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Abstract: Financial asset returns are known to be conditionally heteroskedastic and generally
non-normally distributed, fat-tailed and often skewed. These features must be taken into account
to produce accurate forecasts of Value-at-Risk (VaR). We provide a comprehensive look at the
problem by considering the impact that different distributional assumptions have on the accuracy
of both univariate and multivariate GARCH models in out-of-sample VaR prediction. The set of
analyzed distributions comprises the normal, Student, Multivariate Exponential Power and their
corresponding skewed counterparts. The accuracy of the VaR forecasts is assessed by implementing
standard statistical backtesting procedures used to rank the different specifications. The results
show the importance of allowing for heavy-tails and skewness in the distributional assumption with
the skew-Student outperforming the others across all tests and confidence levels.
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1. Introduction

Value-at-Risk (VaR) is a quantitative tool used to measure the maximum potential loss in
value of a portfolio of assets over a defined period for a given probability. Specifically, VaR
construction requires a quantile estimate of the far-left tail of the unconditional returns distribution.
Though widely-used as a risk measure in the past, standard methods of VaR construction assuming
iid-ness and normality have come under criticism due to their failure to incorporate three stylized
facts of financial returns, namely (i) the presence of volatility clustering, indicated by high
autocorrelation of absolute and squared returns, (ii) excess kurtosis (fat tails) and (iii) skewness in
the density of the unconditional returns distribution.

The ability to account for volatility clustering is one of the key strengths of the ARCH modelling
approach developed in Engle [1] and extended in Bollerslev [2]. By combining this approach with
a non-normal conditional distribution assumption for the returns, several papers have shown that
univariate GARCH models can produce reliable out-of-sample volatility forecasts. For example,
Angelidis et al. [3] combine three GARCH specifications with the univariate skew-Student and
skew-GED (Generalized Error) distributions to show that these are able to produce superior VaR
forecasts compared to the normal. Specifically, they apply the exponential GARCH (EGARCH)
model of Nelson [4] and the threshold ARCH (TARCH) model to five univariate returns series
and find that while the choice of a skewed, heavy-tailed distribution significantly improves the
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forecasting performance, the choice of the volatility model appears to be irrelevant. These findings are
echoed in Mittnik and Paolella [5] who combine the Asymmetric Power ARCH (APARCH) model of
Ding et al. [6] with an asymmetric generalised Student distribution. Within the univariate framework
the most complete study of VaR prediction methods is provided by Kuester et al. [7] who compare
fully parametric models with VaR constructed using historical simulation, extreme-value theory and
quantile regression. Their results show that considerable improvement over normality is achieved
when using innovation distributions that allow for skewness and fat tails.

Another salient feature of financial returns series is the fact that comovements between
markets increase during periods of high volatility, as shown for example by Longin and Solnik [8] and
Brooks et al. [9]. In light of this, a number of studies predict the VaR of a portfolio using multivariate
models for the system of individual asset returns in order to achieve forecast improvements due to
the use of more information. However, as mentioned in Bauwens et al. [10], in high dimensional
frameworks these models can suffer from the “curse of dimensionality” problem thus being more
computationally intensive.

In order to shed some light on this issue, several papers focus on direct comparison of
the predictive performance of univariate and multivariate GARCH (MGARCH) models under
various distributional assumptions with the aim of providing evidence in favour of one of the
two approaches. Key studies in this literature include Giot and Laurent [11] and Santos et al. [12].
In the first, the authors compare the univariate APARCH model with a multivariate TVC-APARCH
combined with the normal, Student and skew-Student distributions, showing that in both the
univariate and multivariate settings the latter produced superior VaR forecasts. In the second,
the authors study a number of univariate and multivariate volatility models with normal and
Student distributions, finding that the multivariate models combined with the Student offer superior
out-of-sample performances.

This paper builds on their approach by widening the set of distributions used to model the error
term in both the univariate and multivariate frameworks while maintaining a generic specification
for the conditional volatility. Specifically, we consider three symmetric distributions, i.e., normal,
Student and Multivariate Exponential Power (MEP), and their corresponding skewed counterparts
obtained by applying the transformation of Bauwens and Laurent [13] 1. By incorporating skewness
in the corresponding symmetric densities by means of new parameters, we can explicitly analyse its
marginal contribution as well as its joint effect with heavy-tails in the model forecasting performance.

As for the choice of the volatility models, within the MGARCH literature we employ the Rotated
BEKK (RBEKK) model of Noureldin et al. [15] as it is easy to estimate using covariance targeting even
for moderately large cross sections, while in the univariate setting GARCH(1,1) specifications are used
to modeling the conditional portfolio variance. Our choice of a relatively simple volatility model
allows us to limit our focus entirely on whether the chosen distribution contributes to adequately
capture features of the return data. Within the univariate scenario we also consider the NCT-APARCH
model proposed by Krause and Paolella [16], as the authors developed an extremely fast method
for parameter estimation that is found to outperform highly competitive models and can be easily
compared to ours 2.

Both univariate and multivariate models are estimated employing the aforementioned set of
distributional assumptions and their accuracy in producing out-of-sample VaR forecasts is assessed
by means of statistical backtesting procedures. The selected tests include the Unconditional
Coverage (UC), Independence (IND) and Conditional Coverage (CC) tests of Christoffersen [17], the
Duration-Based Test of Independence (DBI) of Dumitrescu et al. [18], the Time Until First Failure
(TUFF) test of Kupiec [19] and the Dynamic Quantile (DQ) test of Engle and Manganelli [20].

1 The interested reader is referred to Ley and Paindaveine [14] who provide a detailed overview of this approach.
2 We thank the authors for kindly providing us their MATLAB codes.
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The results of the tests are summarized using a grading scheme based on the number of acceptances
of the null hypothesis which determines the distributional assumption providing the most accurate
VaR forecasts.

Results from VaR backtesting show that in the multivariate setup the skew-Student clearly
outperforms all other distributions. Moreover, its univariate version produces more accurate VaR
forecasts than the NCT-GARCH and is able to compete with the NCT-APARCH which incorporates
asymmetry into the conditional volatility specification. Overall, our results show that allowing
for heavy-tails and skewness produces the most accurate VaR forecasts in both the univariate
and multivariate setups. By comparison, specifications including only heavy tails underperform
relative to their skewed counterparts with the difference being more pronounced at 5% VaR.
Interestingly, the univariate skew-normal distribution produces Var forecasts comparable to the
more heavily-parametrized skew-Student and skew-MEP. As regards comparing the performance of
univariate and multivariate models in general, our results do not allow us to clearly advocate the use
of one methodology over the other. However, given that the hierarchy of distributions according to
VaR forecast accuracy is preserved under both frameworks, the univariate approach may be preferred
due to its lower computational burden.

The paper is organized as follows: Section 2 reviews the GARCH modelling framework,
the theoretical methodology used for constructing the skewed distributions and the Maximum
Likelihood (ML) estimation of the models with the selected distributional assumptions. Section 3
introduces the empirical methodology, comprising the portfolio construction, VaR estimation and
backtesting procedures. Section 4 provides estimation results and outcomes of the VaR tests and
Section 5 concludes with some final remarks.

2. Theoretical Framework

This section illustrates the key points of our theoretical framework. Namely, we outline the
alternative approaches to obtain portfolio VaR forecasts using univariate and multivariate models,
we describe the procedure used to construct skewed distributions from the corresponding symmetric
counterparts and finally we provide an overview of the set of employed distributions, comprising
their likelihood derivation.

Two things are worth mentioning. First, we focus on the portfolio VaR for a long position,
implying that the predictive power of the models is linked to their ability in modelling large
negative returns. Second, we define the asset allocation scheme via an N-dimensional vector of
equal weights wt, where N denotes the number of assets in the portfolio and wt = (w1,t, . . . wN,t),
with wi = 1/N, ∑N

i=1 wi = 1. As shown in DeMiguel et al. [21], Tu and Zhou [22], Brown et al. [23]
and Fugazza et al. [24], this “naive” diversification rule is able to consistently outperform more
sophisticated methods. Moreover, it has the advantage of not being affected by the specified target
return as in the Markowitz framework, being only driven by the number of assets.

2.1. VaR Estimation

Let yt = (y1,t, ..., yN,t)
′ denote the N-dimensional discrete time vector of de-meaned daily returns

at time t and wt the vector of equal weights known at time t− 1. The portfolio return is obtained as
rp,t = w′t−1yt, and the portfolio VaR at time t is equal to

VaRt,α = µp,t + σp,tqα, (1)

where µp,t and σp,t are respectively the portfolio mean and standard deviation and qα is the left
quantile of the assumed conditional distribution at α%. As usually done in practical applications, the
considered VaR confidence levels are α = 5% and 1%. Note that in the remainder of the paper we will
set µp,t = 0, thus considering a simplified analytical formula for the computation of the VaR which
only accounts for the portfolio conditional variance. Alternative approaches, as done for example in
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Bauwens et al. [25], fit an ARMA-type structure to the portfolio conditional mean or just assume it
to be constant over time (see Santos et al. [12]). Ultimately, when present, the dynamic dependence
in the conditional means of portfolio returns is known to be weak and quite difficult to predict, thus
assuming a zero mean will have a negligible effects on the VaR forecasts.

