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Abstract: We provide empirical evidence of volatility forecasting in relation to asymmetries present
in the dynamics of both return and volatility processes. Using recently-developed methodologies to
detect jumps from high frequency price data, we estimate the size of positive and negative jumps and
propose a methodology to estimate the size of jumps in the quadratic variation. The leverage effect
is separated into continuous and discontinuous effects, and past volatility is separated into “good”
and “bad”, as well as into continuous and discontinuous risks. Using a long history of the S & P500
price index, we find that the continuous leverage effect lasts about one week, while the discontinuous
leverage effect disappears after one day. “Good” and “bad” continuous risks both characterize
the volatility persistence, while “bad” jump risk is much more informative than “good” jump risk
in forecasting future volatility. The volatility forecasting model proposed is able to capture many
empirical stylized facts while still remaining parsimonious in terms of the number of parameters to
be estimated.
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1. Introduction

Volatility forecasting is crucial for many investment decisions, such as asset allocation and risk
management. This paper presents empirical results on volatility forecasting of a stochastic process with
asymmetries and discontinuities in the return and volatility processes, highlighting the importance of
incorporating these effects into the forecasting model itself. Moreover, a methodology for separating
realized volatility into quarter variances and for estimating volatility jumps is introduced.

Asymmetries, discontinuities and memory properties in the data-generating process for asset
returns are known stylized facts. Specifically, these are also known as the volatility leverage and
feedback effects that induce skewness, infrequent jumps that induce fat tails and volatility persistence
representing the process memory. The existence of these effects poses challenges for obtaining accurate
volatility forecasts and requires models that can take into account all of those empirical features.
Capturing volatility persistence, the popular heterogeneous autoregressive realized volatility model
(HAR− RV) of [1], which is based on an approximation of long-run volatility components, performs
surprisingly well in out-of-sample forecast evaluations.

The realized volatility, advocated by, among others, [2] and [3], consistently estimates the
integrated volatility of the return process under the assumption that it follows a continuous
semimartingale. Realized volatility is based on the notion of increasing sampling frequency and
is generally considered an accurate proxy for the latent true volatility. These kinds of non-parametric
estimates are particularly suited for forecasting, as jump information can be extracted directly from the
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data, and volatility persistence, leverage and feedback effects can be modeled parsimoniously in the
framework of a simple regression.

Evidence of the leverage effect with high frequency data has been advanced by Bollerslev, T. et al. [4],
who analyzed sign asymmetries of high frequency returns and their impact on future volatility.
This paper presents new evidence of leverage effects by using high frequency data of the S & P500
Index. To the prior literature, it adds the consideration of a separate leverage effect generated by both
the jump and the continuous components of the return process.

The main empirical contribution of this paper is the finding of a superior forecasting
performance when the jumps in returns are isolated from the corresponding continuous component.
While the previous papers separated jump variation and continuous variation, as proposed by
Andersen, T.G. et al. [5], here, we disentangle the jump size from the continuous return at the intraday
level and include it in the prediction model. With this approach, on top of improving forecasting
performance, we could also interpret any effect of return jumps on future volatility as a jump leverage
effect. As in [1], we include in the forecasting model the long memory of volatility considering
heterogeneous autoregressive (HAR) components and, as in [6], the continuous leverage effect through
lagged negative returns generated from continuous components.

Further, as in [7], we find that the best forecasting model includes “downside risks,” which are
volatilities generated by negative intraday returns. The realized variance is in fact also disentangled
into continuous signed semi-variations and jump signed semi-variations, as a way to capture separate
dynamics of negative intraday returns with respect to positive intraday returns. The leverage
effect in forecasting realized volatility has been considered by both Corsi, F. and Renò, R. [6] and
Patton, A.J. and Sheppard, K. [7] in a similar framework. These papers are the most closely related to
our study. However, the methodology to assess it differs as we disentangle jump size from both return
and volatility, and we also separate both jump variation and continuous variation into semi-variances.
Particularly relevant for our analysis of return jumps and asymmetries between jump components is
the methodology to detect intraday return jumps proposed by Lee, S.S. and Mykland, P.A. [8].

Methodologically, using the return jump detection methodology of [8], we derive a complete
decomposition of the realized variance into four quarter variances, two signed jump variations and
two signed continuous variations. To our knowledge, a complete linear decomposition of the realized
variance into quarter variances is new in the literature. The work in [9] proposed the decomposition of
the realized variance into semi-variances, while Patton, A.J. and Sheppard, K. [7] proposed a different
method of estimating signed jump semi-variances, but together with the continuous variation, they
do not sum to the total realized variance. Moreover, we propose a jump identification method for the
quadratic variation based on auxiliary inference. As the return may jump, the quadratic variation may
also jump if the underlying data-generating process is a double jump stochastic process. These are the
two methodological contributions of this paper.

The literature on jump detection and realized volatility forecasting has become very rich in the last
10 years. Focusing on return jumps, Dumitru, A.M. and Urga, G. [10] performed an extensive Monte
Carlo study of the performance of nine methods to detect jumps. They find that the methodology used
in this paper based on [8] performs better than the alternatives and is more robust to microstructure
noise. In this paper, we ignore microstructure noise and do not compare the performance of jump
detection procedures, but rather, we compare the performance of volatility forecasting models that are
based on the chosen jump detection methodology introduced in [8].1

1 Alternative tests are mainly based on the difference between RVt and BVt at the daily frequency and follow the asymptotic
distribution theory of [11]. However, an intraday jump test is necessary to proceed with our analysis, and therefore, most
alternative testing procedures cannot be used here; see also Footnote 4. In a separate appendix, available upon request, we
run simulations to verify the adequacy of the jump detection method by Lee, S.S. et al. [8] if the underlying data generating
process includes or does not include return and/or volatility jumps with good results.
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Using a different jump test, Huang, X. and Tauchen, G. [12] studied the power of their jump
detection test statistics and presented evidence of daily jump frequency in the S & P500 financial
market. They found that for the S & P500 Index futures, the contribution of jump variation to total
variation is between 4.4% and 4.6% for the time period from 1997 to 2003. The work in [13] used
ultra-high frequency data (tick-by-tick) to study the contribution of jump variation to total variation
for a large set of securities. Their jump variation is estimated as the difference between total variation
and continuous variation, with the two components, in turn, estimated by pre-averaged returns in
a local neighborhood to be robust to noise and outliers. They found that jump variation estimated
with ultra-high frequency data is of an order of magnitude lower than jump variation estimated with
five minute price data. In this paper, we sample at five minutes to smooth microstructure noise, and
unlike the previous paper, using a high-frequency jump test, we are able to estimate jump variation
directly from the return jump size instead of resorting to the daily difference of estimated total and
continuous variation. With this method of estimating jump variation, we find the contribution of jump
variation to be in line with [12]2. As pointed out in [13], with a higher sampling frequency, the jump
variation magnitude may be different, and the estimates of jump variation based on five minute data
may capture variation in liquidity. We do not aim to justify jumps and study microstructure noise
effects, but rather, compare the out-of-sample forecasting performance of an imperfect proxy, such as
the realized volatility.

