributions for
β1, . . . , βK; and p(w) is a prior distribution for w.

In the finite mixture modeling, not all observations are allocated in only one mixture
component. It needs a random variable called “a latent random variable” to act as an
indicator for the allocation of the observation in the mixture components. This latent
random variable denoted as zi is supposed to represent missing or incomplete data. It
causes the computation of the likelihood function to be performed based on an incomplete
data scheme.

Diebolt and Robert (1994) proposed the Bayesian-MCMC approach to estimate the
unknown parameters of a finite mixture model. Considering the vector of a latent random
variable zi = (zi1, zi2, . . . , ziK)

t, it should be used to indicate in which mixture component
the observation yi belongs. The value zik ∈ {0, 1} and ∑K

k=1 zik = 1 with zik = 1 if the
observation yi is drawn from the k-th mixture component, but otherwise zik = 0. Hence,
the complete-data likelihood function for the finite mixture of the log-link gamma GLMs
can be expanded from (11) to be rewritten as:

p(z, y|x, ϑ) =
n

∏
i=1

K

∏
k=1

[
wkGk

(
yi|αk, αk/µik(log)

)] zik
(14)

By using (14), the joint posterior distribution (13) can be reformulated as:

π(z, α, β1, β2, . . . , βK, w|y, x) ∝ p(α)p(β1)p(β2) . . . p(βK)p(w)

×
n
∏
i=1

K
∏

k=1

[
wkGk

(
yi|αk, αk/µik(log)

)] zik

∝ p(α)p(β1)p(β2) . . . p(βK)p(w)

×
(

n
∏
i=1

K
∏

k=1

[
Gk

(
yi|αk, αk/µik(log)

)] zik
)

×
K
∏

k=1
[wk]

nk ,

(15)

where z = (z1, z2, . . . , zn) and nk = ∑n
i=1 zik represents the number of observations in-

cluded in the k-th mixture component.

3.2. Bayesian-MCMC Approach

The process of MCMC computation needs a suitable choice for the prior distribution:
a subjective probability distribution containing the experimenter’s subjective belief relating
to the true value of parameters that apparently occur. We propose some possibilities to
choose reasonable priors for α, β1, β2, . . . , βK, and w. Wesner et al. (2020) who performed
a Bayesian GLMs with gamma-distributed responses and a log-link function implemented
the gamma distribution as a prior distribution for the shape parameter α. We adopt that
prior in each mixture component; which can be stated as

αk ∼ Gamma(υ, ν) (16)

for k = 1, 2, . . . , K. The parameters of gamma distribution, υ and ν, can be chosen informa-
tively regarding the distributional pattern of data. However, the selection of parameters
in the gamma distribution as the prior distribution of shape parameters needs to be done
attentively because it can affect the inference process of the posterior parameters.

Concerning the coefficients βk, we take the prior distribution which is suitable for
generalized linear modeling. Gelman et al. (2008) suggested a weakly informative prior
for the coefficient β in the GLMs. That prior can provide a stable condition on the model
selection process through a posterior predictive (Gelman et al. 2017). Lemoine (2019)
proposed several weakly informative priors based on a normal distribution with zero
mean as

β0k, β jk ∼ N(0, σ2) (17)
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where j = 1, 2, . . . , p, and k = 1, 2, . . . , K. While the mixing parameter w that belongs to
a simplex, i.e., (w1, . . . , wK): ∑K

k=1 wk = 1, wk > 0, ∀k, k = 1, 2, . . . , K has the Dirichlet
distribution, Dir(e1, e2, . . . , eK), as a conjugate prior distribution. The Dirichlet distribution
is a widely used distribution for modeling compositional data described as a measurement
of proportions. The prior parameters e1, e2, . . . , eK are supposed to be the same in each
mixture (i.e., ek = e0), after which the conjugate prior for w becomes an equation:

p(w) = Dir(e0, e0, . . . , e0) ∝
K

∏
k=1

we0−1
k (18)

According to the explanations above, we apply the gamma, normal, and Dirichlet distribu-
tions as recommended by prior distributions for α, β1, β2, . . . , βK, and w respectively.

The Gibbs sampler algorithm is carried out to evoke random samples from the full-
conditional posterior distribution of the parameter, which implies that the distribution
of each parameter is given conditionally by the data and the other remaining parameters
(Gelman et al. 2013). Since zik ∈ {0, 1} and ∑K

k=1 zik = 1, the full-conditional posterior
distribution of z has a multinomial distribution:

π(z|α, w, βk, y, x) =
1!

zi1!.zi2! · · · ziK!

K

∏
k=1

[Pr(zik|α, w, βk, yi, xi)]
zik (19)

or
z|α, w, βk, y, x ∼ Mult(1, Pr(zi1|α, w, β1, yi, xi), . . . , Pr(ziK|α, w, βK, yi, xi))

where Pr(zik|α, w, βk, yi, xi), which stands as the probability of each element zik determined by

Pr(zik|α, w, βk, yi, xi) ∝ wkGk

(
yi|αk, αk/µik(log)

)
for k = 1, 2, . . . , K. The full-conditional posterior distribution of the shape parameter α is
formed by

π(α|z, y, x) ∝ p(α)
n

∏
i=1

K

∏
k=1

(
wkGk

(
yi|αk, αk/µik(log)

))zik
(20)

where the prior distribution p(α) is given by (16). Referring to (15) and (18), the full
conditional posterior distribution for the parameter w is given by:

π(w|z) = Dir(e0 + n1, e0 + n2, . . . , e0 + nK) ∝
K

∏
k=1

w e0+nk−1
k (21)

The full conditional posterior distributions of unknown coefficients, βk are obtained
as follows:

π
(

βk|β\k, z, y, x
)

∝ p(βk)
n

∏
i=1

K

∏
k=1

(
wkGk

(
yi|αk, αk/µik(log)

))zik
(22)

where β\k denotes all β except βk and the prior distribution p(βk) is given by (17). Algorithm 1
provides a Gibbs sampler for estimating the unknown parameters α, β1, β2, . . . , βK,
and w.
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Algorithm 1: the Gibbs sampler for estimating the finite mixture of the log-link gamma GLMs.