The specification of the portfolio standard deviation σp,t depends on whether we consider
a univariate or multivariate approach, with the difference between the two occurring in the
conditioning set used.

In the univariate case, the portfolio standard deviation is obtained as the standard deviation of
the portfolio returns conditional on past portfolio returns, i.e., as the square root of

σ2
p,t = E

[
r2

p,t|rp,1, . . . rp,t−1

]
, (2)

where the conditional variance σ2
p,t is estimated using a model chosen from the univariate GARCH

class. More precisely, we use a simple GARCH(1,1) specification with variance targeting, which is
written as

σ2
p,t = σ̄ + a1r2

p,t−1 + b1σ2
t−1, (3)

where σ̄ = (1− a1− b1)ω̄ and ω̄ equals the unconditional variance of returns. Covariance stationarity
requires that a1 + b1 < 1, with {a1, b1} ≥ 0 scalar parameters to be estimated.

In the multivariate setup, the conditioning set is made up of the entire vector of past returns:

σ2
p,t = E

[
r2

p,t|Y1, . . . Yt−1

]
= w′t−1Ht|t−1wt−1 (4)

such that Ht|t−1 = E(Ht|=t−1) is the conditional covariance matrix of returns given the information
set available at time t− 1. In this case, a multivariate model for Ht needs to be specified. Given its
computational ease in practical application, we implement the rotated BEKK (RBEKK) model of
Noureldin et al. [15], as it can be estimated for relatively large cross sections even with reach dynamics.
The basic idea underlying the model is to transform the original data by performing a rotation
and then to fit to the rotated returns the popular BEKK specification of Engle and Kroner [26].
Consequently, the model can be easily estimated with covariance targeting, where the long-run
covariance is given by the identity matrix. More precisely, let H̄ define the unconditional covariance
of yt and let the latter be rewritten as yt = H̄1/2εt. Using the spectral decomposition of H̄,
i.e., H̄ = PΛP′, where P is a squared matrix of eigenvectors and the eigenvalue matrix Λ is diagonal
with nonnegative elements, we can get the symmetric square root of H̄ as H̄1/2 = PΛ1/2P′. The series
of rotated returns is thus defined as

εt = H̄−1/2yt = PΛ−1/2P′yt,

with Var(εt) = IN , the N-dimensional identity matrix. Note that the conditional covariance of the
rotated returns is Var(εt|=t−1) = Gt, given that Var(yt|=t−1) = Ht = H̄1/2Gt H̄1/2. Hence, any
dynamic covariance model for Ht can also be applied to model the dynamics of Gt. Since the rotated
returns are orthogonal, a suitable parameterization is represented by the scalar BEKK, which ensures
the positive definiteness of the matrix Gt being a function of only two scalar parameters, under the
assumption of covariance stationarity. Its dynamic equation is expressed as

Gt = (1− a2 − b2)IN + a2εt−1ε
′
t−1 + b2Gt−1, (5)

where, as in the univariate setup, {a2, b2} ≥ 0 and a2 + b2 < 1.
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2.2. Constructing Skew Densities

As far as financial applications are concerned, modelling and inference based on the normal
distribution have often been proven to be of limited usefulness, as it is possible to gain statistical
efficiency by allowing for more involved distributions featuring heavy tails and skewness. As a way
to capture higher moments, the literature offers several alternatives. For example, the multivariate
noncentral t distribution has fat tails and is skewed; however, the skewness is linked directly to the
location parameter, making it somewhat inflexible. The lognormal distribution has also been used to
model asset returns, but its skewness is a function of its mean and variance, not a separate parameter.
Others, such as the generalized hyperbolic (GH) or mixtures of distributions have also been employed
in financial applications, despite being more computationally demanding (see Barndorff-Nielsen [27]
for an introduction and Paolella and Polak [28] for a recent application).

In this respect, Fernández and Steel [29] in the univariate case and Bauwens and Laurent [13]
in the multivariate one developed a practical procedure for constructing skewed densities from their
symmetric unimodal counterparts. These densities can be defined by introducing skewness in the
corresponding symmetric densities by means of new parameters, such that the symmetric density
results as a particular case. We build on their findings in order to enlarge the set of distributions to
be used for VaR forecasting. In the following, we briefly recall the main steps of the procedure, being
the discussion restricted to the more general multivariate framework for sake of space.

We begin by defining the notion of symmetry of a standardized density used hereafter. In the
univariate case, symmetry corresponds to g(x) = g(−x), where g(x) is a unimodal probability
density function with zero mean. In the multivariate case, we rely on the general notion of
M-symmetry stated in Definition 1 of Bauwens and Laurent [13], which encompasses the class of
spherically symmetric densities. These can be obtained as a special case of the general family of
multivariate elliptical distributions, denoted as

g(x; µ, Σ, η) ∝ h((x− µ)′Σ−1(x− µ), η), (6)

where x is a random vector with an integrable, positive function h(·) : R+ → R+, and η captures the
shape parameter of the distribution, when present. The spherically symmetric set of distributions,
comprising the standard normal, Student and MEP, are obtained by setting µ and Σ equal to zero and
IN , respectively.

The idea of introducing skewness into an M-symmetric standardized distribution revolves
around scaling it differently for negative (positive) values by multiplying (dividing) by a positive
constant. The value of this scaling parameter (hereafter referred to as ξ) determines whether the
resulting distribution is skewed to the left (0 < ξ < 1) or to the right (ξ > 1).

Definition 1. Given a random vector z = (z1, . . . , zN)
′ with multivariate symmetric standardized

distribution g(z; η) following Equation (6), the standardized skewed density f (z|ξ; η) with vector of
asymmetry parameters ξ = (ξ1, . . . ξN)

′, is obtained as:

f (z|ξ, η) = 2N

(
N

∏
i=1

ξi

1 + ξ2
i

)
g(z?; η) (7)

with
z? = (z?1 , ..., z?N)

′ (8)

z?i = ziξ
Ii
i (9)

and

Ii =

{
−1 if zi ≥ 0
1 if zi < 0

. (10)
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The marginal rth-order moment of the obtained skewed distribution can be computed directly
from the standardized rth moment of the symmetric density g(·). This is accomplished by applying
the following transformation function:

E(z?r
i |ξ) = Mi,r

ξr+1
i + (−1)r

ξr+1
i

ξi +
1
ξi

, (11)

where the rth-order moment of the marginal gi(·), truncated to the positive real values, is given by

Mi,r =
∫ ∞

0
2urgi(u)du. (12)

Since only the first two moments are required in the transformation process, their analytical
expression for r = 1, 2 in Equation (11) is reported below:

mi = E(z?i |ξi) = Mi,1

(
ξi −

1
ξi

)
(13)

s2
i = Var(z?i |ξi) =

(
Mi,2 −M2

i,1

)(
ξ2

i +
1
ξ2

i

)
+ 2M2

i,1 −Mi,2. (14)

As shown in Appendix A, s2
i can also be expressed directly as a function of m2

i . Note that the
resulting skewed distribution, f (z|ξ, η) from Definition 1, is not centered at 0 and the variance is a
function of ξ (and, where is the case, of the shape parameter η). Given that the elements of z? are
uncorrelated (since those of x are uncorrelated by assumption), standardization of z? is achieved by
the following transformation:

z = (z? −m)./s, (15)

where m = (m1, ..., mN) and s = (s1, ..., sN) are the vectors of unconditional means and
standard deviations of z? computed in Equations (13) and (14) respectively and “./” denotes
element-by-element division. Consequently, the standardized form of Definition 1 requires replacing
Equation (9) with the following one:

z?i = (sizi + mi)ξ
Ii
i , (16)

where

Ii =

{
−1 if zi ≥ −mi

si

1 if zi < −mi
si

(17)

2.3. Distributions

As already mentioned, three symmetric and three asymmetric distributions are considered in the
univariate and multivariate framework. Again, for sake of brevity, we only report the multivariate
log-likelihood functions as the univariate can be obtained as special cases 3. The algebraic derivations
of the formulas of the moments can be found in Appendix A.2. In all cases, estimation of the
parameters is performed in one step by Maximum Likelihood (ML). Namely, the log-likelihood
function for T observations is expressed as

`T(ψ) =
T

∑
t=1

log f (·|ψ,Ft−1), (18)

3 In Appendix D we provide a brief overwiew of the noncentral t distribution and its likelihood derivation.
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where ψ is the finite-dimensional vector of model parameters and f (·|ψ,Ft−1) denotes the assumed
conditional density function of the portfolio returns, in the univariate case, or of the asset return
vector in the multivariate one.

Multivariate normal distribution This is the most commonly employed distribution in the literature
as it is uniquely identified by its conditional first and second moments, which renders ML estimation
much simpler from a computational point of view. In addition, given that the score of the
normal log-likelihood function has the martingale difference property when the first two conditional
moments are correctly specified, the Quasi Maximum Likelihood (QML) estimates are still consistent
and asymptotically normal even if the true DGP is not normally-distributed Bollerslev and
Wooldridge [30]. The log-likelihood function for T observations is expressed as follows

`T(ψ) = −1
2

T

∑
t=1

[
N log(2π) + log |Ht|+ y′tH−1

t yt

]
. (19)

As the multivariate normal does not incorporate extra parameters, here we have ψ = (a2, b2)
′ 4.

