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Abstract: This paper investigates the relationship between public debt and economic growth in the
context of a panel kink regression with latent group structures. The proposed model allows us to
explore the heterogeneous threshold effects of public debt on economic growth based on unknown
group patterns. We propose a least squares estimator and demonstrate the consistency of estimating
group structures. The finite sample performance of the proposed estimator is evaluated by simulations.
Our findings reveal that the nonlinear relationship between public debt and economic growth is
characterized by a heterogeneous threshold level, which varies among different groups, and highlight
that the mixed results found in previous studies may stem from the assumption of a homogeneous
threshold effect.
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1. Introduction

In recent years, particularly during the COVID-19 pandemic, many countries have
seen a consistent rise in public debt. This trend has sparked concerns about its potential
effects on sustained economic growth. According to the conventional view, rooted in the
Ricardian Equivalence theory, the negative impacts of rising public debt could be offset by
an equal increase in private savings. This suggests that the overall national savings would
remain unchanged, thus not influencing growth (e.g., Barro 1974). Conversely, if Ricardian
Equivalence is not applicable, another strand of the literature believes that increased public
debt could negatively affect long-term economic growth (e.g., Blanchard 1985; Elmendorf
and Gregory Mankiw 1999).

Recent studies have shifted towards exploring potential nonlinear dynamics within the
debt–growth nexus, examining how accumulating debt might adversely affect economic
growth, particularly when debt levels surpass certain thresholds. A seminal study by
Reinhart and Rogoff (2010) posits that public debt begins to impede economic growth when
the debt-to-GDP ratio exceeds 90%. Using threshold regression models, studies by Afonso
and Jalles (2013); Caner et al. (2010); Cecchetti et al. (2011) identified varying thresholds of
debt-to-GDP ratios, 85%, 77%, and 59%, respectively, at which public debt begins to harm
economic growth. However, Kourtellos et al. (2013) were unable to confirm a significant
threshold effect for public debt when adjusting for endogeneity concerns.

The above-mentioned studies provide mixed evidence about the nonlinear effects
of public debt on economic growth and two main challenges emerge. Firstly, these find-
ings are obtained under strong assumptions of homogeneity in threshold levels across
different countries. Commonly, heterogeneity is modeled as a unit-specific, time-invariant
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fixed effect. For example, Chudik et al. (2017) examines a dynamic heterogeneous panel
threshold model with cross-sectional dependent errors, yet this approach still assumes a
uniform threshold level for all countries. Likewise, Eberhardt and Presbitero (2015) model
the long-run relationship between public debt and growth as heterogeneous across coun-
tries. However, they introduce nonlinearities at the country level by using pre-determined
thresholds. Employing the grouped fixed-effect estimator proposed by Bonhomme and
Manresa (2015), Gómez-Puig et al. (2022) examine the heterogeneous link between public
debt and economic growth by identifying the latent group patterns within fixed effects. Nev-
ertheless, their research is limited to a linear panel model, neglecting potential nonlinear
impacts. In short, the complexity of heterogeneous threshold modeling and the extensive
data requirement may be reasons why few studies have concurrently addressed the two
critical aspects—nonlinearity and heterogeneity—that are central to the debt–growth rela-
tionship. To identify heterogeneous threshold levels, there is a pressing need for applied
researchers to develop a new model, that can balance the use of flexible methods for model-
ing unobserved heterogeneity with the development of parsimonious specifications that
are feasible within the constraints of limited datasets. Secondly, conventional threshold
regression models assume a discontinuous regression function at the true threshold level,
which may not be suitable in this context. It is not intuitively expected to observe an
abrupt jump in the economic growth rate when the public debt ratio increases marginally
at the turning point. Chan and Tsay (1998) introduce a continuous threshold autoregressive
model, which enables a piece-wise linear function of the threshold variable. Building on
this, Hansen (2017) expands the framework by proposing tests for a threshold effect and
inferring the regression parameters in a continuous threshold model with an unknown
threshold parameter, termed the kink threshold regression (KTR) model. This model is also
applied to re-examine the issue of public debt overhang, albeit under the assumption of a
uniform threshold level. Motivated by previous work, we employ a panel kink threshold
regression model with latent group structures to re-examine the debt–growth puzzle. Our
contribution is twofold, encompassing both methodological and empirical approaches, and
can be outlined as follows.

In terms of methodology, the proposed model extends the panel threshold regression
model with latent group structures of Miao et al. (2020) by incorporating a continuous
threshold effect. It is important to note that the theoretical distinction of the KTR model
lies in its continuity property, setting it apart from the standard (discontinuous) threshold
regression (TR) model. Firstly, the asymptotic distribution of the least squares estimator of
the threshold in the KTR model and the TR model are quite different. In the KTR model,
the estimator yields a normal distribution, whereas in the TR model, the estimator follows
a two-sided Brownian motion with a diminishing threshold effect (see Hansen 2000), or a
Poisson distribution under the fixed-threshold-effect assumption (see Chan 1993). Secondly,
even though the KTR model can be perceived as a constrained TR model, Hidalgo et al.
(2019) emphasizes that mistakenly estimating a KTR model within the TR framework of
Hansen (2000) without considering the continuity of the true model results in an irregular
Hessian matrix. This irregularity leads to the least squares estimator of the threshold param-
eter converging at a cube root-n convergence rate, slower than the root-n convergence rate
observed for the KTR model, as demonstrated by Hansen (2017). All these references imply
that the methodology outlined in Miao et al. (2020) cannot be directly applied to address
the latent group structure problem in a KTR model and necessitates a conversion of our
theoretical contribution. This model enables variations in threshold and slope coefficients
across individuals through a group-based pattern within a continuous-threshold-effect
framework, effectively addressing the previously mentioned two challenges. The proposed
data-driven method aligns with other studies in panel latent group structures (e.g., Bon-
homme and Manresa 2015; Su et al. 2016; Bonhomme et al. 2022), balancing the trade-off
between the limited flexibility of homogeneity assumptions and the extensive data require-
ments of heterogeneity inherently. We present the estimation strategy and show the latent
group structure can be estimated consistently with a probability that approaches 1. This
extends theorem 3.1 from Miao et al. (2020) to the context of continuous threshold effects.
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Empirically, using the dataset of Chudik et al. (2017), encompassing data from forty
countries spanning from 1980 to 2010, the empirical results determine that the optimal
number of groups is three and recover the group structures. For all countries, two groups
benefit significantly from increasing public debt, up to a certain threshold, beyond which
the significance diminishes. Within the subset of OECD countries, the group—made up
of sixteen out of twenty-one OECD countries—exhibits an inverse U-shaped relationship
between public debt and economic growth. The findings indicate the presence of a hetero-
geneous threshold effect, suggesting that any contradictory conclusions in the previous
studies might stem from overlooking this heterogeneous impact on the way countries
manage their debt obligations.