A. Determining the initial values for parameters α(s), w(s), and β
(s)
k on iteration s = 0.

B. Setting s = s + 1.
z(s) ∼ π

(
z|α(s−1), w(s−1), β

(s−1)
1 , β

(s−1)
2 , . . . , β

(s−1)
K , y, x

)
,

where
z|α(s−1), w(s−1), β

(s−1)
k , y, x ∼

Mult
(

1, Pr
(

zi1|α(s−1), w(s−1), β1
(s−1), yi, xi

)
, . . . , Pr

(
ziK |α(s−1), w(s−1), βK

(s−1), yi, xi

))
,

with
Pr
(

zik|α(s−1), w(s−1), βk
(s−1), yi, xi

)
∝ wk

(s−1)Gk

(
yi|αk

(s−1), αk
(s−1)/µik(log)

(s−1)
)

,
for k = 1, 2, . . . , K.

2. Sampling α(s) through the Equation (20),
α(s) ∼ π

(
α|z(s), y, x

)
,

where

π
(

α|z(s), y, x
)

∝ p
(

α(s)
) n

∏
i=1

K
∏

k=1

(
wkGk

(
yi|αk

(s−1), αk
(s−1)/µik(log)

(s−1)
))zik

(s)

,

with the prior distribution p
(

α(s)
)

is given by (16): αk
(s) ∼ Gamma(υ, ν) for

k = 1, 2, . . . , K.
3. Sampling w(s) from the Equation (21),

w(s) ∼ π
(

w|z(s)
)

,
where

π
(

w|z(s)
)
= Dir(e0 + n1, e0 + n2, . . . , e0 + nK) ∝

K
∏

k=1

[
w e0+nk−1

k

](s−1)
.

4. Sampling β
(s)
k from the full-conditional posterior distribution (22),

β
(s)
1 ∼ π

(
β1|β

(s−1)
2 , β

(s−1)
3 , . . . , β

(s−1)
K , z(s), y, x

)
,

β
(s)
2 ∼ π

(
β2|β

(s)
1 , β

(s−1)
3 , . . . , β

(s−1)
K , z(s), y, x

)
,

β
(s)
3 ∼ π

(
β3|β

(s)
1 , β

(s)
2 , β

(s−1)
4 , . . . , β

(s−1)
K , z(s), y, x

)
,

...
β
(s)
K ∼ π

(
βK |β

(s)
1 , β

(s)
2 , . . . , β

(s)
K−1, z(s), y, x

)
,

where

π
(

βk|β\k(s−1), z(s), y, x
)

∝ p
(

βk
(s)
) n

∏
i=1

K
∏

k=1

(
wk

(s)Gk

(
yi|αk

(s), αk
(s)/µik(log)

(s−1)
))zik

(s)

,

with the prior distribution p
(

βk
(s)
)

is given by (17): β0k
(s), β jk

(s) ∼ N(0, σ2) for
j = 1, 2, . . . , p and k = 1, 2, . . . , K.

5. Repeating B sampling steps 1 to 4 until the convergence for all parameters is achieved.

Such an estimation process of mixture models through the latent allocation variables z
is applied to a finite mixture modeling with observations drawn from the whole popula-
tion rather than from different sub-populations, as noted by Rufo et al. (2006). It means
that the latent allocation variables z, represented as missing data, are practically unob-
served although the z variables are iteratively determined during MCMC computation
as in Algorithm 1. If such variables are known, i.e., all observations already recognize
their membership on each mixture component, then the Bayesian inferential procedure is
implemented for each mixture component (Frühwirth-Schnatter 2006). We mention a finite
mixture of GLMs with gamma-distributed responses, which has its estimation schemes
developed by the Bayesian framework coupled with the MCMC method as a Bayesian
mixture of GLMs with gamma-distributed responses. In a shortened designation, it can be
called a Bayesian mixture of the log-link gamma GLMs.

3.3. Convergence Diagnostics

In the Bayesian schemes, the convergence of MCMC simulation implies that the
Markov chain attains the posterior distribution of parameters. The MCMC convergence
condition can be shown graphically by the trace plot of MCMC dynamical movements.
The trace plot outlines the number of iterations against the generated values of estimated
parameters. If these values, which are inside a domain, do not have firm periodicities or
tendencies, then it can be supposed that convergence is reached. In a practical manner, the
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trace plot which virtually has a “fat hairy caterpillar” like plot indicates a convergence of
the Markov chain (Tatarinova and Schumitzky 2015). Other analytical methods that can be
implemented to assess the convergence of MCMC are fully explained by Cowles and Carlin
(1996). One of the analytical methods, the Gelman Rubin method, is recommended to be
implemented during the estimation of the Bayesian model through MCMC simulation
(Gelman and Shirley 2011).

The Gelman Rubin method constructs m mutually independent Markov chains, which
assess its convergence by estimating the potential scale-reduction factor (PSRF). Every
m Markov chains is convergent if the PSRF is less than 1.2 (Tatarinova and Schumitzky
2015). The implementation of convergence diagnostic methods for MCMC in the context of
Bayesian mixture modeling is discussed in Suryaningtyas et al. (2018), Susanto et al. (2019),
and Iriawan et al. (2019). All authors suggest that it should combine diagnostics methods
with a graphical approach to determine the convergence condition of MCMC.

