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Abstract: We define a dynamic and self-adjusting mixture of Gaussian Graphical Models to cluster
financial returns, and provide a new method for extraction of nonparametric estimates of dynamic
alphas (excess return) and betas (to a choice set of explanatory factors) in a multivariate setting.
This approach, as well as the outputs, has a dynamic, nonstationary and nonparametric form, which
circumvents the problem of model risk and parametric assumptions that the Kalman filter and other
widely used approaches rely on. The by-product of clusters, used for shrinkage and information
borrowing, can be of use to determine relationships around specific events. This approach exhibits
a smaller Root Mean Squared Error than traditionally used benchmarks in financial settings, which
we illustrate through simulation. As an illustration, we use hedge fund index data, and find that
our estimated alphas are, on average, 0.13% per month higher (1.6% per year) than alphas estimated
through Ordinary Least Squares. The approach exhibits fast adaptation to abrupt changes in the
parameters, as seen in our estimated alphas and betas, which exhibit high volatility, especially in
periods which can be identified as times of stressful market events, a reflection of the dynamic
positioning of hedge fund portfolio managers.

Keywords: nonparametric clustering; Bayesian; cluster; nonparametric alpha and beta;
hedge fund performance

JEL: C2, C13, C14

1. Introduction

We use a novel dynamic and arbitrary mixture of Gaussian Graphical Models (GGM) to describe
sets of returns with complex relationships in a dynamic, nonstationary and nonparametric form and,
at the same time, extract new nonparametric, nonstationary and dynamic alphas (excess returns)
and betas (exposures to risk factors) of those returns. The procedure we follow builds on the formal
mathematical model devised by [1]. However, we adjust their approach to financial settings, by
constructing an approach that will extract and construct implied nonparametric alphas and betas,
which are key parameters of interest in financial applications. A simulation study will offer an initial
insight to the level of outperformance of our approach against some traditionally used approaches.
Additionally, we apply this procedure to hedge fund index data for the period January 1994 to June
2009, and find that our estimated alphas or excess returns are, on average, 0.75% per month. These
alphas are 0.13% per month higher than those estimated applying OLS for the same period and, thus,
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our procedure uncovers that average hedge fund alphas could be underestimated when measured
using OLS.

Our paper contributes to the existing literature mainly in two ways: first, it devises a new
methodology to extract market dynamic alphas and betas, which is less bound to widely-extended
assumptions on the parametric structure of returns. This approach is especially beneficial when the
generating process is very dynamic with varying numbers of clusters (and series within clusters).
Second, we provide information about clusters that can be used by allocators/decision-makers
outside of the more traditional expected return/risk-reward settings (for example, through
relation-in-distress measurements, which could allow allocators to reduce exposures in combinations
of assets/funds that tend to cluster when volatilities rise or when returns drop, or increase
exposures in combinations that tend to de-cluster when returns drop, increasing the level of expected
“idiosyncracy-under-stress” when it’s most needed in the portfolio). Our approach allows for the joint
modelling of multiple series both as dependent and independent sets of variables. Our methodology
finds a natural application in problems where a set of variables is driven by another set of variables
in a difficult-to-parametrize, non-stationary fashion.

Our application, hedge fund returns, can be seen as jointly driven by a set of factors, as opposed
to fixed asset benchmarks, with exposures to those varying over time. Our results show much
higher alphas to those considered through more traditional methods, indicating sufficiently relevant
differences to consider this approach as one of non-marginal impact. These contrast with the alphas
outlined in recent literature (see Titman and Tiu [2], Mamaysky et al. [3], Ferson and Schadt [4], Patton
and Ramadorai [5], for a recent review). Furthermore, our estimated alphas and betas exhibit very
high volatility, particularly in periods which can be identified as times of stressful market events.
This is in line with the existence of many dynamic drivers in this particular application, such as
dynamic market conditions, dynamic internal fund allocations, shift in portfolio manager styles
and exposures, as well as dynamics of liquidity parameters of the individual funds. These findings
question the constant alpha and beta assumption implicit in some studies conducted to measure
hedge fund performance, as well as in the dynamic (yet parametric) approaches presented in others
like [3]. Ours is more in line with a dynamic mixture model, with the mixtures viewed as the flexible,
accomodating distributions to the different approaches to portfolio management and exposures of
funds over time.

The question of investment performance measurement (in both absolute and relative terms) has
received increasing attention by both academicians and practitioners. The hedge fund industry, the
focus of our application, has grown rapidly during the past two decades, and institutional investors
such as endowments and pension funds have gradually increased their allocations to hedge funds.
According to Hedge Fund Research, the total number of funds around the world grew to around
ten thousand and total assets under management (AUM) reached around 2 trillion US dollars by
the end of 2013. The hedge fund industry was severely affected by the global financial crisis of
2008–2009, with the total number of funds and AUM dropping by around a third during the crisis,
although they mostly recovered by the end of 2010. The analysis of their returns, however, is
nontrivial as the underlying processes are both complex and dynamic. Hedge fund managers change
their allocations, positions, and their styles over time. Risk or leverage limits are often imposed.
Market events change the focus of specific managers and new managers come and go with different
styles. Additionally, the alpha of different styles changes over time, with periods where some styles
outperform/underperform others over arbitrary periods before they revert. Even within a hedge
fund group/style, there will be much different approaches that will generate very different return
series (for example, depending on the frequency at which they operate). As such, any modelling
approach must be sufficiently flexible to account for these (and other) changes in the nature of the
return process over time. We offer a flexible, nonstationary, nonparametric approach that borrows
information across dynamic clusters, but, more importantly, makes neither parametric assumptions
on the nature of the (dynamic) alphas and betas nor on their autocorrelation structure. This approach,
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although we focus on the Hedge Fund return application, is applicable to any set of return series
where the dynamics are too complex and unknown to be modelled using parametric assumptions,
yet a dynamic model is needed for all the key elements of the series (alphas, betas and clusters).

It is important to mention that the focus of this paper is mainly descriptive, rather than
inferential. Due to the high variability and the dynamic nature of the series we model, and the cluster
dependence on the drivers of the series, although inference is technically possible, our focus is on
providing a better understanding of the returns. A more accurate understanding of alphas, betas and
clustering styles will provide decision-makers with new sources of information. This information,
although usable directly in the allocation process (through the alphas and betas), finds also a natural
space indirectly through cluster analysis (for example, putting limits on combined weights assigned
to series that have a high probability of clustering in distress periods).

The measurement of alpha, in the case hedge funds returns, as well as other complex return
series, is complicated by their dynamic use of strategies that include long and short positions, as well
as derivatives that result in very dynamic factor exposures against fixed benchmarks. This in turn
generates non-linear returns that require tailored benchmarks. Furthermore, and according to [6],
risk exposures of hedge funds have also declined in response to the rising dominance of institutional
investors replacing family offices and private individuals as the primary source of investor capital.
These same authors argue that the rapid growth of hedge funds has been responsible for the decline in
their performance between the 1990s and mid-2000s and that perhaps “all the low-hanging fruits have
been picked.” This view questions the use of a constant, mean-reverting level for the alphas, and calls
for non-stationary models for key paramers, such as the one proposed in this paper. Additionally, it
is also questionable that betas to key factors can be stationary, especially as funds deploy new ways to
exploit competitive advantages (for example, as funds/sectors move to trading in higher frequencies,
betas of those funds to factors defined in lower frequencies may diminish).