Multivariate Student distribution The Student distribution is a symmetric and bell-shaped
distribution, with heavier tails than the normal. Under the multivariate Student assumption, the
log-likelihood function is obtained as

`T(ψ) = −1
2

T

∑
t=1

[
log |Ht|+ (N + ν) log

(
1 +

y′tH−1
t yt

ν− 2

)]

+ T
[

log Γ
(

ν + N
2

)
− log Γ

(ν

2

)
− N

2
log(π)− N

2
log(ν− 2)

]
, (20)

where Γ(ν) =
∫ ∞

0 e−zzν−1dz denotes the Gamma function and ν > 2 is the degree of freedom
parameter representing the thickness of the distribution tails. As ν increases, the distribution
converges to the multivariate normal. The vector of parameter to be estimated is ψ = (a2, b2, ν, ξ)′.

Multivariate Exponential Power (MEP) distribution This distribution belongs to the Kotz family
of distributions (a particular class of symmetric and elliptical distributions discussed extensively in
Fang et al. [31]) and is known to have several equivalent definitions in the literature. It can
also include both the normal and the Laplace as special cases, as a function of the value of
the non-normality parameter β dictating the tail-behaviour of the distribution. Given its simple
implementation, in this paper we consider the pdf given in Solaro [32], which gives rise to the
following log-likelihood function:

`T(ψ) = −1
2

T

∑
t=1

[
log |Ht|+

(
y′tH−1

t yt

) β
2

]

+ T
[

log(N) + log Γ
(

N
2

)
− N

2
log(π)− log Γ

(
1 +

N
β

)
−
(

1 +
N
β

)
log(2)

]
, (21)

where ψ = (a2, b2, β)′. Note the restriction β > 0. When β = 2, the distribution reduces to the
multivariate normal, while for β = 1 it corresponds to the multivariate Laplace. Whenever β < 2
(> 2), the distribution exhibits thicker (thinner) tails than the normal.

4 In the univariate case it corresponds to ψ = (a1, b1)
′.
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Multivariate skew-normal distribution The multivariate skew-normal is the first non-symmetric
distribution we consider herein; it accounts for the skewness of the return distribution without taking
into account its kurtosis (as it does not involve a tail parameter). Applying Definition 1 we derive the
skew-normal density function, with corresponding log-likelihood function equal to

`T(ψ) = −1
2

T

∑
t=1

log |Ht|+
N

∑
i=1

(
si

N

∑
j=1

pij,tyj,t + mi

)2

ξ
2Ii
i


+ T

[
N

∑
i=1

(log ξi + log si)− log(1 + ξ2
i )

]
+

TN
2

[log(2)− log(π)] , (22)

where pij,t corresponds to the jth element of the ith row of the inverse cholesky factor of the matrix
Ht (the full derivation is provided in Appendix A.1), ξi represents the asymmetry parameter of each
marginal and Ii is the indicator function defined in Equation (17). The vector of parameters of interest
is ψ = (a2, b2, ξ)′.

Multivariate skew-Student distribution Applying the same procedure as for the skew-normal, the
log-likelihood function of the skew-Student distribution is given by the following expression:

`T(ψ) = −1
2

T

∑
t=1

log |Ht|+ (ν + N) log

1 +

N

∑
i=1

(
si

N

∑
j=1

pij,tyj,t + mi

)2

ξ
2Ii
i

ν− 2




+ T

[
N log(2)− N

2
log(π) + log Γ

(
ν + N

2

)
− log Γ

(ν

2

)
− N

2
log(ν− 2)

]
+ T

[
N

∑
i=1

(log ξi + log si)− log(1 + ξ2
i )

]
, (23)

where the parameter ν dictates the thickness of the tails and ξi is again the asymmetry parameter of
each marginal. Notice that the univariate means and standard deviations are functions of ξi and ν and
need not be estimated. Consequently, the skew-Student parametrization requires N + 1 parameters
to be estimated in addition to those stemming from the RBEKK specification, i.e., ψ = (a2, b2, ν, ξ)′.

Multivariate skew-MEP distribution The log-likelihood function to be maximized is given by

`T(ψ) = −1
2

T

∑
t=1

log |Ht|+

 N

∑
i=1

(
si

N

∑
j=1

pij,tyj,t + mi

)2

ξ
2Ii
i


β
2


+ T

[
N

∑
i=1

(log ξi + log si)− log(1 + ξ2
i )

]

+ T
[

log(N) + log Γ
(

N
2

)
− N

2
log(π)

− log Γ
(

1 +
N
β

)
−
(

1 +
N
β

)
log(2)

]
, (24)

where β is a parameter determining the tail-thickness of the density function, as in the symmetric
case. Considering the skewness parameters implies the parameter vector ψ = (a2, b2, β, ξ)′.
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3. Empirical Application

3.1. Data and Forecasting Scheme

Our dataset (used in the paper of Noureldin et al. [33]) 5 comprises daily open-to-close
returns of 10 stocks from the Dow Jones Industrial Average: Bank of America (BAC), JP Morgan
(JPM), International Business Machines (IBM), Microsoft (MSFT), Exxon Mobil (XOM), Alcoa (AA),
American Express (AXP), Du Pont (DD), General Electric (GE) and Coca Cola (KO). Each univariate
vector of returns is calculated as yt = 100 × (log pt − log pt−1) and covers a period of 2200 days,
from February 2001 to November 2009. Univariate descriptive statistics over the period of interest are
provided in Table 1.

Table 1. Univariate descriptive statistics.

Stock Mean Std.dev. Skewness Kurtosis KS Test JB Test

Estimation sample: 1 February 2001 to 23 January 2007 (1500 observations)

BAC 0.09 1.09 −0.18 7.45 0.00 0.00
JPM 0.00 1.68 0.90 31.02 0.00 0.00
IBM −0.04 1.24 0.01 5.96 0.01 0.00

MSFT −0.01 1.37 0.37 6.01 0.00 0.00
XOM −0.01 1.13 0.05 8.27 0.82 0.00
AA 0.01 1.59 0.14 4.74 0.00 0.00
AXP −0.02 1.44 0.33 7.73 0.00 0.00
DD 0.02 1.21 0.37 6.76 0.21 0.00
GE −0.01 1.34 0.13 7.90 0.02 0.00
KO 0.01 0.99 0.16 5.53 0.00 0.00

Forecasting sample: 24 January 2007 to 30 October 2009 (700 observations)

BAC −0.18 3.95 0.37 9.36 0.00 0.00
JPM 0.01 3.06 0.36 8.53 0.00 0.00
IBM 0.08 1.45 −0.02 6.31 0.00 0.00

MSFT 0.02 1.60 0.08 5.90 0.00 0.00
XOM 0.03 1.61 −0.39 11.31 0.00 0.00
AA −0.04 2.93 −0.83 7.50 0.00 0.00
AXP 0.04 3.06 0.22 6.96 0.00 0.00
DD −0.04 1.89 −0.12 5.70 0.00 0.00
GE 0.02 2.17 0.21 8.96 0.00 0.00
KO −0.03 1.22 0.07 7.68 0.06 0.00

Full sample: 1 February 2001 to 30 October 2009 (2200 observations)

BAC 0.01 2.40 0.33 21.72 0.00 0.00
JPM 0.00 2.21 0.57 16.90 0.00 0.00
IBM 0.00 1.31 0.02 6.24 0.02 0.00

MSFT 0.00 1.45 0.25 6.08 0.00 0.00
XOM 0.00 1.30 −0.20 11.56 0.04 0.00
AA 0.00 2.11 −0.69 9.95 0.00 0.00
AXP 0.00 2.09 0.32 11.23 0.00 0.00
DD 0.00 1.46 0.03 7.25 0.00 0.00
GE 0.00 1.65 0.22 10.85 0.00 0.00
KO 0.00 1.07 0.11 6.89 0.00 0.00

Descriptive statistics of the stock return time series used in the empirical application. The three panels report the
statistics for the in-sample period, the out-of-sample period and the full sample period, respectively. “KS test”
and “JB test” denotes the Kolmogorov-Smirnov test and Jarque Bera test, with corresponding p-values in column.

Across the three panels, the values of skewness and kurtosis show that the assets are far
from being unconditionally normally distributed, thus supporting the conjecture that more flexible
distributional assumptions can be conducive to enhanced model performance.

5 Downloaded from http://realized.oxford-man.ox.ac.uk/data/download.
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To this extent, one-step ahead forecasts of the conditional portfolio variance (in the univariate
case) and of the conditional covariance matrix of returns (in the multivariate one) are recursively
obtained as:

σ̂2
p,t+1 = E(σ2

p,t+1|=t), (25)

Ĥt+1 = E(Ht+1|=t), (26)

where =t is the information set at time t and σ2
p,t, Ht are defined as in Equations (2) and (5),

respectively. Using a rolling-fixed-window scheme, the parameters are estimated over a window
length of 1500 observations and used to predict the conditional variance process for the following
20 days. Each time the window is shifted forward by 20 observations and the parameters are
re-estimated over the new period in order to compute the next set of forecasts. We iterate this process
until the end of the dataset for a total of 35 parameter estimates and 700 one-step ahead forecasts.
Table A1 in Appendix B reports the complete list of windows and forecast horizons along with their
corresponding calendar dates.

