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Abstract: The method of instrumental variables (IV) and the generalized method of 

moments (GMM), and their applications to the estimation of errors-in-variables and 

simultaneous equations models in econometrics, require data on a sufficient number of 

instrumental variables that are both exogenous and relevant. We argue that, in general, such 

instruments (weak or strong) cannot exist. 
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1. Introduction 

Researchers are becoming increasingly aware that there are often serious problems with the use of 

instrumental-variable based techniques—both instrumental variable (IV) estimation and versions of 

generalized methods of moments (GMM) that use instrumental variables [1]. A valid instrument must 

be uncorrelated with the errors in an equation, that is, it must be exogeneous, and correlated with the 

explanatory variable, that is, it must be relevant [1,2]; [3] (p. 316); [4] (pp. 603–605). In this connection, 

Pratt and Schlaifer [5] pointed out that, without knowing what the errors represent, it is not possible to 
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decide whether the exogeneity condition is correct. They also noted that the condition is “meaningless” 

if the errors are included in an equation to represent the net effect (on the dependent variable) of 

variables excluded from the equation1. This paper may be seen as an extension of the argument made 

by Pratt and Schlaifer [5] to the general case of IV estimators and, in particular, to explain why much 

IV estimation is plagued by either irrelevant instruments or instruments that fail the exogeneity 

condition. As pointed out by Murray [1] (p. 114), an instrument can be so weakly correlated with the 

troublesome variable that the instrument has little relevance2. 

In this paper we argue that the difficulties associated with instruments should not be surprising. 

Specifically, we show that valid instruments cannot exist in the presence of any model mis-specification. 

Such mis-specification can arise, indeed, is very likely to arise, from a variety of influences, including 

omitted variables, measurement errors, and incorrect functional forms. To generate cases in which 

instruments could exist, the model being estimated would have to be correctly specified; any error 

component of such a model would have to be a white noise process that it is independent of  

the instruments. 

As Pratt and Schlaifer [5] make clear, the interpretation of the error in an equation is crucial here. 

There are two possible extreme interpretations. One interpretation is embedded in the classical 

regression model, which includes an error that is simply assumed to be a white noise error process with 

a given distribution. The alternative view is that the error is generated by all the misspecification in the 

model; a perfectly specified model would have no error. We would argue that the second interpretation 

is always more relevant in practice and it is this interpretation which gives rise to the problem with 

instrumental variables outlined below. 

How does out framework fit with the “standard” one? The standard view typically starts from a 

multivariate DGP made up of a set of random variables with non-degenerate distributions. This will 

imply the existence of a set of error terms that are not directly associated with any misspecification  

in the model but which reflects the basic stochastic nature of the variables being considered. These 

error terms may be easily built into the analysis below simply by interpreting one (or more) of the 

time-varying coefficients as errors. We will not do this below, as it simply adds an extra layer of 

complexity without changing the results. The key assumption which makes the analysis below work, 

however, is that we must assume that at least part of the observed errors comes from model 

misspecifications, including omitted variables, measurement error and the wrong functional form. If 

errors are not the result of such misspecification then we would essentially be claiming to know the 

true model, and the criticism of instrumental variables made below will not hold true. 

We would also stress that we are certainly not arguing that, in light of the problems associated  

with IV estimation, for a return to standard OLS, with its well-known problems. We simply show that 

instrumental variables do not adequately deal with these problems. There is also a reasonably large 

                                                 
1  Pratt and Schlaifer [5] go on to state that the exogeneity condition may be satisfied for certain “sufficient sets” of 

excluded variables. However, the point we make here is that it cannot hold for the excluded variables (in the Pratt and 

Schlaifer sense [5], meaning that, in principle, there are variables that should be in the equation, but are omitted; these 

are the excluded variables referred to by Pratt and Schlaifer [5]). 
2  Additionally, it is extremely difficult to verify if an instrument is uncorrelated with the error term in the equation being 

estimated. For a discussion, see [6] (pp. 144–145). 
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literature on conducting inference in IV regressions with poor instruments; this literature includes, 

Cheng and Liao [7], Conley, Hansen and Rossi [8], Di Traglia [9] and Guggenberger [10]. However, 

this is often assuming that IV at least yields consistent estimates. We argue that this is not the case and, 

in general, IV is not a consistent estimator, so the accuracy of the inference made is highly questionable. 