3.4. Model Selection

The Bayesian mixture models can be selected based on their out-of-sample predictive
accuracy which can be estimated through information criteria approaches. Watanabe (2010)
introduced the WAIC which is recommended for singular statistical models in which finite
mixture models are classified into these models. The WAIC is formed by estimating the
expected log pointwise predictive density (êlppdwaic):

êlppdwaic = l̂ppd− p̂waic (23)

where l̂ppd is the estimation of the log pointwise predictive density, and p̂waic is the
estimated effective number of parameters. l̂ppd is defined by:

l̂ppd =
n

∑
i=1

log

(
1
s

S

∑
s=1

hlog

(
yi|xi, ϑ(s)

))

where S is the number of simulations performed and ϑ(s) is the simulated values of param-
eter ϑ at the s-th iteration with s = 1, 2, . . . , S. p̂waic is calculated based on the posterior
sample variance of the log pointwise predictive density which is summed over all the data
points yi:

p̂waic =
n

∑
i=1

1
S− 1

S

∑
s=1

(
log(hlog

(
yi|xi, ϑ(s)

)
− E

[
log
(

hlog

(
yi|xi, ϑ(s)

))] )2
(24)

Another version of p̂waic that can be used is constructed as a mean-based formula:

p̂waic = 2
n

∑
i=1

(
log

(
1
S

S

∑
s=1

hlog

(
yi|xi, ϑ(s)

))
− 1

S

S

∑
s=1

log
(

hlog

(
yi|xi, ϑ(s)

)))
(25)

The variance-based formula (24) is more appropriate for practical use than the mean-
based formula (25) since the variance-based formula gives results closer to the leave-
one-out cross-validation (LOO-CV) as a natural method for estimating the out-of-sample
predictive accuracy. In our proposed model, the values of pointwise predictive density
hlog

(
yi|xi, ϑ(s)

)
are calculated for each observation from Equation (9) in which ϑ(s) =

(α(s), β1
(s), β2

(s) . . . , βK
(s), w(s))t are computed by Algorithm 1.

The WAIC can be defined as a deviance scale form by multiplying Equation (23) by−2:

WAIC = −2 êlppdwaic = −2 l̂ppd + 2 p̂waic (26)
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Equation (26) is suitable since it can be compared with other measures of deviance,
e.g., AIC and DIC (Gelman et al. 2014). The WAIC value of a model cannot be interpreted
without regarding the WAIC values of other models. From the viewpoint of predictive
accuracy, the performance of the two models can be compared by measuring the difference
in their WAIC values. If the difference is significantly large, then the model that has the
lowest value of WAIC has better predictive accuracy than the others.

4. Real Data Applications

Faraway (2016) considers the GLMs with gamma-distributed responses to be appropri-
ate in two conditions. First, if the response clearly has a gamma distribution, then the GLMs
with gamma-distributed responses is certainly applicable. Second, if another condition is
not sure about a statistical distribution of the response but supposes there is a relationship
between the mean and the variance of the response. Thus, we use two real data applications
that have a different typical distribution of response to show the specific performances of
the Bayesian mixture of the log-link gamma GLMs.

In the first case, we study the modeling of the gross domestic product at purchasing
power parity (GDP_PPP) per capita in 160 countries. GDP_PPP per capita as the response
for the overall data as well as in each mixture component has a gamma distribution with
no extreme values.

Conversely, in the second case, the household income data as the whole response are
not identified as following a specific statistical distribution. Nevertheless, in each mixture
component, the responses have different statistical distributions. In the first mixture
component, the response has a generalized gamma distribution with four parameters, and
in the other mixture components, the responses have lognormal distribution with three
parameters. The data responses furthermore satisfy some essential properties such as
being non-negative, continuous, positive-skewed, and the existence of linear relationships
between the natural logarithm of the response and household characteristics as predictors.
Such a case represented the implementation of the Bayesian mixture of the log-link gamma
GLMs for modeling the responses that do not follow the gamma distribution but fulfil
important characteristics that are needed to determine the model. Moreover, in this case,
some extreme responses lay in each mixture component.

4.1. Modeling GDP_PPP

The GDP_PPP per capita gives gross domestic product per capita values in current
international dollars transformed by purchasing power parity, which is a converter factor
that can provide possibly determine economic comparisons between countries. For example
the population weighted Gini ratio measure of income inequality based on GDP_PPP per
capita can be used to assess intercountry income disparity (World Bank 2020). Other uses
for purchasing power parity are recently considered by the World Bank (2021b).

We study the GDP_PPP per capita of 160 countries for 2019 as the response that is
affected by the predictors of economic and social factors. There are four economic and social
factors: number of populations, compulsory education years, gross domestics product
(GDP), and corruption perception index (CPI). These countries are classified based on four
economic groups: low, lower-middle, upper-middle, and high income (World Bank 2021a).
We designate these groups as first, second, third, and fourth. Among the countries, there
are 20, 42, 44, and 54 countries in the first, second, third, and fourth groups, respectively.
The complete list of 160 countries can be seen in Appendix A.

4.1.1. Data Description

Data were obtained from World Development Indicators (WDI) of World Bank Open
Data (2021) except for the CPI data, which were accessed from Transparency.org (2021).
Before we apply our proposed model, we examine some data characteristics. Figure 2
shows the GDP_PPP per capita has a positive-skewed distribution which tends to follow a
gamma distribution.
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Figure 2. The density plot of the GDP_PPP.

To achieve more accurate results, goodness-of-fit tests using the Kolmogorov-Smirnov
and the Chi-Squared tests are conducted to verify a significant statistical distribution for
the GDP_PPP per capita data. We set the null hypothesis, which state that the GDP_PPP
per capita in whole data and in each group follow a gamma distribution.

Table 1 shows that all p-values are higher than a significance level of 0.05, which means
that the null hypothesis is not rejected. It can be concluded that gamma distribution can be
used to fit the GDP_PPP per capita for whole data and grouped data.

Table 1. The goodness-of-fit tests.

Data
p-Value

Significant
Statistical DISTRIBUTIONKolmogorov-Smirnov

Test
Chi Squared

Test

whole data 0.5419 0.1989 Gamma(1.06, 21,722)
first group 0.8673 0.8839 Gamma(7.52, 286.48)

second group 0.5166 0.8310 Gamma(3.97, 1750.3)
third group 0.9198 0.6462 Gamma(9.73, 1733.4)

fourth group 0.9507 0.7565 Gamma(5.90, 8259.4)

The implementation of the log-link gamma GLMs conceptually needs a linear rela-
tionship between the natural logarithm of the response and the predictors (Myers et al.
2012). The scatter plots displayed in Figure 3 represent the linear relationships between the
natural logarithm of GDP_PPP per capita with the four predictors. The natural logarithm
of GDP_PPP per capita has a linear relationship with the compulsory education years and
the CPI. Other predictors, i.e., the number of populations and the GDP, do not have that
linear relationship.
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compulsory education years; (b) the CPI; (c) the GDP; and (d) the population.

