
econometrics

Article

Parallelization Experience with Four Canonical
Econometric Models Using ParMitISEM

Nalan Baştürk 1, Stefano Grassi 2,*, Lennart Hoogerheide 3 and Herman K. van Dijk 3,4

1 Department of Quantitative Economics, School of Business and Economics, Maastricht University,

Maastricht 6211LM, The Netherlands; n.basturk@maastrichtuniversity.nl
2 School of Economics, Keynes College, University of Kent, Canterbury CT27NP, UK
3 Department of Econometrics and Tinbergen Institute, Vrije Universiteit Amsterdam, Amsterdam 1081HV,

The Netherlands; l.f.hoogerheide@vu.nl
4 Econometric Institute and Tinbergen Institute, Erasmus School of Economics, Erasmus University,

Rotterdam, 3062PA, The Netherlands; hkvandijk@ese.eur.nl

* Correspondence: S.Grassi@kent.ac.uk; Tel.: +44-(0)-1227-824715

Academic Editors: Francesco Ravazzolo and Roberto Casarin

Received: 15 September 2015; Accepted: 28 January 2016; Published: 7 March 2016

Abstract: This paper presents the parallel computing implementation of the MitISEM algorithm,

labeled Parallel MitISEM. The basic MitISEM algorithm provides an automatic and flexible method

to approximate a non-elliptical target density using adaptive mixtures of Student-t densities,

where only a kernel of the target density is required. The approximation can be used as a candidate

density in Importance Sampling or Metropolis Hastings methods for Bayesian inference on model

parameters and probabilities. We present and discuss four canonical econometric models using

a Graphics Processing Unit and a multi-core Central Processing Unit version of the MitISEM

algorithm. The results show that the parallelization of the MitISEM algorithm on Graphics

Processing Units and multi-core Central Processing Units is straightforward and fast to program

using MATLAB. Moreover the speed performance of the Graphics Processing Unit version is much

higher than the Central Processing Unit one.

Keywords: Importance sampling, parallel computing, MitISEM, MCMC

JEL: C11, C13, C32, C36

1. Introduction

In several statistical and econometric models, the joint and marginal posterior distributions of

the parameters have unknown analytical properties and non-elliptical Bayesian Highest Posterior

Density (HPD) credible sets, see e.g., [1–3]. The phenomenon of multi-modal, skewed shapes and/or

ridges in the surface of posteriors and predictive densities, occurs frequently in empirical econometric

analysis, see [4] for a review. In such cases it is not trivial to perform inference on the joint posterior

distribution of parameters using basic Markov Chain Monte Carlo (MCMC) methods, which may be

inefficient and inaccurate due to the non-standard conditional densities. The difficulty of selecting an

appropriate candidate density for algorithms where such a candidate needs to be defined is discussed

in [3,5,6] among several others. Efficient and accurate inference is, however, important in the context

of measuring economic forecast uncertainty and economic policy effects.

Econometrics 2016, 4, 11; doi:10.3390/econometrics4010011 www.mdpi.com/journal/econometrics

http://www.mdpi.com/journal/econometrics
http://www.mdpi.com
http://www.mdpi.com/journal/econometrics

Econometrics 2016, 4, 11 2 of 20

Recently, Hoogerheide et al. [7] proposed the Mixture of Student-t Distributions using

Importance Sampling weighted Expectation Maximization (MitISEM) algorithm which is an

automatic and flexible method to approximate a target posterior or predictive density which possibly

has non-elliptical shapes that are not known a priori. The algorithm provides an approximation to

the joint target density that can be used to obtain features of interest. More importantly, in Bayesian

inference, this approximation can be used as a candidate or proposal density for the Metropolis Hastings

(MH) or Importance Sampling (IS) algorithms, see [8,9].1 Thus, the use of the MitISEM algorithm

for Bayesian inference involves two steps. In the first step, the MitISEM approximation to the joint

posterior density of model parameters is obtained, that is, a mixture of Student-t candidate densities

is fitted to the target using an expectation maximization (EM) algorithm where each step of the

optimization procedure is weighted using IS. In the second step, the obtained candidate density is

used in IS or the independence chain MH algorithms for Bayesian inference on the model parameters

and model probabilities.

Several recent papers use and extend the MitISEM algorithm for Bayesian inference.

Reference [10] incorporates the MitISEM algorithm to the estimation of non-Gaussian state

space models, [11] uses MitISEM for Value-at-Risk estimation, [12,13] estimates non-causal

models using MitISEM and [14] uses MitISEM for Bayesian inference of latent variable models.

Recently, [15] provided the R package MitISEM, together with routines to use MitISEM and its

sequential extension for Bayesian inference of model parameters and model probabilities. Speeding

up computations in such econometric models is appealing for several reasons. First, the amount

of data used in these models are typically increasing in areas such as finance, macroeconomics

and marketing. Second, such increases in data are often accompanied by construction of more

complex models as soon as estimation of these models is possible. For some applications, such as

in macroeconomics, estimations taking days or weeks are common. Last but not least, decision

making based on econometric models often needs to be performed in a timely manner in areas

such as financial risk management. These requirements bring out the necessity to perform quick

computations of the econometric models.

The estimation of those models can be done using parallel MCMC, where a straightforward

implementation is to run p independent chains in parallel and to merge the results. This comes with

some theoretical constraints as described in [16–19]. Reference [20] noted that there is a renewed

interest in IS, due to the possibility of straightforward parallel implementation. Numerical efficiency

in sampling methods is not only related to the efficient sample size or relative numerical efficiency,

but also to the possibility to perform the simulation process in a parallel fashion. Unlike alternative

methods such as the random walk MH or the Gibbs sampler, IS makes use of independent draws from

the candidate density, which can be obtained from multiple-core processors or computer clusters.

This, in turn, yields an increase in calculation speed, see, among others, [21].

The basic MitISEM algorithm may also benefit from parallel processing implementations due

to its close relation with the IS algorithm. This paper presents the parallel implementation of the

MitISEM algorithm, labeled as Parallel MitISEM (ParMitISEM). Such an implementation requires

determining at which steps in the MitISEM parallel processing can be implemented, and adjust,

consequently, the remaining steps. We gain insight on the computational speed-up in four canonical

econometric models using parallel computing possibilities on Graphics Processing Units (GPUs) and

multicore Central Processing Unit (CPUs).

1 The terms candidate, approximate and proposal density are interchangeably used in the literature and we also do so in the
present paper.

Econometrics 2016, 4, 11 3 of 20

The four canonical econometric models that we analyze have different properties in terms

of shapes of the target distribution. The first application, approximating a bivariate distribution

function described in [22], is characterized by a highly non-elliptical target distribution where the

conditional distributions are normal. It is not straightforward to obtain an approximation to this

density due to the high correlation between conditional distributions of variables. In the second

application, we consider the Bayesian inference of a GARCH(1,1) model with Student-t errors, where

the calculation of the joint posterior has to be calculated recursively and for this reason inference can

be computationally demanding. In the third application, we consider the Bayesian inference of an

Instrumental Variables (IV) model, where the posterior density has a ridge. In the final fourth case,

we consider the Bayesian inference of the structural form of New Keynesian Philips curve (NKPC)

model. This model is characterized by highly non-standard posteriors due to the transformation of

the structural model to a reduced form model and the structural parameters are restricted to be on

a tight region. Even when MitISEM is used in this case, several draws from the IS algorithm within

MitISEM can be outside the tight region leading to highly inefficient computations.

In all four cases considered, it is shown that parallel implementation of the MitISEM algorithm

on GPUs provides substantial speed gains, hence inference is more accurate given the same amount

of computation time. We note that, for the first three applications, basic MitISEM performs already

better than standard sampling algorithms, see [5,7,23]. To our knowledge, the fourth application,

Bayesian inference of the structural NKPC model using the MitISEM algorithm was not considered

in the literature so far. We present the GPU and CPU implementations of the ParMitISEM algorithms

using MATLAB. We show that the computations can be carried similarly in GPU and CPU, and both

implementations lead to extensive speed gains in the four cases we present.

The paper is organized as follows. Section 2 introduces the evolution in the GPU computing

and explains why it can be a valuable alternative in search of speed. Section 3 briefly describes basic

MitISEM and the parallelization strategy followed in ParMitISEM. Section 4 analyzes four canonical

econometric models. Section 5 draws some conclusions.