Using daily price data, Jacquier, E. and Okou, C. [14] separated jump from continuous variation to
predict future excess returns. Their paper is related to the intertemporal capital asset pricing literature.
They found evidence of past continuous variation having a longer lasting effect in pricing than jump
variation. While focusing on volatility forecasting, we find that continuous variation is the driving
factor for the persistence in volatility. In contrast, the effect of jumps is short-lived. This is in line with
the finding of [14].

The remainder of the paper is organized as follows. Section 2 presents realized estimators used in
the analysis, the continuous time framework on which the estimates are based and the methodology to
disentangle continuous and jump components from both return and volatility processes. Section 3
presents the data used in the empirical analysis and the candidate forecasting models. Section 4 contains
evidence of the leverage and jump effects and presents estimation results and the out-of-sample
forecasting performance evaluation. Finally, Section 5 concludes.

2. Theoretical Framework

The underlying framework for the empirical analysis is based on a double jump-diffusion
data-generating process. This stochastic process features a continuous sample path component and
occasional jumps in both return and volatility dynamics. The framework was first laid down by Duffie,
D. et al. [15]. The empirical analysis of this class of models can be found in [16–20]. Generally, the
previous results support jumps in volatility, as well as jumps in returns for speculative prices. Let st

denote the logarithmic asset price at time t, for t ∈ [0, T]. In stochastic differential equation form, the
price and volatility processes are

dst = mtdt + σtdWs
t + κs

t dJs
t , (1)

dσ2
t = ϑ

(
θ − σ2

t

)
dt + σv

t dWv
t + κv

t dJv
t , (2)

where {Ws
t , Wv

t } is a bivariate standard Brownian motion, {dJs
t , dJv

t } is a bivariate count process and
{κs

t , κv
t } represents the size of the jumps in return and in volatility if a count occurs at time t3. The mean

2 The percentage contribution of jump variation to total variation is reported in the third plot of Figure 3.
3 It is common in the option pricing literature to assume a compound Poisson process, where jump arrivals have a Poisson

distribution with intensity {λs, λσ} and jump sizes in return have a normal distribution. In the present context, these
assumptions are not needed.
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of the variance Equation (2) is characterized by a long-run level parameter θ and a mean-reverting
parameter ϑ. Moreover, the process is restricted to be non-negative.

This framework allows the generation of the contemporaneous leverage or volatility feedback
effects through the correlation between the continuous components, as well as through the correlation
between the jump components that may be both in the time and in the size of the jumps.

Following the theory of quadratic variation, the volatility of the price process is estimated with
the realized volatility from high frequency data. Below, we present the estimators for volatility and
jump components used in the analysis.

2.1. Return Volatility and Jumps

Let rt,i be the discretely-sampled i-th intraday return for day t. In the presence of jumps in return, the
realized variance, RVt = ∑m

i=1 r2
t,i, introduced by Andersen, T.G. et al. [2] and Andersen, T.G. et al. [21],

captures both continuous and jump components of the quadratic variation:

RVt
p
−→

ˆ t

t−1
σ2

τ dτ + ∑
t−1<τ≤t

(κs
τ)

2 t = 1, . . . , T. (3)

The bi-power variation, introduced by [22], is instead a consistent estimator for the continuous
component only:

BVt = µ−2
m

∑
i=2
|rt,i| |rt,i−1|

m→∞
−→

ˆ t

t−1
σ2

τ dτ (4)

where µ = 21/2 Γ(1)
Γ(1/2)=

√
2/π, with Γ (·) denoting the gamma function.

The work in [23] and [8] proposes detecting intraday jumps using the ratio between intraday
returns and estimated spot volatility. We follow more closely the methodology of [8], and in particular,
we test the presence of intraday jumps with the statistics

Lt,i =
rt,i√(

1
K−1 ∑K−1

k=1

∣∣rt,i−k
∣∣ ∣∣rt,i−k−1

∣∣) , (5)

where the expression contains in the denominator the estimates of the spot volatility as the
average bi-power variation over a period with K observations. Lee, S.S. et al. [8] suggests using
K = 78, 110, 156, 270, respectively, with return sampled at frequencies of 60, 30, 15 and 5 minutes.
Under the null of no intraday jump, the test statistics Lt,i follow a normal distribution (with
variance

√
2/π).

In order to select the rejection region for the test statistics Lt,i, Lee, S.S. et al. [8] propose to look at
the asymptotic distribution of maxima of the test statistics. As the sampling frequency tends to zero,
under the null of no jumps between time (t, i− 1) and (t, i), the absolute value of Lt,i converges to a
Gumbel distribution:

max(t,i) |Lt,i| − Cn

Sn

d
−→ ζ, (6)

where ζ has a standard Gumbel distribution, Cn = (2 log n)1/2

µ − log π+log(log n)
2µ(2 log n)1/2 , Sn = 1

µ(2 log n)1/2 and n

is the number of observations for each period t. We reject the null of no jump at time t, i if

|Lt,i| − Cn

Sn
> β∗, (7)
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such that exp
(
−e−β∗

)
= 1− α, i.e., β∗ = − log (− log (1− α)), with α being the significance level4.