Therefore, we only assign the compulsory education years and the CPI as predictor
variables in our proposed model, which has four mixture components representing the
four economic groups. The model is defined by

hlog(yi|xi, ϑ) =
4

∑
k=1

wkGk

(
yi|αk, αk/µikk(log)

)
(27)

with ϑ = (α, β1, β2, β3, β4 ,w)t and

µikk(log) = exp
(

β0k + β1k eduyearsikk + β2k cpiikk
)

(28)



Econometrics 2022, 10, 32 13 of 28

with ik = 1, 2, . . . , nk for k = 1, 2, 3, 4, i.e., n = n1 + n2 + n3 + n4. The predictor eduyearsikk
denotes the compulsory education years in the i-th country in the k-th economics group.
The predictor cpiikk denotes the CPI on the i-th country in the k-th economics group.

4.1.2. Estimated Parameters

The estimation processes perform 20,000 samples from two Markov chains that are
eliminated in the first 1000 sample iterations in each chain as a burn-in stage. The prior
distributions are constructed for three parameters that have to be estimated: the shape
parameter α, the mixing parameter w, and the coefficient β jk. Regarding the pattern of
distribution in Figure 1, the goodness-of-fit test in Table 1, and the proposed prior (16), we
use the prior distribution for αk by

αk ∼ Gamma(6, 1)

for k = 1, 2, 3, 4; αk has a gamma distribution with a shape parameter of 6 and an inverse
scale parameter of 1. Referring to the conjugate prior on (18), the mixing parameter w has a
Dirichlet distribution as a prior distribution with value 1 for all parameters:

w ∼ Dir(1, 1, 1, 1)

The equal value of parameters on that Dirichlet distribution, Dir(1, 1, 1, 1), implies a
uniform distribution over the three-dimensional simplex. Concerning the prior distribution
for β jk, which is formed based on (17) according to our empirical studies, a large variance of
σ2, i.e., a noninformative prior for β jk, can lead to no regularization on coefficient estimation.
Consequently, the variance σ2 needs to be relatively close to a zero mean; hence, the prior
distributions for β jk consists of

β0k ∼ N(0, 1)
β1k ∼ N(0, 0.01)

β2k ∼ N(0, 1)

for k = 1, 2, 3, 4. The detailed estimated results can be seen in Table 2.

Table 2. The estimated parameters of the first, second, third, and fourth mixture components.

Mixture
Component

Estimated
Parameter

Estimated
Value

95% Posterior
Credible Interval PSRF Prior Distribution

Lower Upper

First

α̂1 4.7110 2.3760 8.1820 1 α1 ∼ G(6, 1)
ŵ1 0.1279 0.0813 0.1830 1 w1 ∼ Dir(1, 1, 1, 1)
β̂01 6.0850 4.8980 7.1260 1 β01 ∼ N(0, 1)
β̂11 0.1373 0.0365 0.2532 1 β11 ∼ N(0, 0.01)
β̂21 0.0179 −0.004 0.0455 1 β21 ∼ N(0, 1)

Second

α̂2 4.8840 3.0920 7.2460 1 α2 ∼ G(6, 1)
ŵ2 0.2621 0.1977 0.3315 1 w2 ∼ Dir(1, 1, 1, 1)
β̂02 6.4750 5.5900 7.2510 1 β02 ∼ N(0, 1)
β̂12 0.1354 0.0811 0.1918 1 β12 ∼ N(0, 0.01)
β̂22 0.0314 0.0109 0.0545 1 β22 ∼ N(0, 1)

Third

α̂3 7.500 4.7750 11.030 1 α3 ∼ G(6, 1)
ŵ3 0.2742 0.2087 0.3488 1 w3 ∼ Dir(1, 1, 1, 1)
β̂03 8.913 8.2900 9.4530 1 β03 ∼ N(0, 1)
β̂13 0.0391 0.0003 0.0787 1 β13 ∼ N(0, 0.01)
β̂23 0.0106 0.0005 0.0214 1 β23 ∼ N(0, 1)

Fourth

α̂4 7.4700 4.8990 10.790 1 α4 ∼ G(6, 1)
ŵ4 0.3358 0.2650 0.4103 1 w4 ∼ Dir(1, 1, 1, 1)
β̂04 9.0980 8.3280 9.4530 1.01 β04 ∼ N(0, 1)
β̂14 0.0220 −0.029 0.0768 1 β14 ∼ N(0, 0.01)
β̂24 0.0221 0.0154 0.0295 1.01 β24 ∼ N(0, 1)
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In Table 2, the estimated values of parameters have a 95% posterior credible interval
and a related diagnostic measurement of MCMC convergence, i.e., the PSRF. All PSRF
values less than 1.2 ensure that the two Markov chains are convergent to achieve the
posterior distribution of the parameters. Figure 4 confirms the convergence of two Markov
chains for β̂1k and β̂2k.
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The posterior predictive check can be conducted for model checking purposes by
determining the graphical posterior predictive checks. The graphical posterior predictive
check that displays the observed data alongside the replicated data regenerated from the
fitted model can show systematic differences between the observed and replicated data.
Other methods that are useful for checking Bayesian models are discussed by Lunn et al.
(2013). Figure 5 presents the distribution of observed and replicated data to show the
adequacy of log-link gamma GLMs for fitting observed data.
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In the Bayesian framework, a 95% posterior credible interval means that the actual
probability of having true values of the estimated parameter in that interval is 0.95. There-
fore, it can be applied as an assessment tool to determine the significance of the estimated
parameter, which can be considered significant if the 95% posterior credible interval does
not include a zero value. The 95% posterior credible intervals of two estimated parameters,
β̂21 and β̂14, contain zero values indicating that the β̂21 and β̂14 are not significant for the
model. The estimated β̂21, which is not significant, means that the predictor CPI does
not have an effect on the GDP_PPP per capita in the low-income country group, because
the compulsory education years has a positive effect on the GDP_PPP per capita. On the
other hand, among high-income countries, it is not significantly influenced by compulsory
education since the estimated β̂14 can have a zero value. The CPI, even only slightly, still
has a positive influence on the GDP-PPP per capita. In the lower-middle and upper-middle
country groups, the compulsory education years and the CPI have a positive influence on
the GDP_PPP per capita.