When empirically tested, many of the approaches assume that the coefficients of the regressions
are constant over time (or come from a constant distribution). If, in fact, these coefficients are
time-varying and non-stationary, then the estimated parameters using these models would be
unreliable. In the context of our application, as an example, [7] propose to measure the conditional
performance of hedge fund indices using a stochastic discount factor approach, which imposes fewer
limitations on the behavior of underlying returns. They find that estimated alphas, which are found to
be positive, are similar when hedge fund performance is measured assuming either of the following
four cases: (i) an absolute return approach (e.g., Alpha = Ri − R f ); (ii) a single-factor, fixed-exposure
approach (e.g., CAPM); (iii) a single-factor, linear time-varying exposure approach (e.g., Merton’s
model); and (iv) an extension of Merton’s approach consisting of a multi-factor, linear time-varying
exposure approach. This finding of similar estimated alphas regardless of the model used leads
them to conclude that better models are needed to measure hedge fund performance. Our approach
finds very different (across funds and over time) alphas and betas, which seems more in line with
expectations of highly dynamic funds.

In a related prior approach, for a similar application, [3] address the issue of time variation in
mutual fund factor loadings and develop a Kalman filter model to test for market-timing ability;
showing that even though the Kalman filter model does not appear to exhibit market-timing ability
at the daily frequency, it does so at the monthly frequency. While we focus our application
on monthly returns, the flexibility of the design accomodates via a non-parametric approach to
estimate dependence between alphas, making it less reliant on a strong parametric link between
them over time, like the one imposed by the Kalman filter. Although a special case of our model
and with another application in mind, [8] use a regime-switching beta model to measure dynamic
risk exposures of hedge funds to various risk factors during different market volatility conditions.
For interesting overlaps of our work with networks and graphical models please see [9,10].

Kosowski et al.[11] use Bayesian measures to estimate hedge fund alpha at the individual hedge
fund level. These measures are based on the robust boostrap approach suggested by [12], and the
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Bayesian framework of [13]. They argue, in the same vein as [14–16], that hedge fund performance
measures do not follow parametric normal distributions because these funds hold derivatives such
as options, because of the dynamic nature of their trading strategies, and also due to small sample
problems. These features of hedge fund performance help explain their finding that Bayesian
nonparametric measures yield superior performance predictability relative to alphas estimated when
specific parametric models are assumed.

The Bayesian paradigm provides in the case aforementioned, as well as ours, a natural, flexible
tool to the fast estimation of the quantities of interest. Our approach is especially amenable for
cases where small sample sizes also hinder many alternative approaches due to the (random) large
dimensionality of the problem. The implementation of a Bayesian approach for measuring hedge
fund performance should not be surprising, because Bayesian measures have been traditionally used
to help overcome the small-sample problem typical of hedge fund returns1, making this also an area
where our approach may become amenable.

Using a robust boostrap procedure, [11] also find that hedge fund performance at the top cannot
be explained solely by luck, that performance persists at annual horizons, and that OLS alphas of top
hedge funds tend to be incorrectly estimated. It is worth noticing that the model used in [11] is not
only parametric in nature, and therefore exposed to model risk, but also stationary. On the contrary,
the alphas, as well as the betas derived in our paper, are nonstationary and dynamic. To the best of
our knowledge there is no previous work that employs a formal mathematical model to describe in
a dynamic, nonstationary and nonparametric way multivariate returns against multivariate factors,
and extract at the same time some new nonparametric, nonstationary and dynamic alphas and betas,
under a clustering scheme for shrinking, and in a fully Bayesian approach.

Gaussian graphical models (GGMs), also called covariance selection models [22], are popular
tools for modeling dependence across observables. GGMs assume that the returns generated by
different asset classes and/or investment vehicles follow a joint multivariate Gaussian distribution,
and explore the pattern of partial correlations to understand how the different outcomes influence
each other. Because observations are assumed to follow a (arbitrary mixture of) multivariate Gaussian
distribution, absence of partial correlation corresponds to a zero in the appropriate entry of the
precision (inverse covariance) matrix and indicates that the variables are conditionally independent.
The conditional independence patterns inferred in this way can be represented using a graph where
nodes correspond to variables and an edge is present between two variables if they are conditionally
dependent, and absent otherwise.

GGMs are a natural alternative to endogenous factor models as described in [23,24], which
explain the joint multivariate outcome as a linear combination of a small number of unknown factors
determined directly from the data being modeled2. However, GGMs are particularly appealing over
these endogenous factor models because they allow researchers to asses conditional rather than
marginal independence, which in turn makes it straightforward to distinguish between direct and
indirect interactions between the variables. GGMs have been successfully applied in finance and
econometrics (for example, see [1,28–31]), where they have been shown to provide interpretability
and enhanced predictive performance. However, our extraction of cluster-implied alphas and betas
adds a new layer of outputs to the existing literature, since they allow direct use of these parametric
measures derived from a non-parametric setting.

1 The works in [17–20] had already applied Bayesian methodologies to measure mutual fund alphas. The consequence of
using small samples is an even greater problem for hedge fund performance measurement when compared to mutual
fund performance measurement due to higher variability and generally lower sample sizes due to a shorter lifespan.
Furthermore, the use of short sales and derivatives by mutual funds, which are tightly regulated investment vehicles,
is minimal, although this has been changing recently as reported by [21], whereas they are essential for many hedge
fund strategies.

2 Note that these endogenous factor models differ from more traditional exogenous factor models such as the three-, four-
and five- factor models of [25–27], which employ factors determined independently from the data being analyzed.
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The paper is organized as follows. Section 2 presents the statistical methods we employ. Section 3
offers sensitivity analysis and simulation exercises to compare our model to traditionally used models
that pursue similar features of the data. In Section 4 we describe the data used in the study, and the
application through hedge fund returns. Section 5 shows the main results obtained, while Section 6
offers the results of estimating time-varying alphas and betas, as well as cluster analysis, using the
infinite hidden Markov model (iHMM-GGM) proposed by [1]. Finally, we outline our conclusions
and potential extensions in Section 7.

2. Modeling Dependence among Asset Classes and Investment Vehicles

In this section we describe the statistical methodology. We will start by reviewing basic notions
of Gaussian Graphical Models and their link with sparse (regularized) regression. Then, we will
move to describe hidden Markov models that employ Gaussian Graphical Models to describe
state-specific distributions.

