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1. Introduction

Many empirical studies deal with fractional response data that are bounded in the [0,1] interval and,
in addition, contain a significant amount of observations at the boundary values of zero or one. In their
seminal paper, Papke and Wooldridge (1996) [1] propose a one-part fractional response model that
extends the generalized linear model (GLM) literature from statistics.1 In particular, they introduce
a quasi-maximum likelihood (QMLE) approach that only requires the correct specification of the
conditional mean to consistently estimate one-part fractional response models. In this framework, there
is no need for an ad hoc transformation of the boundary values of zero or one.

As an alternative to this QMLE approach, scholars have also proposed to assume a beta distribution
and estimate the resulting model via maximum likelihood (see, e.g., Paolino 2001 [4], Kieschnick and
McCullough 2003 [5], Ferrari and Cribari-Neto 2004 [6]). The beta distribution is defined in the [0,1]
interval, and its two (positive) shape parameters allow for very flexible functional forms.

If the data at hand contain a large share of boundary values, the econometric literature alternatively
offers two-part models that assume a different data generating process for the zeros or ones, respectively
(see, e.g., Mullahy 1986 [7], Lambert 1992 [8], Cameron and Trivedi 2005 [9], Wooldridge 2002 [10],
Problem 19.8, Ramalho and da Silva 2009 [11], 2013 [12], Ramalho et al. 2011 [3] and Oberhofer and
Pfaffermayr 2012 [13]). Based on Papke and Wooldridge’s (1996) [1] binomial log-likelihood approach,
these two-part models typically combine a logit or probit model for the boundary value with the QMLE
for the remaining non-boundary observations. In the beta regression framework, two-part models are
proposed by, e.g., Cook, Kieschnick and McCullough (2008) [14] and Ospina and Ferrari (2012) [15].
Cook et al. (2008) [14] model the probability of zeros with the cdf of the logistic function and formulate
a beta regression model for the continuous portion of their distributions. Ospina and Ferrari (2012) [15]
discuss various different link functions, such as, e.g., the logit and probit links, respectively, that allow
one to model the discrete part of a general class of mixed continuous-discrete distributions, which apply
the beta distribution to the continuous part.

The selection of one of the competing (one-part or two-part) models for the data at hand is crucial for
the reliability of the obtained results. If one, for example, neglects the existence of mass points in the data
and simply estimates one-part models in the spirit of Papke and Woolridge (1996) [1], one may obtain
misspecified conditional mean functions. In such a situation, the estimates of the one-part model would
be biased and inconsistent. So far, the literature typically applies a P test for non-nested hypotheses,
as described in Davidson and MacKinnon (1981) [16] and Ramalho, Ramalho and Murteira (2011) [3],
in order to discriminate between the competing one-part and two-part fractional response models.

In many empirical applications, the fractional response variable is defined as the ratio of integers,
and hence, the group size is known. The share of employees participating in a voluntary pension plan
constitutes such a case (see Papke and Wooldridge 1996) [1]. In their working paper version, Papke and
Wooldridge (1993) [17] explicitly discuss the case of known group size in the context of their QMLE

1 In a more recent paper, Papke and Wooldridge (2008) [2] discuss fractional response models for panel data.
Ramalho et al. (2011) [3] provide a comprehensive up-to-date overview on the econometrics of fractional
response models.
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approach. Accordingly, this additional group size information can explicitly be used for the empirical
analysis. Starting from this observation, we propose two-part models that exploit information on the
group size and, additionally, nest their one-part alternatives following the approach suggested by Lin and
Schmidt (1984) [18] and Mullahy (1986) [7]. This nesting approach allows one to directly test between
the competing one- and two-part models for fractional response data that are defined as ratios of integers.
In this regard, the paper presents alternative testing procedures to the already available non-nested P test.

In line with the strands of the literature discussed above, the first two-part model is based on the
binomial likelihood framework, while the second one additionally allows for overdispersion in the data
by assuming a beta-binomial likelihood function. This latter model, for example, is able to account for
correlated individual zero and one decisions that could be triggered by, e.g., group-specific random
effects. Applying the maximum likelihood framework to both models, this paper derives explicit
formulas for the Wald and the LM tests, respectively. We apply the different estimators to firm-level data
on 401(k) pension plan participation rates as used in Papke and Wooldridge (1996) [1] and document
that participation decisions are highly correlated within firms.

The remainder of the paper is organized as follows: Section 2 presents the nested two-part models
for fractional response variables that are defined as a ratio of integers. Section 3 offers an empirical
application for 401(k) plan participation rates, and in Section 4 we provide some concluding remarks. In
Appendix A and B, we derive the proposed LM and Wald tests, respectively, while Appendix C provides
the analytical expressions for the calculation of marginal effects in the proposed two-part models.

2. Two-Part Fractional Response Models for Responses Defined as Ratios of Integers

2.1. The Binomial Two-Part Model

The typical fractional response model is based on the Bernoulli or binomial distribution. Assume there
are i = 1, . . . , N groups (e.g., firms) in which j = 1, . . . , ni units (workers) are confronted with a 0/1

decision (e.g., to participate in a voluntary pension plan). We focus on situations where the number
of units, ni, is observed as in Papke and Wooldridge (1993 [17], 1996 [1]) and assume that ni is
exogenously given, so that it is appropriate to condition on it. The probability that unit j in group i
opts for one (e.g., to participate in a voluntary pension plan) is denoted by θi, which is assumed to be
group-, but not unit-, specific. The number of units within a group choosing one is denoted by ki, and
the corresponding observed share (at the group level) is given by yi = ki

ni
with 0 ≤ yi ≤ 1 or ki = niyi,

respectively.2 Following Papke and Wooldridge (1996) [1], for such a set-up, the conditional expectation
of the fractional response variable yi is group-specific and can be specified as:

E(yi|xi, ni) = G(xiβ), i = 1, . . . , N (1)

where (the 1 × k vector) xi refers to a set of i-specific explanatory variables with the corresponding
parameter vector β. Typically, G(.) is a cumulative distribution function (cdf), such as the logistic

2 Note, in comparison to the fractional response model analyzed in Papke and Wooldridge (1996) [1], the individual
contributions to the likelihood, the estimated score and the estimated information matrix are all multiplied by ni in this
model (see also Papke and Wooldridge, 1993, [17], pp. 10–11).
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function G(z) = exp(z)/(1 + exp(z)), which maps z to the (0, 1) interval.3 In this case, the
group-specific contributions to the log likelihood can be written as:

ln(f(β; yi, xi)) = ni(yi ln(G(xiβ)) + (1− yi) ln(1−G(xiβ))) + const (2)