The rest of the paper is organized as follows. Section 2 describes the panel kink
threshold regression model and the estimation strategy. Section 3 details the assumptions
and establishes the consistency of the estimators for group membership. In Section 4, we
evaluate the finite-sample performance of our model through Monte Carlo simulations.
The empirical results of our study are presented in Section 5. Section 6 concludes the paper.
Technical proofs are relegated to the Appendices A and B.

2. The Model and Estimates

This section presents the panel kink regression model in latent group structure and
introduces the estimation procedure.

2.1. The Model

To explore the heterogeneous threshold effects of the public debt on economic growth,
we consider the following panel kink threshold regression model with latent group structures,

yit = α0
g0

i
+ ρ0

g0
i
yit−1 + β0

1,g0
i

[
di,t−1 − γ0

g0
i

]
I(di,t−1 ≤ γ0

g0
i
) + β0

2,g0
i

[
di,t−1 − γ0

g0
i

]
I(di,t−1 > γ0

g0
i
)

+x⊤it β0
3,g0

i
+ uit, (1)

for i = 1, . . . , N, t = 1, . . . , T, where N denotes the number of cross-sectional units and T
the number of time periods. The yit variable represents the economic growth in country
i in year t. The lagged dependent variable is included on the right-hand side to capture
persistency in economic growth. The main variable of interest is the lagged value of
the logarithm of the public debt-to-GDP ratio (multiplied by 100), denoted by dit−1. We
deliberately choose the lagged public debt-to-GDP ratio as the threshold variable given
the substantial evidence suggesting that contemporaneous public debt is endogenous (e.g.,
Frankel and Romer 1999; Panizza and Presbitero 2013).1 The term xi,t is a k × 1 vector,
encompassing all remaining covariates.2 Following Miao et al. (2020), the model allows
both the slope and kink coefficient parameters to be group-specific, where gi determines the
group membership with g ∈ G ≡ {1, . . . ,G} and G is the number of groups. Thus, within
the same group g, all members have the same coefficients (α0

gi
, β0

1,gi
, β0

2,gi
, β0⊤

3,gi
, ρ0

gi
, γ0

gi
)⊤.

uit is the random disturbance term, which is assumed to be serially uncorrelated over t. Let
FNT,t be the smallest sigma field generated by {yi,t−j, di,t−1−j, x⊤i,t−j, ui,t−j : j ≥ 0}N

i=1. We
assume E(uit|FNT,t−1) = 0 for all i = 1, . . . , N and t = 1, . . . , T. Many previous models in
the literature can be considered special cases of our model, as represented by Equation (1).
For instance, if G = 1 is known a priori, all countries are categorized into the same group,
and model (1) then becomes a pooled panel kink regression model, akin to the one proposed
by Hansen (2017). Alternatively, if β0

1,g0
i
= β0

2,g0
i
, model (1) simplifies to a heterogeneous

panel model with group patterns, as introduced by Bonhomme and Manresa (2015).

2.2. Estimation

Let D ≡ (γ1, . . . , γG)
⊤ ∈ DG, G ≡ (g1, . . . , gN)

⊤ ∈ GN and Θ ≡ (θ⊤1 , . . . , θ⊤G )⊤ ∈ BG,
where θg ≡ (αg, ρg, β1,g, β2,g, β⊤

3,g)
⊤ ∈ B ∈ R4+k. We denote the true parameters as
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(Θ0, D0, G0), where Θ0 ≡ (θ0⊤
1 , . . . , θ0⊤

G )⊤, D0 ≡ (γ0
1, . . . , γ0

G)
⊤, and G0 ≡ (g0

1, . . . , g0
N)

⊤.
Model (1) can be estimated as the following steps:

Denote χit(γgi ) = [1, yit−1,
(

di,t−1 − γ0
g0

i

)
I(di,t−1 ≤ γ0

g0
i
),
(

di,t−1 − γ0
g0

i

)
I(di,t−1 >

γ0
g0

i
), x⊤it ]

⊤. Given G, the least squares estimator of (Θ, D, G) is given by

(Θ̂, D̂, Ĝ) = argmin
(Θ,D,G)∈BG×DG×GN

QNT(Θ, D, G), (2)

where

QNT(Θ, D, G) =
1

NT

N

∑
i=1

T

∑
t=1

[
yit − χit(γgi )

⊤θgi

]2. (3)

For any given D and group structure G, the slope coefficients θg, g = 1, . . . , G, can be
estimated by

θ̂g(D, G) =

[
N

∑
i=1

T

∑
t=1

I(gi = g)χit(γg)χit(γg)
⊤
]−1 N

∑
i=1

T

∑
t=1

I(gi = g)χit(γg)yit. (4)

Then, we can estimate D and G as

(D̂, Ĝ) = argmin
(D,G)∈DG ,GN

QNT

(
Θ̂(D, G), D, G

)
, (5)

where Θ̂(D, G) = [θ̂
⊤
1 (D, G), . . . , θ̂

⊤
G (D, G)]⊤.

For addressing the optimization challenge outlined, we use the EM-type iterative
algorithm (Algorithm 1) for exploring the (D, G) space, as proposed by Miao et al. (2020).

Algorithm 1: EM-type iterative algorithm

Initialize G(0) as a random starting point for the group structure G and set s = 0.
Step 1 Given G(s), compute the following:

D(s) = argmin
D∈DG

QNT

(
Θ̂(D, G(s)), D, G(s)

)
.

Step 2 Given D(s) and G(s), compute the slope coefficients for each group:

θ̂
(s)
g =

[
N

∑
i=1

T

∑
t=1

I(g(s)i = g)χit(γ
(s)
g )χit(γ

(s)
g )⊤

]−1 N

∑
i=1

T

∑
t=1

I(gi = g)χit(γ
(s)
g )yit.

Step 3 Compute the following for all i ∈ {1, . . . , N}:

g(s+1)
i = argmin

g∈G

T

∑
t=1

(
yit − θ̂

(s)⊤
g χit(γ

(s)
g )

)2
.

Step 4 Set s = s + 1 and continue repeating steps 1–3 until numerical convergence
is achieved.

3. Asymptotic Results

In this section, the limiting distributions of the estimators for the group structure are
discussed. Below, we list some regularity conditions used to derive the consistency of the
group structure estimator.
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Assumption 1. (i) For each i = 1, . . . , N, t = 1, . . . , T, E(uit|FNT,t−1) = 0 , where FNT,t is the
smallest sigma field generated by {yi,t−j, di,t−1−j, x⊤i,t−j, ui,t−j : j ≥ 0}N

i=1.

(ii) Across i,
{
(yit, di,t−1, x⊤it , uit) : t = 1, . . . , T

}
are mutually independent of each other.

(iii) For all i, {w⊤
it } =

{
(yit, di,t−1, x⊤it , uit), t ≥ 1

}
are strictly stationary mixing process with

mixing coefficients αi(t) satisfying max
1≤i≤N

αi[t] ≤ Cαρt for some constants Cα > 0 & ρ ∈ (0, 1).

