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Abstract: For a panel data linear regression model with both individual and time effects, empirical
studies select the two-way random-effects (TWRE) estimator if the Hausman test based on the
contrast between the two-way fixed-effects (TWFE) estimator and the TWRE estimator is not rejected.
Alternatively, they select the TWFE estimator in cases where this Hausman test rejects the null
hypothesis. Not all the regressors may be correlated with these individual and time effects. The
one-way Hausman-Taylor model has been generalized to the two-way error component model and
allow some but not all regressors to be correlated with these individual and time effects. This paper
proposes a pretest estimator for this two-way error component panel data regression model based on
two Hausman tests. The first Hausman test is based upon the contrast between the TWFE and the
TWRE estimators. The second Hausman test is based on the contrast between the two-way Hausman
and Taylor (TWHT) estimator and the TWFE estimator. The Monte Carlo results show that this pretest
estimator is always second best in MSE performance compared to the efficient estimator, whether the
model is random-effects, fixed-effects or Hausman and Taylor. This paper generalizes the one-way
pretest estimator to the two-way error component model.

Keywords: two-way fixed-effects model; panel data; two-way random-effects model; two-way
Hausman and Taylor estimator; Hausman test

1. Introduction

For a panel data linear regression model with individual effects capturing hetero-
geneity, empirical studies select the random-effects (RE) estimator if the Hausman (1978)
test based on the contrast between the fixed-effects (FE) estimator and the random-effects
estimator is not rejected (see Owusu-Gyapong (1986) for one such example). Alternatively,
they select the fixed-effects estimator in cases where this Hausman test rejects the null
hypothesis (see Glick and Rose (2002) for one such example). The fixed-effects estimator al-
lows all the regressors to be correlated with the individual effects, while the random-effects
estimator assumes that none of the regressors are correlated with the individual effects (see
Mundlak (1978) for an explanation of this all-or-nothing idea). Hausman and Taylor (1981)
argued that not all regressors may be correlated with individual effects, and proposed an
instrumental variable estimator called the Hausman and Taylor (HT) estimator, which uses
both the between and within variation in the strictly exogenous variables as instruments.
This estimator allows the estimation of the coefficients of time-invariant regressors which
are wiped out by the FE estimator. The extra instruments are obtained using the individual
means of the strictly exogenous regressors as instruments for the time-invariant regressors
that are correlated with the individual effects. The choice of strictly exogenous regressors is
tested using a second Hausman test based upon the contrast between the FE and the HT
estimators. Examples of time-invariant regressors include the effect of distance on trade
and foreign direct investment (see Egger and Pfaffermayr 2004), and the effect of common
language on bilateral trade in a gravity equation (see Serlenga and Shin 2007). The effects of
time-invariant variables like race and gender in a Mincer wage equation (see Cornwell and
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Rupert 1998) are important in wage discrimination applications estimating the wage gap
between males and females or black and nonblack people. Baltagi et al. (2003) proposed a
pretest estimator for this one-way error component panel data regression model based on
these two-Hausman tests. In fact, the standard Hausman (1978) test based on the contrast
between the one-way RE estimator and the one-way FE estimator is applied first. If it is not
rejected, the pretest estimator chooses the one-way random-effects estimator. But rather
than accepting the one-way fixed-effects estimator in cases where this first Hausman test
rejects the null hypothesis, a second Hausman test based on the difference between the
one-way FE and the one-way HT estimators is performed. If this second Hausman test
does not reject the null hypothesis, the pretest estimator chooses the one-way HT estimator.
Otherwise, this pretest estimator chooses the one-way FE estimator. In this study, the Monte
Carlo results show that this pretest estimator is always second best in MSE performance
compared to the efficient estimator, whether the model is random-effects, fixed-effects or
Hausman and Taylor.

This paper generalizes this pretest estimator to the two-way panel data linear model
with individual and time effects. These could be macro-regressions of countries over time,
or the marketing data of household purchases over repeated visits to a store. For the fixed
versus random-effects in the two-way model, it is important to note that the Mundlak
(1978) interpretation of the fixed-effects model as a correlated random effects model was
generalized to this two-way model by Wooldridge (2021) and Baltagi (2023a). In fact, Baltagi
(2023a) showed that in the Mundlak two-way model, the two-way fixed-effects model
assumes that the time and individual effects are always correlated with all the regressors,
whereas the two-way random-effects model assumes that they are uncorrelated with all
the regressors. Once again, the choice between two-way fixed and two-way random-
effects estimators is determined by a Hausman (1978) test, which was generalized from the
one-way to the two-way model by Kang (1985).

Wyhowski (1994) generalized the Hausman and Taylor estimator from the one-way
to the two-way model. Instead of all the exogenous variables being uncorrelated with the
time and individual effects as in the two-way random effects model, or all the exogenous
variables being correlated with the time and individual effects like in the two-way fixed-
effects model, Wyhowski (1994) allows some but not necessarily all of the regressors
to be correlated with the individual and time effects. Wyhowski (1994) assumes that
the researcher knows which regressors are correlated with the time effects but not the
individual effects, the regressors that are correlated with the individual effects but not
the time effects, the regressors correlated with both time and individual effects, as well as
the regressors that are not correlated with both effects. Baltagi (2023b), on the other hand,
assumes that the researcher only knows which regressors are not correlated with both
effects. Wyhowski’s assumptions lead to more instrumental variables. These assumptions
are testable using a Hausman-type over-identification test that is extended from the one-
way to the two-way HT model (see Baltagi 2023b). The two-way HT estimator allows the
estimation of the effects of time-invariant as well as individual-invariant regressors which
are wiped out by the two-way fixed-effects estimator.1