The test is able to detect the jump arrival time ij for each day t, where j denotes the presence of a
jump. Moreover, the jump size is computed as

κt,ij = (rt,i)1{ |Lt,i|−Cn
Sn >β∗

}. (8)

consequently, the jump size for the day t is

jRett = ∑
ij=i1,...,iJt

κt,ij , t = 1, . . . , T, (9)

where Jt is the total number of significant jumps for day t, and the jump-adjusted daily return is

cRett = rt − jRett, t = 1, . . . , T. (10)

With this methodology to identify intraday jumps, it is possible to directly estimate the jump
variation, i.e., the quadratic variation of return jumps. We follow [25] and estimate the quadratic
variation due to the continuous and the jump components respectively as

CVt = RVt − JVt, t = 1, . . . , T, (11)

JVt =
Jt

∑
j=1

JVt,j, t = 1, . . . , T, (12)

where

JVt,j = 1{κt,i 6=0}

κ2
t,ij
− 1

m− Jt
∑

k∈{1,...m}\{ij ,...,iJt}
r2

t,k

 , (13)

is the contribution to the quadratic variation of each intraday jump κt,ij , with j = 1, . . . , Jt and
t = 1, . . . , T. We find that the daily jump variation identified with this methodology is highly correlated
with more traditional methods to identify jump variation that primarily take the positive differences
between RVt and BVt.

2.2. Downside Continuous and Jump Variation

To capture the sign asymmetry of the volatility process, the continuous variation and jump
variation are decomposed using signed intraday returns. The work in [9] introduced a new estimator
that captures the quadratic variation due to signed returns, termed realized semi-variance. In a
similar way, the continuous variation and jumps variation can both be decomposed into signed
semi-variations by using the test of [8]. This represents the main advantage of the test, as it is able to
identify the sign and the timing of intraday jumps. If jump variation is instead identified by means of
significant (RVt − BVt), as normally done in the previous literature, no information is available about
the sign or timing of intraday jumps, and therefore, we are not able to disentangle jump or continuous
semi-variations.

4 In a robustness check, we obtain similar good results for the forecasting performance of our empirical models when the
estimated jumps are based on the tests of [11] and [24], combined with the recursive methodology of [25] to identify the size
of each intraday jump.
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The realized semi-variances of [9] are defined as

RS+
t =

m

∑
i=1

r2
t,i1{rt,i>0}, (14)

RS−t =
m

∑
i=1

r2
t,i1{rt,i<0}. (15)

We estimate the jump semi-variances in a similar fashion by using signed intraday jumps:

JSV+
t =

Jt

∑
j=1

JSV+
t,j , (16)

JSV−t =
Jt

∑
j=1

JSV−t,j , (17)

where

JSV+
t,j = 1{κt,i>0}

κ2
t,ij
− 1

m− Jt
∑

k∈{1,...m}\{ij ,...,ijt}
r2

t,k

 , (18)

JSV−t,j = 1{κt,i<0}

κ2
t,ij
− 1

m− Jt
∑

k∈{1,...m}\{ij ,...,ijt}
r2

t,k

 , (19)

for j = 1, . . . , Jt and t = 1, . . . , T. Consequently, the continuous semi-variances are estimated by

CSV+
t = RS+

t − JSV+
t , (20)

CSV−t = RS−t − JSV−t . (21)

The realized variance is decomposed into quarter variances, and this decomposition is complete
as RVt = RS+

t + RS−t , JVt = JSV+
t + JSV−t and CVt = CSV+

t +CSV−t . To study the volatility feedback
effect, a particular focus is on the downside continuous variation and jump variation captured by
CSV−and JSV−, respectively, as Patton, A.J. and Sheppard, K. [7] show that negative semi-variances
are more informative than positive semi-variances for forecasting future volatility. These quantities are
used in the empirical analysis of the following sections.

2.3. Volatility Jumps

The estimation of volatility jumps is a prominent topic of research (see [20]). The difficulty in
estimating volatility jumps is due to the model misspecification of the jump process coupled with
the fact that volatility is a latent quantity. Here, we consider a methodology to estimate the size of
(continuous) volatility jumps without imposing assumptions on its distribution while we assume that
the realized variance estimate (continuous variation given in Equation (11)) is the true variance, as is
standard practice in the realized variance literature.

We consider an auxiliary first order autoregressive (AR (1)) model on the first difference of
continuous variation with the variance of continuous variation following generalized autoregressive
conditional heteroskedasticity (GARCH (1, 1)) dynamics. This choice is motivated empirically
and theoretically. The AR − GARCH on the changes in continuous volatility is a natural discrete
approximation of the volatility process in Equation (2) without the volatility jump component, with
the AR (1) approximating the volatility mean and the GARCH (1, 1) equation capturing the volatility
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of volatility. Empirically, it fits very well with the continuous variation sample series by excluding
extreme values. It is specified as

(∆CV)t = c + φCVt−1 + ut, (22)

ut = σv
t et, et ∼ N (0, 1) , (23)

(σv
t )

2 = ω + αu2
t−1 + β

(
σv

t−1
)2 , (24)

with stationarity constraint |φ| < 1, (α + β) < 1 and non-negativity constraints on
(σv

t )
2: ω > 0, {α, β} ≥ 0. The jump in volatility is estimated as

Vol Jt = 1{et>Φ−1
1−α}ut, (25)

where Φ−1
1−α denotes the 1− α quantile of the standard normal distribution, and the indicator for

the timing of volatility jumps is given by et > Φ−1
1−α.5 Intuitively, in the absence of volatility jumps,

the auxiliary model approximates the true volatility dynamics. However, in the presence of large
jumps, the auxiliary model is not able to fit the data, and large residuals from the model fit represent
contributions of volatility jumps.

At this point, it is worth reiterating that the estimated volatility jumps are in fact jumps of the
continuous variation, where the continuous variation is an estimate of the variance process without
return jumps. Given the double-jump process as the data-generating process, the continuous variation
may well jump itself, even without jumps in the return process. The combination of the terms “jumps
in continuous variation” may sound paradoxical. Therefore, the term “volatility jumps” instead of
“jumps in continuous variation” is used.

3. Data and Forecasting Models

3.1. Data and Summary Statistics

The data used in the analysis consist of tick-by-tick prices for the Standard & Poor (S & P500)
Future. The sample period covers almost the entire history of this security: from 28 April 1982
to 6 August 2010. The S & P500 Future is traded “open outcry” on regular market opening hours
of the Chicago Mercantile Exchange (from 8:30 a.m. to 3:15 p.m.), and it has also been used by
Bollerslev, T. et al. [26] and Corsi, F. [1], among others, as an index for the composite market.

The data cleaning procedure follows [27]. In particular, as trades before 9:00 a.m. for the first
several years from the introduction of this security are often not very active, all trades outside 9:00 a.m.
and 3:15 p.m. are discarded. Transactions with zero volume are also discarded. Moreover, days with
less than five consecutive trading hours are also discarded. Prices are then sampled every five minutes,
starting from 9:00 a.m., in order to smooth the impact of market microstructure noise. Furthermore,
whenever there is no observed price attached to a specific time stamp, the “previous tick” method is
used to replace the missing price.