For each model, the portfolio VaR forecast at α% confidence level is then obtained as

VaRt+1,α = σ̂p,t+1qα. (27)

For the symmetric distributions in our analysis (normal, Student and MEP), one can easily
compute the long VaR of the portfolio by applying Equation (27) and the inverse of each CDF at
α%. However, for the non-symmetric distributions this is not straightforward. In order to bypass
this complication, for each non-symmetric distribution we apply a simple Monte-Carlo simulation
approach, as widely used in VaR computations. Namely, we draw 10, 000 random vectors (numbers)
from each symmetric multivariate (univariate) standardized distribution zt and then we use the
estimated skewness parameters to construct the corresponding skewed distribution z?t . By assuming
rj = Ĥ1/2

t|t−1z?j (rj = σ̂t|t−1z?j ) as the true DGP, we obtain a set of 10,000 simulated returns over the
period of interest. Finally, the simulated return distribution is used to derive the 5% and 1% quantiles
for the one-step-ahead VaR.

3.2. Testing the Accuracy of VaR Forecasts

The models accuracy in predicting VaR is assessed using multiple statistical backtesting
methods. A common starting point for this procedure is the so-called hit function, or indicator
function, which is equal to

It(α) =

{
1 if rt ≤ VaR(α)
0 if rt > VaR(α)

(28)

i.e., it takes the value one if the ex-post portfolio loss exceeds the VaR predicted at time t− 1 and the
value zero otherwise. According to Christoffersen [34], in order to be accurate, the hit sequence has to
satisfy the two properties of correct failure rate and independence of exceptions. The former implies
that the probability of realizing a VaR violation should be equal to α× 100%, while the latter further
requires the violations to be independent of each other. These properties can be combined together
into one single statement assessing that the hit function has to be an i.i.d. Bernoulli random variable

with probability p, i.e., It(p) i.i.d∼ B(p).
This represents the key foundation to many of the backtesting procedures developed in recent

years and particularly to the accuracy tests being used in this paper. We focus on tests included in the
following three categories:

• Evaluation of the Frequency of Violations
• Evaluation of the Independence of Violations
• Evaluation of the Duration between Violations.
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Their properties are briefly described below.

Frequency of Violations The first way of testing the VaR accuracy is to test the number or the
frequency of margin exceedances. A test designed to this aim is the Kupiec test (Kupiec [35]), also
known as the Unconditional Coverage (UC) test. Its null hypothesis is simply that the percentage of
violated VaR forecasts or failure rate p is consistent with the given confidence level α, i.e., H0 : p = α.

Denoting by F the length of the forecasting period and with v the number of violations occurred
throughout this period, the log-likelihood ratio test statistic is defined as

UC = −2
(

ln
(

pv(1− p)F−v

p̂v(1− p̂)F−v

))
, (29)

where p̂ = v/F is the maximum likelihood estimator under the alternative hypothesis. This ratio test
statistic is asymptotically χ2(1) distributed and the null hypothesis is rejected if the critical value at
the α% confidence level is exceeded.

A similar useful test is the TUFF (Time Until First Failure) test (Kupiec [35]). Under the null,
the probability of an exception is equal to the inverse probability of the VaR confidence level, namely
H0 : p = p̂ = 1/v. Its basic assumptions are similar to those of the Kupiec test and the t-statistic
under the null is obtained as

TUFF = −2

ln

 p(1− p)v−1

1
v

(
1− 1

v

)(v−1)


 . (30)

The TUFF statistic is also asymptotically χ2(1) distributed.

Independence of Violations A limitation of the Kupiec test is that it is only concerned with the
coverage of the VaR estimates without accounting for any clustering of the violations. This aspect
is crucial for VaR practitioners, as large losses occurring in rapid succession are more likely to lead to
disastrous events than individual exceptions.

The Independence test (IND) of Christoffersen [34] uses the same likelihood ratio framework as
the previous tests but is designed to explicitly detect clustering in the VaR violations. Under the null
hypothesis of independence, the IND test assumes that the probability of an exceedance on a given
day t is not influenced by what happened the day before. Formally, H0 : p10 = p11, where pij denotes
the probability of an i event on day t− 1 being followed by a j event on day t.

The relevant IND test statistic can be derived as

IND = −2

(
ln

(
p̂v(1− p̂)F−v

p̂v11
11 (1− p̂11)v01 p̂v10

10 (1− p̂10)v00

))
, (31)

where vij is the number of violations with value i at time t− 1 followed by j at time t. Under the null,
the IND statistic is also asymptotically distributed as a χ2(1) random variable.

Although the aforementioned test has received support in the literature, Christoffersen [34]
noted that it was not complete on its own. For this reason, he proposed a joint test, the Conditional
Coverage (CC) test, which combines the properties of both UC and IND tests.
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Formally, the CC ratio statistic can be proven to be the sum of the UC and the IND statistics:

CC = −2(ln(LUC)
0 − ln(LIND

1 ))

= −2(ln(LUC
0 )− ln(LUC

1 ) + ln(LUC
1 )− ln(LIND

1 ))

= −2(ln(LUC
0 )− ln(LUC

1 ) + ln(LIND
0 )− ln(LIND

1 ))

= −2 (ln(LUC
0 )− ln(LUC

1 ))︸ ︷︷ ︸
UC

−2 (ln(LIND
0 )− ln(LIND

1 ))︸ ︷︷ ︸
IND

, (32)

where we added and subtracted the quantity ln(L1)
UC and substituted ln(L0)

IND for ln(L1)
UC. CC is

also χ2 distributed, but with two degrees of freedom since there are two separate statistics in the test.
According to Campbell [36], in some cases it is possible that a VaR model passes the joint test while
still failing either the independence test or the unconditional coverage test. Thus it is advisable to run
them separately even when the joint test yields a positive result.

A second test belonging to this class is the Regression-based test of Engle and Manganelli [37],
also known as Dynamic Quantile (DQ) test. Instead of directly considering the hit sequence, the test
is based on its associated quantile process Ht(α) = It(α)− α which assumes the following values:

Ht(α) =

{
1− α if It = 1
−α if It = 0

. (33)

The idea of this approach is to regress current violations on past violations in order to
test for different restrictions on the parameters of the model. That is, we estimate the linear
regression model Ht(α) = δ + ∑K

k=1 βk Ht−k(α) + εt and then we test the joint hypothesis
H0(DQcc) : δ = β1 = ... = βK = 0. This assumption coincides with the null of Christoffersen’s
CC test. It is also possible to split the test and separately test the independence hypothesis and
the unconditional coverage hypothesis, respectively as H0(DQind) : β1 = ... = βK = 0 and
H0(DQuc) : δ = 0. (DQcc), (DQind) and (DQuc) are asymptotically χ2 distributed with respectively
{K + 1}, K and one degrees of freedom.

Duration between Violations One of the drawbacks of Christoffersen’s CC test is that it is not
capable of capturing dependence in all forms, since it only considers the dependence of observations
between two successive days. To address this, Christofferson and Pelletier [38] introduced the
Duration-Based test of independence (DBI), which is an improved test for both independence and
coverage. Its basic intuition is that if exceptions are completely independent of each other, then the
upcoming VaR violations should be independent of the time that has elapsed since the occurrence of
the last exceedance (Campbell [36]). The duration (in days) between two exceptions is defined via the
no-hit-duration Di = ti − ti−1, where ti is the day of ith violation.

A correctly specified model should have an expected conditional duration of 1/p days and
the no-hit duration should have no memory. The authors construct the ratio statistic considering
different distributions for the null and the alternative hypotheses, namely the exponential, since it is
the only memory-free (continuous) random distribution, and the Weibull, which allows for duration
dependence. The likelihood ratio statistic is derived as

DBI = −2
(

ln
(

L0

L1

))
= −2

(
ln
(

p exp {−pD}
abbDb−1 exp {−(aD)b}

))
, (34)

which has a χ2 distribution with one degree of freedom.
Under the null hypothesis of independent violations, b = 1 and a is estimated via numerical

maximization of ln(L1). Whenever b < 1, the Weibull function has a decreasing path which
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corresponds to an excessive number of very long durations (very calm period) while b > 1
corresponds to an excessive number of very short durations, namely very volatile periods.

4. Results

4.1. Parameter Estimates

Before turning to the out of sample analysis, it is worth first looking at some parameter estimates
obtained by fitting the models on the data. Table 2 reports full sample estimation results over the
period January 2001 to February 2009 for a total of 2200 daily observations.

Table 2. Full sample parameter estimates.