In this study, Monte Carlo experiments are performed which compare the performance
of this two-way pretest estimator with the standard panel data estimators under various
designs. The estimators considered are ordinary least squares (OLS), two-way fixed-effects
(TWFE), two-way random-effects (TWRE) and the two-way Hausman–Taylor (TWHT)
estimators. In a two-way Hausman–Taylor design, we let some regressors be correlated
with the individual effects and/or time effects. In a two-way RE design, the regressors
are not allowed to be correlated with the individual and time effects. The Monte Carlo
results show that the pretest estimator is always second best compared to the efficient
estimator. It is second in RMSE performance compared to the two-way RE estimator in a
two-way RE world, and second compared to the two-way HT estimator in a two-way HT
world. The two-way FE estimator is a consistent estimator under both designs, but it is
inefficient. The two-way HT estimator is the efficient estimator in the first design, and the
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two-way RE estimator is the efficient estimator in the second design. The disadvantage
of the two-way FE estimator is that it does not allow the estimation of the coefficients
of the time-invariant or individual-invariant regressors. Under the first design, where
there is endogeneity among the regressors, we show that there is substantial bias in OLS
and the two-way RE estimators, and both yield misleading inferences. Even under the
second design, where there is no endogeneity between the time and individual effects and
the regressors, inference based on OLS can be seriously misleading. This last result was
emphasized by Moulton (1986).

Section 2 reviews the two-way Hausman and Taylor (1981) estimator first considered
by Wyhowski (1994) and proposes a pretest estimator. Section 3 presents the Monte Carlo
design, the results of the experiments and our conclusions.

2. The Two-Way Hausman and Taylor Estimator

Consider the two-way error component model:

yit = α + X′
itβ + Z′

i γ + W ′
t δ + µi + λt + νit i = 1, . . . , N and t = 1, . . . , T (1)

where yit is the it-th observation on the dependent variable, α denotes the constant, X′
it

represents 1 × k time-varying as well as individual-varying regressors, Z′
i represents 1 × g

time-invariant regressors, and W ′
t represents 1 × h individual-invariant regressors. µi ∼

I IN(0, σ2
µ) , λt ∼ I IN(0, σ2

λ) and νit ∼ I IN(0, σ2
ν ) independent of each other and themselves.

let n = NT denote the total number of observations.
In vector form, (1) can be written as

y = αιNT + Xβ + Zγ + Wδ + Zµµ + Zλλ + ν (2)

= VΘ + Zµµ + Zλλ + ν,

where y′ = (y11, . . . , y1T , y21, . . . , y2T , . . . , yN1, . . . , yNT) ordered by i as the slow index
and t as the fast index. ιNT is a vector of ones of dimension NT. X is NT × k, Z is
NT × g, W is NT × h. V = [ιNT , X, Z, W] and Θ = [α, β′, γ′, δ′]′. Zµ = IN ⊗ ιT , Zλ =
ιN ⊗ IT , where ⊗ is the Kronecker product, IN is an identity matrix of dimension N,
ιN a vector of ones of dimension N, µ′ = (µ1, . . . , µN), λ′ = (λ1, . . . , λT), and ν′ =
(ν11, . . . , ν1T , ν21, . . . , ν2T , . . . , νN1, . . . , νNT).

Wyhowski (1994) extended the Hausman and Taylor (1981) idea from the one-way to
the two-way set up and allowed some but not necessarily all of the explanatory variables
to be correlated with µi and λt. Wyhowski (1994) assumed that the researcher knows
which Xs are correlated with µi but not λt, which Xs are correlated with λt but not µi,
which Xs are correlated with both λt and µi, and which Xs are not correlated with both
λt and µi. In this paper, we only know which Xs are not correlated with both effects. In
particular, we consider the following model, where Zi represents cross-sectionally variant
but time-invariant variables, Wt are time-variant but cross-sectionally invariant variables,
and X′

it is the it-th row of X. As in the one-way Hausman and Taylor (1981) model, we
split the regressors X, Z and W into two sets of variables—X = [X1; X2] , Z = [Z1; Z2] and
W = [W1; W2]—where X1 is n × k1, X2 is n × k2, Z1 is n × g1, Z2 is n × g2, W1 is n × h1, W2
is n × h2 with n = NT, k = k1 + k2, g = g1 + g2 and h = h1 + h2. X1, Z1 and W1 are
assumed to be exogenous in that they are not correlated with µi, λt and νit, while X2,
Z2 and W2 are endogenous because they are correlated with µi or λt, but not νit. The
two-way fixed-effects (FE) model or Within transformation would sweep the intercepts
α, µi and λt and remove the bias, but in the process, it would also sweep the Zi and Wt
variables. Hence the two-way Within estimator will not give estimates of α, γ or δ. The
two-way random-effects (RE) estimator assumes that the regressors are not correlated with
the individual and time effects and applies a two-way random-effects GLS. A Hausman
test based on the contrast between two-way FE and two-way RE determines whether
two-way RE is efficient under the null hypothesis of no correlation between the regressors
and the time and individual effects (see Kang 1985). Instead of this idea of “all” versus
“none” of the regressors being correlated with the individual and time effects, the two-way
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Hausman and Taylor (HT) estimator first proposed by Wyhowski (1994) allows some but
not necessarily all of the regressors to be correlated with the individual and time effects.
Assuming we only know which regressors are not correlated with both individual and
time effects, Baltagi (2023b) proposed a modification of the Wyhowski (1994) estimator that
uses fewer instruments and recovers the time-invariant as well as the individual-invariant
variables which are important for policy studies. This is an instrumental-variables GLS
estimator which can be implemented with a 2SLS or instrumental-variables regression
after a two-way feasible GLS transformation due to Fuller and Battese (1974) (see the
details in Wyhowski (1994) or Baltagi (2023b)). When both N → ∞ and T → ∞ and
N/T is bounded, Wyhowski (1994) showed that the two-way Hausman–Taylor estimator
is consistent. The two-way HT approach proposed by Baltagi (2023b) is summarized in
the following Algorithm 1. A Hausman test based on two-way HT versus two-way FE
determines whether the over-identification conditions are satisfied and, hence, whether the
choice of exogenous X1, Z1, W1 is rejected by the data (see Baltagi 2023b).