Figure 1 represents the time series of returns, log realized variance, return jumps and volatility
jumps. The highest levels of realized volatility were reached on “Black Monday,” 19 October 1987,

5 An alternative indicator for volatility jumps is the difference between the empirical quantile function of the vector e and the
inverse cumulative distribution function of a standard normal distribution when this difference exceeds a critical value c:

Vol Jt = 1{(F−1(qt)−Φ−1
qt )>c}ut,

where qt is the corresponding empirical quantile of et in the vector e and c is the critical value controlling the power of the
jump detection method. With this method, we apply the theoretical normal density filter to the empirical density, while
with the previous method, we simply take out tail points of the empirical density. This approach has been tested on the data
with different values of c resulting in nearly equal timing for the volatility jump identified as in (25) when the critical value c
is calibrated to be high enough.
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and the following day, 20 October, where returns were respectively about −26% and −9.6%. The test
Equation (7) detects jumps during both days. However, for 19 October 1987, the intraday price changes
were less drastic than on the following day, resulting in a lower jump variation. On 20 October 1987,
jump variation was at the highest level. During that day, negative jumps were combined with positive
jumps, while on 19 October, sequences of negative intraday returns dominated. The jumps test are
carried out through the analysis with an α = 0.01 significance level.
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0

Log Return
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g(

p t/p
t
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1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009
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g(

R
V t)
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e t

1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009
0
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2

3
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g(

1+
Vo

lJ
um

p t)

Figure 1. The figure plots the time series of daily log returns, log realized variance, jump in returns
and log jump in continuous variation. The underlying security is the S&P 500 Index Futures, and the
time period ranges from 28 April 1982 to 6 August 2010.

Jumps in volatility are also identified for both 19 and 20 October 1987, with the volatility jump for
19 October being at the highest level. Accordingly, the market crash of 19 October 1987 is explained
with jumps in returns and even more with a jump in volatility. This underscores the importance of
allowing for volatility jumps in order to fully capture the dynamics of extreme events. Return jumps
alone, identified with the testing methodology, are not able to fully account for extreme market events.
Summary statistics for the intensity of jumps in return and in volatility are reported in Table 1.
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Table 1. The table reports the number of days with return jumps, their percentage, the average daily
jump intensity conditional on the presence of at least one jump, the maximum daily jump intensity
and the percentage of days with jumps in continuous variation. All of the statistics are sorted by year.
The tests for jumps in return and in continuous variation are conducted with significance level α = 0.01.
∗ The sample period for 1982 starts on 20 April; ∗∗ The sample period for 2010 stops on 6 August.
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On average, there is less than one return jump per day. With significance level α = 0.01 and
five minute sampling, the number of days with at least one intraday jump represents 19.29% of the
sample period. The intraday jump intensity ranges from zero to 10 jumps (maximum corresponding
to 19 October 1987). Conditional on the presence of jumps, there are on average 1.43 intraday return
jumps each day. Regarding jumps in volatility, we find an intensity of about 6.65% of the trading
days. The analysis for volatility jumps is also carried out at significance level α = 0.01 in Equation (25).
As with jumps in return, other significance levels are experimented with. The chosen cutoff level
α = 0.01 is empirically motivated by the quantile-quantile plot shown in Figure 2.
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Figure 2. The figure represents the quantiles of the standardized residuals from the AR− GARCH
fitting on the continuous variation against the quantiles of the standard normal distribution. The red
dots represent the quantiles of the standard normal distribution against itself. Extreme values that
deviate from the normal assumption are volatility jumps.

The empirical distribution with this cutoff level best approximates a standard normal distribution.
Without a threshold, the residuals from the auxiliary GARCH model fitting deviate substantially
from the assumed standard normal distribution. Only large departures from the standard normal
distribution are categorized as volatility jumps.

The contribution of return jumps to total return levels, the relative contribution of jump variation
to the total variation and the contribution of volatility jumps to the continuous volatility are reported
in Figure 3.

The contribution of negative jumps to negative returns appears to be higher, on average, than
the contribution of positive jumps to the corresponding signed returns. This jump sign asymmetry
may account for the negative skewness observed in financial markets. Based on rolling averages of
three-month and one-year windows, the contribution of the negative jumps to corresponding signed
returns ranges from approximately 0.1% to 4.5%, on a three-month basis, and from 1% to 3.5%, on a
yearly basis, while that of positive jumps ranges from 1% to 2.5%, on a yearly basis. Jump variation
accounts for approximately 3% to 7% on a yearly basis. This statistic is in line with those reported by
the previous literature despite the use of a different methodology to test for the presence of jumps.
The work in [6], for example, reports an average percentage over almost 28 years of about 6% for the
S & P500 Index; Andersen, T.G. et al. [25] report an average percentage over five years that ranges
from 2.1% to 5.8% for different stocks; and Huang, X. and Tauchen, G. [12] report an average of 4.4%
to 4.6% between 1997 and 2003 for the S & P500 Index. By contrast, volatility jumps make a minor
contribution to the continuous variation, as they are more sporadic than return jumps. They account
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for about 0% to 8% of the continuous variation on a yearly basis, and for the entire sample period from
1982 to 2010, they represent 3.4% of continuous variation.
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Figure 3. The figure plots the average contributions of positive jumps to positive returns, negative
jumps to negative returns, jump variation to realized variance and volatility jumps to continuous
variation. The percentages are calculated by using rolling windows consisting of three months and
one year.

3.2. Forecasting with Jumps, Leverage Effect and Volatility Persistence

Given the measures of volatility and jump magnitude introduced previously, it is of interest to
study their additional forecasting power for future volatility. The models proposed are based on the
heterogeneous autoregressive (HAR) framework of [1] and extend it by considering semi-variances,
jumps in return and in volatility and the leverage effect due to continuous return and return jumps.

