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Abstract: It is well known that in a vector autoregressive (VAR) model Granger
non-causality is characterized by a set of restrictions on the VAR coefficients. This
characterization has been derived under the assumption of non-singularity of the covariance
matrix of the innovations. This note shows that if this assumption is violated, then the
characterization of Granger non-causality in a VAR model fails to hold. In these situations
Granger non-causality test results must be interpreted with caution.
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1. Introduction

A variable y is said to cause another variable x in Granger sense [1], if future x-values can be better
predicted using past values of x and y rather than using the past of x alone.

The concept of Granger causality is a fundamental tool for the empirical investigation of dynamic
interactions in multivariate time-series. It is well known that in a vector autoregressive (VAR) model
Granger non-causality is characterized by a set of restrictions on the VAR coefficients. Since the seminal
paper of Sims [2], this characterization forms the basis of various tests for Granger non-causality. Thus,
it is important to investigate the conditions under which this characterization holds.

In particular, we show that if the assumption concerning the non-singularity of the covariance matrix
of the VAR innovations is violated, then the characterization of Granger non-causality fails to hold.
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In literature, the assumption concerning the non-singularity of the covariance matrix of the VAR
innovations is considered a modest requirement. However, we sustain that dynamic systems with singular
covariance matrix are not infrequent in economics. Thus the VAR practitioners have to be careful about
this possibility, since in these situations we cannot conclude that there is Granger causality if the tests
reject the null hypothesis of non-causality.

The rest of the paper is organized as follows. Section 2 presents the characterization of Granger
non-causality condition within the framework of bivariate autoregressive models. Section 3 presents two
illustrattive examples. Sections 4 provides a theoretical result establishing under which conditions the
characterization of Granger non-causality for VAR models fails to hold. Section 5 concludes.

2. Granger Non-Causality in VAR Models

In order to simplify matters, we will focus on the bivariate case.
Let

{
(xt, yt)

′ ; t ∈ Z
}

be a purely non-deterministic zero-mean covariance stationary bivariate
stochastic process. Suppose that

{
(xt, yt)

′ ; t ∈ Z
}

admits the following autoregressive representation.[
π11(L) π12(L)

π21(L) π22(L)

][
xt

yt

]
=

[
εxt

εyt

]
(1)

where L is the lag operator such that Lnxt = xt−n,

πij(L) = 1−
p∑

h=1

πij(h)Lh for i = j

πij(L) = −
p∑

h=1

πij(h)Lh for i 6= j

and
{

(εxt, εyt)
′ ; t ∈ Z

}
is a bi-dimensional white noise process with non singular covariance matrix Σ.

For any information set I(t) available at time t the optimal (minimum mean square error) predictor
of xt+1, based on the information in I(t), is denoted P (xt+1|I(t)), e(xt+1|I(t)) = xt+1−P (xt+1|I(t)) is
the corresponding prediction error, and σ2(xt+1|I(t)) is the variance of e(xt+1|I(t)).

Definition 1. (Granger non-causality) Consider the information sets Ixy(t) = {xs, ys; s ≤ t} and
Ix(t) = {xs; s ≤ t}. y does not cause x in Granger sense, with respect to the information set Ixy(t), if

σ2(xt+1|Ixy(t)) = σ2(xt+1|Ix(t)) ∀t ∈ Z

The following theorem proved by [1,3] provides a useful characterization of non-causality in a
VAR model.

Theorem 1. (Characterization of Granger non-causality for VAR models) Let
{

(xt, yt)
′ ; t ∈ Z

}
be a purely non-deterministic zero-mean covariance stationary bivariate stochastic process. If{

(xt, yt)
′ ; t ∈ Z

}
admits an autoregressive representation as in Equation (1) with non-singular white

noise matrix Σ, then
σ2(xt+1|Ixy(t)) = σ2(xt+1|Ix(t)) ∀t ∈ Z

if and only if
π12(h) = 0 for h = 1, ..., p
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This characterization is very useful since it forms the basis of various test procedures for Granger
non-causality. Therefore, it is important to understand the conditions under which this theorem holds.
In particular, we consider the role played by the assumption of non-singularity of the covariance
matrix Σ.