2. Evolution of GPU Computing

Traditionally, computations using single core CPUs were the standard method in economics and

econometrics. In recent decades, rapid performance increases of CPUs, and the related cost reductions

in computer applications were the main drivers of the diffusion of such computational intensive

estimation procedures such as MCMC. The microprocessors industry, mainly driven by Intel and

AMD has seen a slow-down in performance improvement since 2003 due to energy-consumption and

heat-dissipation issues that are by-products of clock frequency increases, see [24]. This has created

the need to shift from maximizing the performance of a single core to integrating multiple cores in

one chip, see [25,26].

Contemporaneously, the needs of the video game industry, requiring increasing computational

performance, boosted the development of the GPUs, which enabled massively parallel computation.

GPUs are a standard part of the current personal computers and are designed for data parallel

problems where they assign an individual data element to a separate logical core for processing,

see [27]. Applications include video games, image processing and 3D rendering. Figure 1 reports

the evolution in GigaFLOPS (i.e., billions of floating point operations per second in single and double

precision) between GPUs and CPUs.

Econometrics 2016, 4, 11 4 of 20

Figure 1. Enlarging gap in computing speed between many-core approach using GPUs and multicore

approach using CPUs. See [28].

Despite the above-mentioned advances in GPUs, until 2006, only a few persons mastered the

skills necessary to use GPUs to achieve better performance for only a limited number of applications.

In 2007, NVIDIA released CUDA (Compute Unified Device Architecture, [29]) programming

language similar to the well known C/C++. This facilitated the transition to parallel programming

on GPU. Nowadays the GPU programming languages have been improved (see [30] for a review)

and there is a software that use it to increase performances, see e.g., Mathematica, R and MATLAB.

MATLAB is a popular software in the economics and econometrics community (see, e.g., [31]),

which has introduced, starting with version R2010b, the support to GPU computing in its Parallel

Computing Toolbox. This allows one to use raw CUDA code within a MATLAB program as well as

already built-in functions that are directly executed on the GPU, see [21] for a discussion about CUDA

programming in econometrics.

With the massively parallel use of GPUs, researchers have achieved significant speedups in

different applications, see [21,32–36] among others. However, as pointed out by [21], such speed-ups

are generally achieved only after extensive adaptation, optimization and tuning of the algorithms

that is really time consuming. We comment on this point further in Section 5. This brings forward

two interesting challenges for parallelization: transforming traditional (sequential) algorithms to be

suitable for a GPU implementation and achieving significant speed increase almost without any

extra programming effort. In this paper, we describe our ParMitISEM algorithm and show that the

provided algorithm can be used for a large set of models to gain speed increases without additional

programming effort.

3. Parallel Implementation of MitISEM: ParMitISEM

ParMitISEM relies heavily on the use of IS in the MitISEM algorithm. IS ([8,9,37,38]) is a general

method for estimating expectations of functions h(θ) of parameter θ where the probability density

function of θ can be non-standard. Given a density kernel f (θ) for θ, the method is based on draws

from a candidate density g(θ), instead of direct simulations from f (θ). This indirect simulation

method overcomes the issue of simulating from the non-standard density f (θ). The candidate density

g(θ) is chosen such that it is easy to simulate from and the draws from the candidate density are

weighted according to the IS weights. The necessary conditions for the candidate density and the

finite sample properties of the estimator are discussed in [38,39].

Econometrics 2016, 4, 11 5 of 20

Let Y denote the data, e.g., time series, and θ denote the model parameters, where the posterior

or target density of parameters are denoted by f (θ) ≡ f (θ|Y) and simulating from this density is not

trivial. In this case, the expected value of a function of parameters, E(h(θ)) can be obtained using the

following IS steps:

(1) Draw θ from a “similar and wide-enough” “importance/candidate density” g(θ), which should

approximate f (θ) reasonably well and should be straightforward to simulate from;
(2) Simulate M draws from g(θ);
(3) Approximate the function of parameters E(h(θ)) by:

E(h(θ)) =

∫
h(θ)

f (θ)
g(θ)

g(θ)dθ
∫ f (θ)

g(θ)
g(θ)dθ

=

∫
h(θ)ω(θ)g(θ)dθ∫

ω(θ)g(θ)dθ
≈

1
M ∑

M
i=1 h(θ(i))ω(θ(i))

1
M ∑

M
i=1 ω(θ(i))

(1)

where θ(i) for i = 1, . . . , M are generated from g(θ), and ω(θ(i)) = f (θ(i))/g(θ(i)).

Note that since ω(θ(i)) = f (θ(i))/g(θ(i)) is a ratio, one can remove the constant of proportionality

in this ratio and for h(θ) = θ, the procedure provides estimated means of model parameters.

The IS algorithm is based on weights ω(θ(i)) = f (θ(i))/g(θ(i)) calculated from independent draws

θ(i). Due to this non-recursive structure, one can in principle assign each draw to each core and collect

the results in (1) at the end of the procedure.

We next illustrate how this parallelization strategy is implemented for ParMitISEM. As explained

in [7], the MitISEM consists of two parts. In the first part, a mixture of Student-t candidate densities

is fitted to the target using an EM algorithm where each step of the optimization procedure is

weighted using IS. In the second stage, the obtained candidate density can be used in IS or the

independence chain Metropolis–Hastings method for Bayesian inference on model parameters and

model probabilities. Steps of the MitISEM algorithm are as follows:

(1) Initialization: Simulate draws θ(1), . . . , θ(M) from a “naive” candidate distribution with density

gnaive, which is obtained as follows. First, we simulate candidate draws from a Student-t

distribution with density gmode, where the mode is taken equal to the mode of the target density

and scale matrix equal to minus the inverse Hessian of the log-target density (evaluated at the

mode), and where the degrees of freedom are chosen by the user. Second, the mode and scale

of gmode are updated using the IS-weighted EM algorithm. Note that gnaive is already a more

advanced candidate than the commonly used gmode; gmode typically yields a substantially worse

numerical efficiency than gnaive.
(2) Adaptation: Estimate the target distribution”s mean and covariance matrix using IS with the

draws θ(1), . . . , θ(M) from gnaive. Use these estimates as the mode and scale matrix of Student-t

density gadaptive. Draw a sample θ(1), . . . , θ(M) from this adaptive Student-t distribution with

density g0 = gadaptive, and compute the IS weights for this sample.
(3) Apply the IS-weighted EM algorithm given the latest IS weights and the drawn sample of

step (1). The output consists of the new candidate density g with optimized set of parameters ζ.

Draw a new sample θ(1), . . . , θ(M) from the distribution that corresponds with this proposal

density and compute corresponding IS weights.
(4) Iterate on the number of mixture components: Given the current mixture of H components take

x% of the sample θ(1), . . . , θ(M) that correspond to the highest IS weights. Construct with these

draws and IS weights a new mode and scale matrix which are starting values for the additional

component in the mixture candidate density. This choice ensures that the new component covers

a region of the parameter space in which the previous candidate mixture had relatively too

little probability mass. Given the latest IS weights and the drawn sample from the current

mixture of H components, apply the IS-weighted EM algorithm to optimize the parameters

of each mixture component. Draw a new sample from the mixture of H + 1 components and

compute corresponding IS weights.

Econometrics 2016, 4, 11 6 of 20

(5) Assess convergence of the candidate density’s quality by inspecting the IS weights using

the Coefficient of Variation of the IS weights (CoV) and return to step 4 unless the algorithm

has converged.

As the algorithm shows, steps 2–5 in the algorithm rely on M IS draws and the calculation of

the target and candidate density values. In these steps, each draw from the candidate density can be

assigned to a different core that will carry out the necessary calculation independently, and the results

will be collected at the end. For this reason, the parallelization strategy for ParMitISEM on CPUs and

GPUs is straightforward. Note that the nature of the MitISEM algorithm in steps 2–5 is still sequential,

despite the simplicity of parallelization of IS steps. Specifically, the iteration on the number of mixture

components and iteration over the EM steps are the sequential parts of the algorithm, hence cannot be

parallelized in a straightforward way. Still, these steps are computationally less demanding compared

with obtaining IS draws and evaluating target and candidate densities and hence do not cause a large

computational burden.