The remainder of this paper consists of three sections. Section 2 presents a general representation of 

model mis-specifications. We show why errors in an equation can arise. If a real-world relationship 

were completely known, there would be no role for a substantial error term. However, incomplete 

knowledge of real-world relationships is a basic component of estimated relationships. We show how 

correctly specified models involve time-varying coefficients (TVCs) [11], for which instruments 

cannot exist because, under a TVC set-up, the error terms contain the explanatory variables. Section 3 

provides a simple example that illustrates our argument. Section 4 concludes. 

2. A Representation of Correct Model Specification 

2.1. General Considerations 

In general, economic theory suggests relationships between variables, but it does not usually give 

clear guidance as to the correct functional form or the complete set of variables that are relevant.  
For example, consider an economic variable, denoted by *

ty , and its complete set of determinants, 

denoted by *
jtx , j = 1, …, L(t). Here the total number L(t) of determinants may be time dependent  

and is definitely unknown. Typically, data on *
ty  and on a subset K − 1 of the L(t) determinants  

are available. The remaining L(t) − K + 1 determinants are omitted from the model either because they 

are unobserved or for some other reason. Moreover, these data may contain measurement errors.  
Let ty  = *

ty  + 0tv  and jtx  = *
jtx  + jtv , j = 1, …, K − 1, where the variables without an asterisk are 

observable, the variables with an asterisk are unobservable true values, and v s are measurement errors. 

The theoretical relationship is 

),...,( *
)(

*
1

*
ttLttt xxfy =  (t = 1, …, T) (1)

with unknown functional form, no knowledge of some of the arguments of ),...,( *
)(

*
1 ttLtt xxf , and with 

no need for an error term. In other words, we do not have any omitted determinant of *
ty  in Equation (1) 

which is, therefore a mathematical equation. To distinguish it from a regression equation, we do not 

call *
)(

*
1 ,..., ttLt xx  the regressors or explanatory variables but call them the determinants of *

ty  or  

“the arguments” of the function ),...,( *
)(

*
1 ttLtt xxf . We call the arguments *

)(
*

1 ,..., ttLKt xx −  the included 

determinants and the arguments *
)(

* ,..., ttLKt xx  omitted determinants, since data on the latter arguments 

are not available. 

Without mis-specifying the relationship in Equation (1), we can write 

( )1
* * *

0
1

α α α
L tK

t t jt jt gt gt
j g K

y x x
−

= =

= + +   (2)
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where for   = j or g, α t  = 
*

*
t

t

y

x

∂
∂ 

 and 0α t  = * *

1

α
tL

t t ty x
=

−  


, the time profiles of the α t s are determined 

by the correct functional form of model (1). Since the correct functional form is unknown, these time 

profiles are also unknown. Allowing the coefficients of Equation (2) to vary freely defines an infinite 

class of functional forms, which surely encompasses the correct (but unknown) functional form of 

Equation (2) as a special case. A main benefit of model (2) is the certainty that the infinite class of 

functional forms will encompass the correct functional form and, thus, the unknown functional form 

problem is solved. 

We wish to point out that that if spline-, cubic-spline-, P-spline-, or any other-type restrictions are 

imposed on the functional form of model (1), then it can have an incorrect functional form; for 

examples of spline- and cubic-spline-type restrictions, see [3] (p. 111) and [12] (p. 803). A main benefit 

of model (2) is the certainty that the infinite class of functional forms will encompass the correct 

functional form. This notion, that a time varying coefficient model can exactly represent an unknown 

nonlinear functional form was first proved by Swamy and Mehta [13] and subsequently confirmed by 

Granger [14]. 

Clearly, the the determinants of y in Equation (2) can be correlated with each other, leading to the 
well-known problem of multicollinearity. In particular, the K − 1 observable determinants (the *

jtx s) in 

Equation (2) can be correlated with the L(t) − K + 1 omitted determinants (the *
gtx s). To assume 

otherwise would, in the words of Pratt and Schlaifer [5], be a “meaningless” assumption. The 

mathematical relationship between each omitted determinant and the observed determinants is as follows 
1

* *
0

1

λ λ
K

gt gt jgt jt
j

x x
−

=

= +  (g = K, …, L(t)) (3)

where 0λ gt  is a portion of *
gtx  remaining after the effects of the *

jtx s have been removed from *
gtx . 

