
Econometrics 2015, 3, 355-375; doi:10.3390/econometrics3020355
OPEN ACCESS

econometrics
ISSN 2225-1146

www.mdpi.com/journal/econometrics

Article

A Jackknife Correction to a Test for Cointegration Rank
Marcus J. Chambers

Department of Economics, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK;
E-Mail: mchamb@essex.ac.uk; Tel.: +44-1206-872756; Fax: +44-1206-872724

Academic Editor: Kerry Patterson

Received: 24 July 2014 / Accepted: 15 May 2015 / Published: 20 May 2015

Abstract: This paper investigates the performance of a jackknife correction to a test
for cointegration rank in a vector autoregressive system. The limiting distributions of the
jackknife-corrected statistics are derived and the critical values of these distributions are
tabulated. Based on these critical values the finite sample size and power properties of the
jackknife-corrected tests are compared with the usual rank test statistic as well as statistics
involving a small sample correction and a Bartlett correction, in addition to a bootstrap
method. The simulations reveal that all of the corrected tests can provide finite sample size
improvements, while maintaining power, although the bootstrap procedure is the most robust
across the simulation designs considered.
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1. Introduction

The concept of cointegration has assumed a prominent role in the analysis of economic and financial
time series since the pioneering work of Engle and Granger [1], and tests for the cointegration rank
of a vector of time series have become an essential part of the applied econometrician’s toolkit. The
most popular test for cointegration rank is the trace statistic proposed by Johansen [2,3] which exploits
the reduced rank regression techniques of Anderson [4] in the context of a vector autoregressive (VAR)
model. The limiting distribution of the test statistic can be expressed as a functional of a vector Brownian
motion process, the dimension of which depends upon the difference between the number of variables
under consideration and the cointegration rank under the null hypothesis. Percentage points of the



Econometrics 2015, 3 356

limiting distribution have been tabulated by simulation and can be found, for example, in Johansen [5],
Doornik [6] and MacKinnon, Haug and Michelis [7].

The accuracy of the limiting distribution as a description of the finite sample distribution has been
examined in a number of studies. Toda [8,9] found that the performance of the tests is dependent on the
value of the stationary roots of the process, and that a sample of 100 observations is insufficient to detect
the true cointegrating rank when the stationary root is close to one (0.8 or above). Doornik [6] proposed
Gamma distribution approximations to the limiting distributions, finding that they are more accurate than
previously published tables of critical values, while Nielsen [10] used local asymptotic theory to improve
the ability of the limiting distribution to act as an approximation in finite samples.

In view of the experimental evidence reported above, there have been a number of further attempts
to improve inference in finite samples when using the asymptotic critical values for the trace test of
cointegration rank. Johansen [11] demonstrated how Bartlett corrections can be made to the statistic;
these rely on various asymptotic expansions of the statistic’s expectation and result in complicated
functions of the model’s parameters that can be estimated from the sample data. A simpler small sample
correction factor was suggested by Reinsel and Ahn [12] and involves a degrees-of-freedom type of
adjustment to the sample size when calculating the value of the test statistic. This small sample correction
was shown to work well by Reimers [13] although, as Johansen [5] (p. 99) notes, the “theoretical
justification for this result presents a very difficult mathematical problem.” More computationally
intensive bootstrap procedures have recently been advocated by, inter alia, Swensen [14] and Cavaliere,
Rahbek and Taylor [15].

The aim of this paper is to analyse the properties of a simple jackknife-corrected test statistic for
cointegration rank. The approach is far less demanding, computationally, than bootstrap methods and
does not require an explicit analytical derivation of an asymptotic expansion for the sample moment as
in the Bartlett approach, merely relying on its existence. The idea behind the jackknife is to combine the
statistic based on the full sample of observations with statistics based on a set of sub-samples, the weights
used in the linear combination being chosen so that the leading term in the bias expansion is eliminated.
Although intended primarily as a method of bias reduction in parameter estimation following the work
of Quenouille [16] and Tukey [17], the jackknife can equally be applied to test statistics in order to
achieve the same type of outcome as the Bartlett correction. In the case of stationary autoregressive
time series Chambers [18] has shown that jackknife methods are capable of producing substantial bias
reductions as well as reductions in root mean square errors compared to other methods in the estimation
of model parameters; the jackknife results were also shown to be robust to departures from normality
and conditional heteroskedasticity as well as other types of misspecification. However, some care has
to be taken when applying these techniques with non-stationary data, as pointed out by Chambers and
Kyriacou [19,20], who propose methods that can be used to ensure that the jackknife procedure achieves
the bias reduction as intended in the case of non-stationarity.

The paper is organised as follows. Section 2 begins by defining the model as well as the test
statistic of interest. Three variants of the model are considered, corresponding to different specifications
of the deterministic linear trend, although most attention is given to the two variants of greatest
empirical interest. The jackknife-corrected version of the statistic is defined and the appropriate limiting
distributions are derived and presented in Theorem 1. Section 3 is devoted to simulation results and
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is divided into two subsections. The first sub-section computes (asymptotic) critical values of the
limiting distributions of the jackknife-corrected statistics. The second sub-section is concerned with
the finite sample size and power properties of the jackknife-corrected statistics, which are compared
with the unadjusted statistic as well as the small-sample adjustment of Reinsel and Ahn [12], the Bartlett
correction of Johansen [11] and the bootstrap approach of Cavaliere, Rahbek and Taylor [15]. Section 4
concludes and discusses some directions for future research, while an Appendix provides a proof of
Theorem 1 and some details on the simulation method used to derive the critical values in Section 3.1.

The following notation will be used. For a p × r matrix C of rank r < p there exists a full rank
p × (p − r) matrix C⊥ satisfying C ′⊥C = 0; PC = C(C ′C)−1C ′ denotes the projection matrix of C;
and ‖C‖ = (

∑p
i=1

∑r
j=1 c

2
ij)

1/2 denotes the Euclidean norm of C. In addition, for a square matrix

A, det[A] denotes the determinant, and Ip denotes the p × p identity matrix. The symbol d
= denotes

equality in distribution; d→ denotes convergence in distribution;
p→ denotes convergence in probability;

⇒ denotes weak convergence of the relevant probability measures; L denotes the lag operator such that
Ljyt = yt−j for some integer j and variable yt; and B(s) denotes a standard vector Brownian motion
process. Functionals of B(s), such as

∫ 1

0
B(s)B(s)′ds, are denoted

∫ 1

0
BB′ for notational convenience.

2. The Model and Tests for Cointegration Rank

Following Johansen [5] the model under consideration is the following VAR(k) system in the p × 1

vector yt:

yt =
k∑
i=1

Πiyt−i + ΦDt + εt, t = 1, . . . , T (1)

where ε1, . . . , εT are independent and identically distributed p×1 random vectors with mean vector zero
and positive definite covariance matrix Ω, Dt is a q × 1 vector of deterministic terms, Π1, . . . ,Πk are
p × p matrices of autoregressive coefficients, Φ is a p × q matrix of coefficients on the deterministic
terms, and the initial values, y−k+1, . . . , y0, are assumed to be fixed. It is convenient, in the analysis of
cointegration, to write Equation (1) in the vector error correction model (VECM) form

∆yt = Πyt−1 +
k−1∑
i=1

Γi∆yt−i + ΦDt + εt, t = 1, . . . , T (2)

where Π =
∑k

i=1 Πi − Ip and Γi = −
∑k

j=i+1 Πj (i = 1, . . . , k − 1). The following assumption will
be made.