We note that especially step 3 of the algorithm, Expectation (E) and Maximization (M) steps of

MitISEM, benefits from our parallelization strategy. We refer to [7] for these steps where the L-th

E-step for the mixture of H Student-t densities is specified as follows:

z̃i
h ≡ E

[
zi

h

∣∣∣θi, ζ = ζ(L−1)
]
=

tk(θ
i|µh , Σh, νh) ηh

∑
H
j=1 tk(θi|µj, Σj, νj) ηj

, (2)

z̃/w
i

h ≡ E

[
zi

h

wi
h

∣∣∣∣∣ θi, ζ = ζ(L−1)

]
= z̃i

h

k + νh

ρi
h + νh

, (3)

ξ i
h ≡ E

[
log wi

h

∣∣∣θi, ζ = ζ(L−1)
]

=

[
log

(
ρi

h + νh

2

)
− ψ

(
k + νh

2

)]
z̃i

h +
[
log
(νh

2

)
− ψ

(νh

2

)]
(1 − z̃i

h), (4)

δi
h ≡ E

[
1

wi
h

∣∣∣∣∣ θi, ζ = ζ(L−1)

]
=

k + νh

ρi
h + νh

z̃i
h + (1 − z̃i

h), (5)

where ρi
h ≡ (θi − µh)

′Σ−1
h (θi − µh), ψ(·) is the digamma function (the derivative of the logarithm

of the gamma function log Γ(·)), tk(θ
i|µh , Σh, νh) is a k-dimensional Student-t density with mode

µh, scale Σh and degree of freedom νh for k model parameters, and ηh for h = 1, . . . , H are the

mixture weights of each Student-t component. In this step, parameters µh, Σh, νh, ηh, i.e., the candidate

density’s parameters ζ(L−1), are obtained from the previous EM step (L − 1). Given the E-step,

parameters are updated using the M-step:

µ
(L)
h =

[
N

∑
i=1

W i z̃/w
i

h

]−1 [N

∑
i=1

W i z̃/w
i

h θi

]
, (6)

Σ
(L)
h =

∑
N
i=1 W i z̃/w

i

h (θi − µ
(L)
h)(θi − µ

(L)
h)′

∑
N
i=1 W i z̃i

h

, (7)

η
(L)
h =

∑
N
i=1 W i z̃i

h

∑
N
i=1 W i

, (8)

where W i ≡ f (θi)/g0(θ
i) are the importance weights of each draw θi from the previous

candidate g0(θ).

Further, ν
(L)
h is solved from the first order condition of νh:

− ψ(νh/2) + log(νh/2) + 1 −
∑

N
i=1 W i ξ i

h

∑
N
i=1 W i

−
∑

N
i=1 W i δi

h

∑
N
i=1 W i

= 0. (9)

Econometrics 2016, 4, 11 7 of 20

In ParMitISEM, calculation of the expectations for each IS draw i are done in parallel. In addition

to this, summations in all parts of the M-step in (6)–(9) are also performed in parallel. This addition

brings computational gains particularly for the optimization of (9), where an approximate solution

for the first order condition is obtained iteratively, but the value of the first order condition at each

iteration of EM is obtained using parallel calculations for the summation terms.

We note that the parallelization we employ has the advantage of being a generally applicable

method. Given any posterior or target density, ParMitISEM can be used to obtain an approximation

and IS results using this approximation as a candidate. No alteration of the algorithm depending

on the features of the posterior is required. In addition, implementations in GPU and CPU can be

carried out in the same way since the parallelization strategy is also not specific to one of these

implementations. Finally, ParMitISEM consists of a general IS procedure which is parallelized.

This procedure can be used at the second stage, when the purpose is to use the ParMitISEM

approximation as a candidate density for IS in Bayesian inference. In this case, speed gains from

ParMitISEM are two-fold: First, ParMitISEM will reduce the computational time of obtaining the

candidate density. Second, computational time required for the Bayesian inference using IS will

improve using the IS procedure inherent in ParMitISEM.

4. Parallelization Experience for Four Econometric Models

In this section, we describe our experience with ParMitISEM for four canonical econometric

models. The first case we consider is a non-elliptical bivariate density function, the Gelman–Meng

density, presented in [22]. The second case we consider is Bayesian inference of a GARCH(1,1) model

with Student-t errors, originally proposed by [40], applied to daily S&P 500 log-returns. The third

application we consider is Bayesian inference of the IV model applied to [41] data on education and

income, also analyzed in [23]. The fourth and final model is Bayesian inference of the structural form

of the New Keynesian Phillips Curve (NKPC) model capturing the relationship between marginal

cost and inflation, applied to quarterly inflation and marginal costs in the US, also analyzed in [42].

Due to the automatic and flexible nature of the MitISEM algorithm, all applications use a single

parallel implementation of MitISEM, where only the target density has to be adjusted according to

the application. Except for the Gelman–Meng density approximation, all applications make use of

the ParMitISEM algorithm to obtain a candidate density for Bayesian inference of model parameters

using a second IS step. We compare the CPU and GPU implementations of ParMitISEM in terms

of the required computational time. The CPU and the GPU versions of the computer program are

programmed in MATLAB. The CPU code uses all the available cores as well as the GPU counterpart.2

Our test machine is a regular desktop computer with a Core i7 4th generation (Corei7) with a

total of eight cores. In the same machine, there is an NVIDIA Tesla 2075C (Tesla) that is a mid-range

performance GPU, with 6GB memory and 448 cores. Moreover, we compare our results with an

entry level NVIDIA GeForce 750M (GeForce) with a total of 384 CUDA cores and 2 GB of memory.

MATLAB parallel toolbox license is required to run our code. All models are estimated using different

number of IS draws within ParMitISEM: M = {104, 5 × 104, 105, 5 × 105, 106, 1.5 × 106, 2 × 106}.

In applications where the ParMitISEM approximation is used as a candidate for importance sampling

for Bayesian inference, we also base the inference on M posterior draws.

2 Source codes for all computations are available upon request.

Econometrics 2016, 4, 11 8 of 20

4.1. Approximation of the Gelman–Meng Function

We consider the bivariate density described in [22], for which the conditional distributions of

variables θ1 and θ2 are normal distributions, while the joint distribution takes different non-elliptical

forms depending on the parameter values:

f (θ1, θ2) = exp
{
−0.5(Aθ2

1 + θ2
1 + θ2

2 − 2Bθ1θ2 − 2C1θ1 − 2C2θ2)
}

, (10)

where θ = (θ1, θ2) is the vector of interest. Moreover, setting A = 1, B = 0, C1 = C2 = 3

in (10) leads to a non-standard “banana shaped” contour presented in the upper left panel of

Figure 2. References [7,23] show that the standard MitISEM algorithm leads to substantial gains

in approximating this density compared with the Gibbs sampler, MH and IS algorithms. We show

that this computational gain can be improved using ParMitISEM.

Target
0 2 4

-1

0

1

2

3

4

5

ParallelMitISEM with 1 comp.
0 2 4

-1

0

1

2

3

4

5

ParallelMitISEM with 2 comp.
0 2 4

-1

0

1

2

3

4

5

ParallelMitISEM with 3 comp.
0 2 4

-1

0

1

2

3

4

5

of mixture components
1 2 3

S
td

. D
ev

. o
f I

S
 w

ei
gh

ts
 (

x
10

00
0)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of draws

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000

T
im

e
 r

a
ti
o
 w

it
h
 r

e
s
p
e
c
t
to

 C
P

U

0

2

4

6

8

10

12

Nvidia Tesla C2074 Nvidia GeForce 750M Intel Core i7

Number of draws
0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000

10
0

*
N

S
E

0

0.5

1

1.5

2

2.5

100*NSE θ
1
 - CPU 100*NSE θ

2
 - CPU 100*NSE θ

1
 - GPU 100*NSE θ

2
 - GPU

Figure 2. Speed gains and accuracy for the Gelman–Meng approximation. The top panel presents the

target density kernel with the ParMitISEM approximation to the target density kernel and CoV for

different number of mixture components. All results are based on M =100,000 draws. The middle

panel presents the speed comparison for different number of draws as a GPU/CPU ratio, where a

value below one indicates that the GPU implementation is faster. The bottom panel reports the

numerical standard error (100 × NSE) for θ1 and θ2 parameters for different number of draws and

for CPU and GPU.

Econometrics 2016, 4, 11 9 of 20

We apply the ParMitISEM algorithm with different numbers of IS draws, M, and, for each

number of draws, we record the execution time and compare them between CPU and the GPU.