Since we do not have data on the L(t) − K + 1 *
gtx  variables, we can eliminate them from Equation (2) 

by substituting Equation (3) into (2), which gives 

( ) ( )1
* *

0 0
1

α α λ (α α λ )
L t L tK

t t gt gt jt gt jgt jt
g K j g K

y x
−

= = =

= + + +    (4)

Note that Equation (4) shows *
ty  as a function of K − 1 included determinants and the remainders of 

the excluded variables, i.e., what remains after subtracting the effects on the excluded variables of the  

K − 1 observable determinants. Equation (4) thus solves both the unknown functional form (since it is 
derived from Equation (2)) and the full set of (time-varying) determinants of *

ty  in Equation (1). Thus, 

Equation (4) solves both the unknown functional form and omitted determinants problems. It does not, 

however, account for measurement errors and in this connection, we consider model (4) again, since it 

is not in a form that can be estimated. Such a form is derived below. 

In terms of the observable variables, Equation (4) can be written as 
1

0
1

γ γ
K

t t jt jt
j

y x
−

=

= +  (5)

In the presence of Equation (3) and measurement errors, model (5) coincides with model (2) if  
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( )

0 0 0 0 0γ α α λ
L t

t t gt gt t
g K

v
=

= + +  (6)

( )

(α α λ )(1 )
L t

jt
jt jt gt jgt

g K jt

v

x=

γ = + −  (j = 1, …, K − 1) (7)

According to Pratt and Schlaifer [5], the term 
( )

0α λ
L t

gt gt
g k=
 in Equation (4) can be treated as an error 

term. With this treatment we can use the usual regression terminology from this point on. 

To recapitulate, we have begun with Equation (1). To solve the unknown functional form problem, 

Equation (1) is replaced with Equation (2). To solve the excluded variables problem without making 

meaningless assumptions, Equation (3) is introduced and inserted into Equation (2) to obtain  

Equation (4). After introducing measurement errors at the appropriate places in Equation (4), it is 

replaced with Equation (5).3 In this derivation, no approximations and no meaningless assumptions are 

made. The terms on the right-hand side of Equations (6) and (7) provide crucial information.  
Equation (4) shows that the 0λ gt s, in conjunction with the *

jtx s, are at least sufficient to determine *
ty . 

This is the proof Pratt and Schlaifer [5] (pp. 34, 50) offer to show that the second term on the right-hand 

side of Equation (6) is a function with the correct functional form of certain “sufficient sets” of 

excluded variables. The authors warn against adding an arbitrary error term to a linear or nonlinear 
function of the *

jtx s and assuming that the *
jtx s are independent of the error term. 

The interpretation of the terms on the right-hand side of Equation (7) and their implications are  

as follows: 

• The term α jt  is equal to * */t jty x∂ ∂  (if *
ty  is a continuous function of *

jtx ) and corresponds 

to the bias-free effect of *
jtx  on *

ty  , as can be seen from Equation (2). The right sign of α jt  

is provided by economic theories. The correlation between *
ty  and *

jtx  is spurious if α jt  = 0. 

Even though these bias-free effects are economically very meaningful, they cannot be 

estimated using any of the conventional econometric techniques. 

• The term 
( )

α λ
L t

gt jg
g K=
  captures omitted-variables bias. Note that each term in this sum is the 

product of two coefficients—the effect of the excluded variable *
gtx  on *

ty  (i.e., αgt ) and the 

effect of the included variable *
jtx  on the excluded variable *

gtx  (i.e., jgtλ ). Omitted-variable 

biases can exist as long as the error terms are present in econometric models. 

• The term 
( )

(α α λ )( )
L t

jt
jt gt jgt

g K jt

v

x=

+ −  captures measurement-errors bias. 4  These biases exist 

whenever estimates of some theoretical variables are used as explanatory variables. 

• The explanatory variables of model (5) are correlated with their own coefficients because 
the measurement-error bias component of γ jt  is a function of jtx . 

                                                 
3  For the derivation, see [15]. 
4  The minus sign in the expression reflects the fact that the second parenthetical term on the right-hand side of Equation (7) 

is one minus the ratio ( / )jt jtv x . 
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• Model (5) can be mis-specified if the omitted-variable and measurement-error bias (or 

simply, the specification bias) components of its coefficients in Equation (7) are ignored5. 