Assumption 1. (i) Let A(z) = (1− z)Ip−Πz−
∑k−1

i=1 Γi(1− z)zi. Then det[A(z)] = 0 implies that
|z| > 1 or z = 1; (ii) The matrix Π has rank r < p and has the representation Π = αβ′ where α and β
are p× r with rank r; (iii) The matrix α′⊥Γβ⊥ is nonsingular, where Γ = Ip −

∑k−1
i=1 Γi.

This assumption is common in the cointegration literature and implies (see Theorem 4.2 of
Johansen [5], for example) that yt has the representation

yt = C

t∑
i=1

(εi + ΦDi) + C(L) (εt + ΦDt) + Pβ⊥y0, t = 1, . . . , T (3)

where C(z) = (1 − z)A(z)−1 =
∑∞

i=1Ciz
i and C = C(1) = β⊥(α′⊥Γβ⊥)−1α′⊥. This representation is

convenient because it decomposes yt into a stochastic trend component, a stationary component, and a
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term that depends on the initial condition y0. Assumption 1 also ensures that, although the vector yt is
I(1), both ∆yt − E(∆yt) and β′yt − E(β′yt) can be given initial distributions such that they are I(0). A
proof of Equation (3) and a discussion of its implications can be found in Johansen [5] (pp. 49–52).

The specification of the deterministic component ΦDt in Equation (2) has implications not only for
the interpretation of the error correction model but also for the level process yt itself. The following three
leading cases have received most attention in the literature:

Case 1: no deterministic components. In this case ΦDt = 0 and so, from Equations (2) and (3),

∆yt = αβ′yt−1 +
k−1∑
i=1

Γi∆yt−i + εt

yt = C

t∑
i=1

εi + C(L)εt + Pβ⊥y0

Case 2: restricted intercept. Here ΦDt = αρ0, where ρ0 is r × 1, and hence

∆yt = α (β′yt−1 + ρ0) +
k−1∑
i=1

Γi∆yt−i + εt

yt = C
t∑
i=1

εi + C(L)εt + τ0 + Pβ⊥y0

where τ0 is a vector of intercepts.

Case 3: restricted linear trend. In this specification ΦDt = µ0 + αρ1t, where µ0 and ρ1 are p × 1 and
r × 1 vectors respectively. It follows that

∆yt = α (β′yt−1 + ρ1t) +
k−1∑
i=1

Γi∆yt−i + µ0 + εt

yt = C

t∑
i=1

εi + C(L)εt + τ0 + τ1t+ Pβ⊥y0

where τ0 and τ1 are vectors of constants.

Hence in case 1 there are no deterministic terms at all, in case 2 the intercept is restricted to the
cointegrating relationships, while in case 3 there is an unrestricted intercept and the time trend only enters
through the cointegrating relationships although a linear trend is present in the levels representation.

The trace statistic has become a popular method of testing the null hypothesis of r < p cointegrating
vectors against the maintained hypothesis that Π has full column rank p, in which case the process yt is
stationary. In what follows it is convenient to further express the VECM Equation (2) in the form

Z0t = αβ∗′Z1t + ΨZ2t + εt, t = 1, . . . , T (4)

where Z0t = ∆yt and the remaining terms are defined with respect to the three cases concerning the
specification of the deterministic component ΦDt defined above:

Case 1: β∗ = β, Z1t = yt−1, Z2t = (∆y′t−1, . . . ,∆y
′
t−k)

′, Ψ = [Γ1, . . . ,Γk−1].
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Case 2: β∗′ = (β′, ρ0), Z1t = (y′t−1, 1)′, and Ψ and Z2t are defined as in case 1.

Case 3: β∗′ = (β′, ρ1), Z1t = (y′t−1, t)
′, Z2t = (∆y′t−1, . . . ,∆y

′
t−k, 1)′, Ψ = [Γ1, . . . ,Γk−1, µ0].

Based on Equation (4) it is possible to define the matrices

Mij = T−1
T∑
t=1

ZitZ
′
jt, (i, j = 0, 1, 2), Sij = Mij −Mi2M

−1
22 M2j, (i, j = 0, 1)

The trace statistic is then obtained as

Sr = −T
p∑

i=r+1

log(1− λ̂i) (5)

where the (ordered) eigenvalues 1 > λ̂1 > . . . > λ̂p > 0 solve the determinantal equation
det[λS11− S10S

−1
00 S01] = 0. Let B(s) denote a (p− r)-dimensional standard Brownian motion process.

Then, as T →∞,

Sr ⇒ trace

{∫ 1

0

dBF ′
(∫ 1

0

FF ′
)−1 ∫ 1

0

FdB′

}
(6)

where the stochastic process F (s) is defined for each case as follows:

Case 1: F (s) = B(s);

Case 2: F (s) = (B(s)′, 1)′ ;

Case 3: F (s) =

[(
B(s)−

∫ 1

0

B

)′
, s− 1

2

]′ (7)

A proof of Equation (6) can be found in Theorem 11.1 of Johansen [5].
The asymptotic distribution given in Equation (6) has been found to provide a poor approximation

to the finite sample distribution of Sr in a number of cases leading to alternative approaches being
developed. Recent work has suggested bootstrap techniques as a way of improving inference concerning
the cointegration rank in finite samples, for example Swensen [14] and Cavaliere, Rahbek and
Taylor [15], while Bartlett corrections have been proposed by Johansen [11]. The idea behind Bartlett
correction is to adjust the statistic Sr so that its finite sample distribution is closer to the limiting
distribution. To see how this works, suppose it is possible to expand the expectation of Sr as

E(Sr) = a0 +
a1
T

+O(T−2) (8)

where a0 denotes the limit of the expectation as T → ∞ and a1 is either a known constant (typically
a function of the model parameters) or can be estimated consistently from the sample data. Then the
adjusted statistic

SBr =

(
1 +

a1
a0

1

T

)−1
Sr (9)

can be shown to satisfy E(SBr ) = a0 + O(T−2), thereby improving the accuracy of the limiting
distribution as an approximation to the finite sample distribution (at least in terms of the mean of the
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distribution). Johansen [11] derives expressions for the Bartlett correction factor which depend on the
parameters of the model in a complicated way and, hence, must be estimated from the sample data.
Simulations reveal that the adjusted statistic improves the size of the cointegration rank test in a large
part of the parameter space.

