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Abstract: The Ramsey regression equation specification error test (RESET) furnishes a diagnostic for
omitted variables in a linear regression model specification (i.e., the null hypothesis is no omitted
variables). Integer powers of fitted values from a regression analysis are introduced as additional
covariates in a second regression analysis. The former regression model can be considered restricted,
whereas the latter model can be considered unrestricted; this first model is nested within this second
model. A RESET significance test is conducted with an F-test using the error sums of squares and the
degrees of freedom for the two models. For georeferenced data, eigenvectors can be extracted from a
modified spatial weights matrix, and included in a linear regression model specification to account
for the presence of nonzero spatial autocorrelation. The intuition underlying this methodology is
that these synthetic variates function as surrogates for omitted variables. Accordingly, a restricted
regression model without eigenvectors should indicate an omitted variables problem, whereas an
unrestricted regression model with eigenvectors should result in a failure to reject the RESET null
hypothesis. This paper furnishes eleven empirical examples, covering a wide range of spatial attribute
data types, that illustrate the effectiveness of eigenvector spatial filtering in addressing the omitted
variables problem for georeferenced data as measured by the RESET.

Keywords: eigenvector spatial filter; omitted variables; RESET; spatial autocorrelation; specification error

JEL: C21; C51

1. Introduction

A practitioner spends considerable time contemplating which covariates to include in a descriptive
regression equation, as well as the functional forms they should have. A serious problem in regression
analysis is misspecification of a descriptive equation by failing to include all relevant covariates in it:
the omitted variables problem. One result of such omissions is omitted-variable bias (OVB), which
arises when parameter estimates for the covariates included in a descriptive equation are over- or
under-estimated because estimation attempts to compensate for the omitted variables. In part, this
outcome arises from multicollinearity; in part, this outcome arises from a biased error variance estimate
(i.e., covariates being removed from a specification because they are deemed insignificant when they
are significant). A serious linear regression consequence of OVB for ordinary least squares (OLS)
estimation is biased and inconsistent parameter estimates. OVB also impacts on non-linear regression.

The Ramsey (1969) [1] regression equation specification error test (RESET) furnishes a tool to at
least partially assess OVB. Technically, it is not about omitted variables, but rather it is about functional
form (e.g., Wooldridge 2013 ([2], Chapter 9)). It addresses the question asking whether or not non-linear
combinations of fitted values help explain a response variable. Its supporting logic contends that
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non-linear combinations (e.g., exponential powers and cross-products) of covariates that correlate
with a response variable signify a mis-specified equation. Consequently, the RESET specifically tests
functional form, but often with inferences drawn about omitted variables. Shukur and Mantalos
(2004) [3] comment that the RESET has good statistical power with increasing misspecification, and as
the RESET proxy variate more closely approximates omitted variables. Of note is that the only way to
truly assess OVB is to have the omitted variables to assess, which is not practical.

Studies (e.g., Brasington and Hite 2005 [4], Pace and LeSage 2010 [5]) show that spatial models
accommodating spatial dependence are less influenced by OVB, especially when a true data generating
process contains a spatial dependence component. Comparisons of model specifications between
non-spatial and/or spatial models already appear in the literature. LeSage and Parent (2007) [6]
investigate OVB with different model specifications, including ones for non-spatial and spatial
regression, using a Bayesian model averaging technique. LeSage and Fischer (2008) [7] and Piribauer
and Fischer (2015) [8] extend this approach for model uncertainty in spatial growth modeling. Piribauer
(2016) [9] further extends it using stochastic search variable selection priors to improve OVB as well as
over-parameterization.

The purpose of this paper is to demonstrate how eigenvector spatial filtering (ESF) impacts
OVB as measured by the RESET. As a popular alternative approach for spatial regression model
specification (Griffith 2003 [10], Pace, LeSage, and Zhu 2013 [11], Chun and Griffith 2014 [12]), ESF
offers the potential to alleviate OVB by including spatial dependence components.