Following Wooldridge (2002, [10], Problem 19.8), Cameron and Trivedi (2005, [9], p. 680), Ramalho
and da Silva (2009 [11], 2013 [12]), Ramalho et al. (2011) [3] and Oberhofer and Pfaffermayr
(2012) [13], one may consider a two-part model to explicitly account for an excessive number of
boundary values. Here, we concentrate on the case of boundary values at one, but similar arguments
apply to the case of an excessive number of zeros. In contrast to the one-part model, the two-part
alternative assumes a different data generating process for the boundary values. For notational simplicity,
the explanatory variables in the first and second part of the model are assumed to be the same, but in
general, they could differ. Formally, this two-part model can be defined as in Cameron and Trivedi
(2005 [9], pp. 545, 680) and is given by:

f(yi|xi, ni) =

{
P1(ni, xi) if yi = 1 or ki = ni

(1− P1(ni, xi))
P2(ki,xi)

1−P2(ni,xi)
if yi < 1 or ki < ni

(3)

where P1(ni, xi) = P1(Ki = ni, xi) refers to the first part of the model and P2(ki, xi) = P2(Ki = ki, xi),
ki = 1, ..., ni to its second part. Under independent unit decisions, Ki is assumed to be distributed as
binomial with conditional probabilities:

P1(ni, xi) = θnii1

P2(niyi, xi) =

(
ni
niyi

)
θniyii2 (1− θi2)ni−niyi (4)

where for 0 < θi1 < 1 the probability of yi amounting exactly to one is given by θnii1 under P1(ni, xi) and
θnii2 under P2(ni, xi). For the nested one-part model, it holds that P2(ni, xi) = P1(ni, xi) or θi1 = θi2,
and f(yi|xi, ni) reduces to P2(ki, xi).

Under this two-part model, we specify the probability of observing a share of one by P1(ni, xi) = θnii1
assuming θi1 = G(xiγ). The second part of the model for values yi < 1 is based on the conditional
distribution:

f(yi|yi < 1, xi, ni) = (1− P1(ni, xi))
P2(ki, xi)

1− P2(ni, xi)

implying that the probability distribution f(yi|xi, ni) is divided by 1 − G(xiβ)ni to ensure that the
conditional probabilities sum up to one. The conditional mean of the two-part model, thus, is given
by4:

E(yi|xi, ni) = (1− P1(ni, xi))E(yi|yi < 1, xi, ni) + P1(ni, xi)

= 1−G(xiγ)ni

1−G(xiβ)ni
(G(xiβ)−G(xiβ)ni) +G(xiγ)ni (5)

3 See Ramalho et al. (2011 [3], 2013 [19]) for a comprehensive discussion on alternative functional forms for one-part and
two-part fractional response models.

4 In the case of zero boundary values the conditional mean of this two-part fractional response model modifies to:

E(yi|xi, ni) = P (yi > 0|xi, ni)E(yi|yi > 0, xi, ni) =
1− (1−G(xiγ))ni

1− (1−G(xiβ))ni
G(xiβ)
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Equation (5) shows that in case of γ = β, the conditional mean of this two-part model reverts to
the simple one-part formulation. The standard two-part literature typically uses a simplified version of
the conditional mean, which ignores the fact that the second part of the model also assigns a non-zero
probability to boundary values. For example, Ramalho and da Silva (2009, [11], p. 630) specify the
conditional mean E(yi|yi > 0, xi, ni) as G(xiβ).

Defining zi = 1 if yi = 1 and zero otherwise, the likelihood of the two part-model contains the
individual contributions:

ln(f(γ, β; yi, xi)) = (1− zi)[ni(yi ln(G(xiβ)) + (1− yi) ln(1−G(xiβ)))− ln(1−G(xiβ)ni)]

+(1− zi) ln(1−G(xiγ)ni) + zini ln(G(xiγ)) + constant (6)

Under this specification, maximum likelihood estimation is straight forward, since it separates into
the estimation of the model explaining P (yi = 1|xi, ni) using all observations and the estimation of
the fractional response model for the observations with yi < 1 only. In the following, we assume that
the distributions, upon which the one-part and two-part models are based, are correctly specified and
concentrate on maximum likelihood estimation.

The main advantage of the proposed two-part model is that it nests the one-part fractional response
model since, as demonstrated in Equations (5) and (6), under θnii1 = θnii2 (or equivalently, γ = β), the
two-part-model reverts to the one-part fractional response model.5 In the case of xi being the same for
the one-part and the two-part model and their parameters being equal under (γ = β), the two models
coincide and have the same likelihood functions. This hypothesis can easily be tested by an LM or a Wald
test of H0 : γ = β. The LM test only requires the estimation of the restricted one-part model and might
therefore be preferred. If one or both parts of the two-part model contain additional explanatory variables
denoted byw1i andw2i with parameter vectors φ1 and φ2, respectively, the underlyingH0 to test is γ = β,
φ1 = 0, φ2 = 0.6

In Appendix A1, we derive an LM test, which is based on the estimated parameters from the one-part
fractional response model that are indexed by OP . Similar to Mullahy (1986) [7], the LM test uses the
parametrization γ = β + δ and tests H0: δ = 0 vs. H0: δ 6= 0. It is easy to calculate and is given by:

LM = ŝ′δ,OP

(
A−1(β̂OP ) +

(
B(β̂OP )− A(β̂OP )

)−1
)
ŝδ,OP (7)

Thereby, ŝδ,OP =
∑N

i=1 Ĉiβ,OP (zi − G(xiβ̂OP )ni)x′i and Ĉiβ,OP = ni
1−G(xiβ̂OP )

1−G(xiβ̂OP )ni
. A(β̂OP ) =∑N

i=1 Ĉ
2
iβ,OP (1−G(xiβ̂OP )ni)G(xiβ̂OP )nix′ixi and B(β̂OP ) =

∑N
i=1 ni((1−G(xiβ̂OP )) ∗

G(xiβ̂OP ))x′ixi. Note, xi is defined as a 1 × k vector. Under standard assumptions, this LM test is
asymptotically distributed as χ2(k).

5 In a related setting, Lin and Schmidt (1984) [18] derive an LM test for testing a Tobit model against the more general
Cragg’s (1971) [20] two-part hurdle model under normality using a similar nesting hypothesis. Mullahy (1986) [7]
proposes LM and Hausman test statistics in order to discriminate between one- and two-part (hurdle) count data models.

6 In the quasi maximum likelihood framework, the literature commonly applies non-nested P tests to discriminate
between the one-part and two-part fractional response models. Following Davidson and MacKinnon (1981) [16] and
Ramalho et al. (2011) [3], the P test for the null hypothesis that the one-part model is the true one and the two-part model
is the alternative is based on an artificial regression. However, in their Propositions 4.1.2 and 4.3.2, Gourieroux, Monfort
and Trognon (1984) [21] prove that under the nested parametrization, this test is not applicable.
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In the case that one is interested in estimating the more complex two-part model first, a Wald test
allows one to investigate the accuracy of this model. Appendix A2 derives the Wald test statistic that
uses the parameter estimates of this two-part model with index TP and is given by:

Ŵ = (γ̂TP − β̂TP )′
(
A(γ̂TP )−1 +

(
B(β̂TP )− A(β̂TP )

)−1
)−1

(γ̂TP − β̂TP ) (8)

which is likewise asymptotically distributed as χ2(k). When applying this Wald test, it is crucial to use
the weighted form of the likelihood or to assume ni = n. This is necessary, because the likelihood is not
defined for a group size of ni = 1.