Assumption 2. (i) For some ϵ > 0 and some constants Cϵ, max
i,t

E|yit|8+ϵ ≤ Cϵ, max
i,t

E|dit|8+ϵ ≤

Cϵ, max
i,t

E∥xit∥8+ϵ ≤ Cϵ, and max
i,t

E|uit|8+ϵ ≤ Cϵ.

(ii) The parameter spaces B and D are compact such that sup ∥θ∥
θ∈B

≤ C and D = [γ, γ].

(iii) dit has a density function fit(.) and fit(γ) is continuous over D and max
i,t

fit(γ) ≤ c f < ∞.

(iv) Let d−i,t−1(γ) = (di,t−1 − γ)I(di,t−1 ≤ γ) and d+i,t−1(γ) = (di,t−1 − γ)I(di,t−1 > γ).
For some constants c > 0, as (N, T) −→ ∞, we have

sup
1≤i≤N

sup
|θ−θ∗ |∈B

sup
|γ−γ∗ |∈D

{
Pr

[
T

∑
t=1

[
θ⊤χit(γ)− θ∗Tχit(γ

∗)
]2

≤

c

(
T

∑
t=1

{[
(θ − θ∗)⊤χit(γ

∗)
]2

+
[

β∗
1

(
d−i,t−1(γ)− d−i,t−1(γ

∗)
)]2

+
[

β∗
2

(
d+i,t−1(γ)− d+i,t−1(γ

∗)
)]2})]}

= o(T−4).

(v) Define

MNT(g, g̃, G, D) =
1

NT

N

∑
i=1

T

∑
t=1

I(g0
i = g)I(gi = g̃)χit(g̃)χit(g̃)⊤.

There exists a constant cλ > 0 such that for all g ∈ G

Pr

{
inf

(G,D)∈GN×DG
max
g̃∈G

{λmin[MNT(g, g̃, G, D)]} > cλ

}
−→ 1.

(vi) For all g, g̃ ∈ G and g ̸= g̃, we have ∥(θ0⊤
g , γ0

g)
⊤ − (θ0⊤

g̃ , γ0
g̃)

⊤∥ > Cθγ for some
constants Cθγ > 0.

(vii) For any g ̸= g̃ and 1 ≤ i ≤ N, for some constants Cgg̃ > 0, we have

max
(

E
[
(θ0

g̃ − θ0
g)

⊤χit(γ
0
g)
]2

, |γ0
g̃ − γ0

g|2
)
≡ Cgg̃,i ≥ Cgg̃.

(viii) For all g ∈ G: lim
N−→∞

Ng
N = πg > 0.

(ix) As (N, T) −→ ∞, N = O(T2) and T = O(N2).

Assumption 1 is similar to assumptions A.1 (i)–(iii) of Miao et al. (2020) and assump-
tions A.2 (a)–(c) of Su and Chen (2013) and is standard in the literature. Assumption 1
(i) assumes the martingale difference sequence condition and Assumption 1 (ii) is the
cross-sectional independence. Assumption 1 (iii) imposes the strong mixing condition.3

Assumptions 2 (i)–(ii) are the regularity conditions. Assumption 2 (iii) is similar to
assumption 1.4 of Hansen (2017) and requires that the threshold variable, dit−1, has a
bounded density function. Assumption 2 (iv) ensures the non-colinearity, similar to as-
sumption A.4(ii) in the Miao et al. (2020), but specifies that it requires to hold for each
individual. Assumption 2 (v), paralleling assumption A2 of Miao et al. (2020) and assump-
tion 1 (g) of Bonhomme and Manresa (2015), extends the full-rank condition in the standard
kink regression model to encompass cases with latent groups. Assumptions 2 (vi)–(viii)
are needed for the identification and mirror assumption A.3 (i)–(iii) of Miao et al. (2020).
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Specifically, Assumption 2 (vi) requires the group-specific coefficients (slope and thresh-
old) to be distinct from each other. Assumption 2 (vii) is inferred from Assumption 2 (vi).
Assumption 2 (viii) ensures that each group size is sufficiently large that is asymptotically
non-negligible. Assumption 2 (ix) is similar to assumption A.3 (iv) of Miao et al. (2020)
and defines the relative magnitude of individual size N and period size T, fitting many
empirical macroeconomic applications, including ours.

Theorem 1. Given Assumptions 1 and 2, as (N, T) −→ ∞, we have

Pr

(
sup
i∈N

I
(

ĝi ̸= g0
i

)
= 1

)
−→ 0. (6)

Theorem 1 extends theorem 3.1 of Miao et al. (2020) to allow for the continuous
threshold effect and is similar to theorem 2 of Bonhomme and Manresa (2015). This theorem
specifies that, as (N, T) → ∞, the probability of accurately estimating the group structure
approaches 1. Therefore, given the latent group structure can be estimated at a faster rate
(see Lemma A3 in the Appendix A for the rate of recovering the latent group structure)
than the convergence rate of the estimators of the slope and kink threshold parameters of
the pooled panel kink regression model (see Hansen 2017), similar to Miao et al. (2020), we
can establish the estimators of the slope and kink threshold parameters of the panel kink
regression model with latent groups asymptotically equivalent to the infeasible estimators
that are obtained as if the group structure is known a priori.4

4. Monte Carlo Simulation

In this section, we propose Monte Carlo simulations to test the performance of the
estimator with a small sample size. We list the data-generating processes (DGPs) and the
Monte Carlo results, where we first consider the static model, and then a dynamic model
suits our empirical application. We have

DGP1:

yi,t = cgi + βgi (qi,t − γgi ) + δgi (qi,t − γgi )I(qi,t > γgi ) + ui,t,

ui,t = si,t

√
0.5 + 0.1q2

i,t, for i = 1, . . . , N and t = 1, . . . , T. (7)

where qi,t ∼ N(1, 1), si ∼ N(0, 1), cgi denotes the group-specified fixed effect, and βgi and
δgi are group-specified slopes. γgi is the threshold value. We set the number of groups
to be three, thus gi is chosen among 1, 2, 3. We set the parameters (c1, c2, c3) = (1, 1.5.2),
(β1, β2, β3) = (1, 1.75.2.5). We propose a diminishing threshold effect, with δ1 = δ2 = δ3 =
(NT)−0.1. Following the theory, the group identification does not rely on the heterogeneous
threshold effect across groups; to test that, the Monte Carlo simulation focuses on two cases,
(1) homogeneous group-specific threshold values, where we set (γ1, γ2, γ3) = (1, 1, 1);
(2) heterogeneous group-specific threshold values, with threshold values (γ1, γ2, γ3) =
(0.5, 1, 1.5). We repeat the Monte Carlo simulation 1000 times and the results are shown in
Tables 1–3.