The realized volatility features long memory. The HAR model, although it does not belong
formally to the class of long memory models, represents a parsimonious approximation, which is able
to closely mimic such a stylized fact. In more detail, the benchmark model is

log (RV)t,t+h = α + φd log (RV)t + φw log (RV)t−5,t + φm log (RV)t−22,t + errort, (26)
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where log (RV)t,t+h is the average log realized variance between time t and t + h. The variables
log (RV)t−5,t = 1

5 ∑t
i=t−4 log (RVi) and log (RV)t−22,t = 1

22 ∑t
i=t−21 log (RVi) capture long memory

features of the volatility process. The coefficients of the model may be interpreted as the
reaction of heterogeneous agents who forecast with different time horizons: daily, weekly and
monthly. The representation of the HAR forecasting model based on realized variance instead of
log realized variance,

RVt,t+h = α + φdRVt + φwRVt−5,t + φmRVt−22,t + errort, (27)

is also considered. However, the latter produces inferior forecasts, and therefore, results are
summarized and discussed for the log-log model.

Several model extensions based on the HAR framework have been proposed in the recent
literature: see, among others, [5–7]. The work in [5] included jump variation in forecasting volatility
dynamics. The work in [6] studied the impact of the leverage effect on volatility by including past
signed returns. Finally, Patton, A.J. and Sheppard, K. [7] and Chen, X. and Ghysels, E. [28] considered
the use of realized semi-variances to forecast volatility. None of the previous studies, however, used
the return jumps themselves and jumps in volatility to generalize the HAR model.

Jumps in return arguably have an impact on future volatility. Their effect can be interpreted as a
leverage effect. The leverage effect can manifest itself differently if it comes about through continuous
jump returns. In fact, although both continuous and discontinuous components together generate the
final leverage effect, their dynamics differ, as jumps have a very short impact on future volatility, while
continuous returns tend to have a persistent impact on future volatility.

Disentangling jump variation and continuous variation systematically improves volatility
forecasts, and disentangling downside semi-variation and upside semi-variation also improves
forecasts. We combine the ideas of [5] and [7] by considering a complete decomposition into signed
continuous and jump variation, leading to even better forecasts. Negative jump semi-variation has
in fact a completely different impact on future volatility compared to positive jump semi-variation.
Lastly, jumps in volatility may also improve future volatility forecasts through the effect of volatility
trading strategies. Taking into account all of these effects, the candidate model we propose is

log (RV)t,t+h = α + β+ log
(
CSV+

)
t + β− log

(
CSV−

)
t

+ γ+ log
(
1 + JSV+

)
t + γ− log

(
1 + JSV−

)
t

+ θ log (1 + Vol J)t + δcRet−t + δwcRet−t−5,t

+ ϑw log (RV)t−5,t + ϑm log (RV)t−22,t + errort, (28)

where past negative returns and jumps are defined by cRet−t = 1{cRett<0}cRett and cRet−t−5,t =
1
5 ∑t

i=t−4 cRet−i . Note that the realized jump semi-variances already capture the effect of return jumps,
since they are derived from them. The interpretation of their effects is that of discontinuous risks that
capture jump leverage effects. Therefore, return jumps are not included in this model specification.

Given that one of the goals of this study is volatility forecasting, one can argue that such a model
may be over-parametrized and therefore may lead to poor out-of-sample results. As we will show in
the next sections, this is not (entirely) the case. Nevertheless, to overcome this problem, we consider a
simplified version of Model (28) that differs from the previous one by discarding jump semi-variations,
the weekly persistence in the leverage effect and the jumps in volatility6. Moreover, the impact of jump

6 We started with a larger set of predictors, including quarter variances and jumps at different lags, and tried to discard
these effects one-by-one with backward stepwise subset selection. We verified that the best results, both in-sample and
out-of-sample, are given by (28) and (29), which are quantitatively similar among them.
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semi-variations on future volatility is being replaced by that of return jumps, which is to be interpreted
as a leverage effect due to jumps:

log (RV)t,t+h = α + β+ log
(
CSV+

)
t + β− log

(
CSV−

)
t + δcRet−t

+ ϕjRett + ϑw log (RV)t−5,t + ϑm log (RV)t−22,t + errort. (29)

this model is very simple, consisting of only seven parameters to be estimated, e.g., three parameters
less than the LHAR − CJ model proposed by Corsi, F. et al. [6]. Still, the model focuses on the
most relevant effects for volatility forecasting: downside risk, leverage effect and the HAR structure
capturing long memory.

The models are estimated by OLS with [29] covariance matrix correction to account for serial
correlation. The bandwidth used is 2 (h− 1), where h is the forecasting horizon.

4. Empirical Evidence

4.1. Leverage Effect, Volatility Feedback Effect and Persistence

Leverage and volatility feedback effects are commonly studied by means of correlations.
The work in [4] provides exhaustive evidence of the leverage effect at high frequency by
studying cross-correlations among return and volatility series for a horizon spanning several days.
Exploiting the methodology we use to disentangle the continuous and jump components of return
and volatility dynamics, we present new evidence of leverage and volatility feedback effects arising
from both continuous and jump components. Moreover, we use signed intraday returns to capture
sign asymmetries.

Figure 4 reports cross-correlations among different components of the return and realized variance
as evidence of leverage and volatility feedback effects.

As in [4], the leverage effect (negative correlation between RVt and cRett−h) is significant for
prolonged days, while there is no clear evidence of a volatility feedback effect (negative correlation
between RVt and cRett+h). The sign asymmetry of the leverage effect becomes evident as negative
returns generate most of the negative correlation of return and lagged variance (see top right plot,
Figure 4), and the magnitude of this effect is higher than the positive correlation between positive
returns and realized variance. We also observe a negative correlation between realized variance
and future negative returns. However, this correlation is smaller in absolute value than the positive
correlation of realized variance and positive future returns (cross-correlations with positive intraday
return components are not plotted in order to save space). Therefore, it is insufficient to generate the
sign asymmetry for the volatility feedback effect. In other words, while negative returns have a higher
impact on future variance than positive returns (leverage effect), the variance does not have a higher
impact on future negative returns than it does on future positive returns (no volatility feedback effect).

The persistence in volatility is also examined. It is well known that volatility is autocorrelated
for a prolonged period of time. Evidence is found in [30] for the S & P500 stock index. Models to
capture the persistence in conditional volatility have been proposed in their early stage by Engle, R.F.
and Bollerslev, T. [31] and Baillie, R.T. et al. [32]. This autocorrelation is one of the drivers of the
volatility feedback effect. The interpretation is that when an increase in volatility is associated with an
expectation of higher future volatility, market participants may discount this information, resulting in
an immediate drop in stock prices. We find that the persistence in volatility is mainly generated by the
continuous component of the return variation. Jump variation has an effect on realized variance, as
well, but this effect is short lived. The cross-correlations of realized variance with continuous variation
and with jump variation are reported in Figure 5.
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Figure 4. The figure plots pairwise sample cross-correlation of daily realized variance with daily
continuous returns (first row) and jump returns (second row). It also plots the cross-correlation of the
realized variance with signed negative returns and jumps (second column). Lags and leads of up to
22 days are considered.