A procedure related to the Bartlett approach is the jackknife. It achieves the same order of reduction
in the bias of the statistic but does not require a formal derivation of the precise terms in the expansion
in Equation (8), merely relying on the existence of such a representation. The idea is to combine the
statistic Sr in a linear combination with the mean of a set of m statistics obtained from sub-samples,
the weights being chosen to eliminate the first order bias term a1/T . Suppose, then, that the full sample
of observations is divided into m non-overlapping sub-samples, each sub-sample containing ` = T/m

observations. If Srj denotes the statistic computed from sub-sample j then the jackknife statistic is
defined by

SJr,m =
m

m− 1
Sr −

1

m− 1

1

m

m∑
j=1

Srj (10)

Provided that E(Srj) = a0 + a1`
−1 + O(`−2) for j = 1, . . . ,m and ` = O(T ), it is straightforward to

show that E(SJr,m) = a0 +O(T−2) by substitution of the relevant expressions. Hence both statistics, SBr
and SJr,m, achieve the same order of bias reduction but by different means.

Although valid in cases 2 and 3, the above argument concerning the jackknife statistic SJr,m falters in
case 1 on the assumption that the sub-sample statistics, Srj (j = 1, . . . ,m), all share the same expansion
in Equation (8) as the full-sample statistic Sr. It has been shown by Chambers and Kyriacou [19,20] that,
in a univariate setting with a unit root, the sub-sample statistics (for j 6= 1) have different properties to
the full sample statistic in the limit due to the stochastic order of magnitude of the pre-sub-sample value,
and the same phenomenon also arises here in case 1. The implication is that the limiting distributions of
the sub-sample statistics Srj (at least for j 6= 1) will differ from that of Sr; the expansions of E(Srj) will
differ from that of E(Sr); and, hence, the jackknife statistic (as defined above) will not fully eliminate
the O(T−1) term in the bias. These problems do not arise in cases 2 and 3 because the presence of
the intercept and/or time trend ensures that the distributions are invariant to the initial (pre-sub-sample)
conditions. Although it is possible to overcome these problems in case 1 by simply subtracting y(j−1)`
from the observations in sub-sample j—an idea proposed in the univariate unit root setting by Chambers
and Kyriacou [19]—we do not pursue this avenue any further in view of the limited applicability of
case 1 in practice. Instead, we focus on the application of the jackknife correction in the more empirically
relevant cases 2 and 3.

In order to economise on notation it is convenient to define the functional

Q(U, V, δ) = trace

{∫
δ

dUV ′
(∫

δ

V V ′
)−1 ∫

δ

V dU ′

}

where U(s) and V (s) are vector stochastic processes defined on s ∈ δ, and to define the intervals
δ0 = [0, 1] and δj,m = [(j − 1)/m, j/m] (j = 1, . . . ,m). With this notation the limiting distribution in
Equation (6), for example, can be represented as

Sr ⇒ Q(B,F, δ0)
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The formal statement of the main result is as follows.
Theorem 1. Let y1, . . . , yT be generated according to Equation (2) and let Assumption 1 hold. Then,

as T →∞:

(a) If m is fixed:

Case 2. Srj ⇒ Q(B,F2, δj,m) (j = 1, . . . ,m), and

SJr,m ⇒
m

m− 1
Q(B,F2, δ0)−

1

m− 1

1

m

m∑
j=1

Q(B,F2, δj,m)

where F2(s) = [B(s)′, 1]′. Furthermore, Q(B,F2, δj,m) and Q(B,F2, δk,m) are independent
for j 6= k.

Case 3. Srj ⇒ Q(B,Fj,m, δj,m) (j = 1, . . . ,m), and

SJr,m ⇒
m

m− 1
Q(B,F3, δ0)−

1

m− 1

1

m

m∑
j=1

Q(B,Fj,m, δj,m)

where

F3(s) =

[(
B(s)−

∫ 1

0

B

)′
, s− 1

2

]′
and

Fj,m(s) =

[(
B(s)−m

∫ j/m

(j−1)/m
B(s)ds

)′
, s−

j − 1
2

m

]′
, j = 1, . . . ,m

Furthermore, Q(B,Fj,m, δj,m) and Q(B,Fk,m, δk,m) are independent for j 6= k.

(b) If m−1 +mT−1 → 0:

Case 2. SJr,m ⇒ Q(B,F2, δ0).

Case 3. SJr,m ⇒ Q(B,F3, δ0).

Theorem 1(a) shows that, when the number of sub-samples m is fixed, the limiting distribution
of the jackknife-corrected statistic is the same linear combination of the limiting distributions of the
full- and sub-sample statistics. Note that the length of each sub-sample, ` = T/m, increases with T for
fixed m. However, when m is allowed to increase with T but at a slower rate, Theorem 1(b) shows that
the limiting distribution is equivalent to that of the full-sample statistic alone. In this case note that, if
mT−1 → 0 as T → ∞, then ` = m−1T → ∞. In order to use these distributions for inference it is
necessary to obtain the appropriate critical values; these are provided in Section 3 for a range of values
of m and p − r. Further analysis of the finite sample properties of the jackknife-corrected statistics is
provided in the next section by means of Monte Carlo simulations.
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3. Simulation Results

3.1. Critical Values of Limiting Distributions

The limiting distributions of the jackknife statistic SJr,m presented in Theorem 1 for fixed values of the
jackknife parameter m are nonstandard and, in order to be useful in practice, it is necessary to obtain the
appropriate critical values. Tables 1 and 2 provide the 90%, 95% and 99% points of the distributions for
values of p−r ranging from 1 to 12 for the empirically relevant cases 2 and 3, respectively, and for values
of m ∈ {2, 3, 4, 5, 6, 8, 10, 12, 16, 20}. A total of 100,000 replications were carried out with a sample
size of T = max{1200, 100m} spanning the interval [0, 1] ensuring that when m ≥ 12 each sub-sample
(of length ` = T/m) contains 100 points. The method described in Chapter 15 of Johansen [5] was
employed, with suitable modifications to allow for the sub-sample statistics used in constructing the
jackknife corrections; details are provided in the Appendix. It can be seen that, in all cases, the critical
values for SJr,m are larger than those for Sr that are reported in, for example, Johansen [5], Doornik [6]
and MacKinnon, Haug and Michelis [7]. The critical values are also seen to decrease as m increases for
a given value of p− r.