2. The RESET for a Linear Regression Specification

Ramsey (1969) [1] formulated his test for the case of linear regression. His test begins with the
conditional expectation

E pY|Xq “ Xβ (1)

where Y is an n-by-1 vector of response values, hat (the diacritical mark) denotes fitted value, E denotes
the calculus of expectation operator, X is an n-by-(p + 1) matrix containing p covariates (p must be at
least 1 here), n is the number of observations, and β is a (p + 1)-by-1 vector of regression coefficients.
If some n-by-q matrix of covariates Z is incorrectly omitted from this regression equation, in the case
where X and Z are non-stochastic, then

E pγ̂q “
´

XTX
¯´1

XT pXβ`Zθq “ β` bias (2)

where superscript T denotes the matrix transpose operation, θ denotes regression coefficients for the
covariates Z, and γ denotes the full set of regression coefficients. If XTZ = 0, which is highly unlikely
in practice, then no OVB is present, emphasizing the relationship between OVB and multicollinearity.

If the covariate matrix in Equation (2) is expanded to (X Z), then E(γ̂) =

˜

β

θ

¸

. Therefore, if this

covariate matrix can be augmented with proxy covariates that approximate matrix Z (or at least the
part of Z correlated with X), then the OVB decreases, converging on zero as the approximation becomes
increasingly better. Thursby and Schmidt (1977) [13] discuss that an approximation being correlated
with omitted variables can lead to a powerful test. The RESET uses exponential powers of Xβ for this
approximation. Accordingly, matrix X must contain more than the vector of ones (for the intercept
term). The resulting set of equations for testing purposes is given by

Y “ Xβ`
K
ÿ

k“1

ϕkŶk ` ε (3)
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where Ŷk “
`

Xβ̂
˘k for integer k ě 2, and ε is a n-by-1 vector of random errors for a non-spatial model.

The joint null hypothesis for the ϕk coefficients is that all of them are zero, which is tested using
the F-ratio

[(ESS1 ´ ESS2)/(df2 ´ df1)]/[ESS2/(n-df2)]

where ESSj and dfj are, respectively, the error sum of squares and the degrees of freedom for
model j (j = 1, 2, . . . ). Rejection of the null hypothesis implies misspecification. When implementing
Equation (3), in order to exploit the spatial autocorrelation common to X and Z, as well as the spatial
autocorrelation unique to Z, our analyses used exponential powers of fitted values from an eigenvector
spatial filter for this approximation: Ŷ “ Xβ̂` Ehβ̂h, where Eh are the eigenvectors discussed in
Section 4. That is, an ESF model can be expressed as

Y “ Xβ` Ehβ̂h `

K
ÿ

k“1

ϕkŶk ` ε (4)

3. The RESET for a Generalized Linear Regression Specification

Sapra (2005) [14] extends Ramsey’s RESET to generalized linear models (GLMs). The logic remains
the same here; the response variable no longer is a normal random variable (RV). Rather, it is a Poisson,
binomial, or other RV from the exponential family.

The basic equation is similar to (3): assessment is in terms of powers of a linear combination of
covariates. For a Poisson RV, the linear combination is the log-mean estimate. For a binomial random
variable, the linear combination is the log-odds ratio function. The test statistic is the chi-square,
whereas the calculation is ´2 times the log-likelihood function differences (subtracting that for the
expanded specifications from the original specification). Sapra (2005) [14] comments that this extended
version of the RESET appears to have reasonable statistical power for medium to large sample sizes.

4. Eigenvector Spatial Filtering and Omitted Variables

One contention about the presence of non-zero spatial autocorrelation in regression residuals
is that it arises because covariates with spatial patterns are missing from a descriptive equation
specification (e.g., Temple 1999 [15]). Shifting this spatial autocorrelation from the residuals to the
systematic part of the equation (e.g., introducing a spatial autoregressive term) furnishes a surrogate for
the missing variable(s), which can be seen by, for example, an increase in the accompanying pseudo-R2

value. But auto-models are complicated. ESF offers a simpler approach to handling this omitted
variables problem. In other words, because spatial autocorrelation can arise from a missing relevant
variable that has an underlying spatial map pattern, a spatial filter constructed with eigenvectors that
shows this same underlying spatial autocorrelation pattern can serve as a proxy for missing variables
by accounting for spatial autocorrelation.