Normal Student MEP Skew-Normal Skew-Student Skew-MEP NCT-APARCH NCT-GARCH

Univariate models

σ̄ 0.005 0.004 0.002 0.005 0.004 0.010 0.010 0.010
a1 0.07

(0.016)
0.06
(0.013)

0.07
(0.016)

0.07
(0.029)

0.06
(0.013)

0.07
(0.015)

0.05 0.05

b1 0.92
(0.017)

0.93
(0.013)

0.92
(0.017)

0.92
(0.031)

0.93
(0.014)

0.93
(0.017)

0.90 0.90

ν 8.44
(1.358)

8.42
(1.366)

7.20 5.20

γ −0.360 −0.120
β 1.875

(0.041)
1.873
(0.038)

ξ̄ 0.938
(0.026)

0.935
(0.023)

0.946
(0.02)

LogLik −2971 −2946 −2965 −2968 −2943 −2963 −2944 -2963
AIC 2.703 2.681 2.698 2.701 2.679 2.697 2.680 2.696

Multivariate models

a2 0.021
(0.001)

0.015
(0.001)

0.022
(0.001)

0.032
(0.002)

0.015
(0.001)

0.026
(0.001)

b2 0.976
(0.001)

0.983
(0.001)

0.976
(0.001)

0.966
(0.002)

0.983
(0.001)

0.972
(0.002)

ν 8.42
(0.370)

8.30
(0.37)

ξ̄ 1.016
(0.035)

1.018
(0.022)

1.018
(0.034)

β 1.919
(0.013)

2.036
(0.031)

LogLik −32,154 −31,352 −32,193 −32,121 −31,330 −32,067
AIC 29.232 28.504 29.278 29.211 28.449 29.154

Note: The table reports test statistics and robust standard errors obtained from full sample parameter estimation,
for T = 2200. Note that ξ̄ denotes the value of the skewness parameters averaged across univariate series with
Mean Asymptotic Square Errors (MASE) reported in brackets. For both the NCT-GARCH and NCT-APARCH
models ψ = (µ, ν, γ)′, see Appendix D. The AIC is rescaled by T.

A common feature emerging from both univariate and multivariate panels is that the use of
skewed distribution assumptions seems to be justified, as all asymmetric coefficients are significant
at standard levels. Moreover, the direct comparison of models fit via the Akaike Information Criteria
(AIC) highlights that the models incorporating skewed distributions consistently outperform their
symmetric counterparts, with the skew-Student achieving the best fit. In both cases the Student has
the lowest AIC among the symmetric densities, while the normal possesses the highest.

In the univariate setting, the NCT-APARCH model substantially improves over the
NCT-GARCH due to the introduction of skewness into the volatility model, but it performs slightly
worse than its closest competitor, the skew-Student GARCH model. This performance is even more
impressive considering that the AIC penalizes the NCT-based models for only three parameters,
given that remaining ones are fixed prior to maximization of the likelihood function according to
the fast procedure of Krause and Paolella [16] (see Appendix D).

The evolution of the parameters across re-estimations τ = 1, ..., 35 allows us to discern their
sensitivity to the financial crisis by comparing their dynamics against the key dates outlined in
Table A1 in Appendix B. From Figure 1, which looks at the tail parameter estimates for the MEP
and Student distributions along with their skewed counterparts, a number of commonalities are
immediately apparent. Panel (a) reveals a small increase followed by a sharp drop in β between
τ = 18 and 22 for both the univariate and multivariate MEP, indicating a thickening of the tails.
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Since the time frame corresponds to the windows including the events leading up to the collapse of
Lehman Brothers on 15 September 2008, we interpret our results as β adjusting to incorporate the
extreme negative events associated to this period.
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Figure 1. Tail parameter evolution across re-estimations.

Panel (b) exhibits the same dynamics as before albeit at a reduced magnitude. This occurs due
to the introduction of skewness which is able to capture some of the negative returns associated
to the crisis, thereby reducing the need for such a large increase in tail thickness. Evidence of
such compensating effects between skewness and heavy-tails is given in Figure 2 which provides
the evolution of the skew-parameter ξ across re-estimations (given as an average over the assets
in the multivariate case for ease of exposition). Specifically, the dynamics of ξ for the univariate
skew-MEP in Panel (a) appear to track the tail dynamics: as β decreases on average between τ equal
1 and 18, ξ exhibits a gradual increase, indicating a reduction of negative skewness. Moreover, the
aforementioned drop is accompanied by ξ attaining its maximum value.
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Figure 2. Skew parameters evolution across re-estimations.

Turning to the Student and skew-Student distributions, the dynamics are somewhat different
along a number of dimensions. First, there is now a marked difference between the univariate and
multivariate cases. In the former, the dynamics are similar to the MEP and skew-MEP results wherein
the tails thicken at around τ = 18 as evidenced by the sharp drop in ν. This is then followed by
a short-lived increase after which the tails thicken gradually over the remaining estimation period.
The reasoning for this, whereby the tails thicken to accommodate the negative returns associated to
the crisis, is the same as the MEP-case.

Unlike the MEP and skew-MEP cases, where the multivariate specification exhibits thinner tails
than the univariate but both exhibit congruent dynamics, the Student and skew-Student exhibit fewer
similarities between specifications. In contrast, moving from the Student to skew-Student setting
reveals almost identical tail parameter dynamics. Combined with the positive skew exhibited in
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Panel (b) of Figure 2, this indicates that in this case tail thickness does not adjust to incorporate the
addition of skewness. The effect of these features on VaR forecast accuracy will be seen in Section 4.2.

4.2. VaR Backtesting Results

In the multivariate setting, the out-of-sample covariance matrix predictions are used to construct
equally-weighted portfolios for the computation of the one-step-ahead VaR. Table 3 compares
portfolios standard deviation obtained using the univariate and multivariate approaches over both
the in- and out-of-sample periods.

Table 3. Portfolios descriptive statistics.

Univariate Models

Normal Student MEP Skew-Normal Skew-Student Skew-MEP NCT-APARCH NCT-GARCH

In-sample: 1 February 2001 to 23 January 2007 (1500 observations)

σ̄p 0.8716 0.8722 0.8662 0.8709 0.8718 0.8780 0.8222 0.8720
min{σp} 0.4159 0.4155 0.3899 0.4134 0.4141 0.4457 0.3727 0.3852
max{σp} 2.7805 2.6827 2.8234 2.8147 2.6965 2.7095 2.5242 2.5826

Forecasting sample: 24 January 2007 to 30 October 2009 (700 observations)
σ̄p 1.4659 1.4601 1.4800 1.4656 1.4550 1.4573 1.4569 1.4644

min{σp} 0.4398 0.4448 0.4139 0.4334 0.4427 0.4718 0.3745 0.3899
max{σp} 3.9589 3.8967 3.9743 3.9656 3.8033 3.9281 4.2310 3.1567

Multivariate Models

Normal Student MEP Skew-Normal Skew-Student Skew-MEP
In-sample: 1 February 2001 to 23 January 2007 (1500 observations)

σ̄p 0.9021 0.9115 0.8983 0.9018 0.9115 0.8924
min{σp} 0.5226 0.5474 0.5077 0.5212 0.5478 0.4840
max{σp} 1.9067 1.7923 1.9391 1.9097 1.7935 1.9972

Forecasting sample: January 24, 2007 to October 30, 2009 (700 observations)
σ̄p 1.4721 1.4646 1.4875 1.4740 1.4549 1.4691

min{σp} 0.5226 0.5474 0.5105 0.5233 0.5479 0.4908
max{σp} 3.1733 3.0657 3.2108 3.1728 3.0674 3.2683

Note: The table reports average, minimum and maximum value of portfolio standard deviation over the in- and
out-of-sample periods.

As already noted, the financial crisis features heavily in the summary statistics. Since this period
is included in the forecasting sample (starting from observation 1921 according to Table A1), we notice
a sharp increase in the portfolio standard deviation of all the models (see also the figures reported in
Appendix C). On a general basis, heavy-tailed or skewed distributions do not lead to remarkable
gains over the in-sample period, as all the models report very similar values on average. This pattern
is partly reversed in the forecasting period: while the normal and skew-normal remain very close,
the skew-Student and skew-MEP exhibit a lower portfolio standard deviation than their symmetric
counterparts. Remarkably good is the performance of the models featuring the NCT distribution;
the NCT-APARCH achieves the lowest standard deviation among the univariate alternatives and
compares favorably also to many multivariate models, being only outperformed by the skew-Student
RBEKK. It appears that the uncertainty due to the larger number of parameters to be estimated is
not fully compensated by the gain coming from a better representation of the volatility dynamics in
multivariate models.

Overall, according to this table, the univariate and multivariate approaches deliver quite similar
portfolio summary statistics. If the focus was on the predicted portfolio variance alone, then the
ideal choice would be to use a univariate volatility model coupled with either the skew-Student or
the NCT distribution, as they are easy to estimate and computationally faster than the multivariate
specifications. Ultimately, we are interested in the models accuracy in forecasting the one-step-ahead
portfolio VaR, so we move to analyse the outcomes of the statistical backtesting procedures.

Tables 4 and 5 report the results from the TUFF, UC, IND, CC and DBI tests in the univariate and
multivariate cases, respectively.
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All statistical tests are computed for the 5% and 1% VaR confidence level. For each portfolio
we report test statistics along with their corresponding p-values in brackets. Since the applied tests
measure the models accuracy in forecasting VaR along several dimensions (as detailed in Section 3.2),
the overall results are summarized using a performance measure which considers the percentage of
acceptances of the null hypothesis across the different tests at the standard 5% significance level. To
this end, rejections of the null are highlighted in bold with the total grade across distributions reported
in Table 6.