Algorithm 1 Estimation of a two-way Hausman–Taylor model

1. First step.

(a) β̃w = (X′Q1X)−1X′Q1y
with Q1 = INT − Pµ − Pλ + ( J̄N ⊗ J̄T)

with Pµ = Zµ(Z′
µZµ)−1Z′

µ = IN ⊗ J̄T and Pλ = Zλ(Z′
λZλ)

−1Z′
λ = J̄N ⊗ IT

and J̄N = (ιN ι′N)/N, J̄T = (ιT ι′T)/T.
(b) PA = A(A′A)−1 A′, PB = B(B′B)−1B′ with A = [X1, Z1], B = [X1, W1].

(c) d̂ = Q2

(
y − Xβ̃w

)
, ê = Q3

(
y − Xβ̃w

)
where Q2 = Pµ − ( J̄N ⊗ J̄T)

and Q3 = Pλ − ( J̄N ⊗ J̄T).
(d) γ̂2SLS = (Z′PAZ)−1Z′PAd̂ and δ̂2SLS = (W ′PBW)−1W ′PB ê.
(e) ϕ̂1 = ỹ′ P̄X̃ ỹ/(N − 1)(T − 1) where ỹ = Q1y, X̃ = Q1X, P̄X̃ = INT − PX̃ .
(f) ϕ̂2 = (y−Xβ̃w −Zγ̂2SLS −Wδ̂2SLS)

′Q2(y−Xβ̃w −Zγ̂2SLS −Wδ̂2SLS)/(N− 1).
(g) ϕ̂3 = (y−Xβ̃w −Zγ̂2SLS −Wδ̂2SLS)

′Q3(y−Xβ̃w −Zγ̂2SLS −Wδ̂2SLS)/(T− 1).
(h) ϕ̂4 = ϕ̂2 + ϕ̂3 − ϕ̂1.
(i) σ̃2

ν = ϕ̂1, σ̃2
µ = (ϕ̂2 − ϕ̂1)/T, σ̃2

λ = (ϕ̂3 − ϕ̂1)/N.

2. Second step.

(a) θ̂1 = 1 −
√

σ̃2
ν /ϕ̂2, θ̂2 = 1 −

√
σ̃2

ν /ϕ̂3 and θ̂3 = θ̂1 + θ̂2 +
√

σ̃2
ν /ϕ̂4 − 1.

(b) y∗ = y − θ̂1Pµy − θ̂2Pλy + θ̂3Q4y with Q4 = ( J̄N ⊗ J̄T).

(c) Similarly, let V∗ =
[
ι∗NT , X∗, Z∗, W∗], with ι∗NT =

(
1 − θ̂1 − θ̂2 + θ̂3

)
ιNT .

(d) AHT =
[
Q1X, PµX1, PλX1, Z1, W1, ιNT

]
and PAHT = AHT(A′

HT AHT)
−1 A′

HT .
(e) Θ̂HT = (V∗′PAHT V∗)−1V∗′PAHT y∗

with Θ̂HT =
[
α̂HT , β̂11,HT , β̂12,HT , β̂2,HT , γ̂1,HT , γ̂2,HT , δ̂1,HT , δ̂2,HT

]′
.

(f) û∗
HT = y∗ − V∗Θ̂HT and σ̂2

u∗
HT

= û∗′
HT û∗

HT/(NT − (k + g + h + 1)).

(g) Var
[
Θ̂HT

]
= σ̂2

u∗
HT
(V∗′PAHT V∗)−1.

For the two-way Hausman and Taylor model considered in (1), OLS is biased and in-
consistent, while the two-way FE estimator which wipes out the intercept and the individual
and time effects is consistent. The weakness of the fixed-effects estimator is that it also wipes
out Z′

i s and W′
t s, and therefore cannot estimate γ and δ. The two-way RE estimator is biased

and inconsistent under the correlated random-effects two-way model of Hausman and
Taylor. The two-way HT estimator is efficient under this model. In this case, the two-way
pretest estimator performs the Hausman test for two-way FE versus two-way RE proposed
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by Kang (1985) and selects the two-way RE if the null hypothesis is not rejected. It then
selects the two-way HT if it passes a second Hausman test based on two-way FE versus
two-way HT. If this is rejected, the pretest selects the two-way FE estimator.2

In empirical applications, the two tests should be used successively, as shown in
Figure 1. After calculating the TWFE (β̃w), TWRE (Θ̂ f gls) and TWHT (Θ̂HT) estimators,

the first test is the Hausman test defined by Ĥ = q̂′
(

var(β̃w)− var(β̂ f gls)
)−1

q̂ , where

q̂ = β̂ f gls − β̃w, and β̂ f gls is a subset of Θ̂ f gls. Under H0 (none of the individual effects
or time effects are correlated with the regressors), Ĥ ∼ χ2

k , and one chooses the efficient
estimator TWRE. If this test is rejected, we use the over-identification test (called the

Hausman–Taylor test in Figure 1) obtained by computing m̂ = q̂′
(

var(β̃w)− var(β̂HT)
)⊖

q̂,

where q̂ = β̂HT − β̃w, with β̂HT representing a subset of Θ̂HT , and ⊖ is the symbol of the
generalized inverse. Under H0, m̂ ∼ χ2

l with l = 2k1 − g2 − h2, and the efficient estimator
TWHT is chosen. If the second test is rejected, the TWFE estimator is selected.