Concerning comparative studies, we take two models: the Bayesian mixture of linear
regression model as a simpler mixture of regression model and the Bayesian gamma
regression model as a model without a finite mixture framework. The Bayesian mixture of
linear regression model is given by

h(yi|xi, ϑ) =
4

∑
k=1

wk Nk

(
yi|µikk, σk

2
)

with Nk(.) as a normal distribution in the k-th mixture component and

µikk = β0k + β1k eduyearsikk + β2k cpiikk

The prior distributions for β jk and the standard deviations σk consists of

σk ∼ U(0, 8000)
β0k ∼ N(0, 1× 106)
β1k ∼ N(0, 1× 104)
β2k ∼ N(0, 1000)

where σk ∼ U(0, 8000) means the standard deviations σk are distributed uniformly between
0 and 8000, for k = 1, 2, 3, 4. The estimate procedures run 20,000 samples from two Markov
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chains, with the first 600 sample iterations in each chain discarded as a burn-in stage. The
estimated parameters for the Bayesian mixture of linear regression model are presented on
Table 3.

Table 3. The estimated parameters of the Bayesian mixture of linear regression model.

Mixture
Component

Estimated
Parameter

Estimated
Value

95% Posterior
Credible Interval PSRF Prior Distribution

Lower Upper

First

σ̂1 1043 820.1 1347 1 σ1 ∼ U(0, 8000)
ŵ1 0.2139 0.154 0.2799 1 w1 ∼ Dir(1, 1, 1, 1)
β̂01 1180 40.68 2391 1 β01 ∼ N(0, 1× 106)
β̂11 102.2 −17.68 218.5 1 β11 ∼ N(0, 1× 104)
β̂21 23.82 −5.616 53.78 1 β21 ∼ N(0, 1000)

Second

σ̂2 3573 2917 4403 1 σ2 ∼ U(0, 8000)
ŵ2 0.3357 0.2661 0.4097 1 w2 ∼ Dir(1, 1, 1, 1)
β̂02 3059 1489 4665 1 β02 ∼ N(0, 1× 106)
β̂12 311.9 163 458.4 1 β12 ∼ N(0, 1× 104)
β̂22 108.3 64.75 151.2 1 β22 ∼ N(0, 1000)

σ̂3 7644 6762 7990 1 σ3 ∼ U(0, 8000)
ŵ3 0.2008 0.1429 0.2648 1 w3 ∼ Dir(1, 1, 1, 1)

Third β̂03 4344 2515 6160 1 β03 ∼ N(0, 1× 106)
β̂13 418.1 241.2 594 1 β13 ∼ N(0, 1× 104)
β̂23 188.4 138 238.6 1 β23 ∼ N(0, 1000)

σ̂4 7963 7864 7999 1 σ4 ∼ U(0, 8000)
ŵ4 0.2496 0.1868 0.3183 1 w4 ∼ Dir(1, 1, 1, 1)

Fourth β̂04 6617 4760 8490 1 β04 ∼ N(0, 1× 106)
β̂14 627.4 444 809 1 β14 ∼ N(0, 1× 104)
β̂24 467.7 428.1 508 1 β24 ∼ N(0, 1000)

Table 3 reveals that the predictors, eduyears and cpi, do not affect the response in the
first mixture component. It can be observed that two estimated parameters, β̂11 and β̂21,
have 95% posterior credible intervals that contain zero values.

The modeling of GDP_PPP per capita can be developed without regard to the four
economic groups. In such a case, the Bayesian gamma regression model can be implemented
without having a finite mixture framework. The gamma regression model is specified by

yi ∼ Gamma(α, α/µi)

where
µi = exp(β0 + β1 eduyearsi + β2 cpii)

Similar prior distributions and processes for MCMC simulation in the Bayesian mix-
ture of the log-link gamma GLMs are implemented for inferencing the Bayesian gamma
regression model. The estimated parameters of the Bayesian gamma regression model can
be seen in Table 4. The signs of the coefficients β̂0, β̂1, and β̂2 are positive, which signifies
that the enhancement of the compulsory education years and the improvement of the
corruption perception index will increase the GDP_PPP per capita.

Table 4. The estimated parameters of the Bayesian gamma regression model.

Estimated
Parameter

Estimated
Value

95% Posterior Credible
Interval PSRF Prior Distribution

Lower Upper

α̂ 2.2160 1.7990 2.6990 1 α ∼ Gamma(6, 1)
β̂0 7.1270 6.6560 7.5760 1 β0 ∼ N(0, 1)
β̂1 0.0798 0.0356 0.1251 1 β1 ∼ N(0, 0.01)
β̂2 0.0413 0.0353 0.0471 1 β2 ∼ N(0, 1)
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We take a comparative study between the fitted Bayesian gamma regression model,
the fitted Bayesian mixture of linear regression model as a simpler mixture model, and
the fitted Bayesian mixture of the log-link gamma GLMs in predictive performance by
computing the WAIC value. Table 5 displays the WAIC value for the fitted Bayesian mixture
of the log-link gamma GLMs, which is smaller than the WAIC values of the fitted Bayesian
gamma regression model and the fitted Bayesian mixture of linear regression model. Thus,
in the predictive capability aspect, the fitted Bayesian mixture of the log-link gamma GLMs
is better than the fitted Bayesian gamma regression model and the fitted Bayesian mixture
of linear regression model.

Table 5. The WAIC values of the model for GDP_PPP case.