Table 4. VaR backtesting results—Univariate.

Norm Skew-Norm Student Skew-Student MEP Skew-MEP NCT-APARCH NCT-GARCH

5% VaR

violation/frequency 52
(0.074)

42
(0.060)

53
(0.076)

29
(0.041)

52
(0.074)

40
(0.057)

53
(0.076)

25
(0.036)

TUFF 5.991
(0.014)

5.991
(0.014)

5.991
(0.014)

5.991
(0.014)

5.991
(0.014)

5.991
(0.014)

0.022
(0.883)

5.991
(0.014)

UC 7.611
(0.006)

1.389
(0.239)

8.476
(0.004)

1.147
(0.284)

7.611
(0.006)

0.720
(0.396)

3.326
(0.068)

8.476
(0.004)

IND 8.829
(0.003)

2.646
(0.104)

8.815
(0.003)

1.155
(0.283)

7.870
(0.005)

1.676
(0.195)

5.151
(0.023)

9.861
(0.002)

CC 16.440
(0.000)

4.035
(0.133)

17.290
(0.000)

2.302
(0.316)

15.481
(0.000)

2.397
(0.302)

8.477
(0.014)

18.337
(0.000)

DBI 0.023
(0.880)

0.079
(0.778)

0.087
(0.768)

0.830
(0.362)

0.046
(0.831)

0.100
(0.751)

0.797
(0.372)

0.303
(0.582)

1% VaR

violation/frequency 15
(0.021)

12
(0.017)

12
(0.017)

5
(0.007)

14
(0.020)

11
(0.016)

11
(0.016)

8
(0.011)

TUFF 1.426
(0.232)

1.426
(0.232)

1.426
(0.232)

1.426
(0.232)

1.426
(0.232)

1.426
(0.232)

1.426
(0.232)

1.426
(0.232)

UC 6.957
(0.008)

2.972
(0.085)

2.972
(0.085)

0.641
(0.423)

5.479
(0.019)

1.967
(0.161)

0.138
(0.710)

1.967
(0.161)

IND 7.638
(0.006)

3.406
(0.065)

3.406
(0.065)

0.707
(0.400)

6.072
(0.014)

2.330
(0.127)

0.326
(0.568)

2.330
(0.127)

CC 14.595
(0.001)

6.378
(0.041)

6.378
(0.041)

1.348
(0.510)

11.551
(0.003)

4.297
(0.117)

0.464
(0.793)

4.297
(0.117)

DBI 0.518
(0.472)

0.126
(0.723)

0.002
(0.969)

0.000
(0.985)

0.547
(0.459)

0.281
(0.596)

0.501
(0.479)

0.281
(0.596)

Table 5. VaR backtesting results—Multivariate.

Norm Skew-Norm Student Skew-Student MEP Skew-MEP

5% VaR

violation/frequency 53
(0.076)

51
(0.073)

56
(0.080)

38
(0.054)

52
(0.074)

44
(0.063)

TUFF 5.991
(0.014)

5.991
(0.014)

5.991
(0.014)

0.022
(0.883)

5.991
(0.014)

5.991
(0.014)

UC 8.476
(0.004)

6.789
(0.009)

11.311
(0.001)

0.264
(0.608)

7.611
(0.006)

2.260
(0.133)

IND 9.861
(0.002)

7.849
(0.005)

13.261
(0.000)

0.273
(0.601)

8.829
(0.003)

2.516
(0.113)

CC 18.337
(0.000)

14.637
(0.001)

24.572
(0.000)

0.536
(0.765)

16.440
(0.000)

4.776
(0.092)

DBI 0.858
(0.354)

0.818
(0.366)

1.052
(0.305)

1.501
(0.221)

0.797
(0.372)

1.593
(0.207)

1% VaR

violation/frequency 19
(0.027)

18
(0.026)

17
(0.024)

8
(0.011)

17
(0.024)

15
(0.021)

TUFF 1.426
(0.232)

1.426
(0.232)

1.426
(0.232)

1.426
(0.232)

1.426
(0.232)

1.426
(0.232)

UC 14.153
(0.000)

12.176
(0.000)

10.313
(0.001)

0.138
(0.710)

10.313
(0.001)

4.051
(0.044)

IND 14.568
(0.000)

13.106
(0.000)

11.190
(0.001)

0.326
(0.568)

10.978
(0.001)

1.652
(0.199)

CC 28.721
(0.000)

25.282
(0.000)

21.503
(0.000)

0.464
(0.793)

21.292
(0.000)

5.702
(0.057)

DBI 3.109
(0.078)

0.902
(0.342)

3.798
(0.055)

0.282
(0.595)

1.573
(0.210)

0.774
(0.379)
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Table 6. Grade comparison—VaR backtesting.

Norm Skew-Norm Student Skew-Student MEP Skew-MEP NCT-APARCH NCT-GARCH

5% VaR

Univariate grade 20% 80% 20% 80% 20% 80% 60% 20%
Multivariate grade 20% 20% 20% 100% 20% 80%

1% VaR

Univariate grade 40% 80% 80% 100% 80% 100% 100% 100%
Multivariate grade 40% 40% 40% 100% 40% 80%

The first distinguishing feature from the VaR backtesting results is the clear predominance of
the skew-Student distribution. This holds for both the univariate and multivariate frameworks with
the former producing VaR forecasts that outperform the NCT-APARCH at 5% VaR. Similarly, the
skew-MEP distribution produces highly accurate VaR forecasts across the board. These findings
exemplify a second feature of the results namely, the impact on VaR forecast accuracy of introducing
skewness into a heavy-tailed distribution. Clearly, the performance of both the skew-Student and
skew-MEP distributions improves compared to their symmetric counterparts, but this effect is less
pronounced at 1% VaR. Indeed, the performance of the Student and MEP distributions improves
when moving from the 5 % to the 1% VaR scenario, suggesting that despite the improvement arising
from the introduction of skewness, heavy-tails remain useful in capturing larger swings in returns,
i.e., those events located further out in the tails. As a final remark on the effect of skewness,
we observe the large difference in performance between the NCT-APARCH and NCT-GARCH at
5% VaR. Though both feature a skewed distributional specification, recall that the NCT-APARCH
also features asymmetry in the conditional volatility model which explains its superior performance.
An analogous result is obtained in Giot and Laurent [11].

Analysis of the differences between the univariate and multivariate models reveals two key
points. First, while the skew-Student and skew-MEP retain their dominance under both frameworks,
the performance of their symmetric counterparts at 1% VaR is worse under the multivariate
specification. Second, within the univariate framework, the skew-normal is capable of producing
VaR forecasts comparable to the high performance skewed and heavy-tailed distributions at both
VaR confidence levels. This does not hold in the multivariate setup where the skew-normal offers
no improvements in VaR accuracy over the normal. Besides, we observe that in both frameworks
the empirical failure rate (i.e., the frequency of violations) of the skewed distributions is closer to the
nominal value than their symmetric counterparts, which are oversized. The NCT-GARCH represents
the only exception, being considerably more conservative than the NCT-APARCH at both 5% and
1% VaR confidence levels.

With respect to the previous backtesting methods, the DQ test takes into account a more general
temporal dependence between the series of violations and is considered the most reliable in assessing
VaR accuracy 6. The DQ test results are reported in Tables 7 and 8. In order to compare the different
distributional assumptions, Table 9 summarises the percentage of null hypothesis acceptances over
the two lag-lengths for each confidence level.

The DQ test results tell a similar story to the VaR backtesting procedures. As before,
the skew-Student outperforms its competitors at both 5% and 1% VaR under both univariate
and multivariate setups. The univariate skew-normal continues to produce VaR forecasts with
an accuracy comparable to the top-performers. Again, this does not extend to the multivariate case.

6 We thank an anonymous referee who pointed out the possibility of better comparing the outcomes of the DQ and
Christoffersen’s CC and IND tests by allowing the latter to be computed in an extended framework than the standard
one described in Section 3.2. As results did not lead to significant improvements, this issue is briefly covered in
Appendix E.
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Finally, forecast accuracy at 5% VaR again reveals a more pronounced improvement when
moving from symmetric to skewed distributions than in the 1% case. Overall, introducing skewness
into heavy-tailed distributions continues to offer the highest VaR forecast accuracy.

Table 7. Dynamic Quantile test results—Univariate models.