ESF uses a set of synthetic proxy variables, which are extracted as eigenvectors from an adjusted
spatial weights matrix C (defined in Equation (5)) that links geographic objects together in space, and
then adds these vectors as control variables to an equation specification. These control variables identify
and isolate the stochastic spatial dependencies among a given set of georeferenced observations,
resulting in their mimicking independent ones, thus allowing spatial statistical analysis to proceed
in standard ways. Spatial autocorrelation in regression residuals often arises because of a missing
relevant variable that has an underlying spatial pattern (e.g., McMillan 2003 [16]). Thus, a spatial filter
constructed with eigenvectors that exhibit appropriate spatial autocorrelation patterns can serve as a
proxy by accounting for spatial autocorrelation.

ESF applies the mathematical decomposition that creates eigenfunctions to the following
transformed spatial weights matrix:

´

I´ 11T/n
¯

C
´

I´ 11T/n
¯

(5)
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where I is an n-by-n identity matrix, and 1 is an n-by-1 vector of ones. This decomposition generates n
eigenvectors and their associated n eigenvalues. In descending order, the n eigenvalues can be denoted
as λ = (λ1, λ2, λ3, . . . , λn), ranging between the largest eigenvalue that is positive, λ1, and the smallest
eigenvalue that is negative, λn. The corresponding n eigenvectors can be denoted as E = (E1, E2, E3,
. . . , En), where each eigenvector, Ej, is an n-by-1 vector.

These eigenfunctions have a number of important properties. First, the eigenvectors are mutually
orthogonal and uncorrelated (Griffith 2000) [17]: the symmetry of matrix C ensures orthogonality,
and the projection matrix

`

I´ 11T{n
˘

ensures that eigenvectors have zero means, guaranteeing
uncorrelatedness. That is, EET = I and ET1 = 0, and the correlation between any pair of eigenvectors,
say Ei and Ej, is zero when i ‰ j. Second, the eigenvectors portray distinct, selected map patterns.
Tiefelsdorf and Boots (1995) [18] establish that each eigenvector portrays a different map pattern
exhibiting a specified level of spatial autocorrelation when it is mapped onto the n areal units associated
with the corresponding spatial weights matrix C. They also establish that the Moran coefficient
(MC) value for a mapped eigenvector is equal to a function of its corresponding eigenvalue (i.e.,
MCj = n

1TC1 ¨ λj, for Ej). Third, given a spatial weights matrix C, the feasible range of MC values is
determined by the largest and smallest eigenvalues; i.e., by λ1 and λn (de Jong et al. 1984) [19]. Based
upon these properties, the eigenvectors can be interpreted as follows (Griffith 2003) [10]:

The first eigenvector, E1, is the set of real numbers that has the largest MC value achievable
by any set of real numbers for the spatial arrangement defined by the spatial weight matrix
C; the second eigenvector, E2, is the set of real numbers that has the largest achievable MC
value by any set that is uncorrelated with E1; the third eigenvector, E3, is the set of real
numbers that has the largest achievable MC value by any set that is uncorrelated with both
E1 and E2; the fourth eigenvector is the fourth such set of values; and so on through En,
the set of real numbers that has the largest negative MC value achievable by any set that is
uncorrelated with the preceding (n ´ 1) eigenvectors.

As such, these eigenvectors furnish distinct map pattern descriptions of latent spatial autocorrelation
in spatial variables, because they are mutually both orthogonal and uncorrelated.