In the case that both alternatives are estimated, simple and standard likelihood ratio (LR) tests are
also available for model selection. The advantage of the LM and Wald tests are that one only needs to
either estimate the one-part or the two-part model, respectively. In this regard, there might be no need for
estimating both models, in the case that the proposed LM or Wald tests do not reject the corresponding
null hypothesis.

2.2. The Beta-Binomial Two-Part Model

In many cases, the assumption of independent zero-one decisions of the individuals is not plausible,
as there may exist pronounced overdispersion in the data. To give an example, the presence of
group-specific random effects generates equicorrelation within groups (see, e.g., Heckman and Willis
1977 [22] and McCulloch and Searle 2001 [23]) and violates the independence assumption of the
binomial distribution made above. Following, e.g., Heckman and Willis (1977) [22], Prentice
(1986) [24], McCulloch and Searle (2001) [23] and Santos Silva and Murteira (2009) [25] for these
situations, a beta-binomial model forms a plausible and tractable alternative.7 While for such situations,
one still obtains consistent estimates using the Bernoulli-QMLE for the one-part model under H0 (see
Papke and Wooldridge 1996 [1]), the two-part model based on the binomial distribution (6) cannot be
estimated consistently when the beta-binomial is the true data generating process. As a result, the above
proposed Wald and LM tests are also invalid in this more general setting.

Following Prentice (1986) [24], we assume that the random variableKi is distributed as beta-binomial
taking values ki = niyi with probabilities:

P2(Ki = ki, xi) =

(
ni
ki

) 1∫
0

πki+ai2−1
i (1− πi)ni−ki+bi2−1 Γ(ai2+bi2)

Γ(ai2)Γ(bi2)
dπi

=

(
ni
ki

)
Γ(ki+ai2)Γ(ni−ki+bi2)

Γ(ni+ai2+bi2)
Γ(ai2+bi2)

Γ(ai2)Γ(bi2)
=

(
ni
ki

)ki−1∏
j=0

(ai2 + j)
ni−ki−1∏
j=0

(bi2 + j)

ni−1∏
j=0

(ai2 + bi2 + j)

7 The Dirichlet-multinomial distribution allows one to generalize the beta-binomial model for multivariate fractional
response data with more than two alternative choices (see, e.g., Johnson, Kemp and Kotz 2005 [26], Mullahy 2010 [27],
Murteira and Ramalho 2014 [28]).
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This distribution results from a data generating process that is based on Ki|πi2 ∼ Bin(ni, πi2) and
πi2 ∼ Beta(ai2, bi2). In order to parametrize the model, we specify:

θi2 := E[πi|xi] = ai2
ai2+bi2

, ci = ai2 + bi2

or
ai2 = ciθi2, bi2 = ci(1− θi2), θi2 = exiβ

1+exiβ

This model introduces intra-group correlation and, therefore, allows for overdispersion in the data
(see Prentice 1986 [24] and McCulloch and Searle 2001 [23]). A model with group-specific random
effects that follow a Beta(ai2, bi2) distribution yields the same model structure (see McCulloch and
Searle 2001 [23]).

Letting Ki =
∑ni

j=1 Kij , where Kij are correlated Bernoulli-random variables that take the value one
with probability πi and πi ∼ Beta(ai2, bi2), the variance and covariance are given by:

V ar[Ki] = ni
aibi
c2i

+ ni (ni − 1) aibi
c2i (1+ci)

(9)

= niθi2(1− θi2)(1 + (ni − 1)ρ)

and:
Cov[Kij, Kil] = aibi

c2i (1+ci)
and ρ = corr[Kij, Kil] = 1

1+ci
(10)

respectively.8 For the boundary value Ki = ni, we specify P1(ni, xi) analogously and assume that:

P1(ni, xi) =
Γ (ni + ai1)

Γ (ni + ai1 + bi1)

Γ (ai1 + bi1)

Γ (ai1)
(11)

where ai1 = ciθi1, bi1 = ci(1 − θi1). For P1(ni), the nested specification is given by:
θi1 = exiγ

1+exiγ
= exi(β+δ)

1+exi(β+δ)
.

We impose the same parameter ci for P1(ni) and P2(ki), as a different value for P1(ni) remains
unidentified for zero-one dependent variables. Principally, the parameter ci can be made dependent on
explanatory variables xi.9 In this case, a convenient parametrization would be ci = (eziϑ − 1)/2, so that
ρ = 2

1+eziϑ
, where zi denotes the vector or explanatory variables for ci and ϑ the corresponding parameter

vector (see Prentice 1986 [24]). This parametrization guarantees that the coefficient of intra-group
correlation is restricted to the [0,1] interval.

Given the maximum likelihood estimates (see Appendix B for details) of the unconstrained model,
it is straight forward to use Wald or likelihood ratio (LR) tests for model discrimination between the
two-part and one-part models. The resulting H0 to test would again be H0 : γ = β or δ = 0 vs.
H1 : γ 6= β or δ 6= 0. An analytical LM test is infeasible in this context, as a simple closed form of the

8 Note, this model only allows for positive intra-group correlation, as one has to assume that ai > 0 and bi > 0. Prentice
(1986) [24] proposes a transformation of the beta-binomial distribution that is also able to handle negative intra-group
correlation.

9 In the empirical application in Section 3, we introduce one specification, where c depends on the matching rate, firm size
and the age of the pension plan. For further details, see Columns (7) and (8) in Table 1 and the corresponding discussion
in the text.
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expected Hessian of that model cannot be derived analytically under H0. However, in the case that one
prefers to apply LM-type tests, one can use the outer product of the first derivatives as the estimate of
the variance of the score.

The working paper version of this paper contains two small-scale Monte Carlo exercises, which reveal
that the herein proposed LM, Wald and LR tests are all properly sized and exhibit sufficient power.
Accordingly, these tests seem to be suitable for discriminating between one-part and two-part fractional
response models for dependent variables that are defined as ratios of integers. For further details on the
Monte Carlo exercises, see Oberhofer and Pfaffermayr (2014) [29].

3. An Empirical Application: The 401(k) Pension Plan Participation Rates

This section offers an application of the nested two-part fractional response models for fractional
responses defined as ratios of integers using 401(k) pension plan participation rate data that have also
been used by Papke and Wooldridge (1996) [1]. The application was coded using version 13 of Stata.
The data have been taken from the online archive of the Journal of Applied Econometrics [30]. The Stata
code is available from the authors upon request.

In order to compare our estimation results with the non-weighted one-part model proposed by Papke
and Wooldridge (1996) [1], we also replicate their results. Moreover, the beta-binomial model also
allows one to highlight that the 401(k) plan participation rates are characterized by non-negligible
intra-firm correlation. Finally, we document the usefulness of the proposed Wald, LM and LR tests
for discriminating between one-part and two-part fractional response models.