Table 1 reports the Monte Carlo results for the homogeneous group-specific threshold
value DGP and Table 1 shows the results for the heterogeneous group-specific threshold
value DGP. It is worth noting that for both DGPs with homogeneous and heterogeneous
thresholds across groups, as seen from the mean squared error (MSE) panels, our estimator
displays convergence when either the number of N or T increases. In Table 3, we also report
the average misclassification frequency (MF) in Table 3 across replications, where for each
replication we define MF = 1/N ∑N

i=1 I(ĝi ̸= g0
i ). The estimation results show that with

either N or T increasing, we observe a decreasing misclassification frequency. In the most
unfavorable scenario, the average rate of misclassification with our approach stands at
approximately 1%, indicating the effectiveness of our proposed method. Also, with a fixed
N and T, the estimators with a homogeneous threshold DGP have a smaller MF, compared
with heterogeneous threshold DGPs. This observation aligns with the results presented
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in Miao et al. (2020). Theoretical indications from the study suggest that in threshold
regression, group identification hinges on the variation in slopes across groups. The distinct
threshold effects specific to each group do not contribute to the identification process.

Table 1. DGP1 Monte Carlo simulation results: (γ1, γ2, γ3) = (1, 1, 1).

Group 1 Group 2 Group 3

β1 δ1 γ1 β2 δ2 γ2 β3 δ3 γ3

MSE

N = 50 T = 30 0.014 0.030 0.209 0.007 0.017 0.126 0.458 0.035 0.336
N = 100 T = 30 0.010 0.007 0.107 0.005 0.003 0.065 0.007 0.010 0.118

N = 50 T = 60 0.043 0.141 0.173 0.004 0.003 0.051 0.007 0.186 0.170
N = 100 T = 60 0.002 0.002 0.027 0.002 0.001 0.030 0.003 0.003 0.033

BIAS

N = 50 T = 30 −0.019 0.049 0.030 −0.014 0.030 0.010 −0.069 0.054 0.064
N = 100 T = 30 −0.021 −0.011 −0.037 −0.006 0.002 −0.003 −0.010 0.015 0.019

N = 50 T = 60 −0.030 0.053 0.012 −0.012 0.001 −0.049 −0.010 0.069 0.018
N = 100 T = 60 0.001 0.009 0.024 0.001 0.005 0.009 −0.013 0.004 −0.026

STD

N = 50 T = 30 0.118 0.166 0.457 0.085 0.127 0.355 0.673 0.180 0.576
N = 100 T = 30 0.100 0.081 0.325 0.067 0.057 0.254 0.081 0.098 0.343

N = 50 T = 60 0.205 0.371 0.416 0.066 0.053 0.219 0.082 0.426 0.412
N = 100 T = 60 0.042 0.042 0.163 0.040 0.037 0.173 0.051 0.050 0.179

Table 2. DGP1 Monte Carlo simulation results: (γ1, γ2, γ3) = (0.5, 1, 1.5).

Group 1 Group 2 Group 3

β1 δ1 γ1 β2 δ2 γ2 β3 δ3 γ3

MSE

N = 50 T = 30 0.139 0.731 0.391 0.024 0.401 0.288 0.011 0.043 0.255
N = 100 T = 30 0.016 0.003 0.099 0.003 0.003 0.035 0.006 0.033 0.144

N = 50 T = 60 0.028 0.010 0.135 0.005 0.004 0.074 0.036 0.034 0.173
N = 100 T = 60 0.007 0.001 0.055 0.001 0.001 0.020 0.001 0.010 0.072

BIAS

N = 50 T = 30 −0.100 0.112 0.008 −0.016 0.122 0.065 −0.028 0.051 −0.044
N = 100 T = 30 −0.025 0.017 0.021 −0.003 0.006 0.018 −0.018 0.030 −0.005

N = 50 T = 60 −0.036 0.008 −0.013 −0.018 0.005 −0.046 −0.019 0.031 0.008
N = 100 T = 60 −0.010 0.009 0.020 0.001 0.004 0.002 −0.004 0.025 −0.005

STD

N = 50 T = 30 0.164 0.098 0.368 0.069 0.062 0.268 0.188 0.182 0.416
N = 100 T = 30 0.085 0.035 0.233 0.036 0.036 0.140 0.033 0.097 0.268

N = 50 T = 60 0.359 0.847 0.625 0.153 0.622 0.533 0.102 0.200 0.504
N = 100 T = 60 0.124 0.056 0.314 0.059 0.052 0.186 0.076 0.179 0.380

Table 3. DGP1 misclassification frequency (MF).

(γ1, γ2, γ3) = (1, 1, 1) (γ1, γ2, γ3) = (0.5, 1, 1.5)

N = 50 N = 100 N = 50 N = 100

T = 30 0.0036 0.0021 0.0114 0.0088
T = 60 0 0 0.004 0.002

Note: The table reports the sample average misclassification frequency of our estimator across replications. For
each replication, we define MF = 1/N ∑N

i=1 I(ĝi ̸= gi).
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DGP2:

yi,t = ρgi yi,t−1 + βgi (qi,t − γgi ) + δgi (qi,t − γgi )I(qi,t > γgi ) + ui,t,

ui,t = si,t

√
0.5 + 0.1q2

i,t, for i = 1, . . . , N and t = 1, . . . , T. (8)

where si ∼ N(0, 1) and again we keep the number of groups as three. We set (ρ1, ρ2, ρ3) =
(0.2, 0.3, 0.4), (β1, β2, β3) = (0.2, 0.4, 0.6), and δ1 = δ2 = δ3 = 0.25(NT)−0.1, which sug-
gests a dynamic model with stationary process and a diminishing threshold effect. Again,
we consider two DGPs that cover both homogeneous group-specified threshold values
((γ1, γ2, γ3) = (1, 1, 1)) and heterogeneous group-specific threshold values ((γ1, γ2, γ3) =
(0.5, 1, 1.5)). We repeat the Monte Carlo simulation 1000 times and report the results in
Tables 4–6.

Again, Tables 4 and 5 report the Monte Carlo results for the homogeneous and het-
erogeneous group-specified threshold effects, respectively. Similar to the results in DGP1
with a static setup, the Monte Carlo results in DGP2 show convergence when either N or T
increases. We can observe the convergence in Table 4 with homogeneous group-specific
threshold value cases and Table 5 with heterogeneous group-specific threshold values. In
Table 6, the Monte Carlo results show that the misclassification frequency decreases as N
or T increases.

Table 4. DGP2 Monte Carlo simulation results: (γ1, γ2, γ3) = (1, 1, 1).