ESF furnishes a promising alternative approach to the popular spatial auto-model for describing
a spatial process. Pace, LeSage, and Zhu (2013) [11] comment that ESF is an effective method to
alleviate OVB. With a simulation experiment that examines ESF estimates for two different types of
data generating processes (i.e., spatial autoregressive and spatial error processes), they find that ESF
reduces bias in parameter estimates. One appealing feature of ESF is that it utilizes a relevant subset of
eigenvectors extracted from a spatial weights matrix, whereas a spatial autoregressive model utilizes
the full set of these eigenvectors, both ones that correlate and ones that do not correlate (and hence
introduce noise) with the response variable in question. Another appealing feature of ESF is that
determining its associated degrees of freedom is more straightforward; a spatial autoregressive model
has a complicated degrees of freedom structure because of its multiplicative form. The number of
degrees of freedom for the spatial autocorrelation parameter can differ from 1 (Janson, Fithian, and
Hasatie 2015) [20].

5. Specimen Empirical Datasets

Illustrative analyses have been completed with eleven empirical datasets1 that span a range of
sample sizes (49 to 3109): Dallas, TX City and County census tracts; United States (US) state economic
areas (SEAs); US as well as Texas counties; Anselin’s Columbus neighborhoods; Plano, TX block
groups; Mercer-Hall agricultural field plots; and, Puerto Rico municipalities. Figure 1 portrays the
various surface partitionings associated with these datasets.

1 Several of these dataset were used in the 2008 US National Science Foundation funded spatial filtering workshop held at the
University of Texas at Dallas during June 16–20 (http://www.spatialfiltering.com/).
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For the linear model specification coupled with a normal probability model, several of the response
variables need to be subjected to a Box-Cox power transformation. Puerto Rican irrigated farm counts
have been analyzed with both a normal approximation (for their density version) and a binomial
generalized linear model specification (for their percentage version). Finally, Texas cancer counts have
been analyzed with a Poisson generalized linear model specification.

Crime data are: 1980 for Columbus, OH; 2008 for Plano, TX (vehicle burglary); and, 2010 for the
City of Dallas. Population density data are: 2010 for Dallas, TX, and for the US. Mercer-Hall crop data
are 1910 wheat yields. Puerto Rico irrigated farms data are: 2007 for density; and, 2002 for percentages.
US SEA white male prostate cancer rates are age-adjusted for 1970–1994. Finally, Texas county cancer
counts are for 2003, whereas Texas county mortgage data are for 2000.
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Figure 1. Surface partitionings for the specimen datasets. (a) Columbus, OH (n = 49); (b) US counties
(n = 3109); (c) US state economic areas (n = 508); (d) City of Dallas census tracts (n = 264); (e) Dallas
County census tracts (n = 529); (f) Texas counties (n = 254); (g) Mercer-Hall agricultural field plots
(n = 500); (h) City of Plano census block groups (n = 159); (i) Puerto Rico municipalities (n = 73).

These datasets not only furnish a range of sizes, but Figure 1 reveals that they also furnish a wide
range of qualitatively different surface partitionings. In addition, they furnish a range of covariate set
sizes, as well as a range of response variable types that includes examples of each of the three most
commonly encountered varieties of georeferenced RVs (e.g., normal, binomial, and Poisson).
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6. RESET Results for the Specimen Empirical Datasets

The RESET for an ESF model was conducted with the selected eigenvectors as additional
independent variables. That is, the F-test was calculated with the sums of squared errors for the ESF
model and its counterpart with additional fitted value terms.2 Inclusion of a constructed eigenvector
spatial filter improves the RESET analysis in all eleven cases (Tables 1 and 2). This improvement is
of three types: when the diagnostic fails to indicate omitted variables; when the diagnostic indicates
omitted variables before, but not after, adding an eigenvector spatial filter; and, when the diagnostic
still indicates omitted variables after inclusion of an eigenvector spatial filter.