In their empirical application, Papke and Wooldridge (1996) [1] model the participation in 401(k)
pension plans using a sample of 4734 U.S. manufacturing firms. The dependent variable (PRATE) is
measured as the fraction of active 401(k) pension plan accounts relative to the overall number of eligible
employees, which amounts to one in 42.73 percent of all observations (i.e., 2023 firms). The vector
of covariates contains a firm’s matching rate (MRATE), the firms overall number of employees (log
(EMP)), the pension plan’s age (AGE), as well as an indicator variable (SOLE) that takes on the value
of one if the 401(k) pension plan is the only one offered by the firm. In their most general specification,
Papke and Wooldridge (1996) [1] include squared terms of the former three covariates in order to control
for additional non-linearities. Further details on different specifications and sub-sample results can be
found in Papke and Wooldridge (1996) [1].

Table 1 reports the parameter estimates for various different fractional response models. To start with,
Column (1) replicates the results from Column (4) of Table III in Papke and Wooldridge (1996) [1].
These results are based on the non-employment weighted QMLE estimator for the one-part fractional
response model. In Column (2), we apply the same QMLE estimator, but additionally weight the
observations by each firm’s number of employees. Columns (3) and (4) report the results from the
binomial two-part fractional response model. Thereby, Column (4) reports the restricted model results
where the parameters are the same in both parts of the model. Note, Column (4) contains the same
parameter estimates as Column (2), but the standard errors are much smaller. The reason is that the
latter are MLE-estimates under the assumption of known group size and independent unit decisions
within groups (i.e., an absence of overdispersion in the data). Papke and Wooldridge (1996) [1] calculate
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robust standard errors to account for potential overdispersion in the data. Finally, Columns (5) to (8)
report estimation results from the beta-binomial fractional response model that explicitly allows for
overdispersion in the data in a flexible MLE-setting.

Columns (5) to (8) in Table 1 highlight the existence of non-negligible intra-group correlation in the
data on 401(k) pension plan participation. The estimated (average) ρ varies from 0.131 to 0.404 and (as
indicated in Columns 5 and 8) is also affected by a firm’s characteristics. An increase in a firm’s matching
rate decreases ci and, thus, increases the intra-group correlation ρ, as can be seen from Equation (10).
This finding is well in line with our expectations indicating that a larger matching rate increases the
intra-group correlation, making 100 percent participation more likely. In a similar vein, a larger firm
size also increases ρ. By contrast, in firms that offer older pension plans, the intra-group correlation
is reduced. Overall, for the 401(k) pension plan rate data, the significant estimates for the intra-group
correlation indicate that the beta-binomial model should be preferred over the more restrictive binomial
model, which fails to account for this correlation. In addition, as compared to the two-part alternatives,
the one-part models overestimate intra-group correlation considerably.

At the bottom of Table 1, we report the results from the alternative LM, LR and Wald tests. All of
them indicate that the one-part models should be rejected in favor of the two-part fractional response
alternatives. Given the discussion on the parameter estimates for the SOLE dummy variable, this result
is not very surprising. This, together with the discussion on the intra-group correlation from above,
suggests that the beta-binomial model might be most accurate for estimating the 401(k) plan participation
rate data at hand.

In order to assess and compare the overall goodness-of-fit of the alternative models displayed
in Table 1, we also report an R-squared measure based on Nagelkerke (1991) [31] defined as

R2 =

(
1−

(
L(0)

L(θ̂)

)2/n
)
/(1 − L(0)2/n), where the likelihoods enter in levels rather than in logs.

This guarantees that the R2 is bounded by zero and one, respectively. The corresponding numbers are
reported at the bottom of Table 1. Since these numbers are not fully comparable across different model
types, we restrict our discussion to the comparison of the restricted one-part models with their two-part
alternatives. Starting with the more restrictive binomial model, the Nagelkerke R-squared measure,
which corresponds to the one-part model, is given by only 0.056, while for the two-part alternative,
we obtain a goodness-of-fit measure amounting to 0.216. In a similar vein, for both beta-binomial
models reported in Columns (5) to (8), the two-part alternatives provide a much better fit for the data.
Accordingly, the Nagelkerke R-squared measures amount to 0.569 and 0.576 for the two-part models,
respectively, while for both (restricted) one-part models, the corresponding fit is below 0.240. To sum up,
the Nagelkerke R-squared measures clearly indicate that the two-part models provide a much better fit
for the 401(k) pension plan participation rates data. In this regard, the goodness-of-fit statistics confirm
the results obtained from the proposed nested tests, which commonly reject the one-part models in favor
of their two-part alternatives.
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Table 1. Estimation results: 401(k) plan participation rates.

Variable (1) (2) (3) (4) (5) (6) (7) (8)

First Part
MRATE 1.313 ∗ ∗∗ 1.372 ∗ ∗∗ 1.349 ∗ ∗∗ 1.779 ∗ ∗∗ 1.203 ∗ ∗∗ 1.220 ∗ ∗∗

(0.083) (0.002) (0.085) (0.085) (0.097) (0.068)

MRATE2 −0.221 ∗ ∗∗ −0.290 ∗ ∗∗ −0.228 ∗ ∗∗ −0.312 ∗ ∗∗ −0.246 ∗ ∗∗ −0.288 ∗ ∗∗
(0.022) (0.001) (0.022) (0.022) (0.024) (0.018)

log(EMP ) 0.403 ∗ ∗∗ −0.602 ∗ ∗∗ −0.203∗ −0.597 ∗ ∗∗ −0.310 ∗ ∗ −0.674 ∗ ∗∗
(0.111) (0.004) (0.115) (0.111) (0.131) (0.075)

log(EMP )2 0.029 ∗ ∗∗ 0.029 ∗ ∗∗ 0.015 ∗ ∗ 0.032 ∗ ∗∗ 0.002 0.035 ∗ ∗∗
(0.007) (0.000) (0.007) (0.007) (0.011) (0.005)

AGE −0.004 0.058 ∗ ∗∗ −0.004 0.006 0.011 0.044 ∗ ∗∗
(0.009) (0.000) (0.009) (0.009) (0.010) (0.006)

AGE2 0.000∗ −0.001 ∗ ∗∗ 0.000∗ 0.000 0.000 ∗ ∗ −0.000 ∗ ∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

SOLE 0.389 ∗ ∗∗ 0.053 ∗ ∗∗ 0.400 ∗ ∗∗ 0.416 ∗ ∗∗ 0.416 ∗ ∗∗ 0.118 ∗ ∗∗
(0.047) (0.002) (0.048) (0.048) (0.050) (0.035)

CONSTANT 1.944 ∗ ∗∗ 3.466 ∗ ∗∗ 3.347 ∗ ∗∗ 3.532 ∗ ∗∗ 3.748 ∗ ∗∗ 3.307 ∗ ∗∗
(0.425) (0.018) (0.437) (0.428) (0.501) (0.298)

Second Part/One Part
MRATE 1.665 ∗ ∗∗ 1.372 ∗ ∗∗ 0.514 ∗ ∗∗ 1.372 ∗ ∗∗ 0.936 ∗ ∗∗ 1.779 ∗ ∗∗ 0.942 ∗ ∗∗ 1.220 ∗ ∗∗