Group 1 Group 2 Group 3

ρ1 β1 δ1 γ1 ρ2 β2 δ2 γ2 ρ3 β3 δ3 γ3

MSE 0.001 0.009 0.023 0.004 0.000 0.011 0.017 0.003 0.000 0.016 0.027 0.002
0.001 0.005 0.011 0.002 0.000 0.006 0.013 0.002 0.000 0.014 0.015 0.002

0.000 0.002 0.006 0.002 0.000 0.003 0.007 0.001 0.000 0.004 0.007 0.001
0.000 0.002 0.004 0.001 0.000 0.002 0.004 0.000 0.000 0.003 0.005 0.001

BIAS 0.006 0.018 −0.068 0.016 0.005 −0.029 −0.037 0.036 −0.001 −0.095 0.007 0.040
0.009 0.007 −0.060 0.020 0.006 −0.036 −0.062 0.031 0.001 −0.096 −0.015 0.041

0.001 −0.011 −0.021 0.015 0.002 −0.022 −0.031 0.016 0.001 −0.047 −0.021 0.019
0.001 −0.015 −0.026 0.013 0.002 −0.019 −0.036 0.013 0.000 −0.040 −0.034 0.017

STD 0.031 0.094 0.134 0.058 0.017 0.099 0.125 0.038 0.015 0.081 0.163 0.029
0.021 0.072 0.085 0.044 0.012 0.068 0.094 0.026 0.010 0.068 0.123 0.024

0.020 0.048 0.077 0.039 0.011 0.047 0.078 0.024 0.009 0.047 0.079 0.018
0.013 0.036 0.054 0.028 0.008 0.036 0.048 0.017 0.007 0.042 0.064 0.015

Table 5. DGP2 Monte Carlo simulation results: (γ1, γ2, γ3) = (0.5, 1, 1.5).

Group 1 Group 2 Group 3

ρ1 β1 δ1 γ1 ρ2 β2 δ2 γ2 ρ3 β3 δ3 γ3

MSE 0.001 0.016 0.011 0.005 0.000 0.007 0.018 0.002 0.001 0.012 0.053 0.006
0.001 0.006 0.005 0.003 0.000 0.006 0.010 0.002 0.001 0.007 0.045 0.004

0.000 0.006 0.004 0.002 0.000 0.003 0.007 0.001 0.000 0.003 0.026 0.002
0.000 0.002 0.002 0.001 0.000 0.002 0.004 0.001 0.000 0.002 0.012 0.001

BIAS 0.017 −0.036 −0.046 0.030 0.003 −0.050 −0.053 0.032 −0.022 −0.080 −0.089 0.068
0.017 −0.015 −0.045 0.025 0.001 −0.059 −0.042 0.035 −0.020 −0.067 −0.105 0.061

0.011 −0.015 −0.021 0.015 0.001 −0.027 −0.037 0.015 −0.011 −0.041 −0.046 0.034
0.010 −0.004 −0.025 0.011 0.001 −0.025 −0.036 0.015 −0.010 −0.035 −0.048 0.029

STD 0.028 0.123 0.095 0.061 0.016 0.069 0.125 0.035 0.015 0.071 0.213 0.036
0.018 0.075 0.059 0.044 0.011 0.046 0.091 0.025 0.011 0.050 0.184 0.025

0.017 0.076 0.062 0.042 0.011 0.048 0.078 0.023 0.009 0.040 0.154 0.020
0.014 0.046 0.038 0.028 0.007 0.035 0.052 0.016 0.007 0.033 0.097 0.016
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Table 6. DGP2 misclassification frequency (MF).

(γ1, γ2, γ3) = (1, 1, 1) (γ1, γ2, γ3) = (0.5, 1, 1.5)

N = 50 N = 100 N = 50 N = 100

T = 30 0.0038 0.005 0.057 0.0539
T = 60 0 0 0.005 0.0064

Note: The table reports the sample average misclassification frequency of our estimator across replications. For
each replication, we define MF = 1/N ∑N

i=1 I(ĝi ̸= gi).

5. Empirical Results

In this section, we estimate the panel kink regression model with latent groups in
Equation (1). We explore the heterogeneous nonlinear effect of public debt on economic
growth. There is a growing concern that current debt trajectories in several economies
around the world are not sustainable, implying risks to long-term growth and stability.
Following the threshold methodology introduced by Hansen (2000), Kourtellos et al. (2013)
explored their presence in the context of public debt and the ability of countries to handle
their debt obligations. The idea is that public debt levels that are above a particular threshold
value may have different implications for growth compared to more moderate levels of debt;
see, for example, Reinhart and Rogoff (2010), who found that for countries with debt-to-GDP
over 90 percent, debt can have adverse consequences on growth. However, most of the
early literature on the public debt–growth nexus suffered from a number of conceptual and
methodological issues, especially from the failure to adequately account for heterogeneity.
Specifically, research had been focused on whether debt is above or below a particular public
debt threshold value. The alternative that has been considered is simply that there is no
nonlinearity in the effect of public debt on growth. In our approach, we tackle the issue of
heterogeneity by considering and estimating the optimal number of groups and recovering
different group structures that indicate the presence of a heterogeneous threshold effect,
suggesting that any contradictory conclusions in the previous studies might stem from
overlooking this heterogeneous impact on the way countries manage their debt obligations.

5.1. Data

We employ a balanced panel dataset that includes forty countries spanning from 1980
to 2010, obtained from Chudik et al. (2017). Of these, twenty-one are in the OECD, which is
often considered as a rich country club (see Appendix C Table A1 for the list of countries
used in this paper). The public debt-to-GDP ratio, represented as di,t, is calculated by taking
the logarithm. Figures 1–3 depict time-series plots of yearly average economic growth versus
the yearly average public debt-to-GDP ratio for all countries, as well as separately for OECD
and non-OECD countries. A visual examination of these plots reveals a common trend
between the two variables, indicating that the public debt-to-GDP ratio captures the pattern
of economic growth in all scenarios. However, a closer comparison of Figures 2 and 3 reveals
an asymmetric co-movement between these variables in OECD versus non-OECD countries,
pointing to the club-based heterogeneity in the impact of public debt on economic growth.
This observation motivates us to further explore the identification of unobserved group
structures and the uncovering of group-based heterogeneity.
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Figure 1. Yearly average economic growth and public debt-to-GDP ratio: all countries.

Figure 2. Yearly average economic growth and public debt-to-GDP ratio: OECD countries.

Figure 3. Yearly average economic growth and public debt-to-GDP ratio: non-OECD countries.

5.2. Identifying the Number of Groups

Since the true number of groups G0 is unobserved, we follow Miao et al. (2020) and
employ a BIC-type information criterion (IC) to ascertain the number of groups. This
method is outlined as follows:

IC(G) = ln(σ̂2(G)) + λNTGK,

where σ̂2(G) represents the mean squared error for a given group number G and λNT is
the tuning parameter used for the penalty term.5 Then, the optimal number of groups is
chosen by
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Ĝ = argmin
G∈{1,...,Gmax}

IC(G),

where Gmax is the maximum number of groups, as determined by empirical research. Due
to the data requirement, we set Gmax = 5 for the full sample, covering all countries, while
for the subsamples, Gmax = 4 is applied separately to OECD and non-OECD countries.
Figure 4 shows the de-meaned IC values for different numbers of groups, revealing that
the IC curves reach their lowest point at G = 3 for all sample selections.6 Therefore, we
select three as the optimal number of groups for our subsequent analysis.

Figure 4. The de-meaned IC values for identifying the number of groups.

5.3. Estimation Results

We then proceed to estimate the model (1) by setting G = 1 (indicating no latent group,
our benchmark) and using G = 3 (as determined by the IC criterion). The results of these
estimations using the full sample of all countries are summarized in Table 7.

Table 7. Estimated kink threshold and slope coefficients: all countries.

