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Abstract: This paper proposes concepts and methods to investigate whether the bubble patterns
observed in individual time series are common among them. Having established the conditions under
which common bubbles are present within the class of mixed causal–noncausal vector autoregressive
models, we suggest statistical tools to detect the common locally explosive dynamics in a Student
t-distribution maximum likelihood framework. The performances of both likelihood ratio tests and
information criteria were investigated in a Monte Carlo study. Finally, we evaluated the practical
value of our approach via an empirical application on three commodity prices.
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1. Introduction

Economic and financial time series may exhibit many distinctive characteristics, in-
cluding the presence of serial correlation, stochastic or deterministic trends, seasonality,
time varying volatility, and nonlinearities. However, when the focus of the analysis is on
the relationships among various variables, it is commonly observed that one or more of
these features detected in individual series are common to several variables. We talk about
common features when such features are annihilated by some suitable linear combina-
tions of variables (Engle and Kozicki 1993). The most well-known example is probably
cointegration, which is the presence of common stochastic trends (Engle and Granger
1987). Other forms of comovements have also been studied, giving rise to developments
around the notions of common cyclical features (Vahid and Engle 1993), common deter-
ministic seasonality (Engle and Hylleberg 1996), common volatility (Engle and Susmel
1993), cobreaking (Hendry and Massmann 2007), etc. Recognizing these common feature
structures presents numerous advantages from an economic perspective (e.g., the whole
literature on the existence of long-run relationships), but there are also several benefits
for statistical modeling. Indeed, imposing the commonalities in estimation reduces the
number of parameters, thus potentially leading to efficiency gains in statistical inference
and improvements in forecasts accuracy (Issler and Vahid 2001). Moreover, the presence of
common dynamics can be used for analyzing and forecasting large dimensional systems
(Cubadda and Hecq 2011, 2022a; Bernardini and Cubadda 2015).

Building on the common feature approach, we propose the detection of common
bubbles in stationary time series. Intuitively, the idea is to detect bubble patterns in
univariate time series and then to investigate whether those bubbles are common to a set of
assets. In the affirmative case, a portfolio composed of those series would not have such
a nonlinear local explosive characteristic. There are several ways to capture bubbles in
the data. We rely on mixed causal–noncausal models (denoted as MAR(r, s) hereafter),
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namely autoregressive time series that depend on both r lags and s leads. Indeed, there has
been recent interest in the properties of noncausal processes associated with a blooming of
applications on commodity prices, inflation or cryptocurrency series, and the developments
around the notion of nonfundamental shocks, see, i.a., Hecq and Voisin (2022) and the
references therein. We choose to consider mixed causal and noncausal, models as they
might also be used for forecasting. This is not necessarily the case with other approaches
aimed at identifying bubble phases.

A first attempt into this direction was made by Cubadda et al. (2019), who extended
the canonical correlation framework of Vahid and Engle (1993) from purely causal vector
autoregressive models (namely the traditional serial correlation common feature approach
within a VAR) to purely noncausal VARs (a VAR with leads only). They showed that
different forms of commonalities can emerge when we also look at VARs in reverse time.
However, their approach, being based on either canonical correlation analysis or the general
method of moments, do not work for mixed models where non-Gaussianity of the error
terms is required for identification, see e.g., Lanne and Saikkonen (2013).

In this paper, we extend their work and we propose a Student t-distribution maximum
likelihood (ML henceforth) framework to compare the multivariate mixed causal–noncausal
model with r lags and s leads (VMAR(r, s) hereafter) with a restricted version where a
reduced rank structure is imposed on the lead polynomial matrix. This is our notion of
common bubbles, which is equivalent to requiring that there exist linear combinations of
variables exhibiting bubbles that no longer possess the bubble feature. See for instance
Cubadda and Hecq (2022b) for a recent survey on reduced rank techniques for common
feature analysis. We consider both likelihood ratio tests and information criteria for our
purposes.

Given that explosive roots and noncausal dynamics in VARs are intimately related (see,
e.g., Gourieroux and Jasiak (2017) and the references therein), our approach has a similar
spirit as the one of Engsted and Nielsen (2012), who proposed a test for the hypothesis that
stock prices and dividends possess a common explosive root. Possible comparative merits
of our methodology are that it does not require the prior knowledge of the value of the
common explosive root and that as we work with stationary VMAR models, only standard
asymptotic theory applies.

The rest of this paper is organized as follows: in Section 2 we establish the notations
for multivariate mixed causal and noncausal models. Contrary to the univariate case, two
distinct multivariate multiplicative representations lead to the same additive form of the
VMAR(r, s). Consequently, such alternative representations have the same likelihood but
with different lag–lead polynomial matrices. We advocate the use of the multiplicative
representation where the lead polynomial matrix is the first factor since the alternative
representation does not allow for the easy unraveling of the presence of common bub-
bles. Within a Student t-distribution ML framework, we explain how to implement both
likelihood ratio tests and information criteria to detect the existence of common bubbles.
Section 3 investigates, using Monte Carlo simulations, the small sample properties of our
strategy for bivariate and trivariate systems both under the null of common bubbles and the
alternative of no rank reductions. Section 4 illustrates the practical value of our approach
with an empirical analysis of three commodity prices. Section 5 concludes.