2.1. Gaussian Graphical Models

Let zt = (z1t, . . . , zqt)′ be a vector of observed returns, where zit represents the return of fund i
over period t, for t = 1, . . . , T. A Gaussian graphical model for the sequence z1, . . . , zT assumes that
observations are independent and identically distributed from a multivariate normal distribution,
zt ∼ Nq

(
µ, K−1), where µ is the vector of mean returns, G is a graph3 describing the conditional

independence structure among the entries of zt, and K = K(G) is a precision matrix such that
[K(G)]i,j = 0, if and only if the edge connecting node i and node j is missing from G.

Bayesian inference for GGMs proceeds by placing priors on the unknown parameters (µ, K, G).
A popular approach uses conjugate priors and factorizes the joint prior p(µ, K, G) as

p(µ, K, G) = p(µ|K)p(K|G)p(G)

where p(µ|K) is a multivariate Gaussian distribution N
(
µ0, (n0K)−1), p(K|G) corresponds to a

G-Wishart prior [32], and p(G) is a uniform distribution on the space of graphs. It is worthwhile
to note that K is a function of the graph G since G will define the structure of zeroes K will have.
This prior will model the parameters as independently as possible conditional on the graph G.

For small values of q, the posterior distribution of all model parameters can be computed
in closed-form and inference is straightforward. For moderate to large values of q, the number
of possible graphs is typically too large for explicit enumeration and Markov chain Monte Carlo
algorithms that efficiently explore the space of graphs are typically required (for details and examples
see [33–35], among others).

GGMs can be used for sparse regression [29]. Consider a standard multivariate regression model,
which assumes that the conditional distribution of the response yt given a vector of predictors xt is
Gaussian. In our manuscript yt will be the cross-sectional vector of hedge fund returns at time t and
xt the vector of market risk factors. An equivalent model is implied by a joint Gaussian distribution
on the vector zt = (y′t, x′t)

′. Indeed, if zt ∼ N(µ, K−1) where

µ =

(
µy

µx

)
K =

(
Kyy Kyx

Kxy Kxx

)

then standard results for the multivariate Gaussian distribution imply that

yt|xt ∼ N
(

µy − (Kyy)−1Kyx {xt − µx} , (Kyy)−1
)

(1)

3 The graph G is assumed to be decomposable as explained in Rodriguez et al. [1] (p. 986).
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Estimates of this joint model can be used to construct estimates of the regression function. Indeed, if
maximum likelihood methods are used to estimate µ and K, then the estimates of the intercept and
slopes from (1) will be identical to those obtained through ordinary least squares (OLS). For example,
in the Capital Asset Pricing Model (CAPM) the intercept α corresponds to µy + (Kxx)−1Kxyµx while
the market risk parameter β corresponds to −(Kxx)−1Kyx [36]. On the other hand, placing a prior on
(µ, K) is equivalent to placing a prior distribution on the regression coefficients of a linear regression
model together with a prior on the marginal distribution of xt. This procedure, although slightly more
convoluted than simply placing a prior on the regression coefficients, can be easily generalizable to
mixtures of Gaussian graphical models to generate nonparametric regression procedures.

We used the CAPM in the previous analysis because the CAPM is a linear model and
the IHMM-GGM model that we are using is built as an approximation of infinite linear OLS
models. Thus, we can compare our model to those models that are more commonly used in
finance (linear models such as the CAPM and OLS multivariate regressions). Our approach is
less constrained because it is nonparametric, dynamic and nonstationary, whereas the CAPM is
parametric, nondynamic, and stationary.

2.2. Dynamic Mixtures of GGMs

Our discussion in the introduction suggests that hedge fund returns should not be assumed
to be normally distributed, making the use of standard Gaussian graphical models potentially
inappropriate for our application. To alleviate this issue we follow [1] and construct a hidden
Markov model where the market fluctuates among an unknown number of clusters, and where hedge
fund returns were generated from a collection cluster-specific GGMs. This structure for the hidden
Markov model implies a nonparametric mixture model for the stationary (marginal) distribution on
the market returns, which ensures that our model is capable of capturing all the stylized features of
hedge fund returns that were discussed in Section 1.

More specifically, introduce cluster variables ξ1, . . . , ξT with ξt ∈ {1, 2, 3, . . .} and let

zt|µξt
, Kξt , Gξt ∼ N

(
µξt

,
{

Kξt(Gξt)
}−1

)
,

i.e., conditional on the market being in cluster l (which corresponds to ξt = l), the observations
are generated from a GGM with mean vector µl and precision matrix Kl such that its conditional
independence structure is given by graph Gl . Therefore if Gl has off-diagonal zeroes this corresponds
to independence between specific asset returns. If we look at the analysis unconditional of ξt then the
same interpretation of independence does not carry through anymore.

To account for the sequential nature of the data we allow the cluster of the system to evolve as a
Markov chain with a potentially infinite number of clusters,

Pr(ξt = l | ξt−1 = k) = πk,l

where the vector πk = (πk,1, πk,2, πk,3, . . .) (containing the transition probabilities from cluster k to all
other clusters) is given a Dirichlet process prior [37,38],

πk|α, v ∼ DP(α, v),

independently for each k, where v = (v1, v2, . . .) and

vl = vl ∏
k<l
{1− vk}, vl ∼ Beta(1, β).
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The Dirichlet process is an extension of the Dirichlet distribution to countably infinite spaces.
Indeed, the model just described can be obtained as the limit of a finite hidden Markov model,

(πk,1, . . . , πk,L)|α, v ∼ Dirichlet(αv1, . . . , αvL)

(v1, . . . , vL) | β ∼ Dirichlet

(
β

L
, . . . ,

β

L

)
as L → ∞. Therefore, this specification implies that E(πk) = v, i.e., v represent a common mean for
the vector of transition probability across clusters, while α controls how much each πk deviates from
this common mean.

The model we just described (called an infinite hidden Markov model, or iHMM, see [39,40])
admits a priori an unlimited number of clusters. However, the prior structure is such that a posteriori
only a few distinct regimes are actually employed to fit the data. Hence, this infinite HMM
(iHMM-GGM) allows us to automatically and parsimoniously estimate the number of clusters.

The iHMM specification above can be used to generate dynamic nonparametric estimates of the
parameters of the CAPM. Indeed, conditioning on the cluster ξt we can write an expression that is
analogous to (1),

yt|xt ∼ N
(

µ
y
ξt
− (Kyy

ξt
)−1Kyx

ξt

{
xt − µx

ξt

}
, (Kyy

ξt
)−1
)

.

In other words, the model clusters time periods according to the cluster to which they belong and
assigns the same CAPM parameters to periods in the same cluster. Uncertainty on the cluster
indicators ξ1, . . . , ξT can be incorporated through model average, leading to flexible estimates.

Posterior computation for the iHMM involves the use of simulation-based Markov chain
Monte Carlo algorithms. Given an initial guess for the model parameters, these iterative algorithms
sequentially generate random realizations of blocks of parameters conditionally on the current
values of the rest. After the algorithm has converged, these random draws can be used to
produce approximate estimates of all parameters of interest, including point and interval estimates.
For details, see [1]. The software we employed to fit our models is available from the authors
by request.