Latent Group
✓

G1 G2 G3

γ 3.7020 3.7773 3.7906 4.0630

α 0.0190 *** 0.0391 *** 0.0402 *** 0.0190 ***
(0.0023) (0.0055) (0.0053) (0.0026)

ρ 0.3366 *** −0.0842 0.3035 *** 0.2975 ***
(0.0388) (0.0775) (0.0626) (0.0579)

β1 −0.0057 ** −0.0315 *** 0.0147 *** 0.0084 ***
(0.0028) (0.0044) (0.0044) (0.0029)

β2 0.0076 ** 0.0022 0.0061 0.0032
(0.0037) (0.0083) (0.0077) (0.0066)

Country 40 7 9 24
Note: ***, and ** denote statistical significance at 1% and 5% levels, respectively. This table presents the results of the
panel kink regression model estimations, both without and with latent group structures, using all countries. The
optimal number of groups, determined to be 3, is based on minimizing the IC criterion by setting Gmax = 5, as outlined
in the results section. The first column shows the kink threshold and the slope parameters. The second column gives
the results of the pooled panel kink regression model. The last three columns report the latent group estimates.

Assuming a homogeneous kink threshold effect across all countries, we find the esti-
mated tipping point to be 40.45%. However, in contrast to the conventional view, the pooled
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panel kink regression analysis reveals that higher public debt leads to lower growth in
countries with lower debt levels and it appears to benefit economies with higher debt levels.

When analyzing the results of the panel kink regression with latent group structures,
the estimations for group 1 align with the counter-intuitive results from the benchmark. The
results suggest a negative impact on economic growth when a country’s debt-to-GDP ratio
is below 43.51%, becoming insignificant above this level. However, only seven countries fall
into group 1. The results for groups 2 and 3 are particularly notable, indicating threshold
heterogeneity, where the impact of public debt on growth varies depending on the group
members. Specifically, for group 2, the turning point is at 44.28%, where public debt fosters
economic growth up to this level, after which the positive effect disappears. Group 3, with
the highest threshold of 58.14%, exhibits a significant positive impact of public debt on
growth when below this level, but this effect becomes insignificant once the threshold is
exceeded. Notably, group 2 experiences a more substantial impact in the lower regime,
indicating these countries benefit most from public debt. Consistent with the existing
literature (e.g., Baum et al. 2013), our results for groups 2 and 3 indicate that while the
impact of public debt on GDP growth is initially positive and statistically significant, it
declines to near zero, and loses significance beyond specific public debt-to-GDP ratios.

Figure 5 illustrates the world map with assigned group memberships. Interestingly,
these classifications correlate to some extent with geographic location, economic devel-
opment level, and the independence of the central bank. For instance, group 1, which
includes countries like China and Turkey, is characterized by relatively weaker central
bank independence. Group 2 is predominantly associated with the Indo-Pacific region.
Meanwhile, group 3 encompasses the majority of the countries in the pan-American and
European regions, indicating a distinct geographic and economic pattern in the grouping.
In summary, the empirical findings emphasize the heterogeneity of threshold effects crucial
in determining the influence of debt on growth.

Figure 5. Estimates of group memberships. Yellow signifies group 1, orange denotes group 2, and
red is associated with group 3.

As a robustness check on the impact of kink threshold heterogeneity, we also present
the estimation results for OECD and non-OECD countries. The estimates from OECD
and non-OECD countries are presented in Tables 8 and 9, respectively. The estimation
results reveal a distinct difference in the homogeneous kink threshold effect between OECD
and non-OECD countries. Specifically, for OECD countries, the effect of debt on growth is
insignificant in both regimes. In contrast, for non-OECD countries, the results are consistent
with those of all countries shown in Table 7, showing a significantly negative impact in the
low regime and a positive impact in the high regime, both at the 5 percent level. Turning
to the results with latent group structures, none of the groups align with the findings that
assume homogeneity for either OECD or non-OECD countries, indicating the presence of
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heterogeneity in threshold effects. Interestingly, within the low-debt regime, 16 of the 21
OECD countries (group 3, OECD) show a significantly positive impact of debt on growth at
the 1 percent level. Conversely, public debt has a positive impact on growth in just 7 out of
19 non-OECD countries (group 3, non-OECD) at the same level, but the effect size is much
larger. Furthermore, only 2 out of 21 OECD countries (group 2, OECD) exhibit a significantly
negative impact of public debt on growth in the low-debt regime, compared to 4 out of 19
non-OECD countries (group 2, non-OECD). In the high-debt regime, an inverse U-shaped
relationship is supported by the majority of OECD countries (group 3, OECD), where the
positive impact of public debt on growth turns significantly negative at the 10 percent level
once the debt-to-GDP ratio exceeds 54.58%. In non-OECD countries, the impact of debt on
growth becomes insignificant in the high-debt regime for groups 1 and 2, while group 3 sees
a significantly larger positive impact on growth when the debt ratio exceeds 61.4%. These
results highlight the parallels between OECD and non-OECD countries and provide further
evidence of the importance of accounting for heterogeneous kink thresholds. Ignoring these
group patterns, as seen in the pooled panel kink regression results in all sample selections,
could lead to counter-intuitive conclusions and erroneous policy implications.

Table 8. Estimated kink threshold and slope coefficients: OECD countries.

Latent Group
✓

G1 G2 G3

γ 3.6366 2.8289 4.4960 3.9997

α 0.0205 *** 0.0304 *** 0.0169 ** 0.0192 ***
(0.0026) (0.0068) (0.0070) (0.0022)

ρ 0.2864 *** 0.0455 0.0768 0.2855 ***
(0.0539) (0.1289) (0.1047) (0.0600)

β1 0.0005 0.0036 −0.0239 *** 0.0069 ***
(0.0030) (0.0074) (0.0075) (0.0026)

β2 −0.0042 0.0217 *** 0.0473 −0.0102 *
(0.0042) (0.0082) (0.0389) (0.0059)

Country 21 3 2 16
Note: ***, **, and * denote statistical significance at 1%, 5%, and 10% levels, respectively. This table presents the
results of the panel kink regression model estimations, both without and with latent group structures, using the
subsample of OECD countries only. The optimal number of groups is 3 based on setting Gmax = 4. The first
column shows the kink threshold and the slope parameters. The second column gives the results of the pooled
panel kink regression model. The last three columns report the latent group estimates.

Table 9. Estimated kink threshold and slope coefficients: non-OECD countries.