Moreover, we calculate the Numerical Standard Error (NSE) for the CPU and GPU version of the

program. Figure 2 reports the results of this experiment. The top panel in Figure 2 shows the target

density kernel for the Gelman–Meng function with a “banana shaped” contour and the step-by-step

approximations of this kernel using ParMitISEM. The target kernel has two clear modes and the

ParMitISEM approximation stops with three mixture components. Even with this relatively low

number of mixture components, the contour of the ParMitISEM approximation are similar to the

contour of the target density. Gains from each additional component, presented in the top-right

panel of Figure 2, according to the CoV shows that the non-standard “banana shaped” contour of

Gelman–Meng is well approximated with three mixture components, and the major improvement in

this approximation is obtained by adding the second mixture component in ParMitISEM.

The middle panel in Figure 2 presents the speed comparison between CPU and GPU

implementations as the ratio of processing times in CPU and GPU, where a value below one indicates

that the GPU computation is faster. Exact values of the computational time required for each

implementation are reported in Table 1. The table shows that the CPU implementation is superior to

the Tesla GPU implementation for small number of draws, as soon as the number of draws increases,

the GPU provides a clear improvement in computing time. This result is due to the parallel nature of

the GPU with more available cores then the CPU. The other GPU (GeForce) performs relatively worse

when the number of draws M is small, and its performance improves as soon as the number of draws

increases. Regarding the NSE, the CPU and GPU results are quite similar and the small numerical

discrepancy between the NSE values disappear as soon as the number of draws increases.

Table 1. Computing time and accuracy for the Gelman–Meng approximation using ParMitISEM on

CPU and GPU with different number of draws. The table presents the time comparison between CPU

and GPU as a GPU/CPU ratio. A value below one indicates the GPU is faster compared with the

CPU. The bottom panel presents 100×NSE of the IS estimates for θ1 and θ2 on CPU and on GPU for

different number of draws. NSE values for GeForce are similar to those of Tesla, and are not reported

due to space constraints.

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000 2,000,000

Timing as GPU/CPU ratio
Tesla 2.23 1.33 0.59 0.46 0.33 0.26 0.25

GeForce 11.59 9.02 3.27 1.76 1.04 0.99 0.97
Corei7 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 × NSE
Corei7 - θ1 2.07 0.88 0.62 0.27 0.20 0.15 0.13
Corei7 - θ2 2.01 0.78 0.53 0.29 0.19 0.16 0.14
Tesla - θ1 1.80 0.96 0.63 0.28 0.18 0.15 0.13
Tesla - θ2 2.02 1.01 0.55 0.29 0.20 0.16 0.14

4.2. Bayesian Inference of the GARCH(1,1) Model with Student-t Errors

The next canonical model we consider is the standard GARCH(1,1) model ([40]) with Student-t

errors. The model is applied to daily percentage S&P 500 returns for the period between 2 January

1998 and 26 June 2015. Frequentist inference issues and the ill-behaved likelihood of GARCH type

of models are reported in [43]. Computational advantages of efficient and automatic sampling

algorithms for the Bayesian inference of GARCH type of models are reported in [5,7,23].

Econometrics 2016, 4, 11 10 of 20

The GARCH(1, 1) model with Student-t errors for time series {yt}T
t=1 is defined as follows:

yt = µ +
√

htεt,

ht = ω + α(yt−1 − µ)2 + βht−1,

εt ∼ t(d f)

(11)

where ht is the conditional variance of yt given the information set It−1 = {yt−1, yt−2, yt−3, . . .} and

t(d f) denotes the Student-t distribution with d f degrees of freedom. In addition, h0 is treated as a

known constant, set as the sample variance of the time series yt, which will consist of daily stock

index (log) returns in this example. We restrict ω > 0, α ≥ 0 and β ≥ 0 to ensure positivity

of ht, d f > 2 to ensure a proper posterior density where posterior means and variances exist,

and specify flat priors for the model parameters. Moreover, we truncate ω and µ such that these have

proper (non-informative) priors. For the k = 5 dimensional parameter vector θ = (µ, β, α, ω, d f),

we have a uniform prior on [−1, 1]× (0, 1]× [0, 1) × [0, 1) × (0, ∞) with α + β < 1 which implies

covariance stationarity.

Bayesian inference of this model is time consuming and possibly inaccurate with a small number

of draws for three reasons. First, the iterations required to obtain unobserved conditional variances

in (11) cannot be executed in parallel in a straightforward way. Second, the restrictions on model

parameters imply that several IS draws, in a standard IS algorithm or in obtaining the MitISEM

approximation, may be outside the relevant parameter space. Hence, a large number of draws

are required to obtain a reasonable approximation to the candidate, or to obtain posterior draws

of parameters unless an appropriate candidate density is used. Third, the posterior density is

non-elliptical particularly due to the degree of freedom parameter. See [5] among others for an

extended discussion.

In order to perform Bayesian inference, we first obtain the ParMitISEM approximation to the

joint posterior density of parameters. As a second step, the ParMitISEM candidate is used as the

candidate density for the IS algorithm. The obtained ParMitISEM candidate in this example has

three mixture components. Figure 3 presents the joint posterior with respect to model parameters

α, β where the remaining parameters are fixed at their posterior mean, together with the speed

comparison of the CPU and GPU implementations of ParMitISEM to obtain the approximation to

the joint posterior. Similar to the Gelman–Meng application, computational time is substantially

improved with the GPU implementation. The top-right panel of Figure 3 shows that the CoV

values are improved with each additional mixture component. Similarly, the obtained NSE

values for each parameter, except for the degree of freedom parameter, go down with additional

mixture components. Particularly, the second mixture component improves the approximation

accuracy substantially.

Table 2 reports the speed comparison between CPU and GPU as a GPU/CPU ratio. Similar to the

Gelman–Meng distribution results, the CPU is superior to the Tesla GPU for small number of draws,

but the Tesla GPU has a clear advantage for more reasonable (e.g., larger than 50,000) draws. In this

application, even the GeForce that starts with a disadvantage becomes more competitive as soon as

the number of draws increases.

Econometrics 2016, 4, 11 11 of 20

Target
0 0.1 0.2 0.3

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

ParMitISEM with 1 comp.

0 0.1 0.2 0.3
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

ParMitISEM with 2 comp.

0 0.1 0.2 0.3
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

ParMitISEM with 3 comp.

0 0.1 0.2 0.3
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

of mixture components

1 2 3

S
td

. d
ev

. o
f I

S
 w

ei
gh

ts
 (x

 1
00

0)

0.4

0.6

0.8

1

1.2

1.4

1.6

N
S

E
 fo

r p
ar

am
et

er
s

0

0.01

0.02

0.03

0.04

0.05

0.06

NSE (left)

µ (right, x 100)

ω (right, x 100)

α (right, x 100)

β (right, x 100)

df (right)

Number of draws

10000 50000 100000 500000 1000000 1500000 2000000

T
im

e
 r

a
ti
o

 w
it
h

 r
e

s
p

e
c
t
to

 C
P

U

0

0.5

1

1.5

2

2.5

3

3.5

NVIDIA Tesla C2074 NVIDIA GeForce 750M Intel Core i7

Figure 3. Speed gains and accuracy for the GARCH(1,1) model with Student-t errors. The top-left

figure presents the conditional posterior density kernel of (α, β) given posterior mean of the other

parameters. Second to fourth figures present the evolution of the MitISEM approximation to the

posterior kernel for 1–3 mixture components. The top-right panel presents the CoV for the MitISEM

approximation and NSE values of each model parameter for different number of components.

All MitISEM approximations are based on 100,000 draws. The bottom panel presents the speed

comparison for different number of draws, as a GPU/CPU ratio. A value below one indicates the

GPU implementation is faster than the CPU implementation.

Table 2. Computing time and accuracy for Bayesian estimation of the GARCH(1,1) using ParMitISEM

on CPU and GPU with different number of draws. The table presents the time comparison between

CPU and GPU as a GPU/CPU ratio. A value below one indicates the GPU is faster compared with

the CPU. The table also reports the 100×NSE of the IS estimates for model parameters (µ, ω, α, β, d f)

on CPU and on GPU for different number of draws. NSE values for GeForce are similar to those of

Tesla, and are not reported due to space constraints.