2. Multivariate Mixed Causal–Noncausal Models

Recall that a univariate MAR(r, s) model is constructed as follows:

(1− φ1L− . . .− φrLr)(1− ψ1L−1 − . . .− ψsL−s)yt = et,

where Lr is the lag operator such that Lryt = yt−r and L−s is the lead operator such that
L−syt = yt+s. Since all the coefficients are scalars, the polynomial product is commutative
and the representation

(1− ψ1L−1 − . . .− ψsL−s)(1− φ1L− . . .− φrLr)yt = et.
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will yield the same model parameters as the previous one. The error term et is assumed to
be i.i.d. and non-Gaussian for identification purposes.

Let us now consider the case where Yt is an N-dimensional stationary process. For the
sake of simplicity, we assume that deterministic elements are absent. Analogously to the
univariate case, the VMAR(r, s), is defined in its multiplicative forms as follows:

Ψ(L−1)Φ(L)Yt = εt, (1)

Φ̄(L)Ψ̄(L−1)Yt = ε̄t. (2)

where

Ψ(L−1)Φ(L) = (IN −Ψ1L−1 − . . .−ΨsL−s)(IN −Φ1L1 − . . .−ΦsLr),

Φ̄(L)Ψ̄(L−1) = (IN − Φ̄1L1 − . . .− Φ̄sLr)(IN − Ψ̄1L−1 − . . .− Ψ̄sL−s).

Both models (1) and (2) are equivalent in the sense that they generate the same time
series, but due to the noncommutativity property of the matrix product, they are two
distinct representations of the same process. Specifically, the lag polynomial matrices Φ(L)
and Φ̄(L), although of the same order r, have unequal values of the coefficient matrices,
and the same observation applies to the s−order lead polynomial matrices Ψ(L−1) and
Ψ̄(L−1) as well.

We assume that εt and ε̄t are i.i.d. and follow multivariate Student t-distribution with
location zero. We could consider different distributions as long as they are non-Gaussian.
This is indeed the condition that allows for distinguishing the genuine VMAR(r, s) speci-
fication from the so-called pseudo causal and noncausal representations, see Lanne and
Saikkonen (2013) for details.

We further assume that the roots of the determinant of each of the polynomial matrices
Ψ(L−1), Φ(L), Φ̄(L), Ψ̄(L−1) are outside the unit circle to fulfill the stationarity condition.
Furthermore, we will show later that the distribution of the errors εt and ε̄t have identi-
cal degrees of freedom λ ∈ R+ but different positive definite scale matrices, which are
respectively denoted by Σ and Σ̄.

Let us respectively denote with A(L) and Ā(L) the products of the lag and lead matrix
polynomials of the two models (1) and (2):1

Ψ(L−1)Φ(L) ≡ A(L) =
r

∑
j=−s

AjLj → A(L)Yt = εt,

Φ̄(L)Ψ̄(L−1) ≡ Ā(L) =
r

∑
j=−s

ĀjLj → Ā(L)Yt = ε̄t.

The general forms of the product of the lead and lag matrix polynomials for both the
representation respectively read as follows:

A(L) = I +

min
{r,s}

∑
i=1

ΨiΦi︸ ︷︷ ︸
A0

−
r

∑
i=1


Φi − ∑

∀{l,m}:
l−m=i

ΨlΦm

︸ ︷︷ ︸
Ai


Li −

s

∑
j=1


Ψj − ∑

∀{l,m}:
m−l=j

ΨlΦm

︸ ︷︷ ︸
Aj


L−j,
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Ā(L) ≡ I +

min
{r,s}

∑
i=1

Φ̄iΨ̄i︸ ︷︷ ︸
Ā0

−
r

∑
i=1


Φ̄i − ∑

∀{l,m}:
m−l=i

Φ̄mΨ̄l

︸ ︷︷ ︸
Āi


Li −

s

∑
j=1


Ψ̄j − ∑

∀{l,m}
m−l=j

Φ̄mΨ̄l

︸ ︷︷ ︸
Āj


L−j

with 1 ≤ l ≤ s and 1 ≤ m ≤ r. Hence, both the multiplicative representations yield exactly
the same additive form

B(L)︸ ︷︷ ︸
A−1

0 A(L)
=

Ā−1
0 Ā(L)

Yt = ηt︸︷︷︸
A−1

0 εt
=

Ā−1
0 ε̄t

, (3)

where ηt follows a multivariate Student t-distribution with degrees of freedom λ, as εt and
ε̄t in representations (1) and (2), and with a scale matrix Ω = A−1

0 Σ(A−1
0 )

′
= Ā−1

0 Σ̄(Ā−1
0 )

′
.