Norm Skew-Norm Student Skew-Student MEP Skew-MEP NCT-APARCH NCT-GARCH

5% VaR

K = 1
DQUC 9.319

(0.002)
1.594
(0.207)

10.092
(0.001)

1.079
(0.299)

8.965
(0.003)

0.809
(0.368)

3.188
(0.074)

10.485
(0.001)

DQIND 1.433
(0.231)

1.168
(0.280)

0.389
(0.533)

0.020
(0.886)

0.281
(0.596)

0.867
(0.352)

0.698
(0.403)

1.651
(0.199)

DQCC 10.189
(0.006)

2.665
(0.264)

10.201
(0.006)

1.087
(0.581)

9.036
(0.011)

1.636
(0.441)

3.680
(0.159)

11.463
(0.003)

K = 3
DQUC 7.028

(0.008)
1.196
(0.274)

6.821
(0.009)

1.240
(0.265)

6.193
(0.013)

0.525
(0.469)

3.024
(0.082)

8.068
(0.005)

DQIND 0.633
(0.426)

0.251
(0.616)

4.536
(0.033)

0.712
(0.399)

3.738
(0.053)

0.042
(0.838)

0.102
(0.749)

0.382
(0.537)

DQCC 12.280
(0.015)

2.398
(0.663)

18.210
(0.001)

2.633
(0.621)

15.467
(0.004)

1.624
(0.805)

5.220
(0.265)

12.955
(0.011)

1% VaR

K = 1
DQUC 9.622

(0.002)
3.744
(0.053)

3.744
(0.055)

0.580
(0.446)

7.357
(0.007)

2.393
(0.122)

0.151
(0.698)

2.393
(0.122)

DQIND 0.713
(0.398)

0.363
(0.547)

0.363
(0.557)

0.026
(0.872)

0.579
(0.447)

0.280
(0.597)

0.107
(0.744)

0.280
(0.597)

DQCC 9.985
(0.007)

3.991
(0.136)

3.991
(0.136)

0.598
(0.741)

7.680
(0.021)

2.603
(0.272)

0.254
(0.881)

2.603
(0.272)

K = 3
DQUC 9.078

(0.003)
3.376
(0.066)

3.376
(0.066)

0.373
(0.541)

6.848
(0.009)

2.118
(0.146)

0.126
(0.723)

2.118
(0.146)

DQIND 0.013
(0.910)

0.528
(0.468)

0.528
(0.468)

0.617
(0.432)

0.100
(0.751)

0.876
(0.349)

2.605
(0.106)

0.876
(0.349)

DQCC 13.749
(0.008)

9.654
(0.047)

9.654
(0.047)

19.505
(0.001)

11.961
(0.018)

9.171
(0.057)

10.840
(0.028)

9.171
(0.057)

Table 8. Dynamic Quantile test results—Multivariate.

Norm Skew-norm Student Skew-Student MEP Skew-MEP

5% VaR

K = 1
DQUC 10.485

(0.001)
8.226
(0.004)

14.416
(0.000)

0.280
(0.597)

9.319
(0.002)

2.538
(0.111)

DQIND 1.651
(0.199)

1.232
(0.267)

2.406
(0.121)

0.000
(0.993)

1.433
(0.231)

0.261
(0.610)

DQCC 11.463
(0.003)

8.990
(0.011)

15.751
(0.000)

0.280
(0.869)

10.189
(0.006)

2.727
(0.256)

K = 3
DQUC 7.733

(0.005)
6.096
(0.014)

10.767
(0.001)

0.277
(0.599)

7.028
(0.008)

1.607
(0.205)

DQIND 1.006
(0.316)

0.914
(0.339)

0.690
(0.406)

0.789
(0.374)

0.633
(0.426)

3.148
(0.076)

DQCC 14.578
(0.006)

11.839
(0.019)

18.650
(0.001)

2.662
(0.616)

12.280
(0.015)

9.201
(0.056)

1% VaR

K = 1
DQUC 19.549

(0.000)
18.210
(0.000)

15.080
(0.000)

0.151
(0.698)

13.358
(0.000)

9.622
(0.002)

DQIND 1.278
(0.258)

1.167
(0.280)

1.041
(0.308)

0.107
(0.744)

2.095
(0.148)

0.713
(0.398)

DQCC 22.121
(0.000)

18.684
(0.000)

15.521
(0.000)

0.254
(0.881)

16.575
(0.000)

9.985
(0.007)

K = 3
DQUC 13.935

(0.000)
14.056
(0.000)

9.885
(0.002)

0.126
(0.723)

10.157
(0.001)

6.809
(0.009)

DQIND 20.104
(0.000)

6.375
(0.094)

15.843
(0.000)

2.605
(0.106)

14.404
(0.000)

4.056
(0.255)

DQCC 44.966
(0.000)

35.949
(0.000)

47.702
(0.000)

8.842
(0.065)

33.192
(0.000)

9.271
(0.054)



Econometrics 2016, 4, 3 19 of 27

Table 9. Grade comparison—DQ tests.

Norm Skew-Norm Student Skew-Student MEP Skew-MEP NCT-APARCH NCT-GARCH

5% VaR

Univariate grade 33% 100% 17% 100% 33% 100% 100% 33%
Multivariate grade 33% 33% 33% 100% 33% 100%

1% VaR

Univariate grade 33% 83% 83% 83% 33% 100% 83% 100%
Multivariate grade 17% 33% 17% 100% 17% 50%

5. Conclusions

Given its importance in risk management, practitioners must be capable of forecasting the
Value-at-Risk of their asset portfolios to a high degree of accuracy. This requires taking into account
a number of properties of financial returns namely, non-normality, heavy-tails, skewness and the
possibility of comovements between assets. In this article, we focus primarily on the effect of varying
the distributional assumption used to forecast VaR. Moreover, we addressed the still open question
of whether univariate or multivariate models are most appropriate for the problem of portfolio
VaR forecasting.

The distributions treated in the paper comprised three symmetric and three skewed
distributional assumptions (i.e., normal, Student, MEP and their skewed counterparts) which were
coupled with the RBEKK model in the multivariate framework and GARCH in the univariate.
In addition, we compared our specification with a novel method for fast estimation of the (univariate)
NCT-GARCH and NCT-APARCH models. We then proceeded to the models’ accuracy in predicting
equally-weighted portfolio VaR.

Employing a series of standard backtesting methods to compare the distribution-based model
performance, the results reveal that the skew-Student specification produces the most accurate
one-step ahead VaR forecast across all multivariate specifications and is able to compete with the
high-performance NCT-APARCH in the univariate setup. This finding is echoed in the univariate
MEP results wherein the skewed version outperforms the symmetric across all tests and confidence
levels. By contrast, the multivariate skew-MEP exhibits thinner tails than the normal and thus,
performs poorly at the 1% confidence level. More generally, The test results reveal a clear hierarchy of
distributional assumptions within the univariate and multivariate setups, with that hierarchy being
preserved when moving from one to the other. However, attempting to compare the performance
of univariate to multivariate distributions in general does not reveal any key differences with the
exception of certain cases in the skew-normal and skew-MEP specifications. Consequently, the
additional computational burden of estimating multivariate models does not seem to be justified.

There are several possible avenues of research extending from this work. Given the focus on
distributions, we limited our attention to relatively simple parametric models namely, the RBEKK
and GARCH models. As the NCT-GARCH/APARCH results showed, capturing asymmetries in
returns volatility improves forecast accuracy. Considering their multivariate versions would provide
a useful contribution and allow for a detailed study of the optimal model-distribution-dimension
combination. Another possibility would be to consider higher forecast horizons for the VaR in order
to check if the inclusion of skewness and asymmetric forms of dependence can lead to significant
improvements in the long run.
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Appendixes

A. Derivations

A.1. Transformation

The transformation zt = H−1/2
t yt is incorporated into the symmetric, standardised pdfs

as follows:

κ?′κ? = (κ?1 , ..., κ?N)
′(κ?1 , ..., κ?N)

=
(

. . . (sizi + mi)ξ
Ii
i . . .

)′ (
. . . (sizi + mi)ξ

Ii
i . . .

)
=

(
. . . (si

N

∑
j=1

pijyj + mi)ξ
Ii
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)′ (
. . . (si

N
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Ii
i . . .

)

=
N

∑
i=1

(
si

N

∑
j=1

pijyj + mi

)
ξ

2Ii
i ,

where pij corresponds to the jth element of the ith row of H−1/2
t . Note that the t subscript is

dropped for simplicity. The matrix square root operation is carried out by applying the Cholesky
decomposition of Ht such that BB′ = Ht. As a result, each zi is obtained by multiplying the row vector
of H−1/2

t corresponding to asset i with the demeaned return vector (giving us the inner summation
above) which is then multiplied by the univariate standard deviation and added to the univariate
mean. The presence of skewness is factored in by the term ξ

Ii
i , where the factor Ii is defined as in

Equation (17).

A.2. Distributions Moments

We report the first two moments of the univariate symmetric normal, Student and MEP
distributions used to compute the log-likelihood function as given in Section 2.3.

Note that the following relation holds:

mi = Mi,1

(
ξi −

1
ξi

)
⇒ M2

i,1 = m2
i

(
ξ2

i
(ξ2

i − 1)2

)
.

Hence, substituting this result into Equation (14), the 2nd order moment of the skewed distributions
can be obtained as a function of the first:

s2
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−ξ2
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)
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Skew-Normal
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∫ ∞
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B. Tables
Table A1. Windows length and corresponding calendar time.