Last but not least, finite mixture problems have been used in different scientific communities,
such as unsupervised clustering in neural network applications, latent class analysis in the social
sciences, and regime switching models in economics, among others [41]. A finite mixture model
has a finite number of clusters or states and therefore is a special case of our iHMM-GGM, which
has infinite. Moreover, setting two clusters for ξt = 1, 2 and noticing that our iHMM-GGM is also
dynamic in nature, we get back a classical and well known regime switching model. For more on such
conections between regime switching models and finite mixture models, please see [41] (Chapter 10).

3. Sensitivity Analysis and Simulation Exercises

3.1. Sensitivity

An important question to ask is whether the prior distribution on L (prior number of clusters)
has any impact on its posterior distribution. The ideal scenario is when the posterior of L given the
data does not change with different prior distributions of L, therefore making the estimation and
algorithm robust to choices of prior. The prior on L implied by the Dirichlet process is given by [1]:

p(L|α0, n) = S(n, L)n!αL
0

Γ(α0)

Γ(α0 + n)
(2)
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where S(n, L) denotes the Stirling number of the first kind [42]. We can conclude that the mean
number of non-empty mixture components grows with α0, the concentration parameter the Dirichlet
process DP(α0, M) which has a prior Gamma(a, b) [1].

We tested the effect of the priors with a representative range of key parameters a and b.
As detailed in Equation (2), the key parameters for the implied prior on L are the hyperparameters a
and b. For these two hyperparameters, we define what could be a priori the boundaries of reasonable
a priori values for the applications in this paper. Figure 1 includes the distribution of three of those
priors that represent a reasonable range for the problem at hand:

• Gamma(a = 1, b = 5). This is a strong, very informative, prior that maps into a distribution
of the clusters with a prior mean of clusters = 2 and a standard deviation of the number of
clusters = 2 (prior two moments included in each of the graphs in Figure 1). This would be
appropriate if we believe that there is a very limited number of clusters in the data.

• Gamma(a = 1, b = 1). This is a medium-intensity prior that implies a larger number of clusters
on average, and a heavier tail. We chose this prior for our analysis due to the nature of our data,
where we anticipated a large number of clusters, but were uncertain as to how many.

• Gamma(a = 5, b = 5). This is a low-intensity, more vague, prior that implies a much larger
number of clusters.
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Figure 1. The implied prior on L given a diferent set of hyperparameters values for a and b. This figure
includes the distribution of three of those priors that represent a reasonable range for the problem
at hand.

Figure 2 includes the posterior distribution of the number of clusters for each of the priors. As we
can see, the choice of priors has non-negligible effects on the posterior mean of the clusters, and a
small, effectively irrelevant, effect on its posterior standard deviation. This sensitivity analysis, tested
on extreme priors, underlines the minor effect they have in our particular application. We do not
expect this to be the case in all datasets, and in fact, special attention should always be put in this
issue for this particular model. However, we feel comfortable with the relatively minor impact of
the key hyperparameters on the posterior distribution for similar applications to the ones explored in
this paper.
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Figure 2. The posterior distribution of the parameter L (number of clusters) under the data described
in Section 4 given a diferent set of hyperparameters values for a and b.

Whilst the model in this paper is not new, although it is a very recent addition to the statistical
literature [1], it has never been used. However, it has never been used (to our knowledge) in the
financial literature. Additionally, its use for the determination of alphas and betas of hedge funds
is novel to our knowledge in the hedge fund literature. With regards to its use for forecasting,
one key point that we wish to stress and point out, is that our focus is on understanding current
and past behavior of hedge funds, not forecasting them [43]. We believe that these types of
models will have in general low forecasting power, due to the dynamic nature of hedge funds and
markets. Portfolio Managers come and go; styles are added or taken away; allocations between
managers are changed within funds; market conditions change; systems are modified and features
are added/changed. The focus of this paper, however, is on understanding fund (joint) behavior
in specific periods (clusters). We may not be able to know when it will be the next time that a
cluster will occur, but we feel that Funds of Funds will find it of interest to understand the expected
behavior of hedge funds in those circumstances. For example, how did hedge funds behave in 2008?
Idiosyncratic behaviors can be rewarded and herd-behaviours can be penalized appropriately when
allocating assets to those funds. Forecasting future returns is extremely market dependent. In the
same way that we did not want to impose a sticky behavior to the clusters [44], we want to remain
flexible when defining their future behavior. In addition, even in the fitting stage, the autocorrelation
of clusters was extremely low as seen from Figure 3, indicating poor forecastibility unless stickiness
is imposed, which we believe is a riskier assumption in view of the data. For each iteration of the
MCMC, the set of clusters is analysed to determine how many consecutive times we observe the
same cluster. Figure 3 contains the percentage of times that we observe two equal clusters (around
11%), three equal clusters (around 4%) and four equal clusters (1%). With these results in mind, the
level of stickiness shown by the data under the iHMM model is significantly low, and we would feel
that the use of the sticky model would not be supported by the data. Of course, we do not know
the actual distribution of the data and its stickiness, but having a more parsimonious model seems to
require stronger assumptions in this case than our approach.
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Figure 3. Stickyness of consecutive clusters.

Figure 4 shows the distribution of the number of clusters for each of the series individually,
versus the case of the joint modeling. As can be seen in this graph, there is a clear difference that
has a severe impact in our identification of the number of clusters. When run individually, we
have significantly fewer number of clusters (as expected) than when run jointly. We average around
20 clusters in the individual runs, while the average is around 65 in the joint run. These runs were
done with the same prior hyperparameters, since the concern was whether the joint approach added
with respect to the individual ones. Given this last fact, we feel that the strong assumptions that
are needed to support individual modeling do not overweigh the choice of joint modeling, even if a
particular case or application may favor it (which is not the case in our example, as shown in Figure 4).
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Figure 4. Distribution of the number of clusters (L) for each of the series individually, versus the case
of the joint modeling.
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Although our focus is not on improvement of the algorithm in [1], we acknowledge that the
MCMC chain mix is not ideal. However, there are several reasons why we do not consider this to be
an element of concern:

• The mixing seems to be reasonable after appropriate thinning. We include Figure 5 to illustrate
this. This figure includes the mixing of the chain, with a thinning of 200, for the number
of clusters.

• The mixing in this model is definitely not appropriate for high-frequency analysis. However, we
find that, although not exceptional, the mixing suffices according to the different mixing tests
that we ran.

• Our application (and the applications for which this model seems appropriate) makes more
sense in the lower frequency space, where decision-making is a matter of several days, rather
than minutes. As such, a slow but sufficient mixing but better model will be a better outcome
than a faster mixing of a less ideal model. Decision-makers in the fund of hedge fund space have
a cycle of months, and sometimes even quarters, making this a non-issue for them.
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Figure 5. ACF and traceplot for parameter L (number of clusters).