The lag polynomial in (3) is the following:

B(L) = I −
r

∑
i=1

BiLi −
s

∑
j=1

B−jL−j. (4)

An example of derivation of the polynomial matrix B(L) for VMAR(2, 2) is given in Section 2.1.
In summary, contrary to the univariate case, a VMAR (r, s) process has two distinct

multiplicative representations. ML inference can indifferently be performed with each
of the two representations (1) and (2). However, both representations will correspond to
the same additive form of the model in Equation (3). This makes the interpretation of the
lag and lead coefficient matrices in the multiplicative forms more intricate. Lanne and
Saikkonen (2013) advocated for the use of one or the other representation depending on
the analysis performed; one representation might be easier to employ for certain inquiries.

2.1. Common Bubbles in VMAR(r,s)

Having discussed the main properties of the unrestricted VMAR, we consider addi-
tional restrictions coming from a reduced rank structure in the lead polynomial matrix in
order to model common bubbles. Notably, the noncausal component explains the growth
phase of the bubble, whereas the causal component determines the burst phase (Gouriéroux
and Zakoïan 2017). Hence, it is the multiplicative structure of the VMAR, combined with
heavy tailed errors, that captures the nonlinearity of the bubbles as a whole. However,
without the noncausal component, heavy tailed errors in a causal AR setting would not
be able to reproduce locally explosive episodes. Although the focus in this paper is on
common bubbles, our approach can be easily extended to investigate commonalities in the
causal part or in both the lag and the lead components.

Definition 1. An N-dimensional VMAR(r, s) process displays common bubbles (CBs hereafter)
if there exists a full-rank matrix δ of dimension N × k, with 0 < k < N, such that, δ′B−j = 0
for j = 1, . . . , s, where the coefficient matrix B−j is defined in (4). This implies that the coefficient
matrices B−j can be factorized as B−j = δ⊥β′j where δ⊥ is the N× (N− k) orthogonal complement
of δ′ such that δ′δ⊥ = 0 and β j constitute a matrix with dimensions N × (N − k).
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For the sake of simplicity, let us start the analysis from the case r = s = 2. The coeffi-
cient matrices of the leads in the additive representation (3) with reduced rank restrictions
are as follows:

B−1 = A−1
0 (Ψ1 −Ψ2Φ1) = Ā−1

0 (Ψ̄1 − Φ̄1Ψ̄2) = δ⊥β′1,

B−2 = A−1
0 Ψ2 = Ā−1

0 Ψ̄2 = δ⊥β′2,

where the matrices A0 and Ā0 are as follows:

A0 = (IN + Ψ1Φ1 + Ψ2Φ2)

Ā0 = (IN + Φ̄1Ψ̄1 + Φ̄2Ψ̄2).

When k CBs exist, the matrix δ′ annihilates the forward looking dynamics

δ′B−1 = δ′B−2 = 0.

This implies for the second lead coefficient matrices that

δ′B−2 = δ′A−1
0 Ψ2 = δ′ Ā−1

0 Ψ̄2 = 0.

Since δ′A−1
0 (resp. δ′ Ā−1

0 ) cannot be equal to zero, it follows that δ′A−1
0 = γ′ (resp. δ′ Ā−1

0 =
γ̄′), with γ (resp. γ̄) being a full-rank N × k dimensional matrix, and thus γ′Ψ2 = 0 (resp.
γ̄′Ψ̄2 = 0). Hence, both Ψ2 and Ψ̄2 must have rank N − k but potentially different left null
spaces (see also Cubadda et al. 2019).

By premultiplying the first lead coefficient matrix of representation (1) by δ′, we have

δ′B−1 = γ′(Ψ1 −Ψ2Φ1) = γ′Ψ1 = 0,

which implies that Ψ1 and Ψ2 must have the same left null space. Moreover, keeping in
mind that δ′A−1

0 = γ′, we have

δ′ = γ′A0 = γ′(IN + Ψ1Φ1 + Ψ2Φ2) = γ′,

which shows that Ψ1 and Ψ2 have the same left null space as B−1 and B−2, respectively.
By premultiplying the first lead coefficient matrix of the alternative representation (2)

by δ′, we instead have

δ′B−1 = γ̄′(Ψ̄1 − Φ̄1Ψ̄2) = 0,

which implies that the matrix Ψ̄1 might not even have a reduced rank.
It is easy, although tedious, to see that the same conclusion holds for any VMAR(r, s).

We summarize these results in the following proposition.

Proposition 1. In the presence of k CBs in an N-dimensional VMAR(r, s) process, we have
δ′Ψ(L−1) = δ′ in (1), whereas δ′Ψ̄(L−1) 6= δ′ in (2). Hence, the same linear combinations
annihilate the lead coefficient matrix both in the additive representation (3) and in the multiplicative
representation (1) but not in the alternative multiplicative representation (2). This implies that the
coefficient matrices Ψj can be factorized as Ψj = δ⊥Γ′j for j = 1, ..., s.