(0.089) (0.169) (0.003) (0.002) (0.079) (0.085) (0.082) (0.068)

MRATE2 −0.332 ∗ ∗∗ −0.290 ∗ ∗∗ −0.178 ∗ ∗∗ −0.290 ∗ ∗∗ −0.226 ∗ ∗∗ −0.312 ∗ ∗∗ −0.238 ∗ ∗∗ −0.288 ∗ ∗∗
(0.021) (0.041) (0.001) (0.001) (0.019) (0.022) (0.022) (0.018)

log(EMP ) −1.031 ∗ ∗∗ −0.602 ∗ ∗ −0.629 ∗ ∗∗ −0.602 ∗ ∗∗ −0.594 ∗ ∗∗ −0.597 ∗ ∗∗ −0.607 ∗ ∗∗ −0.674 ∗ ∗∗
(0.112) (0.256) (0.004) (0.004) (0.088) (0.111) (0.088) (0.075)

log(EMP )2 0.054 ∗ ∗∗ 0.029 ∗ ∗ 0.032 ∗ ∗∗ 0.029 ∗ ∗∗ 0.032 ∗ ∗∗ 0.032 ∗ ∗∗ 0.032 ∗ ∗∗ 0.035 ∗ ∗∗
(0.007) (0.013) (0.000) (0.000) (0.006) (0.007) (0.006) (0.005)

AGE 0.055 ∗ ∗∗ 0.058 ∗ ∗∗ 0.061 ∗ ∗∗ 0.058 ∗ ∗∗ 0.048 ∗ ∗∗ 0.006 0.050 ∗ ∗∗ 0.044 ∗ ∗∗
(0.008) (0.008) (0.000) (0.000) (0.006) (0.009) (0.006) (0.006)
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Table 1. Cont.

Variable (1) (2) (3) (4) (5) (6) (7) (8)

AGE2 −0.001 ∗ ∗∗ −0.001 ∗ ∗∗ −0.001 ∗ ∗∗ −0.001 ∗ ∗∗ −0.001 ∗ ∗∗ 0.000 −0.001 ∗ ∗∗ −0.000 ∗ ∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

SOLE 0.064 0.053 −0.170 ∗ ∗∗ 0.053 ∗ ∗∗ −0.120 ∗ ∗∗ 0.416 ∗ ∗∗ −0.107 ∗ ∗∗ 0.118 ∗ ∗∗
(0.047) (0.127) (0.002) (0.002) (0.038) (0.048) (0.037) (0.035)

CONSTANT 5.105 ∗ ∗∗ 3.466 ∗ ∗∗ 3.376 ∗ ∗∗ 3.466 ∗ ∗∗ 3.040 ∗ ∗∗ 3.532 ∗ ∗∗ 3.119 ∗ ∗∗ 3.307 ∗ ∗∗
(0.431) (1.204) (0.019) (0.018) (0.336) (0.428) (0.333) (0.298)

Intra-group correlation
MRATE −0.202 ∗ ∗∗ −0.191 ∗ ∗∗

(0.037) (0.011)

log(EMP ) −0.236 ∗ ∗∗ −0.088 ∗ ∗∗
(0.028) (0.009)

AGE 0.014 ∗ ∗∗ 0.008 ∗ ∗∗
(0.003) (0.002)

CONSTANT 2.648 ∗ ∗∗ 1.517 ∗ ∗∗ 3.315 ∗ ∗∗ 1.440 ∗ ∗∗
(0.026) (0.023) (0.124) (0.070)

Tests
LM/LR Test (χ2(8)) 204.46 *** 2702.33 *** 489.28 ***
Robust LM Test (χ2(8)) 977.72 ***
Wald Test (χ2(8)) 82322.39 *** 5020.01 *** 619.41 ***

ρ 0.132 0.360 0.131 0.404
Nagelkerke-R2 0.109 0.056 0.216 0.056 0.569 0.237 0.576 0.223
Observations 4734 4734 4734 4734 4734 4734 4734 4734

Notes: Parameter estimates are reported. *, **, *** denote statistically significant at 10%-, 5%- and 1%-level, respectively. The results in Column
(1) are identical to Column (4) of Table 3 reported in Papke and Wooldridge (1996) [1]. In the logit model, the dependent variable amounts to one
if all employees participate in the 401(k) pension plan and zero otherwise. The QMLE of the two-part model is estimated only for PRATE < 1.
LM tests are calculated for the binomial models in Columns (3) and (4), while the LR tests are reported for the beta-binomial models from
Columns (5) to (8).
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For an overall quantitative comparison of the impacts of all covariates across the different econometric
models, one has to focus on marginal effects. In the following, we provide two alternatives on how
to assess the quantitative differences across the competing models. First, we again follow Papke and
Wooldridge (1996) [1] and plot the predicted participation rates for different matching rates between
zero and one. Thereby, we set firm size and the pension plan age at their median values of 628 employees
and eight years, respectively, and assume that no other pension plan is offered (i.e., SOLE = 0). Finally,
we vary the matching rate from zero (i.e., no matching offered at all) to one (i.e., 100 percent matching).
Figure 1 displays the predicted participation rates and the respective 95 percent pointwise confidence
intervals for the QMLE proposed by Papke and Wooldridge (1996) [1] and both alternative two-part
models. The left panel compares the predictions from the QMLE (Column 1 of Table 1) with the
ones from the two-part binomial alternative (Column 3). In the right panel, the alternative predictions
are based on the parameters from the two-part beta-binomial model that parametrizes the intra-group
correlation with MRATE, log(EMP) and AGE (Column 7). The 95 percent confidence intervals are
constructed using the delta method.

Second, we calculate marginal effects based on the analytical expressions delivered in Appendix C.
These marginal effects are calculated for each individual firm, and Table 2 reports the average
marginal effects (AMEs) of MRATE for the deciles of the MRATE distribution for firms with
MRATE ≤ 1. For small values of MRATE, the reported AMEs differ most substantially across the
alternative models. To give an example, based on the two-part binomial model, the AME for the
first decile of MRATE is given by 0.163, while the two-part beta-binomial model (from Column 7 in
Table 1) delivers an AME of 0.242. In general, both alternative one-part models lead to rather similar
AMEs, while the two-part alternatives result in rather different estimates. As discussed above, this
might be driven by the strong assumption of independent decisions upon which the binomial model
relies. Comparing both one-part models with the preferred beta-binomial two-part model, one can easily
see that the one-part models result in lower marginal effects estimates. To sum up, the beta-binomial
model, which explicitly accounts for both the mass points of ones, as well as intra-firm correlation (in
the workers’ participation decisions), results in a more significant and positive (estimated) impact of
MRATE for the overall share of participants in 401(k) pension plans.