Table 1. Percentage points of limiting distributions of SJr,m: case 2.

m : 2 3 4 5 6 8 10 12 16 20

p− r 90%

1 10.05 9.08 8.66 8.42 8.26 8.06 7.96 7.88 7.80 7.75
2 22.25 20.50 19.76 19.38 19.11 18.78 18.62 18.50 18.36 18.28
3 38.21 35.81 34.79 34.22 33.88 33.43 33.20 33.04 32.85 32.74
4 58.09 54.96 53.67 52.98 52.54 51.98 51.66 51.46 51.20 51.06
5 82.03 78.19 76.62 75.75 75.19 74.55 74.18 73.92 73.61 73.43
6 109.89 105.40 103.53 102.51 101.85 101.06 100.61 100.32 99.97 99.75
7 141.58 136.48 134.26 133.11 132.40 131.53 130.98 130.65 130.24 129.98
8 177.55 171.72 169.24 167.89 167.05 165.99 165.43 165.06 164.59 164.30
9 217.22 210.62 207.94 206.44 205.49 204.39 203.73 203.29 202.75 202.41

10 260.95 253.74 250.84 249.23 248.23 246.90 246.18 245.69 245.07 244.68
11 308.49 300.83 297.62 295.80 294.65 293.28 292.50 291.92 291.25 290.82
12 360.20 351.68 348.22 346.20 345.04 343.50 342.64 342.07 341.29 340.80
p− r 95%

1 12.56 11.26 10.68 10.35 10.14 9.87 9.71 9.62 9.50 9.43
2 25.89 23.65 22.74 22.18 21.82 21.38 21.16 20.98 20.81 20.69
3 42.93 39.85 38.50 37.74 37.29 36.71 36.38 36.17 35.91 35.75
4 63.91 59.93 58.27 57.41 56.83 56.08 55.69 55.40 55.05 54.87
5 89.01 84.13 82.07 80.92 80.19 79.32 78.78 78.46 78.05 77.82
6 117.86 112.19 109.73 108.37 107.55 106.49 105.92 105.53 105.06 104.80
7 150.83 144.14 141.37 139.81 138.84 137.70 137.02 136.57 136.03 135.69
8 187.76 180.10 177.07 175.32 174.21 172.93 172.21 171.70 171.08 170.71



Econometrics 2015, 3 363

Table 1. Cont.

m : 2 3 4 5 6 8 10 12 16 20

9 228.63 220.14 216.60 214.86 213.53 212.13 211.23 210.73 210.02 209.60
10 273.43 264.11 260.24 258.12 256.76 255.20 254.19 253.58 252.77 252.32
11 321.89 311.80 307.72 305.46 303.90 302.13 301.13 300.43 299.55 299.01
12 374.52 363.51 359.00 356.62 355.07 353.12 351.97 351.20 350.28 349.67
p− r 99%

1 17.99 16.02 15.21 14.64 14.30 13.90 13.65 13.48 13.28 13.15
2 33.52 30.41 28.92 28.17 27.67 26.97 26.62 26.36 26.08 25.90
3 52.54 48.08 46.04 45.00 44.30 43.44 43.02 42.65 42.23 42.02
4 75.56 69.88 67.45 66.17 65.22 64.23 63.61 63.20 62.70 62.43
5 102.65 95.74 92.60 91.02 89.99 88.76 88.05 87.54 86.95 86.58
6 133.52 125.28 121.70 119.75 118.60 117.10 116.25 115.73 115.05 114.65
7 168.40 159.21 155.18 152.98 151.64 149.90 148.84 148.21 147.48 146.98
8 207.38 196.97 192.68 190.16 188.48 186.65 185.54 184.77 183.87 183.36
9 249.98 238.76 233.74 231.05 229.56 227.31 225.92 225.21 224.21 223.54

10 296.32 283.65 278.30 275.06 273.38 271.14 269.66 268.83 267.75 267.06
11 347.61 334.18 327.61 324.53 322.64 320.06 318.46 317.51 316.24 315.52
12 402.54 387.33 380.59 377.15 374.75 372.10 370.54 369.34 368.02 367.27

Table 2. Percentage points of limiting distributions of SJr,m: case 3.

m : 2 3 4 5 6 8 10 12 16 20

p− r 90%

1 18.76 14.91 13.51 12.79 12.35 11.85 11.57 11.39 11.18 11.05
2 35.82 29.69 27.56 26.49 25.85 25.10 24.68 24.41 24.10 23.92
3 56.12 47.98 45.28 43.88 43.04 42.07 41.55 41.20 40.79 40.55
4 80.08 70.16 66.83 65.15 64.14 62.95 62.28 61.85 61.32 61.02
5 107.99 96.36 92.42 90.42 89.22 87.82 87.03 86.52 85.92 85.56
6 139.70 126.38 121.86 119.54 118.11 116.50 115.59 114.99 114.27 113.85
7 175.42 160.26 155.23 152.63 151.08 149.19 148.17 147.49 146.67 146.18
8 215.34 198.49 192.84 189.80 188.06 185.95 184.79 184.05 183.11 182.56
9 258.79 240.45 234.13 230.83 228.88 226.55 225.27 224.43 223.37 222.73

10 306.55 286.65 279.68 276.15 273.91 271.35 269.92 268.96 267.81 267.10
11 358.30 336.52 329.07 325.17 322.77 319.95 318.35 317.36 316.08 315.31
12 413.57 390.29 382.24 377.98 375.45 372.47 370.74 369.57 368.15 367.31
p− r 95%

1 22.34 17.62 15.94 15.09 14.56 13.95 13.61 13.39 13.13 12.99
2 40.58 33.37 30.91 29.64 28.88 28.00 27.50 27.18 26.81 26.59
3 61.90 52.53 49.38 47.76 46.80 45.67 45.05 44.63 44.13 43.85
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Table 2. Cont.

m : 2 3 4 5 6 8 10 12 16 20

4 86.92 75.52 71.70 69.72 68.56 67.21 66.43 65.93 65.33 64.98
5 115.89 102.49 98.05 95.75 94.35 92.70 91.79 91.17 90.45 90.03
6 148.70 133.59 128.43 125.74 124.12 122.26 121.16 120.47 119.65 119.17
7 185.48 168.61 162.76 159.67 157.88 155.67 154.43 153.64 152.69 152.11
8 226.37 207.59 201.08 197.68 195.59 193.16 191.79 190.91 189.85 189.20
9 270.96 250.37 243.27 239.51 237.30 234.62 233.07 232.11 230.93 230.18