20 10 0 10 20

0

0.2

0.4

0.6

0.8

1

h

C
or

r(R
V t, C

SV
t+

h
+

)

20 10 0 10 20

0

0.2

0.4

0.6

0.8

1

h

C
or

r(R
V t, C

SV
t+

h)

20 10 0 10 20

0

0.2

0.4

0.6

0.8

1

h

C
or

r(R
V t, J

SV
t+

h
+

)

20 10 0 10 20

0

0.2

0.4

0.6

0.8

1

h

C
or

r(R
V t, J

SV
t+

h)

Figure 5. The figure plots pairwise sample cross-correlation of daily realized variance with signed
continuous and jump semi-variances. Lags and leads of up to 22 days are considered.

The quarter variances represent different sources of risk: positive and negative quarter variances
represent “good” and “bad” risks, while continuous and jump quarter variances represent “expected”
and “unexpected” risks. At a short horizon, they all have an impact on future volatility when they
happen, while the persistence of this effect is mainly due to expected risks.
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Finally, in Figure 6, we analyze the cross-correlation of both continuous and jump returns with the
estimated volatility jumps. Both of those components are negatively and contemporaneously correlated
with volatility jumps, with correlation between the two jump components reaching almost −0.3.
Continuous and jump returns also have a short-lived impact on future volatility jumps. These results
suggest that the leverage effect is also transmitted to the jump part of the variance. Consequently, the
realized variance that we forecast consists of both continuous variation and jump variation, with the
continuous variation not readjusted for volatility jumps.
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Figure 6. The figure plots pairwise sample cross-correlation between volatility jumps and continuous
and jump returns. Lags and leads of up to 22 days are considered.

4.2. In-Sample Analysis

Estimation results of the proposed forecasting models are discussed in this section. The in-sample
evaluations are based on different horizons. The regression results of the candidate models are reported
in Table 2, for horizons of 1, 5, 15 and 22 days. For multi-period forecasts, the predicted variable is the
cumulative average log realized variance between time t and t + h.

In order to check the stability of the coefficients, regressions are run for different overlapping
subsamples. As the full sample period is relatively long, consisting of more than 28 years, it is likely
that structural breaks have occurred. This seems to be the case, as some coefficients estimated by
including data for the initial eight years, from 1982 to 1989 (the forecasts are relative to the period
1990 to 1997), appear to differ from those estimated by using data starting from 1990. Conversely, the
coefficients associated with the model for the last 20 years are relatively stable. Figure 7 reports the
estimated coefficients of one period forecast of Model (28) with rolling subsamples of 2000 observations
(corresponding to almost eight years).

With an in-depth inspection, the difference of the coefficient estimates for the initial subsamples
from those of the remaining subsamples is mainly caused by the market crash of October 1987.
The sample period is therefore reduced, and the results of the in-sample analysis contained in Table 2
are relative to the subperiod from 4 January 1988 to 6 August 20107. By contrast, the out-of-sample
evaluations of the next sections, as they are performed using rolling forecasts, will be based on
the whole sample period. Volatility jumps have a marginal power to forecast the one period ahead
volatility only with the initial subsamples, which contain the market crash data, while for the remaining
subsamples, they do not add further value. This indicates that volatility jumps are useful for forecasting
during extremely agitated periods.

To check the stability of the estimates for different forecasting horizons, Figure 8 reports the
estimated coefficients for forecasting horizons ranging from one day to 30 days. The estimated
parameters appear to be well behaved. The major differences between the coefficients for the different

7 Although the estimated coefficients obtained by using the full sample data, including the market crash of 1987, do not differ
substantially from the ones reported in Table 2, there may be a loss in terms of consistency of the estimates by using the full
sample data. We tried with different subsamples, and the signs associated with all significant coefficients are the same for
the various subsamples.
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forecasting horizons lie in the horizon of one to five days, while after five days, all of the estimates
of the coefficients are stable. This stability is due to the fact that we predict the average cumulative
variance over multiple periods.

Table 2. The table contains estimates of the coefficients and t-statistics, in square brackets, based on
Newey-West HAC consistent standard errors, for the two model specifications. Model 1 and Model 2
correspond to Equations (28) and (29), respectively. The models are estimated for forecasting horizons
of 1, 5, 15 and 22 days.

The following results from the estimation are worthy of comment. “Bad risks” have a significant
impact on future volatility. In fact, both continuous and jump downside quarter variances increase
future realized variance. However, when “good risks” are disentangled into upside continuous and
jump quarter variances, a striking difference emerges. The effect of upside continuous variance on
future volatility is still positive and statistically significant, but that of the upside jump variance is on
average negative and negligible. This may well answer the critique advanced by Corsi, F. et al. [24], as
they argue that influential studies, such as [5] and [33], among others, find a negative or null impact
of jumps (more appropriately jump variation) on future volatility, while economic theory suggests
the opposite. In fact, one needs to distinguish between downside and upside jumps. Future volatility
is indeed increasing with downside jump variation, as jump variations are likely associated with an
increase in uncertainty on fundamental values. However, the effect of upside jump variation does
not necessarily increase future volatility. This would be consistent with the economic model of [34].
Intuitively, a positive jump is associated with the occurrence of good news, as well as the expectation
of higher future returns. The effect of the latter is able to offset the effect of an increasing uncertainty.
The future volatility given the occurrence of a positive jump is therefore lower than the one associated
with the occurrence of a negative jump.
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Figure 7. The figure plots rolling window coefficient estimates with the corresponding 95% confidence
interval, based on Newey-West HAC consistent standard errors. The coefficients are the ones associated
with the model in Equation (28) for the one-day ahead forecast. The estimation window size consists of
2000 observations.

Consistent with the leverage effect, both continuous and jump components of the return have
a significant impact on future volatility. As mentioned previously, the persistence in leverage effect
is captured mainly by the continuous component. In fact, as the forecasting horizon increases, the
leverage effect generated by past jumps becomes less statistically significant. On the contrary, either
coefficients associated with the negative continuous return over the past day and over the past week
remain statistically significant even for longer forecasting horizons.