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000 2,000,000

Timing as GPU/CPU ratio
Tesla C2075 1.43 0.38 0.17 0.13 0.12 0.11 0.10

GeForce 750M 3.28 1.27 1.44 0.82 0.51 0.45 0.48
Intel Core i7 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CPU: 100 × NSE
µ 0.01 0.01 0.00 0.00 0.00 0.00 0.00
ω 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α 0.01 0.01 0.00 0.00 0.00 0.00 0.00
β 0.01 0.01 0.00 0.00 0.00 0.00 0.00

d f 1.17 0.42 0.31 0.14 0.10 0.08 0.07
GPU: 100 × NSE

µ 0.01 0.01 0.00 0.00 0.00 0.00 0.00
ω 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α 0.01 0.01 0.00 0.00 0.00 0.00 0.00
β 0.01 0.01 0.00 0.00 0.00 0.00 0.00

d f 0.97 0.42 0.30 0.14 0.10 0.08 0.07

Econometrics 2016, 4, 11 12 of 20

Table 3 reports the IS estimator of E[h(θ)] which is the posterior mean of the parameters based

on the CPU and GPU implementations of ParMitISEM together with the difference in the posterior

means between both implementations. For a relatively small number of draws, posterior means from

the two implementations differ and this difference disappears when the number of draws increases.

Table 3. Parameter estimates of the GARCH(1,1) with student t errors. The table presents the posterior

means of model parameters (µ, ω, α, β, d f) using ParMitISEM on GPU and CPU together with the

difference between the GPU and CPU estimates for different number of draws M.

M
100,000 1,000,000 2,000,000

GPU CPU Difference GPU CPU Difference GPU CPU Difference

µ 0.067 0.067 0.000 0.067 0.067 0.000 0.067 0.067 0.000
ω 0.013 0.014 0.000 0.014 0.014 0.000 0.014 0.014 0.000
α 0.091 0.093 −0.001 0.093 0.093 0.000 0.093 0.093 0.000
β 0.902 0.901 0.001 0.900 0.901 0.000 0.900 0.900 0.000

d f 8.033 8.003 0.030 8.007 8.012 −0.005 8.005 8.005 0.000

An important point is the relatively large NSE for the degree of freedom parameter d f for

M = 10, 000 draws. This NSE value indicates that the posterior density is highly non-standard especially

with respect to the degree of freedom parameter. Therefore, a large number of draws are needed for

an accurate inference of the model, and ParMitISEM is particularly useful in this application.

We finally note that functions of parameters, such as the sum of GARCH coefficients α + β

or the long-run variance of the GARCH model ω/(1 − α − β), are often of interest for GARCH

models. Bayesian inference for such functions of parameters does not require an additional MitISEM

approximation. Using the IS draws based on the MitISEM approximation, it is possible to calculate

to infer these functions of parameters. In the example we provide, using the candidate obtained with

2,000,000 draws, we obtain the following results for these functions of parameters: Posterior mean

for α + β is 0.97 with an NSE value of 0.00002, indicating a high persistence for the variance process,

and an accurate estimation with a small NSE. In addition, the posterior for the unconditional variance

ω/(1 − α − β) is approximately 0.054 with an NSE value of 0.00003.

4.3. Bayesian Inference of the Instrumental Variables Model

In this subsection, we present the application of ParMitISEM to an Instrumental Variables (IV)

model. The model is applied to [41] data on income and education. The IV model with one

explanatory endogenous variable and p instruments is defined by [44]:

y = xβ + ε, (12)

x = zΠ + v, (13)

where the scalar β and the p × 1 vector Π are model parameters, y is the N × 1 vector

of observations on the dependent variable income, x is the N × 1 vector of observations on

the endogenous explanatory variable, education, z is the N × p matrix of observations on the

instruments. All variables are demeaned, i.e., both model equations do not include a constant term.

The disturbances are assumed to come from a normal distribution: (ε′, v′)′ ∼ NID(0, Σ ⊗ I),

where Σ =

(
σ2

11 ρσ11σ22

ρσ11σ22 σ2
22

)
is a positive definite and symmetric 2 × 2 matrix, I denotes the

N × N identity matrix and ⊗ denotes the Kronecker product operator. The endogeneity problem

of the variable x arises from possible correlation between the disturbances, given as ρ ≡ cor (ε i, vi)

for i = 1, . . . , N.

Econometrics 2016, 4, 11 13 of 20

The model in (12)–(13) is shown to have non-standard posterior densities unless the covariance

matrix Σ is diagonal, see [45–48]. The properties of this model are also different from the GARCH(1,1)

model in Section 4.2. It is shown that the posterior density under a flat prior has a ridge at Π = 0,

and it is not a proper density due to this ridge for p = 1. This irregularity can be mitigated by the

use of a Jeffrey’s prior see [49]. In this case, the posterior is a proper density, but sampling methods

such as the Gibbs sampler are not applicable, see [6]. The applicability of the MitISEM algorithm to

the IV model and the speed gains compared with the griddy-Gibbs sampler [50] are shown in [23].

In this section, we show that the ParMitISEM implementation provides substantial speed gains for

the Bayesian inference of this model.

The [41] data on income and education consist of the dependent variable equal to hourly wages

in logarithms and the endogenous right hand side variable is given as educational level which

takes the value of one if an individual attended college and zero otherwise. The instrument for the

education level is “college proximity”, which takes the value of one if there is a nearby college and

zero otherwise. Following [23], we control for the remaining exogenous variables by regressing the

income, education and college proximity data on exogenous covariates and applying the IV model to

the residuals of these regressions.

Table 4 reports estimated parameters using ParMitISEM on the [41] dataset on GPU and CPU.

All applications of ParMitISEM lead to four mixture components in the approximation. As the

table shows, the difference in CPU and GPU estimates is really small and dies out as soon as the

number of draws increases. The estimated posterior means of the parameters are in line with [49],

and the difference between posterior means from CPU and GPU implementations of ParMitISEM

are approximately zero only with a high number of draws from the posterior, implying that a

large number of draws and a high computing time are required to obtain accurate estimates of

these parameters.

Table 4. Parameter estimates of the IV model for Card data. The table presents the posterior means

of model parameters using ParMitISEM on GPU and CPU together with the difference between the

GPU and CPU estimates for different number of draws M.

M
100,000 1,000,000 2,000,000

GPU CPU Difference GPU CPU Difference GPU CPU Difference

β 0.753 0.756 −0.005 0.739 0.744 −0.003 0.733 0.732 0.001
π 0.059 0.059 0.000 0.059 0.060 0.000 0.059 0.059 0.000

σ2
11 0.213 0.214 0.001 0.210 0.210 −0.001 0.212 0.212 0.000
ρ −0.441 −0.443 0.006 −0.433 −0.439 0.002 −0.439 −0.439 0.000

σ2
22 0.169 0.169 0.000 0.169 0.169 0.000 0.169 0.169 0.000

Table 5 and Figure 4 present the speed comparison between CPU and GPU implementations

of ParMitISEM, where a value below one indicates that the GPU implementation is faster compared

with the CPU implementation. In this application, Tesla GPU is superior to the CPU for all considered

number of draws. GeForce application, on the other hand, performs worse for small, M = 10, 000,

and large, M = 150, 000 and M = 2, 000, 000 number of draws. While a relatively poor performance

of the GeForce application with a large number of draws is expected due to the saturation of the GPU,

i.e., the large number of draws causing a decrease in computing performance, yet this is not the case

for the Tesla C2074.

Econometrics 2016, 4, 11 14 of 20

Table 5. IV model estimated using ParMitISEM on CPU and GPU with different number of draws.

The table presents the time comparison between CPU and GPU as a GPU/CPU ratio. A value below

one indicates the GPU is faster compared with the CPU. The table also reports the 100×NSE of the IS

estimates for model parameters (β, π, σ2
11, ρ, σ2

22) on CPU and on GPU for different number of draws.

NSE values for GeForce are similar to those of Tesla, and are not reported due to space constraints.