10 320.06 297.55 289.65 285.71 283.12 280.20 278.50 277.40 276.05 275.23
11 372.32 347.92 339.37 334.93 332.33 329.16 327.29 326.12 324.66 323.74
12 428.72 402.54 393.18 388.61 385.63 382.25 380.20 378.93 377.35 376.35
p− r 99%

1 30.24 23.55 21.28 20.10 19.36 18.50 18.02 17.73 17.38 17.16
2 50.52 40.95 37.71 36.13 35.12 33.99 33.31 32.89 32.40 32.10
3 73.77 61.94 57.89 55.85 54.50 53.10 52.28 51.75 51.14 50.75
4 100.20 86.44 81.56 79.09 77.66 75.85 74.89 74.23 73.47 72.99
5 131.58 115.32 109.74 106.87 105.06 102.93 101.78 100.97 100.02 99.55
6 166.69 147.92 141.48 138.09 136.03 133.67 132.33 131.43 130.33 129.73
7 205.79 184.90 177.73 173.88 171.62 168.78 167.29 166.32 165.11 164.36
8 248.25 225.64 217.36 213.17 210.70 207.55 205.74 204.69 203.27 202.46
9 294.75 269.95 261.04 256.53 253.66 250.36 248.36 247.22 245.70 244.75

10 344.98 317.65 308.29 303.22 300.04 296.43 294.31 293.04 291.35 290.38
11 399.79 370.35 359.97 354.38 351.15 347.01 344.72 343.19 341.39 340.35
12 458.22 426.77 415.51 409.54 405.96 401.61 399.07 397.46 395.48 394.31

3.2. Finite Sample Properties

The finite sample size and power properties of the jackknife-corrected test statistics were investigated
using the simulation model adopted by Cavaliere, Rahbek and Taylor [15] (denoted CRT12) for the
purpose of evaluating their bootstrap procedure. The model takes p = 4 and is given by

∆yt = αβ′yt−1 + Γ1∆yt−1 + εt, t = 1, . . . , T

where εt is a vector of normally distributed independent random variables with covariance matrix I4, the
sample size T ∈ {50, 100, 200}, and the initial condition is y0 = ∆y0 = 0. The short-run adjustment
matrices are defined as α = (a, 0, 0, 0)′ and

Γ1 =


γ δ 0 0

δ γ 0 0

0 0 γ 0

0 0 0 γ


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where a, γ and δ are scalar parameters defined below for each of the three data generation processes
(DGPs) considered:

DGP1: a = −0.4, β = (1, 0, 0, 0)′, γ = 0.8, δ ∈ {0, 0.2}.

DGP2: a = −0.4, β = (1, 0, 0, 0)′, γ = 0.5, δ ∈ {0, 0.2}.

DGP3: a = 0, δ = 0, γ ∈ {0, 0.5, 0.8, 0.9}.

In DGPs 1 and 2 there is a single cointegrating vector while in DGP3 there is no cointegration and yt
is an I(1) VAR(2) process (or, equivalently, ∆yt is an I(0) VAR(1) process). The form of cointegration
in DGPs 1 and 2 was considered in CRT12 and implies that y1t is I(0). The value of δ that appears in the
matrix Γ1 was used by CRT12 because it is related to some auxiliary conditions relevant for the bootstrap
procedure of Swensen [21]. These conditions are satisfied for δ = 0 but not for δ = 0.2. CRT12 also
included two additional values of δ (equal to 0.1 and 0.3) but, as will be seen, the value of δ does not
have a major impact on the test procedures under consideration and so we restrict attention to just two of
the four values used in CRT12. Note that, in DGP3, δ = 0 and the matrix Γ1 is diagonal with the scalar
γ forming the diagonal elements.

It is also necessary for the DGPs to satisfy the three parts of Assumption 1. The first requires the
roots of the equation det[A(z)] = 0 to have modulus greater than or equal to one, where in this case
A(z) = (1 − z)I4 − αβ′z − Γ1(1 − z)z. In DGPs 1 and 2 there are three unit roots and in DGP3 there
are four; the moduli of the non-unit roots are reported in Table 3, where it can be seen that Assumption
1(i) is satisfied in all cases. Comparing DGP1 with DGP2, the effect of reducing γ from 0.8 to 0.5 is
to increase the modulus of each of the non-unit roots. In DGP3, increasing the parameter γ reduces
the non-unit roots towards unity, and in the extreme case of γ = 1, yt becomes an I(2) process. It is
well known that the rank test performs poorly as this extreme case is approached; see, for example, the
simulation evidence in Johansen (2002). Note that, when γ = 0, there are no roots in addition to the four
unit roots because, in this case, A(z) = (1− z)I4 and hence det[A(z)] = (1− z)4. Assumption 1(ii) is
obviously satisfied, while it can be shown that det[α′⊥Γβ⊥] = (1 − γ)3 and hence Assumption 1(iii) is
satisfied provided γ 6= 1.

A total of seven test statistics for cointegration rank were considered. The first is the standard
(unadjusted) trace statistic Sr defined in Equation (5). The second uses the small sample correction
proposed by Reinsel and Ahn [12]; the resulting statistic, denoted SRAr , is defined by

SRAr = −(T − pk)

p∑
i=r+1

log(1− λ̂i) =
(T − pk)

T
Sr (11)

The third statistic is the Bartlett-corrected statistic defined in Equation (9); full details concerning
computation of the correction factors can be found in Johansen [11]. The fourth method is based on
the bootstrap procedures of CRT12. The bootstrap samples are obtained by estimating the VECM under
the null hypothesis, checking that the roots of the estimated matrix polynomial equation det[A(z)] = 0

satisfy Assumption 1(i), and then generating a total of NBS samples recursively using an appropriate
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method. In the simulations reported here a wild bootstrap was employed in which, if ε̂it denotes element
i of the residual vector ε̂t, then the residuals used for the bootstrap samples were of the form

ε̂BSit = uit

(
ε̂it − T−1

T∑
t=1

ε̂it

)
, i = 1, . . . , 4, t = 1, . . . , T

where the uit are independent normal variates. The statistic Sr is computed in each bootstrap sample
and the critical value is obtained from the distribution of Sr over the NBS boostrap samples. We denote
this test by SBSr but emphasise that the test statistic is actually Sr which is compared with the critical
value from the finite sample bootstrap distribution rather than the critical value from the asymptotic
distribution. Full details of the procedure can be found in CRT12.

Table 3. Moduli of non-unit roots in simulations.