Estimation of β̃w, Θ̂ f gls, Θ̂HT

First Hausman test based on Ĥ

Efficient estimator under the
null: TWRE (Θ̂ f gls)

Second test:
Hausman–Taylor test
based on m̂

Efficient estimator under
the null: TWHT (Θ̂HT)

Select TWFE (β̃w) when
the null is rejected

Do not reject Reject

Do not reject Reject

Figure 1. Pretest estimator.

The pretest estimator may be written as

Θ̂pre = I(0,c1)
(Ĥ)Θ̂ f gls + I[c1,∞)(Ĥ)×

[
I(0,c2)

(m̂)Θ̂HT + I[c2,∞)(m̂)β̃w

]
, (3)

where I(0,c1)
(Ĥ) and I[c1,∞)(Ĥ) are indicator functions that take the values I(0,c1)

(Ĥ) = 1
and I[c1,∞)(Ĥ) = 0 if Ĥ in the first Hausman test falls within the interval 0 and c1 where
c1 is the 5% critical value for the χ2

k statistics. This also means that I(0,c1)
(Ĥ) = 0 and

I[c1,∞)(Ĥ) = 1 when Ĥ > c1. Likewise, I(0,c2)
(m̂) and I[c2,∞)(m̂) are indicator functions that

take the values I(0,c2)
(m̂) = 1 and I[c2,∞)(m̂) = 0 if m̂ in the second Hausman–Taylor test

falls within the interval 0 and c2 where c2 is the 5% critical value for the χ2
l statistics. This

also means that I(0,c2)
(m̂) = 0 and I[c2,∞)(m̂) = 1 when m̂ > c2. It is clear from (3) that

the pretest estimator is a function of the data, the hypothesis and the significance level of
the two Hausman tests. As (3) is the sum of three parts, all three composed of products
of non-independent random variables, and as underlined by Judge et al. (1978, 1988) and
Giles and Giles (1993), to mention a few, the specification of the pretest estimator highlights
the difficulty of deriving its sampling properties. And the choice of the significance level
(here, 5%) of the χ2 tests has a crucial role to play both in determining the proportion of use
of each estimator and in determining the sampling performance of the pretest estimator.
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3. Monte Carlo Results

Following Baltagi et al. (2003), we generalize the Monte Carlo design from the one-way
to the two-way model:

yit = α + X1,itβ1 + X2,itβ2 + γ1Z1i + γ2Z2i + δ1W1t + δ2W2t + µi + λt + νit (4)

where X1,it = [X11,it, X12,it] , β′
1 = [β11,β12]. X1,it is (1 × k1) (here, k1 = 2). Z2i is (1 × g2)

(here, g2 = 1). Z1i and Z2i are the time-invariant variables described below. W1t and W2t
are the individual-invariant variables described below.

In our experiments, we set α = 5, β1 = β2 = γ1 = γ2 = δ2 = 1, µi ∼ I IN(0, σ2
µ),

λt ∼ I IN(0, σ2
λ) and νit ∼ I IN(0, σ2

ν ) independent of each other. The total variance across
experiments is fixed at σ2 = σ2

µ + σ2
λ + σ2

ν = 3. The proportion of variance due to individual
effects ρ1 = σ2

µ/σ2 as well as the proportion of variance due to time effects ρ2 = σ2
λ/σ2 is var-

ied over the set (0.1, 0.2, 0.4, 0.6, 0.8) such that (1 − ρ1 − ρ2) is always positive. We let ρ3 =
σ2

ν /σ2 = 0.1, i.e., σ2
ν = 0.3. Then, (ρ1, ρ2) = ((0.1, 0.8), (0.2, 0.7), (0.4, 0.5), (0.6, 0.3), (0.8, 0.1)),

to which we add the particular case (ρ1, ρ2) = (0, 0) with σ2
ν = σ2 = 3. The (N, T) values

considered are (300, 100), (200, 100) and (300, 200). The number of replications is 1000.
The X1 variables are generated following Nerlove (1971). For these series, the ratios of

the between-individual (Bxx), between-time (Cxx) and the within-individual–time (Wxx)
variabilities relative to the total variability are roughly 71%, 23% and 6%. Maddala and
Mount (1973, p. 326) warned that for the two-way model, Wxx has to be small with respect
to Bxx and Cxx; otherwise, the random-effects GLS would be equivalent to the fixed effects
model, and the errors in the estimation of the variance components would not be of much
consequence for estimating the slope coefficients. The X1,it variables are not correlated with
µi and λt, and are generated as follows:

X11,it = 0.5X11,i,t−1 + φi + ϕt + ζit

X12,i,t = 0.5X12,i,t−1 + ϑi + τt + ξit (5)

where φi, ϑit, ϕt and τt are uniform on [−4, 4], ζit and ξit are uniform on [−2, 2], and Z1i
and W1t are uniform on [−3, 3].

We focus on the following two designs:
Case 1—A two-way Hausman–Taylor world, where X2 is correlated with µi and λt

by design, and Z2i is correlated with µi as well as X11,it, X12,it, X2,it. Also, W2t is correlated
with λt as well as X11,it, X12,it, X2,it.

X2,it = 0.5X2,i,t−1 + µi + λt + ϑit

Z2i = µi + φi + ϑi + χi

W2t = λt + ϕt + τt + ψt (6)

In the above equations, χi and ψt are uniform on [−4, 4], and ϑit is uniform on [−2, 2]. Z2i
is correlated with X11,it by the common term φi, with X12,i,t by the common term ϑi and
with X2,it by the common term µi. W2t is correlated with X11,it by the common term ϕt,
with X12,i,t by the common term τt and with X2,it by the common term λt.