3.2. Simulation

In order to assess the usefulness of the iHMM to extract the nonparametric α and β, we perform
the same simulation exercise as in [1] and describe it for consistency in this section. We simulate
data from two bivariate Gaussian clusters. The two clusters have the following mean vectors and
precision matrices:

µ1 =

(
−5
−5

)
K1 =

(
1 0.3

0.3 1

)

and

µ2 =

(
5
5

)
K2 =

(
1 0.3

0.3 1

)

In total 100 data points are generated, where 50 are generated from the first cluster and the rest
from the second one. For every sample, we use the 100 data points and fit a linear regression,
a Bayesian Dynamic Linear Model [45] (p. 123), and an iHMM respectively. We use the median
posterior estimates for α and β given by the DLM and iHMM models as estimates in order to compute
afterwards the Root Mean Squared Error (RMSE) and the Mean Absolute Deviation (MAD).
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Bayesian Dynamic linear models (DLM) fall in the context of state space models and the Kalman
Filter is a particular case of the DLM, as well as the dynamic linear regression. The DLM that we use
for our comparison here is described by the following equation:

yt = αt + βtxt + vt

where vt are iid from a N(0, σ2). For more details regarding state space models, Kalman filtering
and dynamic linear models and how they all relate to each other as linear state space models, please
refer to West and Harrison [46] and Petris et al. [45]. Given the estimates for α and β from each of
the 3 models, we compute the Root Mean Squared Error (RMSE) between the model estimate for
both parameters and the real values for α and β given from cluster 1 and cluster 2, respectively.
In our simulation examples, the true parameter values for cluster 1 correspond to αtrue = −4.7, and
βtrue = −0.3. The corresponding true parameter values for cluster 2 correspond to αtrue = 5.3, and
βtrue = −0.3. From Table 1 one can see that overall the DLM has a smaller RMSE than the regular
linear regression model, and that the iHMM model exhibits a much smaller RMSE and MAD than the
DLM. The figures for α show that the iHMM yields a RMSE and MAD equal roughly to half of that
achieved by the DLM, whereas that figure for the RMSE and MAD goes up to 7 and 6.84, respectively,
for the estimation of β in favor of the iHMM. The advantages of using a dynamic state space model
instead of the usual linear regression model to extract the alpha and beta for hedge fund returns have
been recently documented by [3]. Allowing a dynamic yet nonparametric nature for both α and β is
what makes the iHMM model so appealing.

Table 1. Results from our simulation example for α and β. We show the median along with the 5%
and 95% quantiles (in parenthesis) of the ratio between the root mean squared error (RMSE) deviation
measure for three pairs of models, computed over a total of 100 simulated data sets. Here DLM
stands for the Bayesian Dynamic Linear Model, OLS for Ordinary Least Squares, and IHMM stands
for Infinite Hidden Markov Model.

Models α β

RMSE OLS/DLM 1.15 (1.09, 1.20) 1.17 (1.12, 1.23)
MAD OLS/DLM 1.24 (1.15, 1.36) 1.20 (1.13, 1.28)

RMSE DLM/IHMM 1.94 (0.85, 5.00) 7.00 (0.82, 62.70)
MAD DLM/IHMM 1.80 (0.79, 5.27) 6.84 (0.80, 61.28)

4. Data and Empirical Strategy

We use the monthly returns of the Credit Suisse First Boston Tremont Hedge Fund Indices
(CSFB/TREMONT) for our study. The CSFB/TREMONT hedge fund indices, which are reported net
of fees, are a family of asset-weighted hedge fund indices designed by Credit Suisse First Boston and
Tremont, and includes more than 4500 hedge funds (both open and closed to new investors) from all
over the world. To be included in the index, a hedge fund must have a minimum of 10 million dollars
in assets under management, a history of at least twelve months, and audited financial statements.
Hedge funds are grouped into the following nine categories: Convertible Arbitrage (CA), Short Bias
(SB), Emerging Markets (EM), Equity Market Neutral (EMN), Event-Driven (ED), Fixed-Income (FI),
Global Macro (GM), Long-Short Equity (LS), and Managed Futures (F). Recently, CSFB/TREMONT
also added a Multi-Strategy (MS) hedge fund category. CSFB/TREMONT also calculates an index
that is an average of all strategies (HF). A complete list of the hedge funds included in the
CSFB/TREMONT database can be found on www.hedgeindex.com. Net asset value returns from this
database are reported monthly. We use monthly data from January 1994 to June 2009. Most studies
on hedge funds start in January 1994 because most databases do not contain information on funds
that died before December 1993, thus giving rise to survivorship bias. As a clarification, this is not a
forecasting exercise since we use all the data from January 1994 up to June 2009 to estimate our model.
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The search for alpha requires the correct identification of betas. Different authors have proposed
sets of common factors that can influence hedge fund returns. For example, among the first studies,
[47] considered 13 factors while [48] considered eight factors. The works in [2,16,48–51] used stepwise
regressions to identify the factors.

We use the seven factor model proposed by [52]. This model has been extensively used in
the hedge fund literature (for a recent review of the use of the model in the hedge fund literature
see [2]). The seven factors are: two equity oriented risk factors (a stock market factor and a firm
size factor), two bond oriented risk factors (a bond market factor and a credit spread factor), and
three trend-following risk factors (a bond trend-following risk factor, a currency trend-following risk
factor, and a commodity trend-following risk factor).

The three trend-following risk factors mentioned above are the returns of portfolios of options
on bonds, foreign currencies, and commodities, and were originally proposed by [50]. These authors
found that these portfolios, which are constructed as lookback straddles on bonds, currencies and
commodities, produce high returns during large moves in equity markets4. They also find that the
returns of trend-following funds’ are sensitive to large shifts in world equity markets. The return
series for these three trend factors were obtained from David Hsieh’s website: https://faculty.fuqua.
duke.edu/~dah7/HFData.htm The data for the other four factors was obtained from Datastream.
Fung and Hsieh’s [52] seven factor model following our notation is:

yt|xt ∼ N
(

µy − (Kyy)−1Kyx {xt − µx} , (Kyy)−1
)

where yt are the respective hedge fund index excess returns over 3-Month LIBOR rates for period t,
and xt ≡ [SMFt, FSFt, BMFt, CSFt, BLSt, CULSt, COLSt], and where:

1. Stock market factor (SMF), measured as the monthly total return (price appreciation and cash
dividends) of the Standard and Poor’s 500 Index.

2. Firm size factor (FSF), measured as the difference between monthly small cap total returns (price
appreciation and cash dividends) on the Russell 2000 Index minus Large Cap monthly total
returns (price appreciation and cash dividends) on the Standard and Poor’s 500 Index.

3. Bond market factor (BMF), measured as the monthly change (month-end to month-end) in the
ten-year U.S. Treasury constant maturity yield.

4. Credit spread factor (CSF), measured as the monthly change in the Moody’s U.S. Baa yield minus
the ten-year U.S. Treasury constant maturity yield.

5. Bond lookback straddle (BLS), measured as the return of a primitive trend following strategy
bond lookback straddle and reported by David Hsieh in his website.

6. Currency lookback straddle (CULS), measured as the return of a primitive trend following
strategy currency lookback straddle and reported by David Hsieh in his website.

7. Commodity lookback straddle (COLS), measured as the return of a primitive trend following
strategy commodity lookback straddle and reported by David Hsieh in his website.