δ/γ Moduli

DGP1
0.0 1.1180 1.1180 1.2500 1.2500 1.2500
0.2 1.1335 1.1335 1.2500 1.2500 1.2972

DGP2
0.0 1.4142 1.4142 2.0000 2.0000 2.0000
0.2 1.3639 1.3639 2.0000 2.0000 2.5599

DGP3
0.5 2.0000 2.0000 2.0000 2.0000
0.8 1.2500 1.2500 1.2500 1.2500
0.9 1.1111 1.1111 1.1111 1.1111

In addition to the above statistics, three versions of the jackknife statistic are considered. The first is
SJr,m defined in Equation (10). This was computed for a range of values ofmwhere practicable, although
we report mainly the results for m = 2; details of how the tests perform for other values of m are also
provided. The remaining two jackknife statistics are based on small sample adjustments to either the full
sample statistic Sr and/or the sub-sample statistics Srj upon which the jackknife is based. In particular
the two additional jackknife statistics are defined by

SJ1r,m =
m

m− 1
SRAr − 1

m− 1

1

m

m∑
j=1

Srj

SJ2r,m =
m

m− 1
SRAr − 1

m− 1

1

m

m∑
j=1

SRArj

in which the small sample adjusted sub-sample statistics are defined analagously to Equation (11) by

SRArj =
(`− pk)

`
Srj, j = 1, . . . ,m.

The first of these statistics uses the small sample adjustment purely on Sr while the second also uses it
on the sub-sample statistics.
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A total of R = 10, 000 replications were performed for each combination of parameter values for
each DGP and, as in CRT12, the VAR model was fitted with a restricted intercept (case 2). The bootstrap
procedure is the most computationally intensive component in the simulations, requiring a sufficiently
large number (NBS) of bootstrap samples in each replication in order to compute the critical value
from the bootstrap distribution; CRT12, for example, set NBS = 399. The bootstrap computations
are therefore O(RNBS) compared to O(R) for the other statistics. While using a large number of
bootstrap samples poses no problem in a single empirical application, it is more of a computational
(and time) burden when computing a large number of bootstrap samples for each one of a large number
of Monte Carlo replications. We therefore employed the approach of Davidson and MacKinnon [22] and
Giacomini, Politis and White [23] and used only one bootstrap sample per replication, i.e., NBS = 1.
Instead of using a large number of bootstrap samples to determine the critical value from the bootstrap
distribution in each replication, the critical value is obtained from the bootstrap distribution across the
R Monte Carlo replications. This ‘warp-speed’ method reduces substantially the number of bootstrap
computations from O(RNBS) to O(R) in accordance with the other non-bootstrap statistics.

The simulation results are summarised in Tables 4–7; in all cases the tests are based on a nominal
size of 5%. Table 4 contains the empirical size of each of the seven test statistics in the case of the VAR
with a single cointegrating vector. The value of δ has a relatively small impact on the performance of
the tests but the reduction in γ from 0.8 to 0.5 has a much larger impact. It is apparent that, in all DGPs,
the unadjusted Johansen statistic S1 has large size distortions, with the empirical size being as large as
45% in DGP1 with δ = 0.2 and T = 50. The small sample adjustment that results in SRA1 reduces the
size closer to its nominal level in all cases, particularly in DGP 2 (where γ = 0.5) but less so in DGP 1
(γ = 0.8) where size distortions remain. The Bartlett correction has a tendency to over-compensate,
leading to empirical sizes below 5% (and around 2% for T = 50) in most cases. The bootstrap produces
sizes around 5% in DGP 1 but in DGP 2 the empirical size tends to be slightly lower than the nominal
size. The jackknife statistic SJ1,2 manages to reduce the size towards the 5% level compared to the
unadjusted statistic S1 with empirical sizes around 6%–7% in DGP 2 and a bit higher in DGP 1. The
small sample adjustment in SJ11,2 reduces the empirical size in all cases, compared to SJ1,2, while SJ21,2

produces sizes close to the nominal level in DGP 2 but shows little improvement (if any) over SJ1,2 in
DGP 1.

The power performance of the tests in the cointegrated VAR is summarised in Table 5 in which
the probability of rejecting the null hypothesis that r = 0 is reported. Beginning with the unadjusted
statistic S0, the high power at the smaller sample sizes in DGP 1 is a reflection of the large size distortions
reported in Table 4. All of the adjusted statistics are less powerful than S0 but it should be remembered
that they do have better size properties. The statistic SJ10,2 has particularly low power for T = 50 in
DGP 2.

The size properties of the tests in a non-cointegrated VAR are reported in Table 6. As the value of
γ increases from 0 to 0.9 the unadjusted statistic S0 suffers from huge size distortions, rising to 92%
for T = 50 when γ = 0.9. The size properties of the adjusted statistcs are all better than S0 with the
bootstrap test controlling size best over this range of parameters. The Bartlett adjustment again tends
to reduce empirical size to below its nominal level as γ increases while, for the jackknife statistics, SJ20,2
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performs best for smaller values of γ while SJ10,2 produces the best performance of the three for larger
values of γ.

Table 4. Empirical size: cointegrated VAR.

δ T S1 SRA
1 SB

1 SBS
1 SJ

1,2 SJ1
1,2 SJ2

1,2

DGP1
0.0 50 44.68 18.80 2.10 5.49 14.26 2.53 14.37

100 23.02 13.36 3.91 4.64 10.04 4.83 9.37
200 13.03 9.87 4.73 5.22 7.85 5.03 7.28

0.2 50 45.26 19.07 2.42 4.98 14.53 2.30 14.61
100 22.39 13.28 4.38 5.24 9.99 4.67 9.38
200 12.61 9.73 5.02 5.35 8.01 5.46 7.49

DGP2
0.0 50 14.35 3.15 2.11 2.64 6.00 0.59 5.01

100 10.44 5.38 4.68 4.62 7.62 3.31 6.58
200 7.14 5.21 4.75 5.11 6.03 3.95 5.50

0.2 50 15.40 3.42 2.21 2.69 6.27 0.60 5.16
100 10.50 5.37 4.90 4.58 7.30 3.18 6.42
200 7.50 5.29 4.94 4.86 5.87 3.88 5.29

Table 5. Empirical power: cointegrated VAR.

δ T S0 SRA
0 SB

0 SBS
0 SJ

0,2 SJ1
0,2 SJ2

0,2

DGP1
0.0 50 97.57 85.20 30.93 51.76 70.05 27.76 74.00

100 99.99 99.92 98.78 99.11 99.59 98.26 99.62
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0.2 50 97.03 83.09 30.90 46.41 65.77 23.63 69.81
100 99.99 99.93 98.21 99.02 99.40 97.45 99.45
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00

DGP2
0.0 50 62.52 27.08 18.39 17.79 26.14 3.63 26.36

100 92.80 83.40 77.70 78.20 81.03 61.70 79.93
200 100.00 100.00 100.00 100.00 99.98 99.95 99.98

0.2 50 66.70 29.74 19.45 18.88 27.87 4.19 28.26
100 94.25 77.06 82.00 82.14 84.40 66.73 83.67
200 100.00 100.00 99.99 99.99 99.99 99.98 99.99
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Table 6. Empirical size: non-cointegrated VAR (DGP3).