Having derived the model in Equation (5), which explicitly includes all these forms of biases,  

it is now possible to show why valid instruments cannot be found for this model. Combining  

Equations (5)–(7) into one gives 

( ) ( )1

0 0 0
1

α α λ (α α λ )(1 )
L t L tK

jt
t t gt gt t jt gt jgt jt

g K j g K jt

v
y v x

x

−

= = =

= + + + + −    (8)

2.2. Some Illustrative Cases 

In the standard approach, we aim to choose instruments that are strongly correlated with the 

variable being instrumented, but which are independent of the errors in the model. If an instrument is 

not well-correlated with the variable under consideration, then we have the problem of weak 

instruments, if the instrument is not independent of the error then we will not remove the bias. We 

illustrate the problem with IV by considering three cases. 

Case I. (Linear models). By adding and subtracting a constant parameter model we get 

( ) ( )1 1

0 0 0 0 0
1 1

β β (α α λ β ((α α λ )(1 ) β )
L t L tK K

jt
t j jt t gt gt t jt gt jgt j jt

j g K j g K jt

v
y x v x

x

− −

= = = =
= + + + + − + + − −     (9)

where the last two terms in Equation (9) become the error term in the model. The problem with 

instrumental variables in this context now becomes apparent; we need to find a variable that is both 

correlated with xjt, but uncorrelated with the error term, which itself contains xjt. Such a variable almost 

certainly cannot exist. We extend this proof to nonlinear models in Case III below. 

Case II. (Linear errors-in-variables model without the error in equation). If 

0λ λ 0 ,gt jgt for all j g and t= =  (10)

and 

β α 0,..., 1j jt for j K= = −  (11)

Equation (10) implies that there are no omitted variables and Equation (11) implies that the true  

model has a linear functional form. Under Equations (10) and (11), Equation (9) reduces to an  

errors-in-variables model and the error term becomes just 0tν  − 
1

1
β

K

jt jj

−

= ν . For IV estimation of such 

a model, we need instruments that are relevant and uncorrelated with the errors (exogenous). 

Assumptions (10) and (11) are highly restrictive and, in effect, amount to the assumption that the 

model is perfectly specified and that there are no excluded variables. Hence, this extreme case rules 

out Pratt and Schlaifer’s case [5] where the included variables are independent of the excluded 

variables, as there are none. The error term is then purely an identifier, in the Pratt and Schlaifer  

sense [5]. However we would argue that this case can never occur in the real world. 
  

                                                 
5  Discussion of the terms in Equation (7) are provided in [16,17]. 
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Case III. (Nonlinear models). Note that Cases I and II do not cover nonlinear models. To complete our 

proof of the nonexistence of valid instruments, we need to consider the (realistic) nonlinear case  

where model (5), with its coefficients satisfying Equations (6) and (7), holds. A natural method of 

identifying the coefficients of model (5) without mis-specifying its functional form is to decompose 

these coefficients into their respective components in Equations (6) and (7). To perform this 

decomposition, we assume that 
1

0
1

γ π π ε
p

jt j jh ht jt
h

z
−

=

= + +  (j = 0, 1, …, K − 1) (12)

where the htz s are observable, 1 1,(ε | ,..., )jt t p tE z z −  = 0, j = 0, 1, …, K − 1, all t, and the ε jt s may be 

serially and contemporaneously correlated. It is assumed that in model (5), the jtx s are conditionally 

independent of their own coefficients given the htz s. Changes in policy variables, shift variables 

representing structural changes in the γ jt  and lagged changes in the jtx s can be used as the htz s,  

as in [16]. 

We cannot be sure that the equation obtained by substituting Equation (12) into Equation (5) will 

have the correct functional form. The only way we can be so sure is by letting p tend to infinity so that 
ε jt  converges in probability to zero. It is possible to push ε jt  as low as desired with a high probability 

just by adding additional jtz s on the right-hand side of Equation (12); it does not matter if some of the 

jtz s are redundant in the sense that their coefficients in Equation (12) are zero. Equation (12) with 

infinitely large p and without ε jt  can explain all the variation in γ jt  in terms of observable variables. 

Substituting such an equation into Equation (5) gives an equation with the correct functional form. 