Table 2 suggests that hedge fund returns exhibit non-normal behavior since the empirical
moments are very different (skewness and kurtosis) from those of a normal distribution. This is
not a surprise, as it has been extensively documented in the hedge fund literature. There is a certain
temporal dependence, judging by the AR(1) coefficients for those strategies that have a significant
coefficient. The moments reflected in the table do not fit any of the usual distributions used in finance,
and, therefore, a more flexible approach to the modeling of these returns seems appropriate. Finally,
half of the Sharpe ratios are positive.

4 A lookback straddle consists of a straddle (a long position on a call option and a long position on a put option on a
certain underlying asset having the same maturity date for both contracts) that pays the owner the difference between the
maximum and the minimum prices of the underlying asset over an established time period.

https://faculty.fuqua.duke.edu/~dah7/HFData.htm
https://faculty.fuqua.duke.edu/~dah7/HFData.htm
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Table 2. Summary statistics of hedge fund indices (strategies) monthly returns during the sample
period (January 1994 through June 2009). The significance level here is 5%. Source: CSFB, Datastream,
and own calculations.

Name Mean (%) Volatility (%) Skewness Excess Kurtosis Sharpe Ratio AR(1)

CA 0.26 2.04 −2.83 16.05 −0.03 0.56
SB −0.30 4.88 0.72 1.56 −0.13 Not significant
EM 0.39 4.55 −0.77 4.50 0.01 0.32

EMN 0.21 3.15 −11.74 149.30 −0.04 Not significant
ED 0.49 1.75 −2.62 14.69 0.08 0.37
FI 0.05 1.73 −4.33 28.13 −0.16 0.51

GM 0.71 2.99 −0.09 3.07 0.12 Not significant
HF 0.43 2.26 −0.24 2.24 0.04 0.20
LS 0.53 2.91 −0.04 0.40 0.06 0.21
F 0.27 3.41 0.03 0.09 −0.01 Not significant

Table 3 presents summary statistics of the factors used to analyze hedge fund returns and
suggests that the factors also exhibit non-normal behavior. Table 4 presents the correlation matrix
of the factors. Correlations are fairly low, and tend to be slightly negative between each of the first
four factors and each of the three factors representing portfolios of lookback straddles.

Table 3. Summary statistics of factors used to analyze hedge fund returns during the sample period
(January 1994 through June 2009). Source: Datastream, David Hsieh’s website and own calculations.

Name Mean Volatility Sharpe Ratio Skewness Excess Kurtosis

SMF 0.63 4.49 0.16 −0.75 1.12
FSF 0.02 3.57 0.04 0.30 3.67
BMF −0.08 5.33 0.00 −0.46 6.36
CSF −0.58 6.89 −0.07 −1.51 6.22
BLS −1.05 14.83 −0.06 1.42 2.88

CULS 0.61 19.95 0.04 1.33 2.51
COLS −0.10 14.01 −0.00 1.25 2.47

Table 4. Correlation matrix of factors during the sample period (January 1994 through June 2009).
Source: Datastream, David Hsieh’s website, and own calculations.

SMF FSF BMF CSF BLS CULS COLS

SMF 1.00
FSF 0.00 1.00
BMF 0.03 −0.02 1.00
CSF 0.18 0.18 0.56 1.00
BLS −0.14 −0.06 −0.14 −0.16 1.00

CULS −0.17 0.00 −0.16 −0.26 0.21 1.000
COLS −0.15 −0.02 −0.07 −0.14 0.19 0.37 1.00

5. Results

In this section, we comment on the main results obtained, bearing in mind that a number
of disruptive market events were experienced during the period January 1994 to June 2009.
Primarily among them are the sharp interest rate increase of early 1994, the Asian financial crisis of
1997–1998, the Russian default of 1998 and the ensuing collapse of Long Term Capital Management
(LTCM), the end of the Internet bubble at the beginning of 2000, the terrorist attacks of September
2001, the corporate scandals of Enron and Worldcom in 2002, the bursting of the real estate bubble
and the ensuing global financial crisis in 2007–2008. These stressful events would have most likely
required hedge funds to alter their portfolios, thus causing their betas to shift over time.
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Figure 6 presents the Heatmap displaying the probability that two observations of edges of nine
hedge fund strategy returns, the average for all strategies, and the seven factors from Fung and
Hsieh’s [52] model belong to the same cluster between January 1994 and June 2009. The figure shows
very high probabilities (more than 80%) that the following edges of hedge fund strategies belong to
the same cluster during most of the months of the period January 1994 to June 2009, particularly
during the bull market periods of 1994–1999 and 2003–2007:

• Short-bias and Event-Driven
• Short-bias and Fixed-Income
• Short-bias and Global Macro
• Short-bias and Managed Futures
• Emerging Markets and the bond market factor
• Emerging Markets and the commodity lookback straddle
• Event-Driven and the stock market factor
• Event-Driven and the firm size factor
• Event-Driven and the bond market factor
• Fixed-Income and Managed Futures
• Managed Futures and the firm size factor
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Figure 6. (HeatmapEdgeChronoCSFBwithoutfactors file, 4 September 2011): Heatmap displaying the
probability that two observations of nine hedge fund returns, the average for all strategies belong to
the same cluster between January 1994 and June 2009. Source: Datastream, David Hsieh’s website,
and own calculations. The notation used on the x-axis is as follows. CSFB/TREMONT Hedge Fund
Strategies: 1: Convertible Arbitrage, 2: Short Bias, 3: Emerging Markets, 4: Equity Market Neutral,
5: Event-Driven, 6: Fixed-Income, 7: Global Macro, 8: Hedge Funds (all strategies), 9: Long-Short
Equity, and 10: Managed Futures.
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Furthermore, and as expected, the probability that the Equity Market Neutral strategy and any
other strategy belongs to the same cluster (except for the edge Equity Market Neutral and Short Bias
during the second half of the sample period) is fairly low.

Fung and Hsieh [52] had already identified two breakpoints in factor exposures by hedge funds
(September 1998, the collapse of LTCM, and March 2000, the beginning of the end of the Internet and
technology bubble of the 1990s). This is consistent with hedge funds changing their strategies through
time, this is, with alphas and betas being time-varying. Agarwal et al. [21] and Fung et al. [53] also
use these breakpoints in their studies. Interestingly, [12] also report a structural break in the series of
hedge fund returns in December of 2000.

The figure also illustrates that the global financial crisis of late 2008 (August through December),
and the crisis experienced by financial markets in 1998 as a result of the Russian default and the
LTCM debacle (September through November of that year) were two extraordinary events, because
the probability that any two hedge fund strategies belonged to the same cluster was high, and almost
the same for all the possible edges of hedge fund strategies during those two sub-periods, as can
be seen by the lines of yellow/orange colors during those periods. This outlines the dangers from
a risk management point of view of the presence of apparently uncorrelated groups of strategies
or portfolios, that become highly correlated at periods of stress, due presumably to synchronized
unwinding of positions across different strategies. These results also confirm the findings by [52],
who had already reported a structural break in hedge fund index returns in September of 1998.