2.2. Testing for Common Bubbles

In view of Proposition 1, a likelihood ratio test (LRT henceforth) for the presence of k
CBs requires the comparison of the likelihood value of the unrestricted model (1) with the
likelihood value of the restricted model:

(IN − δ⊥Γ′1L−1 − · · · − δ⊥Γ′sL−s)(IN −Φ1L− · · · −ΦrLr)Yt = εt, (5)
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Since δ⊥ has dimension N× (N− k) with 0 < k < N, there are N− 1 possible reduced-rank
models to consider for all possible k. Furthermore, since the matrix δ⊥ can be normalized
such that

δ′⊥ = [IN−k, ω], (6)

it has only k× (N − k) free parameters in ω.
A sample Y of T observations drawn from an N-dimensional VMAR(r, s) process with

i.i.d. t-distributed errors has location 0, a positive definite scale matrix Σ, and degrees of
freedom; λ ∈ R+ has the following log-likelihood function

f (Y|Σ, λ) = (T − (r + s))× ln

 Γ
(

λ+N
2

)
(λπ)N/2Γ

(
λ
2

)
− T − (r + s)

2
× ln(|Σ|)

− λ + N
2
×

T−s

∑
t=r+1

ln
[

1 +
1
λ

(
εT

t Σ−1εt

)]

where Γ(x) =
∫ ∞

0 ux−1e−udu.
Without any commonality restrictions, εt is given either by (1) or (2), depending on

the representation chosen for the estimation. For the estimation of the likelihood function
with commonality restrictions, εt is given by (5), where normalization (6) is imposed for
identification of matrix δ′⊥.2 Hence, imposing the restrictions within the Student’s t-ML
estimation framework of the MVAR model is straightforward. The LRT is then constructed
as follows

LRk|0 = 2ln
(

L̂0

L̂k

)
, (7)

where L̂k and L̂0 are, respectively, the likelihood values associated with the restricted model
(5) and with the unrestricted one (1). Under the null of k CBs, (7) follows an asymptotic χ2

d
distribution with d = k(N(s− 1) + k) degrees of freedom.

One can also perform an LRT for the null hypothesis such that the k = k̄ versus the
alternative k =k with 1 < k < k̄ < N. The associated LRT statistic is as follows:

LRk̄|k = 2ln

(
L̂k

L̂k̄

)
,

which is asymptotically distributed as a χ2
g distribution with g = (k̄− k)

(
N(s− 1) + k̄ + k

)
degrees of freedom.

An alternative is to select the best specification according to the minimization of an
information criterion as follows:

BICκ = Kln(T)− 2ln(L̂κ ), (8)

AICκ = 2K− 2ln(L̂κ ), (9)

with K = rN2 + (N − k)(sN + k) being the number of coefficients estimated in a model
with κ CBs for κ = 0, 1, ..., N − 1.

3. Monte Carlo Analysis

We investigated the performance of our strategies using Monte Carlo simulations to
detect the common bubbles in bivariate and trivariate VMAR(1,1) models. We considered
two sample sizes, T = 500 and 1000, and two different degrees of freedom of the error term
with very leptokurtic distributions, namely λ = 3, 1.5, to respectively consider a finite and
infinite variance case. We employed lead coefficient matrices with and without reduced
rank to analyze the detection of the correct model under the null of common bubbles and
under the alternative of no such comovements. The coefficients employed in the bivariate
settings are displayed in Table 1.
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Table 1. Monte Carlo parameters for bivariate VMAR(1,1).

Φ =

[
0.5 0.1
0.2 0.3

]
Σ =

[
4 0.5

0.5 1

]
T =

{
500, 1 000

}
λ =

{
1.5, 3

}

Ψ =



[
0.3 0.25
0.6 0.5

]
=

[
1
2

][
0.3 0.25

]
(H0 : CB)

[
0.1 0.4
0.6 0.5

]
(H1 : no CB)

The results, based on 3000 replications for each combination of parameters, are re-
ported in Table 2.3 All entries are the frequency of correctly detected model. That is, under
the null of a CB, we report the proportion of correctly detected CB, and under the alternative
of no CB, we report the proportion of correctly rejected CB. We hence performed the test
H0 : rank(Ψ) = 1 against the alternative that the rank is 2. The LRTs were performed at a
95% confidence level. The information criteria detected a CB when the IC of the restricted
model was lower than the one of the unrestricted model.

Table 2. Monte Carlo results for N = 2.

λ = 3

T = 500 T = 1000

DGP LR test BIC AIC LR test BIC AIC

With CB (rank 1) 0.946 0.989 0.838 0.944 0.993 0.834
Without CB (rank 2) 0.999 0.994 1.000 1.000 1.000 1.000

λ = 1.5

T = 500 T = 1000

DGP LR test BIC AIC LR test BIC AIC

With CB (rank 1) 0.913 0.968 0.779 0.914 0.977 0.783
Without CB (rank 2) 0.999 0.999 0.999 1.000 1.000 1.000

Based on 3000 iterations. All results are the frequencies of the correctly detected models. The LR test was
performed at a 95% confidence level. For the IC, the favoured model was the one with the lowest IC value. The
ranks refer to the rank of the lead coefficient in the DGP.