What does this assumption mean? We know that Σ is non-singular if and only if the rank of Σ,
ρ(Σ), is full. The rank of Σ indicates an important structural characteristic of the bivariate process{

(xt, yt)
′ ; t ∈ Z

}
. We can have three cases:

1. ρ(Σ) = 0. In this case Σ is the null matrix and the process is deterministic and may be perfectly
predicted from its past.

2. ρ(Σ) = 1. This is a degenerate case in which the bivariate innovation
{

(εxt, εyt)
′ ; t ∈ Z

}
is

essentially univariate.
3. ρ(Σ) = 2. The full rank case.

We will not consider the case 1 here since our process is supposed to be purely non-deterministic.
If ρ(Σ) = 2, Σ is non-singular, two genuine (linearly independent) shocks perturb the system each
period. If ρ(Σ) = 1, Σ is singular, there is only one genuine shock that perturbs the system. It is
important to note that the case 2 is not infrequent in economics. Many dynamic models deliver
solutions for the endogenous variables whose covariance matrix is singular because there is a number of
endogenous variables larger than shocks.

In general, we have that y does not Granger cause x if and only if the past values of y does not appear
in the x equation of the VAR model. However, in this section, we present an example in which y does
not cause x and the past values of y are present in the expression for x. Consider a bivariate stochastic
process

{
(xt, yt)

′ ; t ∈ Z
}

that admits the following representation:[
1− αL −βL
−γL 1 + βL

][
xt

yt

]
=

[
εxt

−εxt

]
(2)

where εxt ∼ WN(0,σ2).
Premultiplying both sides of Equation (2) by the following adjunt matrix[

1 + βL βL

γL 1− αL

]
we get the “final equations”:

[(1− αL)(1 + βL)− γLβL]

[
xt

yt

]
=

[
1 + βL βL

γL 1− αL

][
εxt

εyt

]
The implied univariate ARMA model for the subprocess {xt; t ∈ Z} is

xt = (α− β)xt−1 + (γ + α)βxt−2 + εxt

This is in an autoregression form, and can be used to forecast xt+1 from xt−j , j ≥ 0. In particular, we
have that

P (xt+1|Ixt ) = (α− β)xt + (γ + α)βxt−1
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and hence
σ2(xt+1|Ixyt ) = σ2

On the other hand we have that
P (xt+1|Ixyt ) = αxt + βyt

with
σ2(xt+1|Ixyt ) = σ2

Thus
σ2(xt+1|Ixt ) = σ2(xt+1|Ixyt )

Hence we can conclude that y does not Granger cause x but β can be different from zero. In other terms,
can happen that y does not Granger cause x and the past values of y can be present in the x equation of
the VAR model.

However, this is not a counter example for the characterization of non-causality. In fact, in the proof
of Theorem 1 it is assumed that the covariance matrix Σ is non singular, while in our example

Σ =

[
σ2 −σ2

−σ2 σ2

]
is clearly singular.

It is important to remember that the problem of singularity has been investigated by a number of
authors. For example, Gonzalo and Lee [4] treat singularity of the error covariance matrix as a major
concern. While their analysis concerns the pitfalls in testing for cointegration in systems with singular
covariance matrices, the goal of this paper is different. Here, we are interested to clarify the role of the
non singularity assumption for the characterization of non-causality in a VAR model.

3. The Result

In this section we present the main result of this paper.

Proposition 1. Let
{

(xt, yt)
′ ; t ∈ Z

}
be a purely non-deterministic zero-mean covariance stationary

bivariate stochastic process. If
{

(xt, yt)
′ ; t ∈ Z

}
admits an autoregressive representation as in

Equation (1) with singular white noise matrix Σ given by

Σ =

[
σ2 λσ2

λσ2 λ2σ2

]
then y does not cause x in Granger sense.