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000 2,000,000

Timing as GPU/CPU ratio

Tesla C2074 0.94 0.61 0.47 0.39 0.26 0.23 0.20
GeForce 750M 1.44 0.85 0.78 0.80 0.88 1.05 1.37
Intel Core i7 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CPU: 100 × NSE

β 1.05 0.69 0.55 0.53 0.27 0.18 0.18
π 0.05 0.03 0.02 0.02 0.01 0.01 0.00

σ2
11 0.16 0.16 0.15 0.15 0.05 0.03 0.03
ρ 0.93 0.39 0.29 0.25 0.23 0.15 0.13

σ2
22 0.01 0.00 0.00 0.00 0.00 0.00 0.00

GPU: 100 × NSE
β 1.16 0.37 0.89 0.28 0.26 0.40 0.16
π 0.03 0.01 0.03 0.01 0.00 0.01 0.00

σ2
11 0.13 0.13 0.12 0.07 0.05 0.04 0.02
ρ 0.95 0.25 0.20 0.18 0.21 0.17 0.14

σ2
22 0.01 0.00 0.00 0.00 0.00 0.00 0.00

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

500

1000

1500

2000

2500

3000

β
ρ −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−100

−80

−60

−40

−20

0

20

β
ρ

Number of draws
10000 50000 100000 500000 1000000 1500000 2000000

T
im

e
ra

tio
 w

ith
 r

es
pe

ct
 to

 C
P

U

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

NVIDIA Tesla C2074 NVIDIA GeForce 750M Intel Core i7

Figure 4. Speed gains and accuracy for the IV model. The top panel in the figure shows the target

density apart from an integration constant (left panel) and ParMitISEM candidate (right panel) in

natural logarithms. The bottom panel shows the speed comparison for different number of draws,

as a GPU/CPU ratio. A value below one indicates that the GPU is faster compared with the CPU.

An important feature in this application in terms of computational burden is the restriction in

the parameter space ρ ∈ (−1, 1) and the ridge of the posterior at π = 0. These properties of the

posterior leads to a large number of IS draws within ParMitISEM to have a zero posterior probability.

We follow the robustness method provided in [23] to improve the performance of the MitISEM

Econometrics 2016, 4, 11 15 of 20

method. Specifically, within the MitISEM algorithm, a rejection step is included to keep a subset of

M draws which lead to a non-zero posterior density. This robustification is applied in both CPU and

GPU implementations of ParMitISEM and improves the approximation at the expense of a decreased

number of effective number of draws M̃ ≤ M. An increase in M does not automatically lead to a

smaller NSE since several draws are “thrown away” with this robustification. We conjecture that this

lack of comparability between NSE values for different M explains the slightly higher NSE values for

large M shown in the bottom panel of Table 5.

Restrictions in the parameter space also have a potential effect on the first step of the MitISEM

algorithm. As discussed earlier, the initialization of the algorithm relies on the numerical evaluation

of the Hessian matrix for the very first Student-t component. In models with tight parameter

constraints, it is possible that this Hessian is not estimated properly or it is not estimated at all due

to numerical accuracy. A straightforward method to avoid such a problem is to start the MitISEM

algorithm with a user-defined Hessian, such as a diagonal matrix with positive diagonal entries.

Such an initialization will possibly lead to an inefficient initial Student-t candidate which is very

different from the target density. Despite this inefficiency, this initial Hessian is updated several times

within the ParMitISEM procedure. Provided that the number of IS draws are large enough, the initial

inefficiency of the Hessian is expected to have minimal effect on the final approximation.

4.4. Bayesian Inference of the Structural NKPC Model

In this subsection, we apply ParMitISEM to a highly non-linear econometric model, namely

the structural form representation of the New Keynesian Philips Curve (NKPC) model for quarterly

inflation and marginal costs in the US for the period between 1962Q2 and 2012Q4. We show that there

are substantial gains from the ParMitISEM in this model in terms of the required computing time.

The structural form (SF) representation for the NKPC model is:

πt = λzt + γE(πt+1) + ǫ1,t, (14)

zt = φ1zt−1 + φ2zt−2 + ǫ2,t, (15)

where (ǫ1,t, ǫ2,t)
′ ∼ NID

(
0,

(
σ2

ǫ1
0

0 σ2
ǫ2

))
, πt is quarterly inflation, zt is quarterly marginal cost

(demeaned and detrended) and the unobserved variable E(πt+1) can be derived as a function of

the past marginal costs zt−1 and zt−2. Standard stationary restrictions should hold for φ1, φ2 and it is

assumed that (λ, γ) ∈ [0, 1]× [0, 1].

As shown in [42], solving for the unobserved inflation expectations on the right hand side of (14)

leads to the following model which is highly non-linear in structural parameters:

πt =
(φ1 + φ2γ)λ

1 − (φ1 + φ2γ)γ
zt−1 +

φ2λ

1 − (φ1 + φ2γ)γ
zt−2 + ǫ1,t, (16)

zt = φ1zt−1 + φ2zt−2 + ǫ2,t, (17)

where the parameters (λ, γ, φ1, φ2) are again restricted according to the structural form NKPC model.

We specify flat priors for φ1, φ2, uninformative normal priors for (γ, λ) and inverse gamma priors

for the residual variances, similar to [42]. First, the ParMitISEM algorithm is used to approximate the

joint posterior density of parameters. In a second step, this candidate density is used as a candidate

density in IS to obtain posterior means and variances of the structural parameters.

Reference [42] analyzes this model and extensions of it, and shows that the posterior densities of

model parameters is highly non-standard due to the non-linear nature of the model and parameter

restrictions. The shape of the posterior kernel, with respect to parameters (γ, λ) is shown in Figure 5.

The posterior density shown at the left panel of Figure 5 has multiple modes, which are captured

well by the MitISEM candidate on the right panel of Figure 5. In addition,the posterior density

has non-zero values only on a very restricted region for parameters (λ, γ). This region is much

Econometrics 2016, 4, 11 16 of 20

smaller than the parameter space restricted through the priors, λ, γ ∈ [0, 1]× [0, 1]. Hence, in this

application, the use of MitISEM to obtain a candidate density resembling the posterior is important

for improving MCMC methods’ convergence based on this candidate density. Despite this clear

advantage, obtaining a good MitISEM candidate in this application is potentially time consuming

due to the parameter restrictions and non-linearity in the model. Parameter estimates of the model

and the computational speed comparisons for the CPU and GPU implementations of ParMitISEM are

shown in Tables 6 and 7, respectively, for different number of draws M. We first note that obtaining a

large number of draws, e.g., above 1,500,000 draws, using the CPU or GPU is not feasible in this model

due to memory saturation arising from the large number of observations and draws, e.g., MATLAB

gives the standard message “out of memory”, consequently more advanced clusters and GPU cards

are required to obtain higher number of draws. For our purpose of speed comparison, Tables 6 and 7

report results only for the number of draws which are possible to obtain in this model. Second,

the same robustification step as in Section 4.3 is used in ParMitISEM in order to remove draws which

lead to zero posterior density values in the NKPC model. However, this robustness does not affect

the general pattern in the obtained NSE values in CPU or GPU implementations: NSE values for all

parameters reported on the bottom panel of Table 7 typically go down with the number of draws M.

Posterior means of the structural parameters reported in Table 6 are similar to those reported in [42],

i.e., the candidate density obtained by ParMitISEM and the IS results are in line with the method used

in [42]. In this application, Tesla GPU is always superior to CPU in terms of computational time,

regardless of the number of draws. Similar to the earlier experiments, the GeForce implementation

only has an advantage for an increased number of draws, e.g., for M ≥ 100, 000.

γ

λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

γ

λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

target density candidate density

Figure 5. Bayesian inference of the structural NKPC model. The figure shows the posterior density of

(λ, γ) in the structural NKPC model. Remaining model parameters are fixed at their posterior mean.

Table 6. Parameter estimates of the NKPC model. The table presents the posterior means of model

parameters using ParMitISEM on GPU and CPU together with the difference between the GPU and

CPU estimates for different number of draws M.

M
100,000 1,000,000

GPU CPU Difference GPU CPU Difference

λ 0.065 0.064 0.000 0.065 0.065 0.000
γ 0.367 0.370 −0.003 0.370 0.369 0.001
φ1 0.853 0.853 0.000 0.853 0.853 0.000
φ2 0.065 0.064 0.000 0.064 0.064 0.000
σ2

1 0.390 0.390 0.000 0.390 0.390 0.000
ρ −0.023 −0.022 0.000 −0.023 −0.023 0.000

σ2
2 1.569 1.570 −0.001 1.570 1.570 0.000

Econometrics 2016, 4, 11 17 of 20

Table 7. NKPC model estimated using ParMitISEM on CPU and GPU with different number of draws.