Concerning long memory features, the persistence parameters associated with the one week
and the one month realized variance terms are both highly statistically significant for all horizons.
Ultimately, jumps in volatility (continuous variation) do not appear to be statistically significant.
Given that volatility jumps are present during extremely agitated periods, their null forecasting
performance on the short horizon is due to the fact that only a few volatility jumps are identified for the
sample period under investigation. There are in fact volatility jumps for only 3.6% of the sample days.

Finally, by examining the (in-sample) performance of the simplified Model (29) in comparison
with that of the full model, the losses in accuracy that occur for the simplified model are negligible
based on the adjusted R2.
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Figure 8. The figure plots the estimated coefficients with the corresponding 95% confidence interval,
based on Newey-West HAC consistent standard errors, for the model in Equation (28). The forecasting
horizon, on the horizontal axis, ranges from one to 30 days.

4.3. Out-of-Sample Forecasting Performance

The methodology used to assess the forecasting performance of the proposed models is presented
in this section. The analysis is based on the out-of-sample predictive accuracy of these models in
comparison to the HAR − RV Model (26). The predicted variable is the cumulative average log
realized variance between time t and t + h. For predictions of horizons h > 1, a “direct method” is
employed, that is the model specifies only the relation between log (RV)t,t+h and the regressors at
time t. The evaluation of the performance is done recursively with rolling windows. The forecasting
horizons considered are h = {1, 5, 15, 22}.

The recursive procedure is applied as follows: The forecasts are generated by using an in-sample
estimation window of 2000 observations, corresponding to about eight years, starting from 28 April
1982. For h = 1, the performance is evaluated on 5040 out-of-sample data points, corresponding to
about 20 years. The forecasting performance is based on the MSE function of the log realized variance
forecasts and the negative QLIKE loss function:

MSE =
(

̂ln (RV)t,t+h|Ft
− ln (RV)(t,t+h]

)2
, (30)

QLIKE = ̂ln (RV)t,t+h|Ft
+

RV(t,t+h]

̂RV(t,t+h]|Ft

. (31)
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The MSE is a symmetric loss function, while QLIKE is asymmetric. The work in [35] shows that
the QLIKE loss function is robust to noise in the volatility proxy, as volatility forecasts represent
a case where the true values are not observable. Moreover, this function has certain optimal
properties in that it is less sensitive to large observations by more heavily penalizing under-predictions
than over-predictions. It is therefore more suited to yield model rankings in the presence of
imperfect proxies.

To test for the superior forecasting performance of the proposed models over the benchmark
HAR− RV model, the [36] test is employed. The asymptotic variance of the loss differential (of each
model and the HAR− RV model) is estimated with Newey-West HAC consistent sample variance, as
suggested by Giacomini, R. et al. [37]. The work in [38] shows that in the presence of nested models,
the distribution of the Diebold-Mariano test statistics for mean square error losses, under the null, can
be nonstandard. Therefore, the test of forecasting performance for mean square error losses is based on
the [39] test statistic, which appropriately corrects the loss differential. Table 3 reports the test statistics
under the null of equal forecasting performance for each model pair. A positive value represents the
superior average forecasting performance of the proposed model with respect to the HAR− RV.

Table 3. The table reports results from the out-of-sample pairwise forecast performance comparison.
The performance is based on the QLIKE and MSE loss functions for Models 1 and 2 corresponding
to Equations (28) and (29), respectively. Each model is evaluated against the benchmark HAR− RV
(Equation 26). Forecast horizons considered are 1 day, 5 days, 15 days and 22 days. The upper
panel reports the Diebold-Mariano t-statistics on QLIKE losses, and the bottom panel reports the
Clark-West test statistics on MSE losses. The out-of-sample performance period ranges from May 1990
to August 2010.

����� ������ ������� �������

� 	
�� 	
	 �
� �
��

� 	
		 	
�� 
�� 
�

� ��
	 ��
� �
�� �
��

� ��
�� ��
�	 �
� �
��

�����
�������

�������������������

��� �!"#$%�"�����

&'�����������������

��� ���%�"�����

At the 99% confidence level, the proposed models outperform the base model for forecasting
horizons of one day and five days. For longer forecasting horizons, overall, the models also perform
well, with the reduced model (Equation (29)) achieving surprisingly high performance. Based on
the QLIKE loss function, the out-performance of the full Model (28) compared to the HAR − RV
model is only weakly statistically significant. This is a warning signal that Model (28) is probably
over-parametrized, although as shown in the next section, outperforming the benchmark HAR− RV
model in forecasting long-run volatility seems to be a difficult task.

4.4. Model Confidence Set

The HAR model in logarithmic form generally has a good out-of-sample forecasting performance.
In an attempt to raise the bar, other reference models recently proposed in the literature are considered.
First, we test the performance of the HAR model for the realized variance, which yielded the lowest
forecasting power among all of the candidate models when evaluated on the loss functions Equations
(30) and (31). Then, we investigate the accuracy of the variance forecasts for several models involving
two model specifications of [5] (Equation (13), p. 709, and Equation (28), p. 715), named HAR− RV− J
and HAR− RV − CJ, respectively, which explicitly take into account continuous and jump variation;
two specifications proposed by Patton, A.J. and Sheppard, K. [7] (Equation (19), p. 16, and Equation (17),
p. 13, without upside semi-variance) based on upside and downside variances, one with complete
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decomposition into quarter variances and the other with a downside quarter variance only for the
daily component; and two models of [6] (Equation 2.4, p. 8, and Table 3, p. 16) that add the leverage
effect, named LHAR−CJ and LHAR−CJ+, respectively. Finally, simple and commonly-used models
are also taken into account. These are an autoregressive model on the daily log realized variance
component only and an exponential smoothing model. The last is popularly used by risk practitioners
(see [40]) and is specified as

̂log (RV)(t,t+h] = α · log (RV)(t−h,t] + (1− α) · ̂log (RV)(t−h,t] (32)

with parameter α optimized for each rolling window following

arg min
α

∑
t

[
log (RV)(t−h,t] − ̂log (RV)(t−h,t]

]
.