Latent Group
✓

G1 G2 G3

γ 3.7685 3.8292 4.3691 4.1174

α 0.0224 *** 0.0381 *** 0.0314 *** 0.0244 ***
(0.0038) (0.0062) (0.0070) (0.0058)

ρ 0.3078 *** 0.3512 *** −0.1717 0.3224 ***
(0.0536) (0.0760) (0.1108) (0.0810)

β1 −0.0111 ** 0.0166 * −0.0326 *** 0.0256 ***
(0.0044) (0.0084) (0.0046) (0.0080)

β2 0.0142 ** −0.0049 0.0285 0.0530 ***
(0.0056) (0.0072) (0.0173) (0.0188)

Country 19 8 4 7
Note: ***, **, and * denote statistical significance at 1%, 5%, and 10% levels, respectively. This table presents the
results of the panel kink regression model estimations, both without and with latent group structures, using the
subsample of non-OECD countries only. The optimal number of groups is 3 based on setting Gmax = 4. The first
column shows the kink threshold and the slope parameters. The second column gives the results of the pooled
panel kink regression model. The last three columns report the latent group estimates.
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6. Conclusions

This paper makes an important contribution to the ongoing debate regarding the non-
linear relationship between public debt and economic growth. While the existing literature
primarily assumes a homogeneous threshold effect of public debt on economic growth, our
approach diverges by employing a panel kink regression model that incorporates latent
group structures. This method allows us to explore the heterogeneous threshold effects
based on unknown group patterns. We propose a least squares estimator and demonstrate
the consistency of estimating group structures. Our findings reveal that the nonlinear
relationship between public debt and economic growth is characterized by a heteroge-
neous threshold level, which varies among different groups, highlighting that the mixed
results found in previous studies may stem from the arguably incorrect assumption of a
homogeneous threshold effect.

In future investigations, researchers might explore various potential extensions. Our
proposed method concentrates solely on exogenous variables, potentially encountering
limitations in an endogenous framework. In cases where threshold variables or regressors
exhibit endogeneity, researchers may address this issue by employing the control func-
tion approach introduced by Zhang et al. (2023). Incorporating two or more endogenous
threshold variables, as in Chen et al. (2023), can also be intriguing. Another avenue for
exploration involves a dynamic latent group structure setup, allowing for changes in group
composition over time. Lastly, one could delve into a KTR model featuring multiple kinks,
with a notable challenge being the efficient identification of multiple thresholds while
avoiding the computational burden associated with a grid search method.
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Appendix A. Lemmas

In this section, we propose some lemmas which help to prove the theorems. Through-
out the Appendix, let ∥.∥ denote the Euclidean norm. We use (N, T) −→ ∞ to denote the

joint convergence of N and T when N and T pass to infinity simultaneously.
p→, d→, and

=⇒ denote convergence in probability, convergence in distribution, and weak convergence,
respectively.

First, we denote an auxiliary equation:

Q̃NT(Θ, D, G) =
1

NT

N

∑
i=1

T
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[
χit(γ

0
g0

i
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g0
i
− χit(γgi )
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+

1
NT

N

∑
i=1

T
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t=1

uit (A1)

Lemma A1. Under Assumptions 1 and 2, we have

sup
(Θ,D,G)∈BG×DG×GN

|QNT(Θ, D, G)− Q̃NT(Θ, D, G)| = op(1).

Proof. Note that
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]
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Under Assumptions 1 and 2 and closely following the proof of lemma A.1 of Miao et al.

(2020), we can show sup
(Θ,D,G)∈BG×DG×GN

∣∣∣∣ 1
NT ∑N

i=1 ∑T
t=1

[
χit(γ

0
g0

i
)⊤θ0

g0
i
− χit(γgi )

⊤θgi

]
uit

∣∣∣∣ =
op(1), which concludes the proof.

Lemma A2. Suppose Assumptions 1 and 2 hold, we have dH
[(

Θ̂, D̂
)
,
(
Θ0, D0)] p−→ 0, where

dH
[(

Θ̂, D̂
)
,
(
Θ0, D0)] = max

{
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2 + |γ̂g − γ0
g̃|

2]}.

Proof. Our proof essentially extends lemma A.2 of Miao et al. (2020) to allow for the
continuous threshold effect. It suffices to show (i) max

g∈G

[
min
g̃∈G

∥θ̂g − θ0
g̃∥

2 + |γ̂g −γ0
g̃|

2] = op(1)

and (ii) max
g̃∈G

[
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g∈G

∥θ̂g − θ0
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2 + |γ̂g − γ0
g̃|

2] = op(1).

First, to show (i), based on the least squares estimator’s definition and the fact that
(Θ0, D0, G0) minimizes Q̃NT(Θ, D, G), we can show 1

NT
[
Q̃(Θ̂, D̂, Ĝ)− Q(Θ0, D0, G0)

]
=

op(1).
Next, for any i = 1, . . . , N and γ ∈ D, as T −→ ∞, we can show
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where c1 and c2 are some bounded constants.
By applying Assumption 2 (iv) and using Equation (A2), uniformly in (Θ, D, G)

we have
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Thus, we have
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where the last inequality is by Assumption 2 (v). This concludes the proof of (i).
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To show (ii), redefine σg = σΘ̂(g) ≡ argmin
g̃∈G

∥θ0
g − θ̂ g̃∥2 + |γ0

g − γ̂g̃|2 in the proof of

lemma A.2 of Miao et al. (2020). Following the same lines of arguments as in the proof of
lemma A.2 of Miao et al. (2020), we can show, for all g̃ ∈ G

min
g∈G

(
∥θ0

g − θ̂ g̃∥2 + |γ0
g − γ̂g̃|2

)
≤ ∥θ0

σ−1(g̃) − θ̂ g̃∥2 + |γ0
σ−1(g̃) − γ̂g̃|2 (A3)

= min
h∈G

(
∥θ0

σ−1(g̃) − θ̂h∥2 + |γ0
σ−1(g̃) − γ̂h|2

)
= op(1),

which implies (ii) and concludes the proof of this Lemma.

Lemma A3. Let ĝi(Θ, D) = argmin
g∈G

∑T
t=1

[
yit − θ⊤g χit(γg)

]2
. Suppose that Assumptions 1 and 2

hold. Then, for some η > 0, we have

Pr

 sup
(Θ,D)∈Nη

[
1
N

T

∑
i=1

I
(

ĝi(Θ, D) ̸= g0
i

)] = o(T−4),

where Nη =
{
(Θ, D) ∈ BG ×DG : ∥θg − θ0

g∥2 + |γg − γ0
g|2 < η, g ∈ G

}
.

Proof. Our proof follows lemma A.3 of Miao et al. (2020). The only difference is the details
of bounding Zig(Θ, D), where in our case

Zig(Θ, D) = I(g0
i ̸= g)I

(
T

∑
t=1

[
yit − χit(γg)

⊤θg

]2
≤

T

∑
t=1

[
yit − χit(γ

0
g0

i
)⊤θ0

g0
i

])
.

Note that by simple calculation we can show

I

(
T

∑
t=1

[
yit − χit(γg)

⊤θg

]2
≤

T

∑
t=1

[
yit − χit(γ

0
g0

i
)⊤θ0

g0
i

])

= I

(
T

∑
t=1

[
χit(γg0

i
)⊤θg0

i
− χit(γg)

⊤θg

][
χit(γ

0
g0

i
)⊤θ0

g0
i
+ uit −

1
2

χit(γg)θ
⊤
g θg −

1
2

χit(γg0
i
)⊤θg0

i

]
≤ 0

)

= I

(
T

∑
t=1

[
χit(γg0

i
)⊤θg0

i
− χit(γg)

⊤θg

][1
2

(
χit(γg0

i
)⊤θg0

i
− χit(γg)

⊤θg

)
+ χit(γ

0
g0

i
)⊤θ0

g0
i
− χit(γg0

i
)⊤θg0

i
+ uit

]
≤ 0

)
.