The table presents the time comparison between CPU and GPU as a GPU/CPU ratio. A value below

one indicates the GPU is faster compared with the CPU. The table also reports the 100×NSE of the IS

estimates for model parameters (β, π, σ2
11, ρ, σ2

22) on CPU and on GPU for different number of draws.

NSE values for GeForce are similar to those of Tesla, and are not reported due to space constraints.

M 10,000 50,000 100,000 500,000 1,000,000 1,500,000

Timing as GPU/CPU ratio
Tesla C2074 0.25 0.15 0.12 0.11 0.05 0.04

GeForce 750M 1.10 1.10 0.50 0.46 - -
Intel Core i7 1.00 1.00 1.00 1.00 1.00 1.00

CPU: 100 × NSE
λ 0.03 0.01 0.01 0.01 0.01 0.00
γ 0.30 0.13 0.09 0.06 0.06 0.04
φ1 0.10 0.04 0.03 0.02 0.02 0.01
φ2 0.10 0.04 0.03 0.02 0.02 0.01
σ2

1 0.04 0.02 0.01 0.01 0.01 0.00
ρ 0.07 0.03 0.02 0.01 0.01 0.01

σ2
2 0.15 0.06 0.04 0.03 0.03 0.02

GPU: 100 × NSE
λ 0.03 0.01 0.01 0.01 0.00 0.00
γ 0.29 0.14 0.10 0.06 0.04 0.04
φ1 0.09 0.04 0.03 0.02 0.01 0.01
φ2 0.10 0.04 0.03 0.02 0.01 0.01
σ2

1 0.04 0.02 0.01 0.01 0.01 0.00
ρ 0.07 0.03 0.02 0.01 0.01 0.01

σ2
2 0.14 0.06 0.05 0.03 0.02 0.02

An important result is that the speed gains from Tesla and GeForce implementations in

this applications are much higher than those obtained for the GARCH(1,1) model application in

Section 4.2. This result follows from our parallelization strategy and the properties of the GARCH(1,1)

model posterior. The strategy we follow for parallelization is not tailored for each specific model.

i.e., we do not optimize the speed of the calculations of the GARCH model posterior and these

calculations are done sequentially. With the parallelization of the general method, MitISEM, relative

speed gains from the GPU are mainly determined by whether the posterior density has to be

evaluated in a sequential manner. Additional gains from ParMitISEM can be achieved if the posterior

density is adjusted to minimize the amount of sequential calculations.

5. Conclusions

This paper presents a parallelized version of MitISEM originally proposed by [7] and refined

in [23]. MitISEM is a general and automatic algorithm based on IS for the approximation of a possibly

non-elliptical target density using an adaptive mixture of Student-t densities as approximating or

candidate density. The parallelized version of MitISEM, ParMitISEM, is an implementation of this

algorithm for GPU and multi-core CPU calculations.

The parallelization strategy is based on IS steps of the MitISEM algorithm, where we exploit

the parallelization of the IS draws and functions of IS draws. It is shown with four examples that

the implementation is not model specific, leading to a general algorithm which can be used to

approximate a multi-dimensional target, e.g., a posterior density, without the need to parallelize the

posterior density explicitly. We show that ParMitISEM is easy to implement in MATLAB and can run

on GPUs and in multi-core CPUs. We present substantial speed gains from the GPU implementation

of the ParMitISEM algorithm compared with the multi-core CPU implementation using four different

models: The Gelman–Meng density, a GARCH(1,1) model with Student-t errors applied to S & P 500

daily returns, an IV model applied to data on income and education and a structural form NKPC

model applied to quarterly US data. These applications have different properties in terms of the

shape of the target density approximated by ParMitISEM. The speed gains from GPU implementation

Econometrics 2016, 4, 11 18 of 20

of ParMitISEM are particularly pronounced in case of highly irregular target densities where a large

number of IS draws are required to obtain an accurate approximation to the target density.

Finally, a further comment regarding the speed gains of the GPU with respect to multicore CPU

is in order. Some studies such as [33,51] document massive speed gains, from 35 up to 500, of the GPU

code with respect to single-threaded CPU code. Considering these results, it can be concluded that

our GPU speed performance could be increased substantially, this observation is right and wrong at

the same time.

It is right because ParMitISEM could be written using just raw CUDA code. This low level

programming language allows to get around memory bandwidth limitations and access directly to

the internal GPU memory, such an implementation would increase tremendously the performance,

as discussed in [21]. These impressive speed gains occur at the cost of getting familiar with internal

GPU architecture and CUDA programming language, knowledge that requires months to master.

The above statement is also wrong because the approach we propose is fast and easy to

implement, and only a good familiarity of the MATLAB environment is required. No knowledge of

the internal GPU architecture and the raw CUDA code are necessary. Of course, this approach cannot

deliver the same performance of raw CUDA code, but this is the trade-off of easy implementation.

Despite these limitations, the speed gains in our applications are considerable. In fact, to have roughly

the same performance of the Tesla C2074 card on e.g., GARCH(1,1) model with 2,000,000 draws,

the user will need a cluster with around 80 cores. Those clusters are expensive to buy and difficult to

maintain; on the contrary, the Tesla C2074 fits in a normal desktop computer.

New versions of MATLAB continuously improve the performance of the GPU computing, and

decreases the gap between raw CUDA code and MATLAB (GPU) code. Following these advances,

improving the performance and the applicability of ParMitISEM without losing the ease of

implementation is an interesting avenue of research.

Author Contributions: All authors contributed equally to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Bibliography

1. Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer: New York, NY, USA, 1985.

2. Hoogerheide, L.F.; Kaashoek, J.F.; Van Dijk, H.K. On the Shape of Posterior Densities and Credible Sets

in Instrumental Variable Regression Models with Reduced Rank: An Application of Flexible Sampling

Methods Using Neural Networks. J. Econom. 2007, 139, 154–180.

3. De Pooter, M.; Ravazzolo, F.; Segers, R.; Van Dijk, H.K. Bayesian Near-Boundary Analysis in Basic

Macroeconomic Time Series Models. Adv. Econom. 2008, 23, 331–432.

4. Baştürk, N.; Çakmaklı, C.; Ceyhan, S.P.; Van Dijk, H.K. On the Rise of Bayesian Econometrics after Cowles

Foundation Monographs 10, 14. Œconomia 2014, 4, 381–447.

5. Ardia, D.; Baştürk, N.; Hoogerheide, L.F.; Van Dijk, H.K. A Comparative Study of Monte Carlo Methods

for Efficient Evaluation of Marginal Likelihoods. Comput. Stat. Data Anal. 2012, 56, 398–414.

6. Zellner, A.; Ando, T.; Baştürk, N.; Hoogerheide, L.; Van Dijk, H.K. Bayesian Analysis of Instrumental

Variable Models: Acceptance-Rejection within Direct Monte Carlo. Econom. Rev. 2014, 33, 3–35.

7. Hoogerheide, L.; Opschoor, A.; Van Dijk, H.K. A Class of Adaptive Importance Sampling Weighted EM

Algorithms for Efficient and Robust Posterior and Predictive Simulation. J. Econom. 2012, 171, 101–120.

8. Hammersley, J.M.; Handscomb, D.C. Monte Carlo Methods; Taylor & Francis: London, UK, 1975.

9. Kloek, T.; Van Dijk, H.K. Bayesian Estimates of Equation System Parameters: An Application of Integration

by Monte Carlo. Econometrica 1978, 46, 1–19.

10. Barra, I.; Hoogerheide, L.; Koopman, S.J.; Lukas, A. Joint Independent Metropolis-Hastings Methods for

Nonlinear Non-Gaussian State Space Models; Technical Report 2013-050/3; Tinbergen Institute: Amsterdam,

The Netherlands, 2013.

11. Gatarek, L.T.; Hoogerheide, L.F.; Hooning, K.; Van Dijk, H.K. Censored Posterior and Predictive

Likelihood in Bayesian Left-Tail Prediction for Accurate Value at Risk Estimation; Technical Report 15–042/III;

Tinbergen Institute: Amsterdam, The Netherlands, 2013.

Econometrics 2016, 4, 11 19 of 20

12. Lanne, M.; Luoto, J. Noncausal Bayesian Vector Autoregression; CREATES Research Papers 2014–7; School of

Economics and Management, University of Aarhus: Aarhus, Denmark, 2014.