In a related article, [54] examine the extent to which hedge fund styles suffer from contagion.
To that end, they use parametric and semi-parametric analysis and monthly hedge fund index data
for the period 1990 to 2008. Contagion is defined as “correlation over and above what one would
expect from economic fundamentals” (based on [55]). They find that hedge fund returns that fall in
the bottom 10% of a hedge fund style’s monthly returns, cluster across styles. They also suggest that
liquidity shocks to a number of contagion channel variables help explain hedge fund contagion.

6. Time-Varying Alphas and Betas Estimated Using iHMM-GGM

In this section we ran the model of [1] explained in Section 2 for 120,000 iterations and having
descarted the first 20,000. The pseudo-code for computing the alpha and beta for each t = 1,...,186
consists in the following steps:

1. For i = 1,...,120,000.
2. Generate a value Li for the number of clusters in iteration i.
3. Conditional on Li, label each data vector zt with a specific cluster ξ i

t so that zξ i
t
∼ N(µξ i

t
, K−1

ξ i
t
) for

t = 1,...,186.
4. Construct αξ i

t
= µ

y
ξ i

t
+ (Kyy

ξt
)−1Kyx

ξ i
t
µx

ξ i
t

and βξ i
t

= −(Kyy
ξt
)−1Kyx

ξ i
t

for t = 1,...,186 from the

distribution yt|xt ∼ N
(

µ
y
ξt
− (Kyy

ξt
)−1Kyx

ξt

{
xt − µx

ξt

}
, (Kyy

ξt
)−1
)

.

5. For a given t, average over all clusters ξ i
t the values of αξ i

t
and βξ i

t
as αt = 1/100, 000 ∑100,000

i=1 αξ i
t

and βt = 1/100, 000 ∑100,000
i=1 βξ i

t

Figure 7 present the estimated mean alphas for each strategy from highest to lowest (in percent
per month) and for the whole sample period: (1) Global Macro (1.02%); (2) Long/Short Equity
(0.83%); (3) Event Driven (0.79%); (4) Emerging Markets (0.70%); (5) Managed Futures (0.58%);
(6) Convertible Arbitrage (0.57%); (7) Equity Market Neutral (0.52%); (8) Fixed-Income (0.35%); and
(9) Short-Bias (−0.02%).

Our results can be compared to those reported in a recent paper by [56], who also used a similar
sample period (January 1995 to December 2009 versus our sample period of January 1994 to June
2009), and also worked with Fung and Hsieh’s seven factor model, but based their study on data from
individual hedge funds available in TASS (we used CSFB/Tremont hedge fund indices) to estimate
alpha applying OLS regressions. Ibbotson et al. [56] found a positive alpha for all strategies, although
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it was only statistically significant for the following strategies: equity market neutral (annualized
alpha equal to 2.38%), event driven (annualized alpha equal to 3.73%), fixed income (annualized
alpha equal to 2.39%), and long/short equity (annualized alpha equal to 5.16%). The average hedge
fund had a statistically significant alpha of 3.01% per year. In our study, average hedge fund alpha
was substantially higher, around 0.75% per month or 9.4% when annualized.
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Figure 7. (mu file, 4 September 2011): Estimated mean alphas (in percent per month) of the nine
CSFB/TREMONT hedge fund strategies and the average for all strategies (January 1994 to June 2009).
Source: Datastream, David Hsieh’s website, and own calculations.

We also computed the difference between our estimated iHMM-GGM time-varying alphas for
the nine CSFB/TREMONT hedge fund strategies and the average for all strategies, and the alphas
estimated using OLS regressions during the sample period. We found that for all hedge fund
strategies, except for Short-Bias (−0.6% per month), Managed Futures (−0.08% per month), and
Fixed-Income (−0.04% per month), the difference between our estimated iHMM-GGM time-varying
alphas and the estimated alphas using OLS regressions was positive on average. The highest
difference was for Emerging Markets and Long/Short, at around 0.25% per month for each.
The average hedge fund had an alpha that was around 0.13% per month (1.6% per year) higher
when estimated using our iHMM-GGM procedure and the estimated alphas using OLS regressions.
This implies that, over the time period we are using, estimations of alpha using OLS regressions
such as those conducted in most of the prior research could underestimate the true alpha generated
by the average hedge fund belonging to these three strategies. In Table 5 we report the standard
deviations of the 186 time-varying alphas for each of the nine strategies and for the average of all
strategies. It is important to notice that computing the standard deviation over the 186 time- varying
alphas only makes sense if we assume that these 186 alphas are each independent and identically
distributed, something that we have seen is not the case since they are likely to be time-varying and
not identically distributed (given the fact that they come estimated from our iHMM-GMM model).
However, we still decided to report the standard deviations to have an idea of the variability of the
alphas over all the 186 periods.

Global macro strikes out as the strategy having the most volatile alpha, around twice the
volatility of that for managed futures, the second most volatile strategy in terms of alpha. This finding
may be explained, in part, by the effect on the performance of global macro that had extraordinary
events such as those of September 1998, in which Long Term Capital Management, a hedge fund



Econometrics 2016, 4, 13 18 of 23

belonging to this strategy and one of the largest hedge funds at the time, collapsed. As expected, the
volatility of alpha for equity market neutral and long-short hedge funds is relatively low. The average
performance of these strategies, especially in the case of equity market neutral, is more predictable
and stable. The volatilities of alpha for event driven, convertible arbitrage and fixed-income strategies
are close to the average volatility of all strategies. The volatility of alpha for emerging markets, a
strategy that is in many respects similar to global macro, and short-bias hedge funds were around
the lowest.

Table 5. Alpha volatilites over all the 186 periods for all the 10 strategies (standard deviations,
monthly percentage). Source: Datastream, David Hsieh’s website, and own calculations.

CA SB EM EMN ED FI GM HF LS F

0.322 0.150 0.240 0.118 0.446 0.486 1.010 0.507 0.229 0.502

Figure 8 shows the estimated iHMM-GGM monthly alpha for the Global Macro Strategy
estimated using the seven factor model for the whole sample period. For illustrative purposes, we
chose to present here these time-varying alphas only for one of the strategies, Global Macro, which,
as was just explained, was found to have the most volatile alpha of the nine strategies. The figure
shows the volatility exhibited by the alpha of Global Macro. This volatility of the alphas questions the
constant alpha assumption implicit in the estimation through regression models. We also present, in
Figure 9, and for illustrative purposes, the estimated iHMM-GGM beta of the Global Macro Strategy
with respect to one of the seven factors of Fung and Hsieh [52], the commodity lookback straddle
factor, using the whole sample period. It can be clearly observed the high volatility of beta for Global
Macro with respect to this specific factor, particularly during the first half of the sample period.
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Figure 8. (CSGlobalMacroAlpha file, 4 September 2011): Estimated iHMM-GGM monthly alpha
compared to alpha estimated from a linear regression for the Global Macro Strategy with respect
to the seven factor model of Fung and Hsieh [52] (January 1994 to June 2009). Source: Datastream,
David Hsieh’s website, and own calculations.
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Figure 9. 6b (CSGlobalMacroBeta file, 4 September 2011): Estimated iHMM-GGM beta of the Global
Macro Strategy with respect to the commodity lookback straddle factor of Fung and Hsieh ([52],
January 1994 to June 2009). Source: Datastream, David Hsieh’s website, and own calculations.