We can notice that the frequency of type I errors of the LRT increases when the variance
of the errors becomes infinite and that it does not significantly decrease when the sample
size gets larger. With finite variance (λ = 3), the LRT has an appropriate size of around
5.5%, and it increases to around 8.6% when the degrees of freedom of the error distribution
reach 1.5. Under the alternative, the LRT has a power of at least 99.9% across all parameter
combinations, implying that it almost never detects a CB when there are none.

Regarding the model selection using information criteria, results show that BIC out-
performs AIC. Under the null of a CB, BIC selects the correct model specification in 98.9%
of the cases with finite variance and a sample size of 500. The frequency increases to 99.3%
when the sample size increases to 1000. AIC, on the other hand, selects the correct model in
only 83.8% of the cases and does not increase with the sample size. The frequency of the
correctly selected model decreases for both when in the infinite variance case, but more
drastically for AIC, which decreases to around 78%. BIC still selects the correct model
for 96.8% of the cases with a sample size T = 500, and the frequency increases to 97.7%
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for T = 1 000. Under the alternative of no CB, however, both ICs correctly select the
unrestricted specification in more than 99.4% of cases across all parameter combinations.

We now turn to the trivariate case. In the presence of a CB, the rank of the lead
coefficient matrix can be either 1 or 2. We thus consider the two possible CB structures. The
parameters of the data generating processes are displayed in Table 3.

Table 3. Monte Carlo parameters for trivariate VMAR(1,1).

Φ =

0.5 0.1 0.2
0.2 0.3 0.1
0.1 0.4 0.6

 Σ =

 2 0.5 0.5
0.5 1 0.5
0.5 0.5 4


T =

{
500, 1 000

}
λ =

{
1.5, 3

}

Ψ =



0.3 0.1 0.1
0.2 0.3 0.4
0.7 0.35 0.4

 =

1 0
0 1
2 0.5

[0.3 0.1 0.1
0.2 0.3 0.4

]
(H0 : 1 CB feature)

 0.15 0.25 0.4
0.3 0.5 0.8

0.075 0.125 0.2

 =

 1
2

0.5

[0.15 0.25 0.4
]

(H0 : 2 CB features)

0.3 0.2 0.1
0.2 0.5 0.4
0.7 0.125 0.2

 (H1 : no CB feature)

We evaluated our approach with 1500 replications with each of the parameter combina-
tions. Under the null of a CB, we tested the correct CB specification against the alternative
of the unrestricted full rank model. Under the alternative of no CB, we tested for each
of the CB specifications.4 Table 4 reports the frequencies of the correctly detected models
either with the LRT or with model selection using the information criteria. Analogously to
the bivariate case, the LRTs were performed at a 95% confidence level, and the information
criteria detect a CB when the IC of the restricted model was lower than the one of the
unrestricted model.

We can notice that the size of the LRT when the true rank of the lead coefficient matrix
is 2 is similar to the bivariate case. With a finite variance error distribution, the size of the
LRT is around 5%, and it increases to around 9% when the variance is infinite (λ = 1.5).
We can see that the size of the test decreases in the more restrictive CB specification when
the rank of the matrix is 1. For the finite variance cases, the size decreases to 91.9% when
T = 500 and to 93.3% when T = 1000. The correctly detected model frequency decreases
further to 86% in the infinite variance case. Under the alternative of no CB, with finite
variance and a sample size of T = 500, the LRT incorrectly detects a bubble (2 vs. 3) in 30.5%
of the cases; however, this frequency decreases to 6.8% when the sample size increases to
1000. Hence, it seems that with a smaller sample size and the finite variance of the error
distribution, estimating 8 coefficients in the lead matrix instead of 9 in the unrestricted
model still provide a good enough fit to not be rejected by the test. The power of the test
for all other model specification is above 99.7%.5
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Table 4. Monte Carlo results for N = 3.

λ = 3

T = 500 T = 1000

rank(Ψ) Rank test LR BIC AIC LR BIC AIC

2 2 vs 3 0.944 0.984 0.817 0.951 0.992 0.843
1 1 vs 3 0.919 1.000 0.871 0.933 1.000 0.883

3 2 vs 3 0.695 0.481 0.855 0.932 0.802 0.970
1 vs 3 1.000 1.000 1.000 1.000 1.000 1.000

λ = 1.5

T = 500 T = 1000

rank(Ψ) Rank test LR BIC AIC LR BIC AIC

2 2 vs. 3 0.915 0.972 0.775 0.907 0.978 0.776
1 1 vs 3 0.857 0.998 0.774 0.860 0.999 0.783

3 2 vs. 3 0.997 0.994 0.999 1.000 1.000 1.000
1 vs. 3 1.000 1.000 1.000 1.000 1.000 1.000

Based on 1500 iterations. All results are the frequencies of correctly detected models. The LR test was performed
at a 95% confidence level. For the IC, the favored model is the one with the lowest IC value. The ranks refer to the
rank of the lead coefficient. rank(Ψ) is the rank of the lead coefficient matrix in the DGP.