Rolling Fixed-Window Forecast Horizon

It. Observations Days Observations Days

1 1–1500 1 Febraury 2001–23 January 2007 1501–1520 24 January 2007–21 Febraury 2007
2 21–1520 2 March 2001–21 Febraury 2007 1521–1540 22 Febraury 2007–21 March 2007
3 41–1540 30 March 2001–21 March 2007 1541–1560 22 March 2007–19 April 2007
4 61–1560 30 April 2001–19 April 2007 1561–1580 20 April 2007–17 May 2007
5 81–1580 29 May2001–17 May 2007 1581–1600 18 May 2007–15 June 2007
6 101–1600 26 June 2001– 15 June 2007 1601–1620 18 June 2007–16 July 2007
7 121–1620 25 July 2001–16 July 2007 1621–1640 17 July 2007–13 August 2007
8 141–1640 22 August 2001–13 August 2007 1641–1660 14 August 2007–11 September 2007
9 161–1660 26 September 2001–11 September 2007 1661–1680 12 September 2007–9 October 2007
10 181–1680 24 October 2001–9 October 2007 1681–1700 10 October 2007–6 November 2007
11 201–1700 21 November 2001–6 Novembe 2007 1701–1720 7 November 2007–5 December 2007
12 221–1720 20 December 2001–5 December 2007 1721–1740 6 December 2007–4 January 2008
13 241–1740 22 January 2002–4 January 2008 1741–1760 7 January 2008–4 Febraury 2008
14 261–1760 20 Febraury 2002–4 Febraury 2008 1761–1780 5 Febraury 2008– 4 March 2008
15 281–1780 20 March 2002–4 March 2008 1781–1800 5 March 2008–2 April 2008
16 301–1800 18 April 2002–2 April 2008 1801–1820 3 April 2008–30 April 2008
17 321–1820 16 May 2002–30 May 2008 1821–1840 1 May 2008–29 May 2008
18 341–1840 14 June 2002–29 May 2008 1841–1860 30 May 2008–26 June 2008
19 361–1860 15 July 2002–26 June 2008 1861–1880 27 June 2008–25 July 2008
20 381–1880 12 August 2002–25 July 2008 1881–1900 28 July 2008– 22 August 2008
21 401–1900 10 September2002–22 August 2008 1901–1920 25 August 2008– 22 September 2008
22 421–1920 8 October 2002–22 September 2008 1921–1940 23 September 2008–20 October 2008
23 441–1940 5 November 2002–20 October 2008 1941–1960 21 October 2008–17 November 2008
24 461-1960 4 December 2002–17 November 2008 1961–1980 18 November 2008–16 December 2008
25 481–1980 3 January 2003–16 December 2008 1981–2000 17 December 2008–15 January 2009
26 501–2000 3 Febraury 2003–15 January 2009 2001–2020 16 January 2009–13 Febraury 2009
27 521–2020 4 March 2003–13 Febraury 2009 2021–2040 17 Febraury 2009–16 March 2009
28 541–2040 1 April 2003–16 March 2009 2041–2060 17 March 2009–14 April 2009
29 561–2060 30 April 2003–14 April 2009 2061–2080 15 April 2009–12 May 2009
30 581–2080 29 May 2003–12 May 2009 2081–2100 13 May 2009–10 June 2009
31 601–2100 26 June 2003–10 June 2009 2101–2120 11 June 2009–9 July 2009
32 621–2120 25 July 2003–9 July 2009 2121–2140 10 July 2009–6 August 2009
33 641–2140 22 August 2003–6 August 2009 2141–2160 7 August 2009–3 September 2009
34 661–2160 22 September 2003–3 September 2009 2161–2180 4 September 2009–2 October 2009
35 681-2180 20 October 2003–2 October 2009 2181–2200 5 October 2009–30 October 2009

C. Figures
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Figure A1. Evolution across re-estimations of the GARCH/RBEKK parameter, a.
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Figure A2. Evolution across re-estimations of the GARCH/RBEKK parameter, b.
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Figure A3. Portfolio standard deviations.
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Figure A4. Cont.
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Figure A4. VaR: Univariate models.
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Figure A5. VaR: Multivariate models.

D. The Univariate NCT-APARCH Model

The main ingredients of the NCT-APARCH model discussed in the paper by
Krause and Paolella [16] are, as the name may suggest, the use of a univariate noncentral
t-distribution assumption for the error term and of an APARCH specification for the conditional
variance equation.
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The NCT density function is given as follows:

fZ (t; ν, γ) = e−γ2/2 Γ((ν + 1)/2)νν/2
√

πΓ(ν/2)

(
1

ν + t2

) ν+1
2

×
[

∞

∑
i=0

(tγ)i

i!

(
2

t2 + ν

)i/2 Γ{(ν + i + 1)/2}
Γ{(ν + 1)/2}

]
, (35)

where ν > 0 denotes the degrees of freedom parameter and γ ∈ < is the noncentrality parameter
dictating the degree of asymmetry (with the Student distribution recovered when γ = 0).

The evolution of the conditional variance is modeled according to the APARCH model, which
allows for both heavy-tails and asymmetry. It is defined as follows:

σδ
t = σ̄ + a1(|εt−1| − γ1εt−1)

δ + b1σδ
t−1

where a1 > 0, b1 ≥ 0, δ > 0 and |γ1| < 1. In order to speed up the estimation procedure, the authors
suggest to fix some parameters before the maximization of the likelihood function. In this paper, we
calibrated the model parameters on our dataset in order to achieve the highest in-sample likelihood
value (this applies also for the model incorporating the GARCH specification). Specifically, we set
σ̄ = 0.01, a1 = 0.05, b1 = 0.90, δ = 2 and γ1 = 0.4. The vector of parameters to be estimated, then,
reduces to ψ = (µ, ν, γ)′, where E(yt) = µ denotes the location coefficient which is fastly estimated
using the method of trimmed mean. We refer to the original paper by Krause and Paolella [16] for
further details on the implemented estimation procedure.

E. Backtesting VaR: Augmented Independence and Conditional Coverage Tests

Tables A2 and A3 report test-statistics and corresponding p-values obtained from the
Independence (IND) and Conditional Coverage (CC) tests of Christoffersen (see Section 4.2)
computed with a number of lagged observations K > 1.

The tests are built in an extended Markov framework that allows for higher, or K-th order,
dependence in the VaR observations, thus highlighting possible clustering in the series of violations.
The distribution of the generalized IND and CC tests is asymptotically χ2

(1) and χ2
(2), respectively.

For further details on the construction of the tests we remand the interested reader to theoretical
framework developed in Pajhede [39].

In order to make these results directly comparable with those given in Tables 7 and 8, we set the
number of lags K = 3 and run the tests for the 5% and 1% VaR confidence level.

Results for both univariate and multivariate specifications are reported below.

Table A2. Augmented IND and CC test results. Univariate models.

Norm Skew-Norm Student Skew-Student MEP Skew-MEP NCT-APARCH NCT-GARCH

5% VaR

IND (K = 3) 0.843
(0.358)

0.1494
(0.699)

2.294
(0.130)

1.0807
(0.299)

1.802
(0.179)

0.0091
(0.924)

0.182
(0.670)

0.576
(0.448)

CC (K = 3) 7.779
(0.020)

1.233
(0.540)

10.062
(0.007)

2.596
(0.273)

8.739
(0.013)

0.511
(0.775)

3.419
(0.181)

8.344
(0.015)

1% VaR

IND (K = 3) 0.003
(0.955)

0.2371
(0.626)

0.237
(0.626)

3.0345
(0.082)

0.038
(0.844)

0.408
(0.523)

1.288
(0.256)

0.408
(0.523)

CC (K = 3) 7.030
(0.030)

3.253
(0.197)

3.253
(0.197)

3.658
(0.161)

5.579
(0.061)

2.410
(0.300)

1.436
(0.488)

2.410
(0.300)
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Table A3. Augmented IND and CC test results. Multivariate models.

Norm Skew-norm Student Skew-Student MEP Skew-MEP

5% VaR

IND (K = 3) 1.204
(0.272)

1.105
(0.293)

0.940
(0.332)

1.142
(0.285)

0.843
(0.358)

3.453
(0.063)

CC (K = 3) 8.972
(0.011)

7.251
(0.027)

11.451
(0.003)

1.434
(0.488)

7.779
(0.020)

5.327
(0.070)

1% VaR

IND (K = 3) 6.349
(0.012)

1.965
(0.161)

4.765
(0.029)

1.288
(0.256)

4.896
(0.027)

3.234
(0.072)

CC (K = 3) 20.608
(0.000)

14.237
(0.001)

15.166
(0.001)

1.436
(0.488)

15.298
(0.000)

5.671
(0.058)

Overall, adding more lags in the regression equation does not seem to crucially affect the
outcome of the tests, as the new results are still in line with those obtained under K = 1 in Tables 4 and
5. The main difference registered for both univariate and multivariate approaches is in the outcome
of the IND test, which now all models in the tables pass at the standard 5% level for both the 5% and
1% VaR. Apparently, violations are not clustered in time for more than one or two lags.

As for the CC test, results concerning the multivariate models are basically the same obtained
by setting K = 1, while in the univariate case we observe an improvement in the performance of the
models (excluding the normal) for the 1% VaR.

Ultimately, univariate distributions featuring skewness and heavy tails confirm their
predominance over the remaining alternatives in terms of better predictive ability. In the multivariate
case this is particularly true for the skew-Student and the skew-MEP, as the skew-normal is not
leading to remarkable improvements over the corresponding normal assumption.
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