Figure 10 shows the graphical models associated to three critical time-points (months) during
the sample: September 1998 (collapse of Long-Term Capital Management), March 2000 (beginning
of the end of the 1990s bull market), and September 2008 (fall of Lehman Brothers and beginning
of the global financial crisis). These graphs were built by adding any edge that had a greater than
80% posterior inclusion probability for the respective timepoint. It is striking to note that the three
graphs are exactly the same, this is, they depict the same relation among four hedge fund strategies
(global macro, fixed income, long/short and managed futures) and the average of the hedge fund
indices for all strategies. The graphs suggest that in times of market crisis the aforementioned
strategies belonged to the same cluster as they exhibited a high degree of covariation and dependence.
Our findings from Figure 10 could be very useful, for example, for funds of hedge funds (or any other
allocators), as they indicate that in times of market distress hedge funds dedicated to these strategies
may suffer heavy losses and, thus, allocators investing into these categories of hedge funds will not
be as diversified as originally thought. We can compare our results to previous studies. For example,
Khandani and Lo [57], who also used CSFB/TREMONT hedge fund indices, documented that the
global macro strategy had a correlation of only between 25% and 50% with both the long/short and
the fixed income strategies between the following two sub-periods: April of 1994 to December of 2000,
and January of 2001 to June of 2007; and that the fixed income strategy had a correlation of less than
25% with the long/short strategy during the same sub-periods. However, Figure 10 strongly suggests
that the global macro and fixed income strategies were both linked to the long/short strategy but not
between them during those months of market stress, and that the managed futures strategy was
linked to the other three strategies. In turn, [57] also find, contrary to our results, a strong correlation
(greater than 50%) between 29 pairs of hedge fund strategies and during the same sub-periods.
Thus, our results may also uncover the dangers of inferring the benefits of diversifying into specific
hedge funds styles in times of market crisis when using traditional correlation analysis. In sum,
the understanding of the joint distribution of hedge fund styles under different clusters provides a
portfolio view of their marginal impact and behavior. For example, if one identifies a crisis cluster and
observes the inferred distribution of returns in that cluster, one may be able to construct a portfolio
that weights funds more appropriately, not according to their Sharpe or other performance measures,
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but around the expected behavior of the distribution in times of crisis. Our findings are also important
in the context of stress testing of portfolios during periods of market turmoil.
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Figure 10. The left graph is for September 2008, the center graph is for March 2000 and the right graph
is for September 1998. Source: Datastream, David Hsieh’s website, and own calculations.

7. Conclusions and Extensions

We expand a novel statistical method to compute nonparametric dynamic alphas and betas, as
well as returns clusters in a Bayesian fashion. This model provides a nonparametric, nonstationary,
fully flexible approach to modelling sets of complex relationships between return series, regardless
of the data generating process. We show through a simulation exercise that for both alpha and beta
the estimation results based on the RMSE and MAD measures improve significantly upon popular
statistical methods such as the regular OLS and DLMs, a special case of which being the Kalman filter.
In a second exercise, we use hedge fund index returns from CSFB/Tremont for the period January
1994 to June 2009 and find that, using a Gaussian Graphical Model applied to Fung and Hsieh’s [52]
seven-factor model, our estimated alphas are, on average, 0.75% per month. The average alphas of
global macro, long/short equity and event driven were above the average for all strategies. The other
strategies still had positive alphas, except for short-bias, although their average alphas were below
the average for all strategies. Our estimated average alphas for all strategies are 0.13% per month
(1.6% per year) higher than the alphas for all strategies estimated through OLS for the same period
and, thus, our methodology reveals that average hedge fund alpha could be underestimated when
measured using OLS. Furthermore, our estimated alphas and betas exhibit high volatility, particularly
in periods which can be identified as times of stressful market events. Consistent with previous
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research, hedge fund returns were found to be non-normal. We also found that estimated alphas
for the global macro strategy were highly volatile. The alphas of equity market neutral, long/short
equity and emerging markets exhibited the lowest volatilities of the nine strategies. These findings
question the use of parametric and stationary (non dynamic) models to estimate alphas and betas.
The Bayesian procedure that we use in this paper has as advantages that it describes hedge fund
returns in a dynamic, nonstationary and nonparametric form and, at the same time, allows us to
extract new nonparametric, nonstationary and dynamic alphas and betas.

The procedure for measuring alpha that we propose in this paper was applied at the index level.
Future research should investigate whether the same conclusions hold when individual hedge fund
data is used. The use of individual hedge fund data also facilitates the measurement of performance
persistence by grouping outperforming and underperforming hedged funds in each strategy and
measuring their subsequent performance. Another extension would be to apply our procedure using
other risk factors besides those of Fung and Hsieh [52] seven-factor model. In this regard, some
authors have proposed specific factors for certain hedge fund strategies. For example, [58] propose
a risk factor model for hedge funds dedicated to the fixed-income strategy. Finally, [21] document
that mutual funds, which are catered mainly to small investors and are tightly regulated, as opposed
to hedge funds, have recently begun offering funds that use trading strategies similar to those that
are typical of hedge funds, as they include short sales and the use of derivatives, intended to take
advantage of investment opportunities. These trading strategies should generate nonlinear payoffs
and, thus, future research could also be extended to measuring mutual fund alpha using a more
general procedure such as the one we propose here.

The focus of this paper has been on a descriptive approach to the returns for decision-makers.
Future work will focus on forecasting, in cases where enough persistence exists in the series to provide
sufficient structure. In this paper we do not presume that there is a stationary distribution to revert
to, but instead a nonstationary process that reflects the less predictable characteristics of the returns.

One of the by-products of the methodology that we have presented in this paper is the
time-varying probability that any two strategies belong to the same cluster. This information could
be used by decision-makers in a number of different ways. For example, one approach would
be through the understanding of the evolution of that relationship over time. However, another
approach that could be more novel and meaningful, would be to analyze whether a set of strategies
belong to the same cluster in key moments in time. Those key periods could be defined as periods
with large negative returns, very large positive returns or any other particular feature that could be
of relevance to the decision-maker, which in turn could help understand the relationship features
between strategies with a higher granularity, as well as the expected marginal impact of additions
to their portfolio in key periods. For example, Figure 10 showed that the graphical representation
of the relationship between four specific strategies and aggregate hedge fund indices is the same in
three key periods of time (September of 1998, March of 2000, and September of 2008). Whether the
decision-maker expects that relationship to exist or expects further independence during times of
market stress is outside the scope of this paper. However, the availability of this by-product brings in
itself a significant number of areas of future research, including the analysis of the dynamics of these
graphical structures over time and their impact on portfolio construction.
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