In all cases, inclusion of an eigenvector spatial filter increases the (pseudo-)R2, sometimes more
than tripling it. Both Columbus, OH crime rates, and Puerto Rico density of irrigated farms include
covariates that do not yield a RESET diagnostic suggesting omitted variables; nevertheless, inclusion
of an eigenvector spatial filter increases the null hypothesis (no omitted variables) RESET probability.

Plano vehicle burglary rates, City of Dallas crime rates, Mercer-Hall wheat yield, US SEA prostate
cancer rates, and Dallas County population density have an initial RESET diagnostic suggesting
omitted variables, and a RESET diagnostic with a probability of at least 0.1 after inclusion of an
eigenvector spatial filter. The implication here is that an eigenvector spatial filter substitutes well for
omitted variables.

Texas median monthly mortgages, US population density, and GLM results for both percentage
of Puerto Rican irrigated farms and Texas cancer counts have RESET diagnostics that indicate the
presence of omitted variables both with and without inclusion of an ESF. Inclusion of an ESF increases
the RESET probabilities, but not enough for them to be non-significant. These may be cases in which a
spatially unstructured term also is needed to compensate for omitted variables.

For comparison purposes, a RESET was conducted for spatial lag and spatial error model
specifications using the Columbus dataset. Here, because of their non-linear forms, the RESET employs
the chi-square test for the likelihood ratio difference between a restricted model and its unrestricted
counterpart (Vaona 2009) [21]. That is, integer powers of (z-score versions of) fitted values from a
spatial regression model are introduced as explanatory variables. Here the resulting RESET p-values
are 0.3663 and 0.1852, respectively, whereas the resulting pseudo-R2 values are 0.6523 and 0.6584,
respectively. These findings suggest that spatial autoregressive models also correct for OVB, offering
spatial analysts two ways of exploiting spatial autocorrelation to compensate for omitted variables.

2 ESS1 was calculated with covariates and selected eigenvectors, and ESS2 was calculated with additional fitted terms as well
as the covariates and the selected eigenvectors. For Columbus data, df2 for the non-spatial model is 41 (= 49 – the number of
independent variables; that is, 2 covariates, intercept, and 5 fitted terms); df2 for the ESF model is 38 (= 49 – the number of
independent variables with 3 additional eigenvectors).



Econometrics 2016, 4, 29 7 of 12

Table 1. Ramsey regression equation specification error test (RESET) results for the linear model empirical examples.

Data n Y X
RESET Non-Spatial Model RESET Spatial Model (ESF)

R2 RESET DF1,
DF2 p-Value R2 RESET DF1,

DF2 p-Value

Columbus 49 Crime rates Housing value, household income 0.5524 1.6122 5, 41 0.1784 0.7419 1.4361 5, 38 0.2337

Puerto Rico 73 Irrigated farm density Mean rainfall 0.1383 1.8075 5, 66 0.1235 0.4686 1.4361 5, 60 0.2245

Plano Census
Block groups 159 Box-Cox 1 transformed

Vehicle Burglary rates
Rates of population aged between 18 and 24,

Distance to highway 0.1428 4.7558 5, 151 0.0005 0.4169 1.5777 5, 142 0.1701

Texas Counties 254 Median
Monthly Mortgage

Log of Population Density,
Log of Household Median Income,
% of housing units built since 1980

0.7740 10.5403 5, 245 3.5 ˆ 10´9 0.8597 3.6297 5, 228 0.0035

City of Dallas
Census Tracts 264 Log of violation crime

rates in 2000

Rates of population aged between 13 and 17,
Black population rates,

Poverty rate
0.5336 20.6077 4, 256 9.8 ˆ 10´15 0.7374 1.9273 4, 245 0.1065

Mercer Hall 500 Wheat yield Straw yield 0.5326 3.9194 3, 496 0.0088 0.7376 0.991 4, 455 0.4121

US SEA 508 White male Prostate
cancer rates

White male Bladder cancer rate,
Mean indoor radon concentration 0.1392 4.0884 5, 500 0.0012 0.4857 0.3308 5, 470 0.8943