γ T S0 SRA
0 SB

0 SBS
0 SJ

0,2 SJ1
0,2 SJ2

0,2

0.0 50 17.30 2.75 5.40 3.76 6.33 0.27 5.19
100 9.37 4.03 5.22 4.36 6.18 2.00 5.29
200 7.12 4.71 5.30 4.98 5.89 3.36 5.41

0.5 50 37.19 9.93 4.44 4.10 8.92 0.77 8.94
100 16.94 8.07 4.90 4.73 7.73 2.62 6.82
200 9.45 6.26 4.75 4.58 6.32 3.48 5.74

0.8 50 78.48 41.96 1.67 6.33 22.52 2.88 25.87
100 44.30 27.61 3.64 5.90 13.84 5.33 13.77
200 21.33 15.45 4.82 5.48 8.97 5.77 8.61

0.9 50 92.73 66.06 0.76 8.56 39.16 7.08 44.76
100 75.26 58.00 1.10 7.96 27.61 12.09 28.55
200 44.69 35.42 3.09 5.89 14.69 9.78 14.49

Table 7. Empirical size of SJ1,m for varying m.

m

δ/γ T 2 4 5 8 10

DGP1
0.0 100 10.04 9.95 10.12

200 7.85 7.64 8.00 7.83 7.92
0.2 100 9.99 9.87 9.94

200 8.01 7.70 8.01 7.95 8.01
DGP2

0.0 100 7.62 6.60 6.01
200 6.03 5.90 5.85 5.50 5.32

0.2 100 7.30 6.32 5.87
200 5.87 5.94 5.95 5.68 5.44

DGP3
0.0 100 6.18 5.18 4.56

200 5.89 5.64 5.35 5.17 4.81
0.5 100 7.73 6.56 5.90

200 6.32 5.76 5.52 5.37 5.05
0.8 100 13.84 16.46 16.74

200 8.97 9.55 9.78 10.83 10.97
0.9 100 27.61 38.04 40.20

200 14.69 19.45 21.55 25.45 26.62

The results for the jackknife tests in Tables 4–6 are based on m = 2 sub-samples, but it is of interest
to ascertain how the performance of the tests is affected using different values of m. For T = 50 there
is little scope to increase m much further; with m = 2 each sub-sample has only ` = 25 observations,
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so increasing m soon makes sub-sample estimation infeasible. However, for larger sample sizes some
experimentation is possible, and so Table 7 reports the empirical size of SJ1,m for m ∈ {2, 4, 5} when
T = 100 andm ∈ {2, 4, 5, 8, 10}when T = 200; in each case, for the largest value ofm, the sub-samples
contain just ` = 20 observations. Table 7 shows that the empirical size of SJ1,m is remarkably robust to
the value of m, with the exception of DGP3 when γ = 0.9.

To summarise the simulation results, it appears that rank test statistics based on some form
of correction factor can provide size improvements over the unadjusted Johansen statistic while
still maintaining good power properties, although a bootstrap approach offers the most consistent
performance over the range of DGPs considered. It should be stressed, however, that the corrected
statistics and the bootstrap operate in rather different ways. All of the corrected statistics—whether the
correction is a simple small sample adjustment, a (parametric) Bartlett correction or a (nonparametric)
jackknife correction—aim to adjust the raw statistic in such a way that the distribution of the corrected
statistic matches better the asymptotic distribution, the critical values of which the corrected statistic is
compared with. The bootstrap, on the other hand, uses as the test statistic the unadjusted statistic itself,
but by generating bootstrap samples whose size is equal to the given finite number of observations, uses
critical values from the finite sample bootstrap distribution against which to compare the statistic. The
evidence obtained here suggests that the latter approach is the most robust in practice.

4. Conclusions

This paper has investigated the asymptotic properties and finite sample performance of
jackknife-corrected test statistics for cointegration rank in a VAR system. In particular, the limiting
distributions of jackknife-corrected test statistics have been derived for the two trend specifications of
most empirical relevance; the asymptotic critical values for these cases have been tabulated; and the
finite sample size and power properties of the jackknife-corrected tests have been compared with the
usual (unadjusted) rank test statistic as well as statistics using various small sample corrections and
a bootstrap approach. The simulations reveal that all the corrected statistics, including the jackknife
variants, can provide size improvements over the unadjusted statistic while still maintaining good power
properties, although a bootstrap approach offers the most consistent performance over the range of
DGPs considered.

There are a number of ways in which the analysis of this paper can be built upon. In practice the
precise form of the VAR (i.e., the specification of the deterministic trend function and the number of
lags) is unknown, and various pre-tests are often conducted, including the use of information criteria to
determine the VAR order. This has an impact on the performance of the rank tests, and it would be of
interest to ascertain how well the jackknife methods perform relative to other tests in such a scenario.
Another potentially fruitful area of investigation concerns the use of jackknife methods in estimating the
cointegrating parameters themselves. Additionally, bootstrap methods have been shown to be adaptable
to situations where heteroskedasticity (both conditional and unconditional) is present as well as breaks
in variance and correlations; see, for example, Cavaliere, Rahbek and Taylor [24,25]. Jackknife methods
have also been found to be robust to conditional heteroskedasticity in stationary autoregressions by
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Chambers [18], and so a further comparison with bootstrap methods would be of interest in the context
of cointegration. Such avenues are left for future work.
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Appendix

A.1. Proof of Theorem 1

(a) Johansen [5] (Theorem 11.1) shows that Sr ⇒ Q(B,F, δ0) as T →∞ under the stated conditions,
where F (s) is defined in Equation (7) for each case. Taking each of the two relevant cases in turn:
Case 2

Here, Sr ⇒ Q(B,F2, δ0) and the sub-sample statistics have the same distribution defined on δj,m,
i.e., Srj ⇒ Q(B,F2, δj,m). The result for SJr,m follows straightforwardly as m is fixed.