Fitted Model WAIC

Bayesian mixture of the log-link gamma GLMs 3231
Bayesian mixture of linear regression 3341

Bayesian gamma regression 3411

To find out the predictive capability more comprehensively, we apply both models
to predict future GDP_PPP values for 2020. The density plots of predicted results are
compared graphically with the observed data of GDP_PPP in 2020 that are obtained from
World Bank Open Data (2022). Figure 6 represents the density plots that can exhibit some
differences between the predicted results and the observed data.
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It can be seen from Figure 6 that the fitted Bayesian mixture of the log-link gamma
GLMs has a better performance than the fitted Bayesian mixture of linear regression model
and the fitted Bayesian gamma regression model in predicting future GDP_PPP values
in 2020.

4.2. Modeling Household Income

In the field of income distribution analysis, the density function of income distribution
can be used as an important approach to verify economic inequality. A functional form of
the density function is determined to obtain a specific model that can exhibit the reality
about income distribution, so inequality analyses can be built in terms of that specific
model. Since the functional form of the density function is generally unknown, it needs to
be estimated. Cowell and Flachaire (2015) remarked that the finite mixture model could be
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more convenient for estimating the density function of income distributions. They started
to describe conceptually the implementation of the finite mixtures of linear regression for
analyzing income distributions. However, the finite mixture of GLMs was not carried out
in their studies.

The dynamics of household income as a fundamental element of income inequality
can affect economic growth. Some researchers studied interrelated topics on household
income, income inequality, and economic growth. Causa et al. (2014) found that improved
growth in household income reduced income inequality. Meanwhile, Stiglitz (2015) stated
that immoderate inequality could cause inadequate economic performance.

4.2.1. Data Description

We research the annual household income per capita in six economic corridors based
on the Masterplan for Accelerating and Expansion of Indonesia Economic Development
2011–2025 (Coordinating Ministry for Economic Affairs 2011). The corridors consist of the
six main regions of Indonesia: Sumatra, Java, Kalimantan, Sulawesi, Bali-Nusa Tenggara,
and Papua-Maluku. Alisjahbana (2011) grouped corridors into three groups comprising
two economic corridors in each. The first group consisted of Sumatra and Java; the second
group, Kalimantan and Sulawesi, and the third, Bali-Nusa Tenggara and Papua-Maluku.
In our research, we construct three mixture components representing the three groups. We
develop our model from the point of view proposed by Chotikapanich et al. (2012). They
constructed the income distribution of the whole region, which could be represented as a
mixture model with subset regions as a member of the mixture component.

Household income data were determined from The Fifth Wave of the Indonesia
Family Life Survey (IFLS-5) 2014 (Strauss et al. 2016). We sample 5545 households from
23 provinces in the six economic corridors. In more detail, 4, 267, 586, and 692 households
are members of the first, second, and third groups, respectively. Our verification of the
whole household income data using the Kolmogorov-Smirnov test indicates that it does
not pursue a specific statistical distribution. However, once we examine the data in each
mixture component, the response in the first mixture has a generalized gamma distribution
with four parameters and a lognormal distribution with three parameters for responses in
the other mixture components. Therefore, we need to determine an appropriate statistical
distribution suitable for modeling household income data.

Some essential patterns such as non-negative, continuous, and positive-skewed are
present in the household income data which are displayed in Figure 7. It shows the
possibility of proposing gamma distribution as a representative statistical distribution for
household income data. Figure 8 exhibits the scatter plots in four dimensions which relate
the natural logarithm of household income data to all three predictors; the number of
household members, the number of completed years of formal education by the head of
the household, and the natural logarithm of the household’s wealth. The scatter plots
indicate a linear relationship between the natural logarithm of household income data and
all three predictors which exist in the overall response data in Figure 8a and in each mixture
component shown in Figure 8b–d. These relationships give evidence that it can be modeled
by the log-link gamma GLMs.

The performance of the gamma GLM was studied by Fu and Moncher (2004) who
verified the unbiasedness and stability of the GLM for non-negative, continuous, and
positive-skewed data. They found that the GLM assuming the gamma distribution gave
better predictive accuracy and efficiency than the GLM assuming the normal distribution
or the lognormal distribution. Thus, we consider that the gamma GLM is a reasonable
model for analyzing household income data.

Previously, Wicaksono et al. (2017) showed that the natural log of annual household
income per capita as a response variable had been regressive on household characteris-
tics as predictors. Nonetheless, they worked under the assumption that the household
income data followed a normal distribution, and their model did not use the finite mixture
modeling framework.
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4.2.2. Estimated Parameters

In the k-th mixture component, k = 1, 2, 3, we consider that annual household income
per capita that related to household characteristics can be modeled by a log-link gamma
GLM. Referring to Equation (9), the finite mixture model used in this study is defined as

hlog(yi|xi, ϑ) = w1G1

(
yi 11|α1, α1/µi 11(log)

)
+ w2G2

(
yi 22|α2, α2/µi 22(log)

)
+w3G3

(
yi 33|α3, α3/µi 33(log)

)
,

(29)

where ϑ = (α, β1, β2, β3, w)t. The variable yi denotes annual household income per capita
on the i-th household observations which are specified, namely, yi11, yi22, and yi33 for the
i-th household observations included in the first, second, and third mixture components,
respectively. Thus, for all observations i = 1, 2, . . . , 5545, ik = 1, 2, . . . , nk with k = 1, 2, 3,
i.e., n = n1 + n2 + n3.

The function µi 11(log), µi 22(log), and µi 33(log) are defined as

µi 11(log) = exp
(

β01 + β11xi 111 + β21xi 221 + β31xi 331
)

(30)
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µi 22(log) = exp
(

β02 + β12xi 212 + β22xi 222 + β32xi 232
)

(31)

and
µi 33(log) = exp

(
β03 + β13xi 313 + β23xi 323 + β33xi 333

)
(32)

The predictors on each mixture component of Equations (30)–(32) are defined as
follows: xi k1k is the number of household member; xi k2k is the number of completed years
of formal education by the head of the household; and xi k3k is the natural logarithm of
the household’s wealth (in Indonesian rupiah per year) with k = 1, 2, 3. We take two
Markov chains with 25,000 iterations on each chain that are discarded during the first
10,000 iterations as burn-in. Thus, we use 50,000 samples to estimate the parameters.