Proof. First we note that the condition

Σ =

[
σ2 λσ2

λσ2 λ2σ2

]
implies that εyt = λεxt. Premultiplying both sides of Equation (1) by the following adjoint matrix[

π22(L) π12(L)

π21(L) π11(L)

]
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we get the “final equations”:

[π11(L)π22(L)− π12(L)π21(L)]

[
xt

yt

]
=

[
π22(L) π12(L)

π21(L) π11(L)

][
εxt

λεxt

]

The implied univariate ARMA(2p, p) models for the subprocesses {xt; t ∈ Z} and {yt; t ∈ Z} are
given by

[π11(L)π22(L)− π12(L)π21(L)]xt = [π22(L) + λπ12(L)] εxt

and
[π11(L)π22(L)− π12(L)π21(L)] yt = [π21(L) + λπ11(L)] εxt

It follows that
yt =

[π21(L) + λπ11(L)]

[π22(L) + λπ12(L)]
xt

and, thus, Ixy(t) = Ix(t). We can conclude that

σ2(xt+1|Ixy(t)) = σ2(xt+1|Ix(t)) ∀t ∈ Z

that is y does not cause x in Granger sense.

Proposition 1 tells us that y does not Granger cause x but π12 can be different from zero. In other
terms, it can happen that y does not Granger cause x and the past values of y can be present in the
x equation of the VAR model. The characterization provided by Theorem 1 fails to hold because the
assumption concerning the non-singularity of the covariance matrix of the VAR innovations is violated.

We close this section by observing that the primary goal of assuming non-singularity for the
covariance matrix of the error term in the VAR model is to avoid the possibility of including variables
with redundant information (in terms of prediction) in the model. Formally, we have that if Σ is singular,
then Ixy(t) = Ix(t). The variable y is totally redundant as it does not provide any additional information
useful for predicting x.

4. Some Economic Examples

To illustrate how theoretical models can result in VAR representations with singular covariance matrix
in economic settings we will consider two simple examples.

Example 1. We begin with the well-known cobweb market model. Demand for a product depends on
price, pt. Supply depends linearly on mt, the price expected the previous period, when production
decisions are made. Both supply and demand also depend on unobserved white noise random shocks.
The model can be solved to yield the reduced form of the price level

pt = αmt−1 + ηt, α < 0

where ηt ∼ WN(0,σ2). This equation describes how the endogenous variable actually evolve. Further,
we assume that the agents form their expectations following an adaptive scheme, that is

mt = mt−1 + β(pt −mt−1), 0 ≤ β ≤ 1



Econometrics 2015, 3 238

Thus we have that the bivariate stochastic process
{

(pt,mt)
′ ; t ∈ Z

}
admits the following

VAR representation: [
1 −αL
0 1− (1 + αβ− β)L

][
pt

mt

]
=

[
ηt

βηt

]
Example 2. We consider the following present value model of a stock price:

pt = Et

[
∞∑
i=1

bidt+i

]
, 0 < b < 1

Here Et denotes an expectation conditional on all information available to the stock market participants
at time t and b is the discount factor. The present value model relates the asset’s price, pt, to the sum of
its discounted expected future dividends, dt+i. A similar model is presented in [5] (p. 306). We assume
that

dt = et + cet−1 et ∼ i.i.d.N(0,σ2
e)

with |c| < 1. Then

Et(dt+i) =

{
cet for i = 1

0 for i > 1

which implies
pt = bcet

and hence
δet = b−1pt

It follows that process
{

(dt, pt)
′ ; t ∈ Z

}
admits the following VAR representation:[

1 −b−1L
0 1

][
dt

pt

]
=

[
et

bcet

]

These examples show that dynamic systems with singular covariances matrix can arise in models
where the number of unobserved shocks is less than the number of observed variables. In these cases the
characterization of Granger non-causality for VAR models fails to hold.

5. Conclusions

In this paper we have investigated a potential problem with application of the Granger-causality
tests based on the VAR modeling. In particular, we have showed that if the covariance matrix of the
VAR innovations is singular, then the characterization of Granger non-causality for VAR models fails to
hold. In literature the assumption concerning the non-singularity of the covariance matrix of the VAR
innovations is considered a modest requirement. However, dynamic systems with singular covariance
matrices are not uncommon in economics. In these VARs the condition that the past values of y are
not present in the x equation is not a necessary condition for non-causality. Hence, if we reject the
null hypothesis of non-causality expressed in terms of restrictions on the VAR coefficients, we cannot
conclude that y Granger causes x. The tests are not able to capture the presence of non-causality.
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