Case 2—A two-way random-effects world, where Z2i and W2t are not correlated with
µi and λt, but are still correlated with X11,it and X12,it:

X2,it = 0.5X2,i,t−1 + κi + ϱt + ϑit

Z2i = φi + ϑi + χi

W2t = ϕt + τt + ψt (7)

where κi and ϱt are uniform on [−4, 4] and where X2,it is not correlated with µi and λt.
Table 1 shows the choice of the pretest estimator for various values of (ρ1, ρ2) in a

Hausman–Taylor-type world when N = 300 and T = 100. For example, when (ρ1, ρ2) =
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(0, 0), out of 1000 replications, the pretest estimator chose the RE estimator in 946 repli-
cations, the HT estimator in 24 replications and the FE estimator in 30 replications. For
(ρ1, ρ2) ̸= (0, 0), almost all replications chose the HT estimator. None selected RE, and
between 9 and 14 replications selected FE. Note that as we vary (ρ1, ρ2), not only does the
proportion of the total variance due to the random individual and time effects vary, but so
does the extent of correlation between the regressors and the individual and time effects.
For example, when (ρ1, ρ2) = (0.2, 0.7), the mean correlation between X2,it and µi is 0.59.
This rises to 0.84 when (ρ1, ρ2) = (0.6, 0.3). In contrast, the mean correlation between X2,it
and λt drops from 0.54 to 0.29 for these two cases. The mean correlation between Z2i and
µi is 0.19 and 0.32, and the mean correlation between W2t and λt is 0.34 and 0.23 for these
two cases. We focus on the coefficients of the endogenous regressors X2, Z2 and W2, i.e., β2,
γ2 and δ2. The results of the other coefficients are available upon request from the authors.
Table 1 reports the bias and RMSE (in %). When (ρ1, ρ2) = (0, 0), OLS performs well in
terms of bias and RMSE for all coefficients. When (ρ1, ρ2) ̸= (0, 0), HT, pretest and FE are
the best in terms of RMSE for β2, with HT and pretest performing the best for γ2 and δ2.
Table 1 also reports the frequency of rejections in 1000 replications for β2 = 1, γ2 = 1 and
δ2 = 1. This is assessed at the 5% significance level. Since the null hypothesis is always true,
this represents the empirical size of the test. As expected, OLS performs badly, rejecting
the null hypothesis when true in 99 to 100 percent of the cases, when (ρ1, ρ2) ̸= (0, 0). The
same is true for the RE estimator since endogeneity is present. On the other hand, HT
performs well, giving a size close to the 5% level. FE performs well for β2, but it cannot
estimate γ2 and δ2. The pretest performs well, with a size between 5% and 6% for β2 and
γ2 and between 5% and 7% for δ2.

Table 2 shows the choice of the pretest estimator for various values of (ρ1, ρ2) in a
random effects-type world when N = 300 and T = 100. For example, when (ρ1, ρ2) =
(0.4, 0.5) out of 1000 replications, the pretest estimator is an RE estimator in 951 replications
and an HT estimator in 49 replications. Now, there is no correlation between the regressors
and the random individual and time effects. Table 2 also reports the bias and RMSE (in %)
for β2, γ2 and δ2. When (ρ1, ρ2) = (0, 0), RE and OLS perform the best in terms of RMSE
for all coefficients. The pretest is a distant third, while HT and the fixed-effects model
perform poorly. When (ρ1, ρ2) ̸= (0, 0), in terms of RMSE, OLS performs poorly for all
coefficients. RE is best, followed by the pretest and FE (only for β2), and then, HT. For the
frequency of rejections in 1000 replications for β2 = 1, γ2 = 1 and δ2 = 1 in an RE world,
OLS is the only estimator that performs badly, rejecting the null hypothesis when true in a
large percentage of cases, especially when (ρ1ρ2) are large. This is as large as 84% for β2,
81% for γ2 and 88% for δ2.

Tables 3 and 4 consider the two-way Hausman and Taylor world and two-way RE
world for N = 200 and T = 100, so that N/T = 2, rather than 3 in the case of Tables 1 and 2.
Comparing Tables 3 and 4 to Tables 1 and 2, respectively, T remains fixed at 100, while N
decreases from 300 to 200. Tables 5 and 6 fix N at 300 and double T from 100 to 200. By
and large, similar rankings in terms of RMSE occur as described in Tables 1 and 2 but with
different magnitudes.

As expected, holding T fixed at 100 and increasing N from 200 to 300, the RMSE of β2
decreases for both the HT and RE worlds. In Table 3, the RMSE of the HT estimator of β2 is
of the order 0.296 to 0.300 for (ρ1, ρ2) ̸= (0, 0). This magnitude drops to the order 0.234 to
0.235 in Table 1 as N increases from 200 to 300, holding T fixed at 100. This RMSE range
drops even further to (0.171, 0.172) in Table 5 for N = 300 and T = 200, i.e., increasing both
N and T. A similar decline in RMSE occurs for γ2 for the HT estimator. The RMSE range is
(1.037, 2.817) in Table 1 (N = 300, T = 100), compared to (1.272, 3.414) in Table 3 (N = 200,
T = 100) and (1.004, 2.792) in Table 5 (N = 300, T = 200).
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Table 1. Hausman–Taylor world. Count, bias, RMSE, 5% size, N = 300, T = 100, 1000 replications.