As it relates to the model selection using information criteria, BIC outperformed AIC
in detecting common bubbles in each of the settings. BIC correctly selected a model with
CBs in more than 97.2% of the cases across all model specifications, and the frequencies
increased with the sample size and the amount of restricted coefficients. Indeed, it correctly
selected a restricted model with a coefficient matrix of rank 1 in at least 99.8% of the cases,
whereas AIC selected the correct restricted model in fewer than 88.3%. The frequency
decreased with the sample size as did the variance of the errors when the rank of the
restricted matrix was closer to full rank. Hence, for the infinite variance case with a sample
size T = 500, its frequency of correctly selected CB model is around 77.5% for each of the
CB specifications. Under the alternative of no CB, we observe the same pattern as that
for the LRT. In the finite variance case, both information criteria overselected a restricted
model with a matrix of rank 2. For a sample size of 500, BIC selected the restricted model in
51.9% of the cases although it decreased to 19.8% when the sample size increased to 1000.
AIC, on the other hand, only selected the restricted model in 14.5% with T = 500 and it
even decreased to 3% with T = 1 000. For all other model specifications, both IC selected
the correct model in at least 99.4% of the cases.

Overall, the size of the LRT seems to converge to 5% in the finite variance cases when
the sample size increases. In the infinite variance cases, the size is around 5 percentage
points lower and seems to be less affected by the sample size. The power of the test is above
93% in all model specifications except with λ = 3 and T = 500, with a restricted model that
has only 1 coefficient less to estimate than the unrestricted model (2 vs. 3). For the model
selection using information criteria, BIC overall outperforms AIC in correctly detecting a
CB but also tends to detect a CB more often than does AIC when there is none in the 2 vs. 3
case with λ = 3.6

4. Common Bubbles in Commodity Indices?

We illustrate our strategies in testing for common bubbles in mixed causal–noncausal
processes on three commodity price indices: food and beverage, industrial inputs7 and fuel
(energy)8. The sample of 362 data points ranges from January 1992 to January 2022.9 We
can see from graphs (a) of Figures 1 and 2, which respectively show the series in levels
and logs, that the indices seem to follow similar trends. Long-lasting increases and crashes
roughly occur at the same time. This could potentially suggest the presence of common
bubbles between the series.
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Following the work of Hecq and Voisin (2022), we detrend all series using the Hodrick–
Prescott filter (hereafter HP filter). Although this approach to obtain stationary time series
has been strongly criticized, in particular for the investigation of business cycles, Hecq and
Voisin (2022) show that it is a convenient strategy to preserve the bubble features. They also
show in a Monte Carlo simulation that this is the filter that preserves the best identification
of the MAR(r, s) model. Giancaterini et al. (2022) arrive at the same conclusion using
analytical arguments.

The HP detrended series are displayed on graphs (b) of the two Figures. It can indeed
be seen that the dynamics inherent to mixed causal–noncausal processes mentioned above
are preserved. The that occurred during the financial crisis of 2007 and the COVID-19
pandemic in 2020, while being of different magnitudes, happened roughly at the same time
on all three series. Furthermore, long lasting increases such as the one before the financial
crash and the recovery around 2009 or after 2020 are also present in all three index prices.

(a) Indices in levels
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Figure 1. Price indices in levels.
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(a) Indices in logs
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Figure 2. Price indices in logs.

We first analyzed the series individually. We estimated pseudo causal autoregressive
models to identify the order of autocorrelation in each of the detrended series (both in levels
and logs). All the models that we identified using BIC were ultimately AR(2) processes.
The normality of the errors was rejected for all series: values of the Jarque–Bera statistics
ranged between 48 and 253 for the 6 series. The next step was to identify MAR(r, s) models
for all r and s subject to the constraint p = r + s = 2, namely MAR(2, 0), MAR(1, 1) or
MAR(0, 2). Based on the ML estimator with Student’s t-distributed error term, the best
fitting model for all six series was the MAR(1, 1) model.

The estimated models are shown in Table 5.10 For comparison purposes with the
trivariate case shown later, we display both the coefficients estimated from the multiplicative

(1− φL)(1− ψL−1)yt = εt, with εt ∼ t(λ), (10)
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and the associated coefficients of the linear form obtained as follows:

yt =
φ

1 + φψ
yt−1 +

ψ

1 + φψ
yt+1 + ε∗t

= b1yt−1 + b2yt+1 + ε∗t .
(11)

It appears that “food and beverage” and “industrial inputs” are both mostly forward
looking with lead coefficients close to 0.85 and lag coefficients around 0.4. Conversely, the
“fuel index” appears more backward looking with coefficients inverted. Except for the level
of industrial inputs, all models have error terms with finite variance, and as expected, one
obtains lower variance for the logs of the series. The similar dynamics between food and
beverages and industrial inputs could indicate commonalities. The same conclusions can
be drawn from the coefficients of the linear form.