All of the models (except the HAR− RV) are evaluated on log realized variance. They are also
estimated on the same rolling window and evaluated on the same out-of-sample data points. It is also
worth mentioning that jump detection and quarter variance estimation are executed in the same way
as described in this article.8

In order to evaluate forecasts of those models, the model confidence set (MCS) methodology
of [41] and [42] is the most well suited. The comparison is done among a set of models, as pairwise
comparisons would not be appropriate. The methodology allows the models to be ranked based on a
given loss function, and it gives an indication of whether the forecast performances are significantly
different. Out of the surviving models in the confidence set, the interpretation is that they have equal
predictive ability, and they yield the best forecasts given a confidence level.

The model confidence set approach allows the user to specify different criteria to establish equal
forecasting performance for the model set and subsets. We use both the “range” statistic and the
“semi-quadratic” statistic:

TR = max
k,s∈Mset

∣∣d̄k,s
∣∣√

v̂ar
(
d̄k,s
) , (33)

TSQ = ∑
k,s∈Mset

d̄2
k,s

v̂ar
(
d̄k,s
) , (34)

where d̄k,s is the mean loss differential between each pair combination of models, with k and s denoting
each model.

Table 4 reports the model confidence set and the selected models at the classic 5% and 10%
significance levels. The model confidence set p-value is obtained through a block bootstrap procedure.
An autoregressive process is estimated for each dk,s, the loss differential between each model k
and s and the lag length, for it is determined by Akaike information criteria, as suggested by
Hansen, P.R. et al. [41]. The block length for the bootstrap procedure is then fixed as the maximum lag
length among dk,s, and it varies between nine and 30 depending on the forecasting horizon and the loss
function used. Five thousand bootstrap repetitions are used to compute the test statistics. The model
confidence set p-value obtained by using the semi-quadratic test statistics is less conservative than the

8 In their original work, [5] do not apply a test for significant jump detection, but jumps are identified as positive differences
between RV and BV. The work in [6] applies a test based on the difference between RV and a threshold estimator for
the continuous variation. The work in [7] estimates jump variation with the difference between positive and negative
continuous variation. Numerically, the results may differ with different estimation methods for jump variation. In a separate
Appendix, we have verified with simulated data that jump detection based on the test of [8] yields robust results and
consequently propose the method for estimating jump variation based on this test.
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one obtained by using the range statistics. The surviving model set after using the semi-quadratic test
statistic is therefore larger than the set obtained by using the range test statistic.

Overall, the best forecasting models for all different horizons are the candidate Models (28)
and (29) and the two LHAR− CJ models proposed by Corsi, F. et al. [6], which take into account past
negative return without disentangling return jump size. The reduced model of Equation (29) achieved
equal forecasting performance, compared to the LHAR− CJ+ model, with a lower model complexity
(four variables less). Jumps in return indeed substantially improve the forecasting performance, while
volatility jumps are infrequent and have a minor effect on future realized variance. For the one period
ahead forecast, the full Model (28), which includes volatility jumps, does not survive based on the
MSE loss function. However, it does survive based on the QLIKE loss function. This is due to the fact
that by adding volatility jumps, the model tends to produce marginally less conservative forecasts of
volatility. The QLIKE loss, since it less heavily penalizes over-predictions than under-predictions, still
selects this model. Finally and not surprisingly, the best forecasting models are the ones that include
the leverage effect.

Table 4. The table reports the forecasting performance of models in the confidence set. A block
bootstrap procedure with 5000 replications is used to establish equal predictive ability of the surviving
models according to both “range” and “semi-quadratic” test statistics. Moreover, both QLIKE and MSE
(on log realized variation) losses are used. Forecast horizons considered are 1 day, 5 days, 15 days and
22 days. “+” denotes included models in the final confidence set with significance level 5%, and “++”
denotes included models in the confidence set with significance level 10%, with MCS10% ⊆ MCS5%.
Models 1 and 2 correspond to Equations (28) and (29), respectively.
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The following considerations can be pointed out for the simplest models: for long horizons, the
simple HAR−RV model is hard to beat. As has already been shown in the literature, the autoregressive
model that takes only the daily component into account is not selected for any forecasting horizon
and loss function used, pointing to the importance of correctly modeling long memory. Moreover, the
exponential smoothing model, often used in practice, is clearly outperformed.

5. Conclusions

This paper analyzed the performance of volatility forecasting models that take into account
downside risk, jumps and the leverage effect. The volatility forecasting model proposed consists
of the following ingredients: First, the timing and the size of intraday return jumps is estimated
based on the jump test of [8]. Second, jump variation and continuous variation are disentangled into
signed quarter variances using signed intraday returns. Finally, the size of jumps in volatility is also
estimated with inference based on an auxiliary AR− GARCH model. The best candidate model for
forecasting realized variance must simultaneously take into account return jumps, “good” and “bad”
risks, leverage effect and strong volatility persistence (i.e., long memory).

The model is motivated by the overwhelming empirical evidence of asymmetries in financial time
series. We show that correlation asymmetries are present for both continuous and jump components
among return and volatility. Moreover, asymmetries exist not only in size, but also in sign, justifying
the use of quarter variances in forecasting volatility. Finally, the persistence of the volatility leverage
effect is mostly due to the continuous returns.

The forecasting model is very simple to implement, as it is based on the parsimonious HAR
framework. The gain over the base HAR − RV in terms of out-of-sample forecasting power is
substantial, and this is especially true for short and mid- forecasting horizons. However, for an
accurate identification of jumps and the estimation of the jump size, the availability of high frequency
data is required. In fact, the empirical analysis is based on a long history of high frequency S & P500
Futures data. When enough high frequency data are available, the effort of estimating return jumps
and signed quarter variances is compensated with generally better predictions of future volatility.

Considering that synthetic instruments with financial market implied volatility (e.g., VIX index)
as the underlying asset have existed for decades and that the use of the realized volatility itself as a
market index is also becoming popular, the methodology proposed can be applied directly to construct
profitable trading strategies that apply leading indicators based on quarter variances and jumps.
In such applications, given the need for a long history of data and the possible presence of structural
breaks, the forecasting model must be re-trained often to obtain accurate predictions. In this article, for
example, for the out-of-sample forecast performance evaluation, we re-estimated the model every day
using a rolling window strategy. Moreover, depending on the investment horizon and the economic
objective of the trading strategy, for instance a minimum return strategy within a period of time or a
“no-big loss” strategy, the forecasting model can be selected based on variants of the “MSE” or “QLIKE”
loss functions used in this paper or other direct economic evaluation methods.
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