Count Within β2
(ρ1, ρ2) RE HT FE bias rmse size

1 (0.0, 0.0) 946 24 30 0.032 0.755 5
2 (0.1, 0.8) 10 979 11 0.004 0.235 5
3 (0.2, 0.7) 0 991 9 0.004 0.235 5
4 (0.4, 0.5) 0 986 14 0.004 0.235 5
5 (0.6, 0.3) 0 988 12 0.004 0.234 5
6 (0.8, 0.1) 0 989 11 0.004 0.234 5

OLS RE
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 0.032 0.754 5 0.007 0.359 5 -0.005 0.288 5 0.032 0.754 5 0.007 0.359 4 -0.005 0.288 4
2 44.926 44.953 100 4.166 4.276 100 8.996 9.224 100 19.410 19.423 100 2.832 2.908 100 11.238 11.497 100
3 44.370 44.387 100 4.147 4.249 100 8.194 8.421 100 27.408 27.419 100 4.022 4.076 100 9.495 9.734 99
4 43.411 43.418 100 4.224 4.306 100 6.457 6.687 100 34.561 34.569 100 5.107 5.142 100 7.028 7.253 94
5 42.513 42.516 100 4.426 4.482 100 4.546 4.770 100 37.857 37.863 100 5.623 5.650 100 4.929 5.135 86
6 41.590 41.592 100 4.745 4.776 100 2.445 2.610 99 39.752 39.757 100 5.922 5.946 100 2.878 3.015 83

Hausman-Taylor Pretest
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 0.032 0.756 5 -0.048 1.102 4 -0.025 0.801 4 0.032 0.755 5 0.003 0.494 5 -0.009 0.371 5
2 0.006 0.235 5 0.007 1.037 4 -0.038 5.819 6 0.182 1.752 6 0.050 1.096 5 0.048 5.924 7
3 0.006 0.235 5 0.012 1.432 5 -0.036 5.438 6 0.006 0.235 5 0.015 1.432 5 -0.060 5.443 6
4 0.006 0.235 5 0.019 2.002 5 -0.030 4.587 6 0.006 0.235 5 0.020 2.011 5 -0.048 4.593 6
5 0.006 0.234 5 0.025 2.444 6 -0.023 3.548 6 0.006 0.234 5 0.040 2.444 6 -0.020 3.552 6
6 0.006 0.234 5 0.029 2.817 5 -0.014 2.053 6 0.006 0.234 5 0.045 2.810 5 -0.020 2.057 6

bias ×10−2, rmse ×10−2.
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Table 2. Random-effects world. Count, bias, rmse, 5% size, N = 300, T = 100, 1000 replications.

Count Within β2
(ρ1, ρ2) RE HT FE bias rmse size

1 (0.0, 0.0) 949 27 24 0.025 0.737 5
2 (0.1, 0.8) 954 46 0 0.005 0.229 4
3 (0.2, 0.7) 951 48 1 0.005 0.229 4
4 (0.4, 0.5) 951 49 0 0.005 0.229 4
5 (0.6, 0.3) 948 52 0 0.005 0.229 4
6 (0.8, 0.1) 944 56 0 0.005 0.229 4

OLS RE
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 -0.008 0.182 4 0.008 0.360 5 -0.005 0.288 5 -0.007 0.182 4 0.007 0.360 4 -0.005 0.288 4
2 -0.044 1.468 82 -0.014 2.403 78 -0.048 4.140 88 0.004 0.219 4 -0.003 0.834 5 -0.032 4.019 6
3 -0.045 1.479 83 -0.019 2.489 78 -0.048 3.891 86 0.004 0.224 4 -0.002 1.158 6 -0.030 3.760 6
4 -0.045 1.494 82 -0.027 2.651 79 -0.046 3.334 85 0.004 0.227 4 0.000 1.620 5 -0.025 3.178 6
5 -0.042 1.505 84 -0.033 2.804 80 -0.041 2.660 82 0.004 0.228 4 0.001 1.977 6 -0.019 2.463 6
6 -0.036 1.510 84 -0.038 2.949 81 -0.033 1.733 76 0.004 0.227 4 0.002 2.279 5 -0.010 1.426 6

Hausman-Taylor Pretest
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 0.021 0.718 4 -0.049 1.101 4 -0.026 0.806 4 0.004 0.331 6 0.007 0.503 5 -0.006 0.375 5
2 0.005 0.229 4 0.005 1.037 4 -0.043 5.742 6 0.005 0.220 4 -0.007 0.878 6 -0.089 4.132 6
3 0.005 0.229 4 0.010 1.433 5 -0.041 5.372 6 0.004 0.224 4 -0.008 1.216 6 -0.061 3.879 6
4 0.005 0.229 4 0.017 2.004 5 -0.035 4.543 6 0.004 0.226 4 -0.008 1.698 6 -0.062 3.304 6
5 0.005 0.229 4 0.023 2.446 6 -0.027 3.524 6 0.004 0.227 4 -0.007 2.065 6 -0.053 2.570 6
6 0.005 0.229 4 0.027 2.820 6 -0.016 2.046 5 0.004 0.227 4 -0.016 2.363 6 -0.009 1.518 6

bias ×10−2, rmse ×10−2.
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Table 3. Hausman–Taylor world. Count, bias, rmse, 5% size, N = 200, T = 100, 1000 replications.

Count Within β2
(ρ1, ρ2) RE HT FE bias rmse size

1 (0.0, 0.0) 963 11 26 0.031 0.953 6
2 (0.1, 0.8) 38 947 15 0.031 0.299 5
3 (0.2, 0.7) 0 986 14 0.031 0.299 5
4 (0.4, 0.5) 0 987 13 0.031 0.298 5
5 (0.6, 0.3) 0 995 5 0.031 0.296 5
6 (0.8, 0.1) 0 988 12 0.031 0.295 5

OLS RE
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 0.029 0.950 6 0.017 0.436 4 -0.009 0.348 4 0.030 0.950 6 0.018 0.437 3 -0.009 0.348 4
2 44.928 44.956 100 4.200 4.321 100 9.093 9.311 100 19.345 19.362 100 2.849 2.960 100 11.369 11.612 100
3 44.361 44.379 100 4.177 4.290 100 8.289 8.507 100 27.313 27.328 100 4.046 4.123 100 9.619 9.846 99
4 43.389 43.397 100 4.249 4.339 100 6.545 6.764 100 34.465 34.476 100 5.138 5.189 100 7.134 7.350 96
5 42.482 42.485 100 4.446 4.511 100 4.619 4.833 100 37.771 37.779 100 5.658 5.697 100 5.014 5.214 87
6 41.549 41.551 100 4.763 4.802 100 2.492 2.654 99 39.676 39.682 100 5.955 5.988 100 2.931 3.069 81