Table 5. Estimated coefficients of univariate MAR(1,1) models.

Variable
Estimated Coefficients

Multiplicative Linear

φ ψ λ b1 b2

Food & Beverage 0.38 0.85 3.70 0.29 0.64
log(Food & Beverage) 0.34 0.86 5.47 0.26 0.67
Industrial inputs 0.43 0.87 1.66 0.31 0.63
log(Industrial inputs) 0.42 0.89 4.62 0.31 0.65
Fuel (energy) 0.87 0.44 2.20 0.63 0.32
log(Fuel) 0.83 0.48 4.95 0.59 0.34

The coefficients in the multiplicative form are the estimated coefficients from Equation (10). The linear coefficients
are the ones obtained by multiplying the estimated factors of the multiplicative as in (11).

For the multivariate investigations, we analyzed both bivariate and trivariate systems.
Similarly to the univariate estimation, the strategy consisted of first estimating the pseudo
lag order p using a standard VAR(p) for the six bivariate combinations (three in levels
and three in logs) and the two trivariate models. Using BIC, all VARs were identified as
VAR(2). There were starting value issues when estimating VMARs by ML, meaning that
we often reached local maxima. To avoid this issue, we used a large range of starting values
to estimate VMAR(1,1) with multivariate Student’s t-distributed errors, and we kept the
estimated model with the highest likelihood value.11

The estimated models are shown below in Table 6. We used representation (1) for
the estimation, but the coefficients displayed are those of the additive form (3), which are
independent of the representation used for the estimations in the following form:

Yt = B1Yt−1 + B−1Yt+1 + ηt,

where ηt follows a multivariate Student’s t-distribution with λ degrees of freedom and
correlation matrix Ω.

In comparison to the coefficients b1 and b2 of the univariate linear forms in Table 5, the
directions and magnitudes of the dynamics have been preserved in the multivariate model
estimations. From the off-diagonal coefficients of the bivariate models, we can notice that
“Food” is impacting both “Indus” and “Fuel” with the lag and the lead, with coefficient
magnitudes between 0.11 and 0.47 for the levels. However, in the other direction, the
magnitude of the coefficients does not exceed 0.05 for the lag of “Fuel” on “Food”. “Fuel”
slightly impacts “Indus” with coefficients of magnitude around 0.1. These dynamics can
also be observed in the trivariate model.
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Table 6. Estimated coefficients on the multivariate VMAR(1,1) models.

B1 B−1 Ω λ

Food and Indus[
0.28 0.01
0.26 0.27

] [
0.65 −0.02
−0.11 0.65

] [
1.32 0.16
0.16 3.35

]
2.49

Food and Fuel[
0.35 0.05
0.47 0.52

] [
0.55 −0.04
−0.40 0.40

] [
1.42 0.87
0.87 12.90

]
3.01

Indus and Fuel[
0.29 0.01
−0.11 0.47

] [
0.63 0.03
0.09 0.48

] [
2.22 1.50
1.50 7.17

]
1.67

Food, Indus, and Fuel0.27 0.01 0.03
0.27 0.25 0.02
0.30 −0.10 0.56

  0.64 −0.02 −0.02
−0.16 0.66 −0.01
−0.27 0.12 0.37

 1.34 0.12 0.55
0.12 3.29 2.20
0.55 2.20 10.02

 2.28

B1 B−1 103Ω λ

Food and Indus[
0.25 0.01
0.22 0.24

] [
0.69 −0.03
−0.12 0.70

] [
0.27 0.03
0.03 0.46

]
6.30

Food and Fuel[
0.25 0.02
0.16 0.38

] [
0.67 −0.02
−0.14 0.55

] [
0.25 0.06
0.06 1.21

]
5.23

Indus and Fuel[
0.26 0.04
−0.09 0.56

] [
0.67 −0.01
0.09 0.37

] [
0.42 0.24
0.24 1.19

]
4.77

Food, Indus, and Fuel 0.88 −0.17 −0.02
−0.04 0.27 0.07
−0.04 0.06 0.58

 0.21 0.15 0.00
0.13 0.76 −0.08
0.02 0.05 0.33

 0.32 0.02 0.07
0.02 0.51 0.26
0.07 0.26 1.35

 6.15

To perform the common bubble tests, we estimated VMAR models with restrictions
on the lead coefficients matrix as shown in (5).12 In the trivariate settings, the LRTs and
information criteria compare the unrestricted model where the lead matrix has full rank
with both CB specifications, namely imposing rank 2 or rank 1 to the lead coefficient matrix.