13. Lanne, M.; Luoto, J. Estimation of DSGE Models under Diffuse Priors and Data-Driven Identification Constraints;

CREATES Research Papers 2015–37; School of Economics and Management, University of Aarhus: Aarhus,

Denmark, 2015.

14. Tran, M.; Scharth, M.; Pitt, M.K.; Kohn, R. Importance Sampling Squared for Bayesian Inference in Latent

Variable Models. 2014. Available online: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2386371

(accessed on 20 February 2016).

15. Baştürk, N.; Hoogerheide, L.F.; Opschoor, A.; Van Dijk, H.K. MitISEM: Mixture of Student-t Distributions

using Importance Sampling and Expectation Maximization in R; Version 1.0.; Tinbergen Institute, Rotterdam,

The Netherlands, 2012.

16. Rosenthal, J. Parallel computing and Monte Carlo algorithms. Far East J. Theor. Stat. 2000, 4, 207–236.

17. Craiu, R.V.; Meng, X.-L. Multiprocess parallel antithetic coupling for backward and forward Markov chain

Monte Carlo. Ann. Stat. 2005, 33, 661–697.

18. Craiu, R.; Rosenthal, J.; Yang, C. Learn from thy neighbour: Parallel-chain and regional adaptive MCMC.

J. Am. Stat. Assoc. 2009, 104, 1454–1466.

19. Jacob, P.; Robert, C.P.; Smith, M.H. Using Parallel Computation to Improve Independent Metropolis-Hastings

Based Estimation. J. Comput. Graph. Stat. 2011, 20, 616–635.

20. Cappé, O.; Douc, R.; Guillin, A.; Marin, J.M.; Robert, C.P. Adaptive Importance Sampling in General

Mixture Classes. Stat. Comput. 2008, 18, 447–459.

21. Geweke, J.; Durham, G. Massively Parallel Sequential Monte Carlo for Bayesian Inference. 2011.

Available online: http://www.censoc.uts.edu.au/pdfs/geweke_papers/gp_working_9.pdf (accessed on

20 February 2016.)

22. Gelman, A.; Meng, X. A Note on Bivariate Distributions that are Conditionally Normal. Am. Stat. 1991,

45, 125–126.

23. Baştürk, N.; Grassi, S.; Hoogerheide, L.; Opschoor, A.; Van Dijk, H.K. The R Package MitISEM: Mixture

of student-t distributions using importance sampling weighted expectation maximization for efficient and

robust simulation. J. Stat. Softw. 2016, Forthcoming.

24. Kirk, D.; Wen-Mei, W. Programming Massively Parallel Processors: A Hands-on Approach; Morgan Kaufmann:

Waltham, MA, USA, 2010.

25. Sutter, H. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software. 2005. Available

online: http://www.gotw.ca/publications/concurrency-ddj.htm (accessed on 22 February 2016).

26. Sutter, H. Welcome to the Jungle. 2011. Available online: http://herbsutter.com/welcome-to-the-jungle/

(accessed on 11 September 2015).

27. Boyd, C. Data - Parallel Computing. Queue 2008, 6, 30–39.

28. Future of Computing: GPGPU? Available online: http://gridtalk-project.blogspot.it/2010/07/future-of

-computing-gpgpu.html (accessed on 20 February 2016).

29. CUDA Parallel Computing Platform. Available online: http://www.nvidia.com/object/cuda_home_new.html

(accessed on 20 February 2016).

30. Aldrich, E.M. GPU Computing in Economics. In Handbook of Computational Economics; Kenneth, J.L.,

Schmedders, K., Eds.; Elsevier: Amsterdam, North Holland, 2014.

31. LeSage, J.P. ECONOMETRICS: MATLAB Toolbox of Econometrics Functions; Statistical Software Components;

Boston College Department of Economics: Chestnut Hill, MA, USA, 1998.

32. Suchard, M.; Holmes, C.; West, M. Some of the What?, Why?, How?, Who? and Where? of Graphics

Processing Unit Computing for Bayesian Analysis. Bull. Int. Soc. Bayesian Anal. 2010, 17, 12–16.

33. Aldrich, E.M.; Fernández-Villaverde, J.; Gallant, A.R.; Rubio-Ramırez, J.F. Tapping the Supercomputer

Under Your Desk: Solving Dynamic Equilibrium Models with Graphics Processors. J. Econ. Dyn. Control

2011, 35, 386–393.

34. Creel, M.; Mandal, S.; Zubair, M. Econometrics on GPU; UFAE and IAE Working Papers 669, Unitat de

Fonaments de l’Anàlisi Econòmica (UAB) and Institut d’Anàlisi Econòmica (CSIC): Barcelona, Spain, 2012.

35. Morozov, S.; Mathur, S. Massively Parallel Computation Using Graphics Processors with Application to

Optimal Experimentation in Dynamic Control. Comput. Econ. 2012, 40, 151–182.

Econometrics 2016, 4, 11 20 of 20

36. Dziubinski, M.P.; Grassi, S. Heterogeneous Computing in Economics: A Simplified Approach. Comput. Econ.

2014, 43, 485–495.

37. Hammersley, J.M.; Handscomb, D.C.; Weiss, G. Monte Carlo Methods. Phys. Today 1965, 18, 55.

38. Geweke, J. Bayesian Inference in Econometric Models Using Monte Carlo Integration. Econometrica 1989,

57, 1317–1339.

39. Van Dijk, H.K.; Hop, J.P.; Louter, A.S. An Algorithm for the Computation of Posterior Moments and

Densities Using Simple Importance Sampling. Statistician 1987, 36, 83–90.

40. Bollerslev, T. Generalized Autoregressive Conditional Heteroskedasticity. J. Econom. 1986, 31, 307–327.

41. Card, D. Using Geographic Variation in College Proximity to Estimate the Return to Schooling.

In Aspects of Labour Market Behaviour: Essays in Honour of John Vanderkamp; Christofides, L.N., Grant, E.K.,

Swidinsky, R., Eds.; University of Toronto Press: Toronto, ON, Canada, 1995; Chapter 7.

42. Baştürk, N.; Çakmaklı, C.; Ceyhan, S.P.; Van Dijk, H.K. Posterior-Predictive Evidence on US Inflation using

Extended Phillips Curve Models with non-Filtered Data. J. Appl. Econom. 2014, 29, 1164–1182.

43. Zivot, E. Practical Issues in the Analysis of Univariate GARCH Models. In Handbook of Financial Time

Series; Andersen, T.G., Davis, R.A., Krei, J.P., Mikosch, T., Eds.; Springer Verlag: New York, NY, USA, 2009;

pp. 113–155.

44. Bowden, R.J.; Turkington, D.A. Instrumental Variables; Cambridge University Press: New York, NY,

USA, 1990.

45. Zellner, A. An Introduction to Bayesian Inference in Econometrics; Wiley: New York, NY, USA, 1971.

46. Drèze, J.H. Bayesian Limited Information Analysis of the Simultaneous Equations Model. Econometrica

1976, 44, 1045–1075.

47. Drèze, J.H. Bayesian Regression Analysis Using Poly-t Densities. J. Econom. 1977, 6, 329–354.

48. Kleibergen, F.; Van Dijk, H.K. Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures.

Econom. Theory 1998, 14, 701–743.

49. Hoogerheide, L.; Kleibergen, F.; Van Dijk, H.K. Natural Conjugate Priors for the Instrumental Variables

Regression Model Applied to the Angrist-Krueger Data. J. Econom. 2007, 138, 63–103.

50. Ritter, C.; Tanner, M.A. Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler.

J. Am. Stat. Assoc. 1992, 87, 861–868.

51. Lee, A.; Yau, C.; Giles, M.B.; Doucet, A.; Holmes, C.C. On the Utility of Graphics Cards to Perform

Massively Parallel Simulation of Advanced Monte Carlo Methods. J. Comput. Graph. Stat. 2010, 19, 769–789.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open

access article distributed under the terms and conditions of the Creative Commons by

Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Evolution of GPU Computing
	Parallel Implementation of MitISEM: ParMitISEM
	Parallelization Experience for Four Econometric Models
	Approximation of the Gelman–Meng Function
	Bayesian Inference of the GARCH(1,1) Model with Student-t Errors
	Bayesian Inference of the Instrumental Variables Model
	Bayesian Inference of the Structural NKPC Model

	Conclusions