Dallas County
Census tracts 529 Box-Cox 2 transformed

Pop. Density

Y coordinates,
# of families,

Log of distance to CBD
0.1671 11.9806 3, 522 1.3 ˆ 10´7 0.5949 1.2653 3, 472 0.2857

US Counties 3109 Log of
population density

Log of # of families,
Old population rates (60+) 0.7394 13.8545 5, 3101 2.1 ˆ 10´13 0.8952 4.4681 5, 2894 0.0005

1 The Box-Cox transformation was performed with pyλ´ 1q/λwhere λ̂ = ´0.1113. 2 The Box-Cox transformation was performed with λ̂ = 0.3408.
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Table 2. RESET results for the generalized linear model (GLM) empirical examples.

Term
Before ESF After ESF

χ2 p-Values χ2 p-Values

Puerto Rico (Binomial): Irrigate farms (y) with log of mean rainfall (x)

Ŷ2 0.4510 0.5018 0.0003 0.9853

Ŷ3 100.7835 <2.2 ˆ 10´16 16.2781 0.0003

Pseudo-R2 0.4528 0.4829

Texas counties (Poisson): Cancer counts (y) with three covariates 1

Ŷ2 127.3967 <2.2 ˆ 10´16 3.5006 0.0614

Ŷ3 147.8025 <2.2 ˆ 10´16 18.2274 0.0001

Pseudo-R2 0.1315 0.3722
1 The covariates are log of household median income, log of white population rates, and log of single marital
status rates.

Cross-Validation RESET Results for the Specimen Empirical Datasets

Each of the specimen datasets was subjected to a cross-validation evaluation to examine the
sensitivity of the RESET to individual observations, with each observation in a dataset being left out,
in turn, and then predicted. Table 3 summarizes results for the linear model examples, and Table 4
summarizes results for the generalized linear model examples. These results are encouraging, given
the number of improvements, but indicate the need for further refinement work in this area. The goal
would be for almost all, if not all, of the cases to improve, achieving a RESET probability exceeding 0.1.

Table 3. RESET cross-validation results for the specimen linear models.

Data n Maintained
p ď 0.1

Improved from
p ď 0.1 to p > 0.1

Declined from
p > 0.1 to p ď 0.1

Maintained
p > 0.1

Columbus 49 0 2 2 45
Puerto Rico 73 0 6 2 65

Plano Census Block Groups 159 92 1 67 0 0
Texas Counties 254 254 2 0 0 0

City of Dallas Census Tracts 264 261 3 3 0 0
Mercer Hall 500 4 495 0 1

US SEA 508 0 507 0 1
Dallas County Census Tracts 529 0 528 1 0

US Counties 3109 3019 4 0 0 0
1 p-values for 35 (out of 92) cases increased from less than 0.0001 to greater than 0.05. 2 p-values for 252 (out
of 254) cases increased from less than 10´7 to greater than 0.001. 3 p-values for 256 (out of 261) cases increased
from less than 10´9 to greater than 0.001. 4 p-values of 3104 (out of 3109) cases increased from less than 10´10 to
greater than 0.0001.

Table 4. RESET cross-validation results for the specimen generalized linear models.

Term n Maintained
p ď 0.1

Improved from
p ď 0.1 to p > 0.1

Declined from
p > 0.1 to p ď 0.1

Maintained
p > 0.1

Puerto Rico (Binomial): Irrigate farms (y) with log of mean rainfall (x)

Ŷ2 73 0 1 70 2

Ŷ3 73 72 1 1 0 0

Texas counties (Poisson): Cancer counts (y) with three covariates 1

Ŷ2 254 246 8 0 0

Ŷ3 254 253 2 1 0 0
1 The p-values of 70 cases (out of 72) increased from one less than 1.0 ˆ 10´16 to one greater than 1.0 ˆ 10´5,
and for 12 cases of them, increased to one greater than 0.0001. 2 The p-values of 252 cases (out of 253) increased
from one less than 1.0ˆ 10´16 to one greater than 1.0ˆ 10´5, and for 190 cases of them, increased to one greater
than 0.0001.
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7. Correction for Omitted Variable Bias: Selected Simulation Experiments

OVB results in an estimated regression coefficient differing substantially from its population
parameter, often in an attempt by included covariates to compensate for omitted variables. This
substantial difference can render an incorrect null hypothesis test result concerning included variables.
Empirical evidence presented here suggests that an eigenvector spatial filter helps remediate
this situation.