The results are shown in Table 7. The LRT column displays the LRT statistic, and the
IC columns are the difference in the IC values of the restricted and the unrestricted models.
As can be seen from the LRTs, the null hypothesis of a common bubble in the bivariate
and trivariate models is rejected for all combinations of variables at a confidence level of
95%. All information criteria also indicate a better fit for the models without commonalities
since all values are positive. Even for the trivariate cases 2 vs. 3, no bubble can be detected
even though in the simulations exercise, the test and information criteria overdetected
a CB for the same sample size and degrees of freedom. Hence, while the series seem to
follow a similar pattern in the locally explosive episodes throughout the time period, we
did not find there to be a significant indication of commonalities in their forward looking
components.
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Table 7. Common bubble detection on multivariate combinations of the variables.

Levels
Food Indus Fuel Rank test LRT BIC AIC

� � 1 vs. 2 25.93 20.04 23.93
� � 1 vs. 2 59.96 54.07 57.96

� � 1 vs. 2 70.49 64.59 68.49

� � �
2 vs. 3 16.26 10.37 14.26
1 vs. 3 88.12 64.55 80.12

Logs
Food Indus Fuel Rank test LRT BIC AIC

� � 1 vs. 2 16.04 10.15 14.04
� � 1 vs. 2 34.36 28.47 32.36

� � 1 vs. 2 46.05 40.16 44.05

� � �
2 vs. 3 15.81 9.92 13.81
1 vs. 3 75.01 51.44 67.01

LRT is the likelihood ratio test statistic. For the bivariate models, the critical value of the LRT at 95% confidence
level is 3.41. For the trivariate models, the critical values are 3.841 and 9.488 for 2 vs. 3 and 1 vs. 3, respectively.
The column BIC and AIC show the difference between the restricted and unrestricted information criteria.

There are two possible explanations for these findings. First, our definition requires
that bubbles occur at the same time for all the series, whereas graphical evidence may
suggest the presence of some degree of nonsynchronicity in the bubble patterns among
variables. Second, the series apparently display uncommon explosion rates of the locally
explosive episodes.

5. Conclusions

This paper proposes methods to investigate whether the bubble patterns observed in
individual series are common to various series. We detected such nonlinear dynamics using
recent developments in mixed causal–noncausal autoregressive models. The lead compo-
nent of the model allows for the capture of locally explosive episodes in a parsimonious
and strictly stationary setting. Hence, we employed multivariate mixed causal–noncausal
models and applied restrictions to the lead coefficients matrices to test for the presence
of commonalities in the forward-looking components of the series. Within a Student t-
distribution ML framework, we propose both a LRT and information criteria to detect the
presence of common bubbles. In a simulation study, we investigated the finite sample size
properties of the proposed approaches, and we found that the BIC performs well when the
innovation variances are both finite and infinite. Then, after implementing our approach on
three commodity prices, we did not find evidence of commonalities despite the similarities
between the series. Our definition of common bubbles requires that all noncausal matrices
span the same left null space. A natural extension to our approach would be to relax that
hypothesis to investigate nonsynchronous common bubbles, allowing for some adjustment
delays along the lines of Cubadda and Hecq (2001).
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Notes
1 This is the restricted linear form that is used in the ML estimation. Gourieroux and Jasiak (2017) have proposed an alternative

approach based on roots inside and outside the unit circle of an autoregressive polynomial.
2 The “axLik” package in R offers a routine for maximizing a given likelihood function with various optimization algorithms. We

used the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
3 Optimization algorithms to maximize the Student’s t multivariate likelihood function are known to be sensitive to starting

values and might easily reach local maxima. Since our focus is not on accurate estimation of the models but instead on the
detection of commonalities, in order to speed up convergence, we follow previous contributions by employing either the true
coefficient matrices when the estimated model correctly imposes k CBs; otherwise, we use an approximation of them with a rank
different from (n− k).

4 Results for other tests, such as 1 vs. 2 when the true rank is 2 for instance, are available upon request.
5 Recall from footnote 3 that we employ as starting values an approximation of the true coefficient matrices when the estimated

model has a wrong number of CBs. This entails that when the true rank is 3, estimating the restricted models with rank 1 or 2
might encounter convergence issues. This could imply an overestimation of the frequencies displayed in the 2 vs. 3 and 1 vs. 3
when the true rank is 3.

6 Note that Hannan-Quin information criterion HQC = 2Kln(ln(T))− 2 ln(L̂) performs exactly in between BIC and AIC both
under the null and under the alternative. We thus omitted this to save space, but results are available upon request.

7 including agricultural raw materials, such as includes timber, cotton, wool, rubber, and leather.
8 Includes crude oil, natural gas, coal and propane.
9 Data are retrieved from the IMF database. They are price indices with base year 2016.

10 We used various starting values to account for the bimodality of the coefficients (see Bec et al. 2020, for more details).
11 We fixed the starting values for the correlation matrix Σ and the degrees of freedom λ and performed 100 MLEs based on

random lead and lag coefficient matrices fulfilling stationary conditions.
12 We also used 100 combinations of starting values to make sure we obtained the best-fitting models.
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