Hausman-Taylor Pretest
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 0.031 0.953 6 0.059 1.360 5 0.025 0.987 5 0.030 0.950 6 0.031 0.523 4 -0.001 0.399 4
2 0.033 0.300 5 -0.050 1.272 5 0.082 5.680 6 0.712 3.491 9 0.131 1.431 9 0.525 6.070 10
3 0.034 0.299 5 -0.073 1.745 5 0.078 5.311 6 0.033 0.299 5 -0.072 1.749 5 0.064 5.325 6
4 0.034 0.298 5 -0.104 2.430 5 0.070 4.488 6 0.033 0.298 5 -0.106 2.432 5 0.080 4.487 6
5 0.033 0.297 5 -0.129 2.962 6 0.058 3.480 6 0.033 0.297 5 -0.125 2.962 6 0.056 3.485 6
6 0.033 0.296 5 -0.149 3.414 5 0.037 2.025 5 0.033 0.296 5 -0.138 3.424 5 0.033 2.028 5

bias ×10−2, rmse ×10−2.
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Table 4. Random-effects world. Count, bias, rmse, 5% size, N = 200, T = 100, 1000 replications.

Count Within β2
(ρ1, ρ2) RE HT FE bias rmse size

1 (0.0, 0.0) 946 26 28 0.028 0.926 5
2 (0.1, 0.8) 935 64 1 0.026 0.295 5
3 (0.2, 0.7) 937 62 1 0.026 0.295 5
4 (0.4, 0.5) 940 58 2 0.026 0.295 5
5 (0.6, 0.3) 941 59 0 0.026 0.295 5
6 (0.8, 0.1) 948 50 2 0.026 0.295 5

OLS RE
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 0.007 0.228 5 0.017 0.436 4 -0.009 0.347 4 0.008 0.228 5 0.017 0.437 3 -0.009 0.348 4
2 0.064 1.533 76 0.002 2.582 74 0.131 4.131 88 0.026 0.277 4 -0.025 0.983 5 0.107 3.935 6
3 0.069 1.574 77 0.003 2.734 76 0.131 3.893 88 0.027 0.285 5 -0.037 1.360 4 0.100 3.682 6
4 0.073 1.652 79 0.005 3.013 78 0.125 3.363 86 0.027 0.289 5 -0.053 1.900 5 0.084 3.114 5
5 0.073 1.725 79 0.006 3.266 80 0.113 2.724 83 0.028 0.290 5 -0.066 2.317 5 0.065 2.416 5
6 0.067 1.793 78 0.007 3.499 81 0.090 1.867 74 0.028 0.290 5 -0.076 2.669 5 0.038 1.405 5

Hausman-Taylor Pretest
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 0.028 0.894 5 0.058 1.363 5 0.021 0.995 5 -0.006 0.469 7 0.026 0.611 4 -0.003 0.463 4
2 0.026 0.295 5 -0.053 1.270 5 0.116 5.670 5 0.026 0.282 5 -0.039 1.035 5 0.091 3.996 6
3 0.026 0.295 5 -0.075 1.742 5 0.108 5.305 5 0.027 0.287 5 -0.059 1.421 4 0.061 3.755 6
4 0.026 0.295 5 -0.107 2.422 6 0.091 4.487 5 0.028 0.290 5 -0.075 1.970 5 0.069 3.222 6
5 0.027 0.295 5 -0.132 2.949 5 0.070 3.482 6 0.027 0.291 5 -0.070 2.394 5 0.074 2.514 6
6 0.027 0.295 5 -0.153 3.396 5 0.040 2.028 5 0.027 0.290 5 -0.081 2.715 5 0.045 1.499 6

bias ×10−2, rmse ×10−2.
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Table 5. Hausman–Taylor world. Count, bias, rmse, 5% size, N = 300, T = 100, 1000 replications.

Count Within β2
(ρ1, ρ2) RE HT FE bias rmse size

1 (0.0, 0.0) 959 19 22 0.012 0.527 4
2 (0.1, 0.8) 7 985 8 0.000 0.172 5
3 (0.2, 0.7) 0 993 7 0.000 0.172 5
4 (0.4, 0.5) 0 989 11 0.000 0.172 5
5 (0.6, 0.3) 0 985 15 0.000 0.171 5
6 (0.8, 0.1) 0 980 20 0.000 0.171 4

OLS RE
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 0.012 0.525 4 0.000 0.261 6 -0.009 0.208 6 0.012 0.525 4 0.000 0.261 6 -0.009 0.207 6
2 44.748 44.761 100 4.218 4.279 100 9.076 9.181 100 19.285 19.297 100 2.824 2.904 100 11.348 11.462 100
3 44.197 44.205 100 4.186 4.242 100 8.277 8.382 100 27.258 27.269 100 4.017 4.073 100 9.597 9.705 100
4 43.245 43.248 100 4.238 4.284 100 6.539 6.646 100 34.402 34.409 100 5.098 5.134 100 7.116 7.220 100
5 42.349 42.351 100 4.417 4.452 100 4.616 4.721 100 37.700 37.706 100 5.606 5.634 100 5.000 5.097 100
6 41.424 41.425 100 4.717 4.740 100 2.487 2.567 100 39.602 39.606 100 5.895 5.918 100 2.922 2.988 99