Figure 1 reveals some interesting results: First of all, in the absence of any matching (i.e.,
MRATE = 0), the predicted conditional mean of PRATE is lowest (highest) for the QMLE (two-part
binomial model). This difference is statistically significant, as indicated by the respective confidence
intervals. Second, as can be seen from the slopes of the corresponding curves, the predicted marginal
effect of MRATE, by contrast, is lowest for the two-part binomial model. Most interestingly, however,
the QMLE and the (ML based) two-part beta-binomial model deliver relatively similar predictions. This
is indicated by the overlap of the respective 95 percent confidence intervals over the whole range of
matching rates considered. This finding highlights the usefulness of the QMLE estimator, but also points
to the relevance of the (two-part) beta-binomial model as a valuable alternative. The QMLE is very
easy to implement, but the two-part beta-binomial estimator allows one to explicitly specify intra-group
correlation, thus providing additional (parametric) insights in the data generating process.
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Figure 1. Participation rate versus matching rate: model predictions for firms with
MRATE < 1: estimated marginal effects and 95% pointwise confidence intervals.

Table 2. Marginal effect estimates for MRATE.

Decile Obs. MRATE TP-Bin OP-QMLE TP-Beta-bin OP-Beta-bin

1 379 0.091 0.163 0.213 0.242 0.209
2 378 0.173 0.156 0.198 0.228 0.194
3 379 0.228 0.148 0.181 0.212 0.177
4 378 0.295 0.139 0.169 0.199 0.168
5 378 0.351 0.131 0.153 0.184 0.151
6 379 0.399 0.127 0.145 0.175 0.140
7 378 0.457 0.116 0.129 0.156 0.123
8 379 0.540 0.106 0.115 0.140 0.109
9 378 0.675 0.087 0.092 0.110 0.083
10 378 0.872 0.066 0.068 0.080 0.060

Total/Average 3.784 0.408 0.124 0.146 0.172 0.141

Notes: Average marginal effects (AMEs) and the average MRATE within each decile are reported. OP-QMLE
and TP-Bin AMEs refer to Columns (3) and (4) in Table 1, respectively. AMEs reported for the beta-binomial
models are based on the most general specification depicted in Columns (7) and (8) of Table 1.
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4. Conclusions

In many applications of fractional response models, the number of units per group is observed, and
consequently, the fractional response variable is based on a fraction of integers. In such a situation,
one can use this additional information and specify two-part models that nest the one-part fractional
response model proposed by Papke and Wooldridge (1996) [1] and account for intra-group correlation
and overdispersion in the data induced by group-specific random effects.

These nested two-part models also have the advantage that they allow one to apply simple LM, LR
and Wald tests to discriminate between one-part and two-part fractional response models. Based on
the proposed two-part models, this paper also derives explicit formulas for the Wald and the LM tests.
We apply our alternative estimators and tests to a sample of 401(k) pension plan participation rates and
are able to show that the one-part models are rejected in favor of their two-part alternatives and that the
data at hand are characterized by non-negligible intra-group correlation. Based on the derived nested
tests and the goodness-of-fit of the alternative models, we are able to conclude that a two-part model
based on the beta-binomial distribution most accurately explains the 401(k) pension plan participation
rates data used in Papke and Wooldridge (1996) [1].
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Appendix

A. LM and Wald Tests for the Binomial Two-Part Model

A.1. Derivation of the LM Test

To derive the LM test, we reparametrize the model and set γ = β + δ. Then, the likelihood function
is given by:∑N

i=1 ln(f(β; yi, xi))

= (1− zi)
[

ln(1−G(xi (β + δ))ni) + ni(yi lnG(xiβ) + (1− yi) ln(1−G(xiβ)))

− ln(1−G(xiβ)ni) + const
]

+ zi.
[
ni ln(G(xi (β + δ)))

]
To derive the score, define zi = 0 if yi < 0 and zi = 1 if yi = 1 and denote G′i = gi. To simplify the

notation, we first assume that the model only contains a constant (xi = 1) and introduce the vector of
explanatory variables below. The score is given by:
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∂ ln(l(δ, β))

∂δ
= (1− zi)

−niG(β + δ)ni−1g(β + δ)

1−G(β + δ)ni
+ zi

nig(β + δ)

G(β + δ)

∂ ln(l(δ, β))

∂β
= (1− zi)

−niG(β + δ)ni−1g(β + δ)

1−G(β + δ)ni

+(1− zi)ni
(
g(β)yi
G(β)

− g(β)(1− yi)
1−G(β)

)
+(1− zi)

niG(β)ni−1g(β)

1−G(β)ni

+zi
nig(β + δ)

G(β + δ)

Now, define Ciδ = ni
1−G(δ)

1−G(δ)ni
, Ciβ+δ = ni

1−G(β+δ)
1−G(β+δ)ni

and observe that Gi = eβ

1+eβ
and

gi =
eβ(1+eβ)−eβeβ

(1+eβ)
2 = eβ

1+eβ
1

1+eβ
= Gi(1−Gi). Inserting and simplifying yields:

siδ =
∂ ln(l(δ, β))

∂δ
= Ciβ+δ (zi −G(β + δ)ni)

siβ =
∂ ln(l(δ, β))

∂β
= ni (yi −G(β)) + (1− zi) [G(β + δ)niCiβ+δ −G(β)niCiβ]

where we use yi = 1 if zi = 1. The Hessian thus can be derived as:

∂2 ln(l(δ, β))

∂δ2
=

∂Ciβ+δ

∂δ
(zi −G(β + δ)ni)− C2

iβ+δ (1−G(β + δ)ni)G(β + δ)ni

∂ ln(l(δ, β))

∂δ∂β
=

∂Ciβ+δ

∂β
(zi −G(β + δ)ni)− C2

iβ+δ (1−G(β + δ)ni)G(β + δ)ni

∂2 ln(l(δ, β))

∂β2
= −ni ((1−G(β))G(β)) +

∂(1− zi) [G(β + δ)niCiβ+δ −G(β)niCiβ]

∂β

so that under H0 : δ = 0, one obtains:

E[Hi]|δ=0 = −

[
C2
iβ (1−G(β)ni)G(β)ni C2

iβ (1−G(β)ni)G(β)ni

C2
iβ (1−G(β)ni)G(β)ni ni ((1−G(β))G(β))

]

: = −

[
Ai Ai

Ai Bi

]

Now, introducing a (1× k) vector of explanatory variables xi for unit i under H0 : δ = 0 yields:

siδ = Ciβ (zi −G(xiβ)ni)x′i

siβ = ni (yi −G(xiβ))x′i = 0
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We define:

sδ =
N∑
i=1

siδ

sβ =
N∑
i=1

siβ

A(β) =
N∑
i=1

C2
iβG(xiβ)ni (1−G(xiβ)ni)x′ixi

B(β) =
N∑
i=1

[ni (G(xiβ)(1−G(xiβ)))x′ixi]

I(β) =

[
A A

A B

]
and I(β)−1 =

[
A−1

(
I + A (B − A)−1)AA−1 − (B − A)−1

− (B − A)−1 (B − A)−1

]
Note A−1

(
A+ A (B − A)−1A

)
A−1 = A−1

(
I + A (B − A)−1) = A−1 + (B − A)−1.