The first simulation experiment summarized here is based upon the Puerto Rico (n = 73)
agricultural dataset. The response variable is the sum of the density of farms using irrigation (X1)
and Box-Tidwell transformed mean rainfall (X2), plus an independent and identically distributed (iid)
random error term that is N(0, 0.12). The correlation between the two covariates is 0.43, indicating
modest collinearity. The response variable (containing 73 values) was simulated 10,000 times, followed
by estimation of its linear regression equation as well as each of the two individual bivariate regression
equations, resulting in

Ŷ “ β̂01` 1.00046X1 ` 0.99996X2

Ŷ “ β̂01` 1.42810X1

Ŷ “ β̂01` 1.42419X2

Ŷj “ β̂0j1` Ekjβkj, j “ 1, 2, ..., 10,000

The intercept term estimate is not reported here because it is not of interest. The average regression
coefficient estimates of 1.00046 and 0.99996 are not different from 1 (standard errors of roughly 0.049),
their population parameter counterparts (i.e., the true model). The bivariate regression coefficient
estimates indicate that the OVB is sizeable, exceeding 42%, and significant (standard errors of 0.044).
Powers of the eigenvector spatial filter fitted values (Ŷj) furnish the RESET terms for simulation
replicate j. Table 5 summarizes outcomes of this simulation experiment, which involved stepwise
selection of the RESET terms (which are constructed from eigenvector spatial filters). The average
bivariate regression coefficient estimates corrected by the RESET are 0.95574 and 0.94882, both of
which are markedly less than their OVB counterparts, although they are modestly deflated. Their
respective standard errors are 0.062 and 0.067, which, unlike the original OVB estimates, mean they
are not significantly different from 1.

Table 5. Selection frequency of RESET terms for the Puerto Rico simulation experiment.

Variable None Ŷ2 Ŷ3 Ŷ4 Ŷ2 & Ŷ3 Ŷ2 & Ŷ4 Ŷ3 & Ŷ4 Ŷ2 & Ŷ3 & Ŷ4

X1 0 843 4607 4282 0 4 210 54
X2 0 1673 4660 3666 0 1 0 0

The second simulation experiment summarized here is based upon the Texas (n = 254) cancer
dataset. The response variable is the exponentiated weighted sum of the logarithms of median
household income (X1), percentage of white population (X2), and percentage of single (i.e., unmarried)
people (X3), plus log-total population as an offset variable. The weights are the Poisson regression
coefficients from a GLM. Because the expectation equation is a description of cancer counts that are
overdispersed, it was used as the mean of a gamma RV, whose sampled values were treated as means of
Poisson RVs.3 The response variable (containing 254 values) was simulated 10,000 times, followed by

3 The mean of the empirical RV is 133, its standard deviation is 407, and its overdispersion scale parameter is 2.8. The
simulated data have a mean of 134, a standard deviation of 419, and a scale parameter of approximately 2.8.
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estimation of its Poisson GLM equation as well as each of the three individual bivariate and individual
trivariate binomial regression equations, resulting in

Ŷ “ exp
”

β̂01´ 0.30X1 ` 0.20X2 ´ 0.80X3 ` LNppopulationq
ı

Ŷ “ exp
”

β̂01´ 0.46X1 ` LNppopulationq
ı

Ŷ “ exp
”

β̂01` 1.05X2 ` LNppopulationq
ı

Ŷ “ exp
”