The prior distributions are set up for the shape parameter α, the mixing parameter w,
and the coefficient β jk. Referring to the pattern of distribution in Figure 3 and the proposed
prior (16), we use the prior distribution for αk:

αk ∼ Gamma(2, 1)

where αk has a gamma distribution with a shape parameter of 2 and an inverse scale
parameter of 1.

The mixing parameter w has a Dirichlet distribution as a prior distribution with value
of 1 for all parameters,

w ∼ Dir(1, 1, 1)

The equal value of parameters on that Dirichlet distribution, Dir(1, 1, 1), implies a
uniform distribution over the two-dimensional simplex. The prior of β jk is specified based
on (17). Accordingly, we propose the small variance σ2 = 0.1; thus, the prior distribution
for β jk is

β0k, β jk ∼ N(0, 0.1)

for j = 1, 2, 3 and k = 1, 2, 3. The implementation of the prior distribution N(0,0.1) suggests
that the corresponding predictors β jk have fewer effects on the posterior distribution β jk.
This arrangement scheme of prior distribution allows a data-driven approach, i.e., the
likelihood is more dominant than the prior distribution throughout the computation of the
posterior distribution. The results are provided in Table 6.

Table 6. The estimated parameters of the first, second, and third mixture components.

Estimated
Parameter and

Coefficient

Estimated
Value

95% Posterior Credible
Interval Markov

Chain Error
PSRF

Lower Upper

α̂1 2.2740 2.1820 2.3670 0.0002 1
α̂2 0.5182 0.4701 0.5688 0.0001 1
α̂3 1.6270 1.4690 1.7910 0.0004 1
ŵ1 0.7693 0.7581 0.7804 0.0000 1
ŵ2 0.1058 0.0978 0.114 0.0000 1
ŵ3 0.1249 0.1164 0.1338 0.0000 1
β̂01 8.4930 8.2150 8.7630 0.0029 1
β̂02 0.8892 0.2691 1.5140 0.0034 1
β̂03 1.9470 1.4240 2.4710 0.0032 1
β̂11 −0.1080 −0.1205 −0.0953 0.0001 1
β̂12 −0.1013 −0.1993 −0.0035 0.0012 1
β̂13 −0.1298 −0.1657 −0.0926 0.0005 1
β̂21 0.0321 0.0262 0.0379 0.0000 1
β̂22 0.1679 0.1315 0.2014 0.0004 1
β̂23 0.0172 0.0013 0.0332 0.0001 1
β̂31 0.4710 0.4539 0.4889 0.0001 1
β̂32 0.8904 0.8375 0.9452 0.0005 1
β̂33 0.8685 0.8319 0.9049 0.0003 1
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It can be noted from Table 6 that all of the estimated parameters are significant at a 95%
posterior credible interval. It can be shown that for all estimated parameters, the values of
PSRF that are equal to 1 confirm that the Markov chains for all estimated parameters are
convergent. Figure 9, which represents the trace plot of the Markov chains for estimated
coefficients β̂0, β̂1, β̂2, and β̂3, proves the convergences.
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The estimated shape parameters α (2.2740, 0.5182, and 1.6270) for the first, second and
third groups, respectively, closely fit the distribution pattern of annual household income
per capita in each mixture component, and the mixing parameters are 0.7693, 0.1058,
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and 0.1249, respectively. In this case, the mixing parameter represents the proportion
of households in the groups against the sample populations. The sign of the estimated
coefficients β̂0, β̂1, β̂2, and β̂3 are as expected for each of the groups. The negative sign
for β̂1 suggests that the increasing number of household members reduces the annual
household income per capita. The length of education by the head of the household
positively correlates with the annual household income per capita, indicating positive
sign for β̂2. It implies that knowledge may improve as the length of education by the
head of household rise, thereby resulting in higher annual household income per capita.
The household’s wealth also has a positive relationship to the annual household income
per capita. This relation is generally reasonable since households with more wealth can
generate more income using their own wealth. The results show that the Bayesian-MCMC
approach gives a suitable result for estimating a finite mixture of the log-link gamma GLMs.
The distribution of observed and replicated data depicting a graphical posterior predictive
check in Figure 10 shows that the fitted model generally matches the observed data.
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To learn the capability of predictive accuracy, the fitted Bayesian mixture of the log-link
gamma GLMs is compared with the fitted Bayesian gamma regression model by calculating
the WAIC. The gamma regression model is given by:

yi ∼ Gamma(α, α/µi)

with
µi = exp(β0 + β1xi1 + β2xi2 + β3xi3)

The estimated parameters of the Bayesian gamma regression model shown in Table 6
are determined through the Gibbs sampler algorithm with the same prior distributions
which are used to infer the fitted Bayesian mixture of the log-link gamma GLMs:

α ∼ Gamma(2, 1)

and
β0, β j ∼ N(0, 0.1)

Similar processes for MCMC simulations are also conducted with two Markov chains
with 25,000 iterations discarded in the first 10,000 iterations as burn-in, so it uses 50,000 sam-
ples. Based on the PSRF values in Table 7, the estimated parameters are convergent to
their posterior distributions, whereas the 95% posterior credible intervals indicate that all
estimated parameters are significant.

Table 7. The estimated parameters of the Bayesian gamma regression model.

Estimated
Parameter and

Coefficient

Estimated
Value

95% Posterior Credible
Interval Markov

Chain Error
PSRF

Lower Upper

α̂ 1.3920 1.3440 1.4400 0.0001 1
β̂0 7.6290 7.3250 7.9360 0.0030 1
β̂1 −0.1092 −0.1241 −0.0941 0.0001 1
β̂2 0.0539 0.0472 0.0608 0.0000 1
β̂3 0.5178 0.4976 0.5375 0.0002 1

However, the WAIC value of the Bayesian gamma regression, which has an infinite
value as shown in Table 8, indicates that the Bayesian mixture of the log-link gamma GLMs
is significantly better in the predictive accuracy than the Bayesian gamma regression model.

Table 8. The WAIC values of the model for household income case.