To demonstrate the independence of Q(B,F2, δj,m) and Q(B,F2, δk,m) for j 6= k, consider

Q(B,F2, δj,m) = trace


∫ j/m

(j−1)/m
dB(s)F2(s)

′

[∫ j/m

(j−1)/m
F2(s)F2(s)

′ds

]−1

×
∫ j/m

(j−1)/m
F2(s)dB(s)′

}
and recall that F2(s) = [B(s)′, 1]′. This expression is a function of B(s) for s ∈ δj,m which is clearly
not independent of the process B(r) for r ∈ δk,m that enters Q(B,F2, δk,m). However, let

Aj,m =

 Ip−r −m
∫ j/m

(j−1)/m
B(s)ds

0′p−r 1


where 0p−r denotes a (p− r)× 1 vector of zeros. We can then write

Q(B,F2, δj,m) = trace

{∫ j/m

(j−1)/m
dB(s)F2(s)

′A′j,m

×

[∫ j/m

(j−1)/m
Aj,mF2(s)F2(s)

′A′j,mds

]−1 ∫ j/m

(j−1)/m
Aj,mF2(s)dB(s)′


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which is a function of the process

Aj,mF2(s) =

 B(s)−m
∫ j/m

(j−1)/m
B(s)ds

1


This shows that Q(B,F2, δj,m) can be represented in terms of the quasi-demeaned process Bj,m(s) =

B(s) − m

∫ j/m

(j−1)/m
B(s)ds for s ∈ δj,m, and it follows that Q(B,F2, δk,m) can be written in terms of

the process Bk,m(r) = B(r) −m
∫ k/m

(k−1)/m
B(r)dr for r ∈ δk,m. The two functionals of interest will be

independent if Bj,m(s) and Bk,m(r) are independent which, due to them being Gaussian processes, only
requires their covariance to be zero. The covariance of interest is

Cj,k = E (Bj,m(s)Bk,m(r)′) = E (B(s)B(r)′)−mE

(∫ j/m

(j−1)/m
B(s)dsB(r)′

)

−mE

(
B(s)

∫ k/m

(k−1)/m
B(r)′dr

)
+m2E

(∫ j/m

(j−1)/m
B(s)ds

∫ k/m

(k−1)/m
B(r)′dr

)
Suppose, without loss of generality, that k > j which implies r > s. Then we have E (B(s)B(r)′) =

min(s, r)Ip−r = sIp−r,

E

(∫ j/m

(j−1)/m
B(s)dsB(r)′

)
=

∫ j/m

(j−1)/m
min(s, r)dsIp−r

=

∫ j/m

(j−1)/m
sdsIp−r =

j − 1
2

m2
Ip−r,

E

(
B(s)

∫ k/m

(k−1)/m
B(r)′dr

)
=

∫ k/m

(k−1)/m
min(s, r)drIp−r

= s

∫ k/m

(k−1)/m
drIp−r =

s

m
Ip−r,

E

(∫ j/m

(j−1)/m
B(s)ds

∫ k/m

(k−1)/m
B(r)′dr

)
=

∫ j/m

(j−1)/m

∫ k/m

(k−1)/m
min(s, r)drds

=

∫ j/m

(j−1)/m
sds

∫ k/m

(k−1)/m
dr =

j − 1
2

m2

1

m
Ip−r

Combining these expressions we find that

Cj,k =

(
s−m ·

j − 1
2

m2
−m · s

m
+m2 ·

j − 1
2

m2
· 1

m

)
Ip−r = 0(p−r)×(p−r)

as required, where 0k denotes a k × k matrix of zeros.
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Case 3
For the full-sample statistic, Sr ⇒ Q(B,F3, δ0), while the appropriate process Fj,m for the

sub-samples is obtained as the residual from a continuous time projection of B(s) and s on a constant
on the interval δj,m (the process F3(s) is obtained in the same way but with the projections taking place
on δ0). The first projection is given by

B(s)−

∫ j/m

(j−1)/m
B(s)ds∫ j/m

(j−1)/m
ds

= B(s)−

∫ j/m

(j−1)/m
B(s)ds

1/m
= B(s)−m

∫ j/m

(j−1)/m
B(s)ds

which provides the first p − r elements of Fj,m(s). The second projection residual, which is the final
element of Fj,m(s), is obtained as

s−

∫ j/m

(j−1)/m
sds∫ j/m

(j−1)/m
ds

= s−
(
j − 1

2

)
/m2

1/m
= s−

j − 1
2

m

The sub-sample statistics satisfy Srj ⇒ Q(B,Fj,m, δj,m) and the result for SJr,m follows.
The independence of Q(B,Fj,m, δj,m) and Q(B,Fk,m, δk,m) follows from the arguments used for

case 2 above, noting that Fj,m already contains the process Bj,m.
(b) In both cases, when m→∞ as T →∞ such that m−1 + mT−1 → 0 (so that ` = m−1T →∞),

it follows that SJr,m = Sr + op(1) and the results are straightforward. 2

A.2. Method of Simulation of Limiting Distributions

The objective is to simulate distributions of the form

Q(B,F, δ) = trace

{∫
δ

dBF ′
(∫

δ

FF ′
)−1 ∫

δ

FdB′

}

where B(s) is a (p − r)-dimensional standard Brownian motion process and F (s) is a stochastic
processes whose precise form is given in Theorem 1 and depends on the specification of the deterministic
component in the model. Consider, first, Q(B,F, δ0), and define the (p − r)-dimensional process
∆yt = εt, t = 1, . . . , T , where the elements of εt are independent standard normal random variates
and y0 = 0. Then, following Johansen [5] (chapter 15), the distribution of Q(B,F, δ0) is approximated
by

Q̂T = trace


T∑
t=1

εtP
′
t

(
T∑
t=1

PtP
′
t

)−1 T∑
t=1

Ptε
′
t


for an appropriate choice of Pt (t = 1, . . . , T ), as follows:

Case 2: Pt =
(
y′t−1, 1

)′;
Case 3: Pt =

[
(yt−1 − ȳ)′ , t− 1

2
(T + 1)

]′, where ȳ = T−1
∑T

t=1 yt−1.
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In a similar way the distributions of the sub-sample statistics are simulated using

Q̂T,j,m = trace


j`∑

t=(j−1)`+1

εtP
′
t

 j`∑
t=(j−1)`+1

PtP
′
t

−1 j`∑
t=(j−1)`+1

Ptε
′
t


again subject to an appropriate choice of Pt (t = (j − 1)`+ 1, . . . , j`):

Case 2: Pt =
[
y′t−1, 1

]′;
Case 3: Pt =

[
(yt−1 −mȳj)′ , t−

(
j − 1

2

)
`− 1

2

]′, where ȳj = `−1
∑j`

t=(j−1)`+1 yt−1.

The simulated values are combined to approximate the distribution in Theorem 1 (a) using

m

m− 1
Q̂T −

1

m− 1

1

m

m∑
j=1

Q̂T,j,m

for a range of values of m.
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