β̂01´ 0.97X3 ` LNppopulationq
ı

Ŷ “ exp
”

β̂01´ 0.32X1 ` 0.95X2 ` LNppopulationq
ı

Ŷ “ exp
”

β̂01´ 0.31X1 ´ 0.90X3 ` LNppopulationq
ı

Ŷ “ exp
”

β̂01` 0.29X2 ´ 0.82X3 ` LNppopulationq
ı

Ŷj “ exp
´

β̂0j1` Ekjβkj ` LNppopulation
¯

, j “ 1, 2, ..., 10,000

Again, the intercept term estimate is not reported here because it is not of interest; however, in
some empirical cases, it is of interest, another reason to use the z-score versions of fitted values. Table 6
summarizes outcomes of this simulation experiment, which involved stepwise selection of the RESET
terms (which, as before, are constructed from eigenvector spatial filters).

Table 6. Selection frequency of RESET terms for the Texas data simulation experiment.

Variable None Ŷ2 Ŷ3 Ŷ4 Ŷ2 & Ŷ3 Ŷ2 & Ŷ4 Ŷ3 & Ŷ4 Ŷ2 & Ŷ3 & Ŷ4

X1 27 594 566 923 902 553 20 6415
X2 84 677 609 1258 271 364 72 6665
X3 1336 773 251 636 688 500 40 5776

X1 & X2 625 770 499 1025 332 406 60 6283
X1 & X3 1320 809 249 635 533 515 85 5854
X2 & X3 1718 825 287 702 578 517 43 5330

The average regression coefficient estimates of ´0.30213, 0.21343, and ´0.80155 respectively
do not differ from ´0.3, 0.2, and ´0.8 (standard errors of roughly 0.2), their population parameter
counterparts. The bivariate and trivariate Poisson regression coefficient estimates indicate that the
OVB is sizeable, many being at least 20%, and statistically significant. For the bivariate regressions,
the eigenvector spatial filter reduces the OVB as reported in Table 7.

Table 7. Parameter estimates with OVB and ESF RESET adjustments.

Number of Omitted Variables Estimate Type X1 X2 X3

two
Parameter ´0.30 0.20 ´0.80

OVB ´0.46 1.05 ´0.97
ESF RESET adjusted ´0.23 0.90 ´0.87

one

OVB ´0.32 0.95
ESF RESET adjusted ´0.25 0.92

OVB ´0.31 ´0.90
ESF RESET adjusted ´0.34 ´0.97

OVB 0.29 ´0.82
ESF RESET adjusted 0.39 ´0.76

For the bivariate cases, the estimates with the ESF RESET adjustment are closer to their true values.
Specifically, the estimates for X1 and X3 are close to their true values, whereas the adjustment for X2 is
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less effective. These results indicate that the ESF adjustment is reasonable in a bivariate regression case,
but not so in a trivariate regression case. The correlation structure may play a role here: rX1X2 = 0.11,
rX1X3 = ´0.10, and rX2X3 = ´0.53.

These two empirically based simulation experiments furnish a proof of concept, and indicate that
ESFs offer promise for effectively dealing with the OVB problem. Clearly, future research should be
devoted to this theme.

8. Implications and Conclusions

Properly testing for OVB requires knowing the omitted variables, which does not help in practice.
This situation also can be assessed if instrumental variables are available to use. At least in some
cases, an eigenvector spatial filter can be treated like an instrument (see Le Gallo and Paez 2013 [22]).
Ramsey’s RESET furnishes a special case test where the omitted variables are nonlinear functions of
the included covariates. This paper summarizes findings based upon a set of empirical examples and
a pair of conditional simulations suggesting that an ESF often can serve as a surrogate for omitted
variables. Inclusion of an eigenvector spatial filter tends to increase the (pseudo-)R2 and the RESET
null hypothesis probability. Combining an eigenvector spatial filter with a spatially unstructured term
to correct for OVB merits subsequent research, too.
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