Fitted Model WAIC

Bayesian mixture of the log-link gamma GLMs 192,200
Bayesian gamma regression infinity

5. Discussion

Two examples of real-data applications have a different typical distribution of response
data. In the first example, the modeling of GDP_PPP per capita following the gamma
distribution, the Bayesian mixture of the log-link gamma GLMs considerably outperforms
the Bayesian mixture of linear regression model and the Bayesian gamma regression based
on the predictive measure of WAIC. Moreover, through the finite mixture framework, we
discover the factual relationship between the GDP_PPP per capita and the predictors in
each group. In low-income countries, only the compulsory education years has a significant
effect on the GDP_PPP per capita. Conversely, only the CPI has an important contribution
to the change in GDP_PPP per capita in high-income countries. In this case, the usefulness
of the Bayesian mixture of the log-link gamma GLMs can be noted.
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The second case, in addition to revealing the implementation of the model on the
data that does not comply with the gamma distribution, exposes the influential presence
of extreme values which can be regarded as outliers that can be eliminated from data
or remain preserved in the data depending on their characteristics. Nevertheless, the
existence of plentiful outliers in the data distribution was natural in the heavy-tailed
distribution perspective (Klebanov and Volchenkova 2019). Hence, the outliers that exist in
the household income data of the IFLS-5 do not need to be removed since they present an
actual condition.

Referring to Equations (24)–(26), we find out that one of the possible sources in which
the WAIC can have a large value is in the extreme values in the data distribution of yi
that have a heavy-tailed distribution. Klebanov and Volchenkova (2019) showed that
the observations belonging to the tail in a heavy-tailed distribution, i.e., extreme values,
can have an infinite variance. To verify the existence of extreme values, we examine the
adjusted boxplot, which is a modification of the boxplot used to depict a robust measure of
skewness (Hubert and Vandervieren 2008). The adjusted boxplots displayed in Figure 11
describe some extreme values that exist in the household income data.
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While more specifically, if we divide the data following the three mixture components
as our proposed model, some extreme values will also be split into each mixture component.
It will cause a difference in the WAIC value which is substantively wide between the
fitted Bayesian gamma regression model and the fitted Bayesian mixture of the log-link
gamma GLMs.

Several improvements for further studies related to the topic of this paper can be made
for future research purposes. Inferential processes discussed in this paper use the Gibbs
sampler algorithm through the MultiBUGS software. Further research can be developed
by using the Hamiltonian Monte Carlo algorithm (HMC) with the no-U-turn (NUTS)
sampler through the Stan software. Solikhah et al. (2021) showed that HMC using NUTS
sampler performed well in estimating parameters of a mixture of K-component Fisher’s z
autoregressive models. In addition, the proposed model can be developed for a mixture
of distributions with more general gamma regression models with mean and shape (or
variance) parameters following regression structures previously studied in Corrales and
Cepeda-Cuervo (2019).
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6. Conclusions

In this paper, we examine more extensively a Bayesian mixture of GLMs with gamma-
distributed responses that combined three main parts: the GLMs with gamma-distributed
response, finite mixture modeling, and a computational procedure for inferencing through
the Bayesian-MCMC approach. Two link functions which are available for GLMs with
gamma-distributed responses can give different results on the predictive mean, the log-link
function is more appropriate than the inverse-link function to ensure the positivity of the
predictive mean. Considering the implementation of the model on two real data applica-
tions, the link function used and the chosen prior distributions give an important role for
the Bayesian-MCMC approach to work appropriately throughout the simulation-based
inferential processes. We note some advantages of the Bayesian mixture of the log-link
gamma GLMs. The model has better predictive accuracy than the Bayesian mixture of
linear regression and the Bayesian gamma regression model. It can point out real rela-
tionships between the response and the predictors. Furthermore, it handles the problems
concerning extreme values, whereas the Bayesian model without finite mixture framework
has difficulty overcoming extreme values. Nevertheless, our research only uses the Gibbs
sampler algorithm and the mixing parameter which is not a function of the predictors.
Therefore, it can be recommended for the future research.
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Appendix A

Table A1. The list of 160 countries classified based on four economic groups by World Bank (2021a).

Groups Country

Low
Afghanistan Uganda Cent. African Chad Congo, Dem. Guinea Gambia

Ethiopia Guinea-Bissau Haiti Togo Sudan Malawi Sierra Leone
Rwanda Mali Madagascar Tajikistan Liberia Burkina Faso

Lower-
middle

Albania Algeria Bangladesh Benin Bolivia Cabo Verde Cameroon
Comoros Congo, Rep. Cote d’Ivoire Djibouti Egypt El Salvador Eswatini

Ghana Honduras India Kenya Kyrgyz Lao PDR Lesotho
Mauritania Moldova Mongolia Morocco Myanmar Nepal Nicaragua

Nigeria Pakistan Philippines Sao Tome Pr. Senegal Sri Lanka Tanzania
Timor-Leste Tunisia Ukraine Uzbekistan Vietnam Zambia Zimbabwe

Upper-
middle

Angola Argentina Armenia Azerbaijan Belarus Bosnia Brazil
Bulgaria China Colombia Costa Rica Dominica Dominican Ecuador

Eq. Guinea Gabon Georgia Grenada Guatemala Guyana Indonesia
Iran Iraq Jamaica Jordan Kazakhstan Lebanon Libya

Malaysia Maldives Mexico Montenegro Namibia N. Macedonia Paraguay
Peru Russian Fed. Serbia South Africa St. Lucia St. Vincent G Suriname

Thailand Turkey

High

Australia Austria Bahamas, The Bahrain Barbados Belgium Brunei Dar.
Germany Chile Croatia Cyprus Czech Denmark Luxembourg
Finland Spain Canada Uruguay Hong Kong Hungary Iceland
Ireland Israel Italy Japan Korea, Rep. Kuwait Latvia

Lithuania Estonia Seychelles Mauritius Netherlands New Zealand Norway
Oman Panama Poland Portugal Qatar Romania Saudi Arabia
Malta Singapore Slovak Rep. Slovenia France Sweden Switzerland

Trinidad and
Tobago

United Arab
Emirates

United
Kingdom United States Greece
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