The estimated LM statistic uses the estimated parameters from the one-part model with index OP and is
given by:

L̂M =
[
ŝ′δOP 0

] A(β̂OP )−1+
(
B(β̂OP )− A(β̂OP )

)−1

−
(
B(β̂OP )− A(β̂OP )

)−1

−
(
B(β̂OP )− A(β̂OP )

)−1 (
B(β̂OP )− A(β̂OP )

)−1

[ ŝδOP
0

]

= ŝ′δOP

(
A(β̂OP )−1 +

(
B(β̂OP )−1 − A(β̂OP )

)−1
)
ŝδOP

which is asymptotically distributed as χ2(k).

A.2. Derivation of the Wald Test

For the Wald test, consider the model in original parametrization, so that the following restriction
is tested: [

Ik −Ik
] [ γ

β

]
= γ − β = 0

The expected Hessian of the unrestricted model can be derived similarly as above and, for observation
i, reads as:

E[Hi] = −

[
C2
iγ (1−G(xiγ)ni)G(xiγ)ni 0

0 ni ((1−G(xiβ))G(xiβ))− C2
iβ (1−G(xiβ)ni)G(xiβ)ni

]
The Wald test uses the estimated parameters of the two-part model that are indexed by TP. Denoting

the estimated variance covariance matrix of ˆγTP by V̂γTP and that of ˆβTP by V̂βTP , it can easily be
shown that:

V̂γTP + V̂βTP = A(γ̂TP )−1 +
(
B(β̂TP )− A(β̂TP )

)−1

and:

Ŵ = (γ̂TP − β̂TP )′
(
A(γ̂TP )−1 +

(
B(β̂TP )− A(β̂TP )

)−1
)−1

(γ̂TP − β̂TP )
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Asymptotically, this Wald test is also χ2(k) distributed.

B. The Beta-Binomial Two-Part Fractional Response Model

In the two-part model, the probability for ki = yini ≤ ni successes in ni trials can be rewritten as:

g(yi|xi, ni) =

{
P1(ni, xi) if yi = 1

(1− P1(ni, xi))
P2(ki,xi)

1−P2(ni,xi)
if yi < 1

Defining ∆ ln Γ (y, a) = ln Γ (y + a)− ln Γ (a), one can write:

lnP2(ki) = ln

(
ni
ki

)
+ ∆ ln Γ (ki, ai) + ∆ ln Γ (ni − ki, bi)−∆ ln Γ (ni, ai + bi)

= ln

(
ni
ki

)
+ ∆ ln Γ (ki, ciθi2) + ∆ ln Γ (ni − ki, ci (1− θi2))−∆ ln Γ (ni, ci)

P1(n, xi) is defined analogously:

P1(ni) =
Γ (ni + ai1)

Γ (ni + ai1 + bi1)

Γ (ai1 + bi1)

Γ (ai1)
=

ni−1∏
j=0

(ai1 + j)

ni−1∏
j=0

(ai1 + bi1 + j)

=

ni−1∏
j=0

(ciθi1 + j)

ni−1∏
j=0

(ci + j)

lnP1(ni) =

ni−1∑
j=0

ln(ciθi1 + j)−
ni−1∑
j=0

ln(ci + j)

Similarly,

lnP2(ni) =

ni−1∑
j=0

ln(ciθi2 + j)−
ni−1∑
j=0

ln(ci + j)

In order to drive the likelihood of the model, we define zi = 1[ki = ni] = 1[yi = 1]. Then, the
contribution of each group i to the likelihood is:

lnLi = (1− zi)
[

ln(1− P1(θi1, ci, ni)) + lnP2(θi2, ci, ki)

− ln(1− P2(θi2, ci, ni)) + const
]

+ zi
[

ln(P1(θi1, ci, ni))
]

:= Li1 + Li2

with
Li1 = (1− zi) ln(1− P1(θi1, ci, ni)) + zi ln(P1(θi1, ci, ni))

Li2 = −(1− zi) ln(1− P2(θi2, ci, ni)) + (1− zi) lnP2(θi2, ci, ki))

Note, under H0 : P1(θi1, ci, ni) = P2(θi2, ci, ni), the contribution of each group i to the likelihood
reduces to:

lnL1
i = (1− zi) ln(1− P2(θi2, ci)) + zi ln(P2(θi2, ci))

We assume θi2 = G(xiβ), while θi1 = G(xi (β + δ) . In order to derive the score, one needs the first
derivatives of lnP1(θi1, ci, ni), lnP2(θi2, ci, ni) and lnP2(θi2, ci, ki). Using:

∂
∂ ln p

ln(1− eln p) = − eln p

1−eln p = − p
1−p

∂
∂ ln p

z−eln p
1−eln p =

−eln p(1−eln p)+(z−eln p)eln p

(1−eln p)
2 = eln p−(1−eln p)+(z−eln p)

(1−eln p)
2

= eln p−1+eln p+z−eln p

(1−eln p)
2 = z−1

(1−eln p)
2 e

ln p = (z−1)p

(1−p)2
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one can write:

∂ lnLi
∂δ

=
[
(1− zi) −P1(θi1(β,δ),ci,ni)

1−P1(θi1(β,δ),ci,ni)
+ zi

]
∂ lnP1(θi1(β,δ),ci,ni)

∂θi1

∂θi1(β,δ)
∂δ

=
[
−(1−zi)P1(θi1(δ),ci,ni)+zi(1−P1(θi1(δ),ci,ni))

1−P1(θi1(δ),ci,ni)

]
∂ lnP1(θi1(β,δ),ci,ni)

∂θi1

∂θi1(β,δ)
∂δ

=
[
zi−P1(θi1(β,δ),ci,ni))
1−P1(θi1(β,δ),ci,ni)

]
∂ lnP1(θi1(β,δ),ci,ni)

∂θi1

∂θi1(β,δ)
∂δ

∂ lnLi
∂β

=
[
zi−P1(θi1(β,δ),ci,ni))
1−P1(θi1(β,δ),ci,ni)

]
∂ lnP1(θi1(β,δ),ci,ni)

∂θi1

∂θi1(β,δ)
∂β

−
[
zi−P2(θi2(β),ci,ni))
1−P2(θi2(β),ci,ni)

]
∂ lnP2(θi2(β),ci,ni)

∂θi2

∂θi2(β)
∂β

+
(

(1− zi)∂ lnP2(θi2(β),ci,ki)
∂θi2

+ zi
∂ lnP2(θi2(β),ci,ni)

∂θi2

)
∂θi2(β)
∂β

∂ lnLi
∂ci

=
[
zi−P1(θi1(β,δ),ci,ni))
1−P1(θi1(β,δ),ci,ni)

]
∂ lnP1(θi1(β,δ),ci,ni)

∂ci

+
[
zi−P2(θi2(β),ci,ni))
1−P2(θi2(β),ci,ni)

]
∂ lnP2(θi2(β),ci,ni)

∂ci

+(1− zi)∂ lnP2(θi2(β),ci,ki)
∂ci

+ zi
∂ lnP2(θi2(β),ci,ni)

∂ci

and:

P1(ni) = ∆ ln Γ (ni, ciqi)−∆ ln Γ (ni, ci)

P2(ni) = ∆ ln Γ (ni, cipi)−∆ ln Γ (ni, ci)

where ∆ ln Γ (y, a) = ln Γ (y + a) − ln Γ (a) . ∂∆ ln Γ(y,a)
∂a

= ψ (y + a) − ψ (a) = ∆ψ(y, a), ψ(x) =
∂ ln Γ(x)
∂x

denotes a di-gamma function.