Inserting Equation (12) into Equation (5) gives 
1 11 1

00 0 0 0
1 1 1 1

π π (π π ) ε ε
p pK K

t h ht j jh ht jt t jt jt
h j h j

y z z x x
− −− −

= = = =

= + + + + +     (13)

This is an estimable form of model (5).6 

Now if we were to estimate a fixed coefficient IV version of Equation (5) such as 
1

0
1

β β ω
k

t j jt t
j

y x
−

=

= + +  then the error term in this equation becomes 

1 11 1 1

00 0 0 0 0
1 1 1 1 1

ω (π π ε β ) ( (π π ) ε β )
p pK K k

t h ht t j jh ht jt j jt
h j h j j

z z x
− −− − −

= − = = =

= + + − + + + −      (14)

The instrumental variables that are correlated with the jtx s of the IV equation above, but not with 

the error terms of model (14), almost surely do not exist because these error terms also involve the jtx s. 

Therefore, IV estimation is not possible. 

It is sometimes claimed that lagged values of the variables in a model provide natural instrumental 
variables in many time-series settings. The mere fact that the value of , 1j tx −  was determined before the 

                                                 
6  Good approximations to the minimum variance linear unbiased estimators of the π’s and the best linear unbiased 

predictors of the ε’s can be obtained by applying an iteratively rescaled generalized least squares method to model (13). 

The consistency of these estimators can be established by letting T go to ∞ and letting p go to ∞  more slowly than T. 

For further discussion, see [15]. 
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value of ε jt  should not lead one to conclude that , 1j tx −  is necessarily independent of ε jt . The variable 

, 1j tx −  may well have been influenced by a forecast of a variable represented in ε jt , or both , 1j tx −  and ε jt , 

may have been affected by some third variable, as shown by Pratt and Schlaifer [5] (p. 47). Of course, 
if , 1j tx −  were independent of the error then this would imply that it was no longer relevant.

 
 

3. A Simple Example 

Consider a simple example where the only misspecification is measurement error in the independent 

variable. Assume that we have a perfectly fitting linear relationship in the true variables: 
* *βt ty x=  (15)

where the measured value of tx  is given by 

ttt vxx += *  (16)

then, the model we estimate is 
* β βt t ty x v= −  (17)

where β tv−  is an error term. 

There are two ways we can demonstrate the problem with IV applied to Equation (17). First, we 

may consider the issue from a TVC perspective and we write an exact version of Equation (15) as 
* βt t ty x=  (18)

where β β (1t = − ). Here we avoid the assumption that there exists an instrument, denoted by q, such 

that it is correlated with tx  and uncorrelated with vt. Then, if we apply a fixed coefficient model to this 

equation, we get 
* ** **β (β β )t t t ty x x= + −  (19)

where we are only considering the cases in which β** ≠ β so that the last term is not the same as the last 

term in Equation (17). The last term in Equation (19) is the error term. We can see that no valid 
instruments can exist for tx  since tx  is also in the error term. 

We can also show the same problem from a more conventional perspective. If we perform a fixed 

coefficient regression, then we can rewrite Equation (15) as 
* 1 * 1β (β β )t t t ty x x x= + −  (20)

where the term in brackets is the error term. We again can see that the error term contains the same 

variable that we are trying to instrument. Thus, almost surely no valid instrument can exist. 

One standard way to construct a suitable instrument7 would be to create the following variable 
* εt it tz x= +  (21)

                                                 
7  We are grateful to an anonymous referee for suggesting this example. 
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where εt  is uncorrelated with tv  and *
itx . Let us rewrite Equation (16) as 1tx  = *

1tx  + tν . In this case, 

[ ( )]t tE zν  = *
1[ ( ε ) ]t t tE x + ν  = 0 and the instrumental variable method can yield consistent estimator of β 

in Equation (17). However, note that this example requires precise knowledge of the misspecification 

that we are trying to correct for. In other words, if we can construct zt then we know *
itx  and so the 

whole problem goes away as we could simply have estimated Equation (15) without any measurement 

error and, therefore, IV would have been unnecessary in this case. 

4. Conclusions 

The instrumental variables that are correlated with the jtx s of model (5), but not with the error 

terms of model (13), do not, in general, exist because these error terms also involve the jtx variables. 

These arguments help explain why practical work with IV methods is plagued by several problems. 

We would argue that a much better way forward in terms of practical estimation rests on avoiding 

incorrect functional forms and recognition of the potential sources of omitted-variable and 

measurement-error biases which are present in Equation (5). By accounting for these sources of biases, 

we are able to show that (i) the unknown functional form give rise to TVCs; and (ii) in this TVC set-up, 

instruments almost surely cannot exist. 
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