Therefore, for Zig(Θ, D), we have

Zig(Θ, D) ≤ max
g̃∈G\{g}

I(Li(g, g̃) ≤ 0),

where

Li(g, g̃) =
T

∑
t=1

[
χit(γg̃)

⊤θg̃ − χit(γg)
⊤θg

][1
2

(
χit(γg̃)

⊤θg̃ − χit(γg)
⊤θg

)
+ χit(γ

0
g̃)

⊤θ0
g̃ − χit(γg̃)

⊤θg̃ + uit

]
.

Then, closely following the steps taken by lemma A.3 of Miao et al. (2020) by using
our defined Li(g, g̃), for some constants C, we can show

Zig(Θ, D) ≤ max
g̃∈G\{g}

I

{
T

∑
t=1

[
χit(γ

0
g̃)

⊤θ0
g̃ − χit(γ

0
g)

⊤θ0
g

](1
2

[
χit(γ

0
g̃)

⊤θ0
g̃ − χit(γ

0
g)

⊤θ0
g

]
+ uit

)
≤ HiT

}
≡ Z̃ig,

where HiT = C
√

η ∑T
t=1

(
y2

it−1 + d2
i,t−1 + ∥xit∥2 + u2

it

)
.
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Then, by Assumption 2 (iv) and applying Equation (A2), we have

Pr(Z̃ig = 1) ≤ ∑
g̃∈G\{g}

Pr{ξiT(g, g̃) ≤ HiT}+ o(T−4),

where

ξiT(g, g̃) =
c
2

T

∑
t=1

([(
θ0

g̃ − θ0
g

)⊤
χit(γ

0
g)

]2
+ |γ0

g̃ − γ0
g|2
)
+

T

∑
t=1

(
χit(γ

0
g̃)

⊤θ0
g̃ − χit(γ

0
g)

⊤θ0
g

)
uit.

Next, we show that the dominant term on the right-hand side of the preceding in-
equality is o(T−4). Let C4 = 2maxi,tE(y2

it−1 + d2
i,t−1 + ∥xit∥2 + u2

it), applying Assumption 2
(vii), we have

Pr(Z̃ig = 1) ≤ ∑
g̃∈G\{g}

Pr(ξiT(g, g̃) ≤ HiT)

≤ ∑
g̃∈G\{g}

Pr(ξiT(g, g̃) ≤ CC4
√

ηT)

+ ∑
g̃∈G\{g}

Pr

(
1
T

T

∑
t=1

(
y2

it−1 + d2
i,t−1 + ∥xit∥2 + u2

it

)
≥ C4

)

≤ ∑
g̃∈G\{g}

[
Pr

(
1
T

T

∑
t=1

(
y2

it−1 + d2
i,t−1 + ∥xit∥2 + u2

it

)
≥ C4

)

+ Pr

{
c

2T

T

∑
t=1

([(
θ0

g̃ − θ0
g

)⊤
χit(γ

0
g)

]2
+ |γ0

g̃ − γ0
g|2
)

≤ c
2

Cgg̃

}

+ Pr

{
1
T

T

∑
t=1

(
θ0

g̃ − θ0
g

)⊤
χit(γ

0
g̃)uit ≤ − c

4
Cgg̃ +

CC4
√

η

2

}

+ Pr

{
1
T

T

∑
t=1

β0
1,g

(
d−i,t−1(γ

0
g̃)− d−i,t−1(γ

0
g)
)

uit ≤ − c
8

Cgg̃ +
CC4

√
η

4

}

+ Pr

{
1
T

T

∑
t=1

β0
2,g

(
d+i,t−1(γ

0
g̃)− d+i,t−1(γ

0
g)
)

uit ≤ − c
8

Cgg̃ +
CC4

√
η

4

}]

By Assumptions 1 and 2 and applying lemma C.1 of Miao et al. (2020), we can show

the first two terms of the last inequality to be o(T−4). Let η ≤ [ming∈G
(ming̃∈G\{g}Cgg̃

4CC4

)
]

and apply lemma C.1 of Miao et al. (2020), we can show the other three terms are of order
o(T−4). The result then follows from the Markov inequality as used in the proof of lemma
A.3 of Miao et al. (2020).

Appendix B. Theorem

Proof of Theorem 1. By Lemma A2, we have (Θ̂, D̂) ∈ Nη . Therefore, we can apply
Lemma A3 and have 1

N ∑N
i=1 Pr(ĝ ̸= g0

i ) = o(T−4). This follows

Pr

(
sup

i
I(ĝ ̸= g0

i ) = 1

)
≤

N

∑
i=1

Pr(ĝ ̸= g0
i ) = o(NT−4),

which concludes the proof of this theorem.

Appendix C. List of Countries

This table presents all the countries used in this paper.
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Table A1. Countries used.

Country OECD Country OECD

Argentina Mexico
√

Australia
√

Morocco
Austria

√
Netherlands

√

Belgium
√

New Zealand
√

Brazil Nigeria
Canada

√
Norway

√

Chile
√

Peru
China Philippines

Ecuador Singapore
Egypt, Arab Rep. South Africa

Finland
√

Spain
√

France
√

Sweden
√

Germany
√

Switzerland
√

India Syria
Indonesia Thailand

Iran, Islamic Rep. Tunisia
Italy

√
Turkey

√

Japan
√

United Kingdom
√

Korea, Rep.
√

United States
√

Malaysia Venezuela

Notes
1 Zhang et al. (2023) study the endogenous kink regression model by applying a nonparametric control function approach. Their

method can be extended to our latent structure model. We leave this for future study.
2 Including xit can be attractive for other applications. However, in our empirical study, we only include the constant term,

assuming xit = 0.
3 We exclude the panel nonstationary regressors. Chen and Stengos (2022) study a threshold model with hybrid stochastic local

unit root regressors. Their study offers a potential extension to the panel kink regression model. We leave this for future study.
4 Given the asymptotic equivalence holds, the asymptotic normality of the slope and kink threshold estimators can be derived by

following Hansen (2017). We will not go through the details here.
5 In the empirical application, as suggested by Miao et al. (2020), we use λNT = ln(NT)

NT .
6 The IC values for various groupings are as follows: For the full sample of all countries, the IC values are −6.6269, −6.6835,

−6.6975, −6.6913, −6.6747 for G = 1, . . . , 5, respectively. For OECD countries, the IC values are −7.1278, −7.1756, −7.1765, and
−7.1677, corresponding to G = 1, . . . , 4. For non-OECD countries, the values are −6.3126, −6.3841, −6.4041, and −6.4037 for
G = 1, . . . , 4, respectively.
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