∂ lnP1(θi1(β,δ),ci,ni)
∂θi1

= ∂(∆ ln Γ(ni,ciqi(β,δ))−∆ ln Γ(ni,ci))
∂θi1

= ∆ψ(ni, ciθi1(β, δ))ci
∂ lnP2(θi2(β),ci,ni)

∂θi2
= ∆ψ(ni, ciθi2(β))ci

∂ lnP2(θi2(β),ci,ki)
∂θi2

= ∆ψ(ki, ciθi2(β))ci
∂ lnP1(θi1(β,δ),ci,ni)

∂ci
= ∆ψ(ni, ciθi1(β, δ))θi1(β, δ)−∆ψ(ni, ci)

∂ lnP2(θi2(β),ci,ni)
∂ci

= ∆ψ(ni, ciθi2(β))θi2(β)−∆ψ(ni, ci)
∂ lnP2(θi2(β),ci,ki)

∂ci
= ∆ψ(ki, ciθi2(β))θi2(β)−∆ψ(ki, ci)

Defining:

u(θi1(β, δ), ci, ni) = zi−P1(θi1(β,δ),ci,ni)
1−P1(θi1(β,δ),ci,ni)

∂
∂ lnP1

u(θi1(β, δ), ci, ni) = v(θi1(β, δ), ci, ni) = (zi−1)P1(θi1(β,δ),ci,ni)

(1−P1(θi1(β,δ),ci,ni))
2
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the derivation of the score can be based on:

∂ lnL1
i

∂δk
= u(θi1(β, δ), ci, ni)∆ψ(ni, ciqi)ci

∂θi1
∂δk

= 0

∂ lnL2
i

∂βk
= u(θi1(β, δ), ci, ni)∆ψ(ni, ciqi)ci

∂θi1
∂βk

= 0

∂ lnL2
i

∂βk
= u(θi1(β, δ), ci, ni)∆ψ(ni, ciqi)ci

∂θi1
∂βk

−u(θi1(β, δ), ci, ni)∆ψ(ni, cipi)ci
∂θi2
∂βk

+(1− zi)∆ψ(ki, cipi)ci
∂θi2
∂βk

+ zi∆ψ(ni, cipi)ci
∂θi2
∂βk

∂ lnLi
∂ci

= u(θi1(β, δ), ci, ni) (∆ψ(ni, ciqi)θi1 −∆ψ(ni, ci))

−u(θi2, ci, ni) (∆ψ(ni, cipi)θi2 −∆ψ(ni, ci))

+ (∆ψ(ki, cipi)θi2 −∆ψ(ki, ci))

To implement the likelihood estimator, we provide the score, but rely on the numerical derivation of
the Hessian. Then, Wald and LR tests are readily available from standard ML estimation routines.

C. Calculation of Marginal Effects in the Two-Part Models

For the following discussion, we denote Pi1(ni, xi) by Pi1, Pi2(ni, xi) by Pi2 and E[yi|xi, ni] under
the one-part model by Fi. According to (5), the expectation under the two-part model is given by:

E[yi|xi, ni] =
1− Pi1
1− Pi2

(Fi − Pi2) + Pi1 =
(1− Pi1)Fi − Pi2 + Pi1Pi2 + Pi1 − Pi1Pi2

1− Pi2

=
(1− Pi1)Fi − Pi2 + Pi1

1− Pi2
:=

ui
vi

The corresponding derivatives of ui and vi with respect to the k-th explanatory variable, xik, read as:

∂ui
∂xik

= −∂Pi1
∂xik

Fi + (1− Pi1)
∂Fi
∂xik

− ∂Pi2
∂xik

+
∂Pi1
∂xik

=
∂Pi1
∂xik

(1− Fi) + (1− Pi1)
∂Fi
∂xik

− ∂Pi2
∂xik

∂vi
∂xik

= −∂Pi2
∂xik

Hence, one obtains:

∂E[yi|xi, ni]
∂xik

=
1

(1− Pi2)

∂ui
∂xik

− ui
(1− Pi2)

1

(1− Pi2)

∂vi
∂xik

=
1

(1− Pi2)

∂ui
∂xik

− E[yi|xi, ni]
1

(1− Pi2)

∂vi
∂xik

=

∂Pi1
∂xik

(1− Fi) + (1− Pi1) ∂Fi
∂xik
− ∂Pi2

∂xik

1− Pi2
+ E[yi|xi, ni]

∂Pi2
∂xik

(1− Pi2)
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Under H0, it holds that βk = γk, Pi1 = Pi2 and E[yi|xi, ni] = Fi, and the marginal effects reduce to:

∂E[yi|xi, ni]
∂xik

=

∂Pi2
∂xik

(1− Fi) + (1− Pi2) ∂Fi
∂xik
− ∂P ′

i2

∂xik

1− Pi2
+

Fi
∂Pi2
∂xik

(1− Pi2)

=

∂Pi2
∂xik

+ (1− Pi2) ∂Fi
∂xik
− ∂Pi2

∂xik

1− Pi2

=
(1− Pi2) ∂Fi

∂xik

1− Pi2
=

∂Fi
∂xik

Under the binomial two-part model, we insert:

Pi1 = G(xiγ)ni

P2 = G(xiβ)ni

Fi = G(xiβ)

∂Pi1
∂xik

= niG(xiγ)ni(1−G(xiγ))γk

∂Pi2
∂xik

= niG(xiβ)ni(1−G(xiβ))βk

∂Fi
∂xik

= G(xiβ)(1−G(xiβ))βk

while for the beta-binomial two-part model, using ci =
(eziϑ−1)

2 , one obtains:

lnPi1 = ∆ ln Γ (ni, ciθi1)−∆ ln Γ (ni, ci)

lnPi2 = ∆ ln Γ (ni, ciθi2)−∆ ln Γ (ni, ci)

Fi = θi2 = G(xiβ)

∂ lnPi1
∂xik

= ∆ψ(ni, ciθi1)ci
∂θi1
∂xik

+ [∆ψ(ni, ciθi1)θi1 −∆ψ(ni, ci)]
∂ci
∂xik

∂ lnPi2
∂xik

= ∆ψ(ni, ciθi2)ci
∂θi2
∂xik

+ [∆ψ(ni, ciθi1)θi2 −∆ψ(ni, ci)]
∂ci
∂xik

∂Fi
∂xik

= G(xiβ)(1−G(xiβ))βk

∂θi1
∂xik

= G(xiγ)(1−G(xiγ))γk

∂ci
∂xik

= 1
2
eziϑϑk
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