Hausman-Taylor Pretest
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 0.012 0.527 4 -0.031 0.765 6 -0.026 0.547 5 0.012 0.525 4 -0.006 0.366 7 -0.012 0.270 7
2 0.001 0.172 5 -0.049 1.004 5 0.077 3.918 5 0.121 1.443 5 -0.027 1.044 6 0.136 4.053 5
3 0.001 0.172 5 -0.062 1.404 5 0.072 3.663 5 0.001 0.172 5 -0.065 1.406 5 0.065 3.668 5
4 0.001 0.172 4 -0.080 1.976 5 0.061 3.094 4 0.001 0.172 4 -0.075 1.979 5 0.056 3.093 4
5 0.001 0.171 4 -0.094 2.418 5 0.047 2.395 5 0.001 0.171 4 -0.093 2.420 5 0.057 2.397 5
6 0.001 0.171 4 -0.105 2.792 5 0.024 1.386 4 0.001 0.171 4 -0.094 2.785 5 0.028 1.391 4

bias ×10−2, rmse ×10−2.
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Table 6. Random-effects world. Count, bias, rmse, 5% size, N = 300, T = 100, 1000 replications.

Count Within β2
(ρ1, ρ2) RE HT FE bias rmse size

1 (0.0, 0.0) 945 24 31 0.014 0.519 4
2 (0.1, 0.8) 949 49 2 -0.001 0.169 4
3 (0.2, 0.7) 947 51 2 -0.001 0.169 4
4 (0.4, 0.5) 955 45 0 -0.001 0.169 4
5 (0.6, 0.3) 959 41 0 -0.001 0.169 4
6 (0.8, 0.1) 960 39 1 -0.001 0.169 4

OLS RE
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 -0.003 0.133 4 0.001 0.261 6 -0.009 0.207 6 -0.004 0.133 4 0.001 0.261 6 -0.009 0.207 5
2 -0.039 1.102 82 -0.006 1.918 80 0.150 2.880 88 -0.002 0.165 4 -0.045 0.824 4 0.130 2.749 6
3 -0.045 1.161 83 -0.025 2.114 82 0.139 2.711 88 -0.002 0.167 4 -0.059 1.155 5 0.122 2.572 6
4 -0.051 1.269 84 -0.053 2.453 83 0.116 2.342 88 -0.002 0.168 5 -0.079 1.627 5 0.103 2.174 6
5 -0.055 1.366 86 -0.077 2.746 85 0.088 1.907 85 -0.002 0.168 4 -0.094 1.990 5 0.079 1.685 6
6 -0.056 1.453 86 -0.101 3.006 88 0.048 1.342 76 -0.002 0.168 5 -0.107 2.297 5 0.045 0.976 6

Hausman-Taylor Pretest
β2 γ2 δ2 β2 γ2 δ2

bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size bias rmse size
1 0.015 0.511 4 -0.029 0.765 5 -0.026 0.548 5 0.006 0.255 6 -0.001 0.358 7 -0.010 0.265 6
2 -0.001 0.169 4 -0.049 1.002 5 0.092 3.906 5 -0.002 0.165 4 -0.042 0.848 5 0.118 2.803 5
3 -0.001 0.169 4 -0.062 1.399 5 0.085 3.654 5 -0.001 0.167 4 -0.056 1.187 5 0.103 2.613 5
4 -0.001 0.169 4 -0.081 1.966 5 0.071 3.089 5 -0.001 0.168 5 -0.082 1.669 5 0.079 2.239 5
5 -0.001 0.169 4 -0.095 2.403 5 0.053 2.394 4 -0.001 0.169 4 -0.107 2.034 5 0.062 1.761 6
6 -0.001 0.169 4 -0.106 2.772 5 0.026 1.387 4 -0.002 0.168 5 -0.113 2.328 5 0.031 1.030 6

bias ×10−2, rmse ×10−2.
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Similarly, for the RE estimator, the RMSE range for β2 decreases from (0.277, 0.290)
in Table 4 (for N = 200, T = 100) to (0.219, 0.227) in Table 2 (for N = 300, T = 100), and
decreases further to (0.165, 0.168) in Table 6 (for N = 300, T = 200). A similar decline
in the RMSE happens for γ2 for the RE estimator. The RMSE range is (0.834, 2.279) in
Table 2 (N = 300, T = 100), compared to (0.983, 2.669) in Table 4 (N = 200, T = 100), and
(0.824, 2.297) in Table 6 (N = 300, T = 200). For δ2, the RMSE performance improves as
the N/T ratio declines. For the HT estimator, it is (2.053, 5.819) for Table 1 (N/T = 3) and
drops to (2.025, 5.680) for Table 3 (N/T = 2) and (1.386, 3.918) for Table 5 (N/T = 1.5).
For the RE estimator, it is (1.426, 4.019) for Table 2 (N/T = 3) and drops to (1.405, 3.935)
for Table 4 (N/T = 2) and (0.976, 2.749) for Table 6 (N/T = 1.5).3

In summary, as in the one-way panel model, the OLS standard errors are biased
and yield misleading inferences under both the two-way RE and HT worlds. RE, FE, HT
and pretest yield the required 5% size under both designs for all values of (ρ1, ρ2). As
expected, the RE estimator yields correct inference under a two-way RE world, but leads to
misleading inference under a two-way HT world. In terms of bias, RMSE and inference,
the pretest estimator is a viable alternative to two-way FE, RE and HT and should be
considered in empirical panel applications.
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Notes
1 For an extension of the one-way Hausman and Taylor model to multidimensional panels, see Balazsi et al. (2017).
2 With large T panels, one may be concerned with serial correlation in the disturbances, and the Hausman and Taylor two-way

estimator has to be modified to deal with this serial correlation.
3 These results corroborate assumptions 1 and 2 and theorem 2 of Wyhowski (1994) and in particular the important role of the

constraint of a bounded N/T for asymptotic distributions. We also performed some robustness checks for alternative (N, T)
combinations and alternative data generation processes for the exogenous and endogenous regressors.
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