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Abstract: This paper develops a method to improve the estimation of jump variation using
high frequency data with the existence of market microstructure noises. Accurate estimation of
jump variation is in high demand, as it is an important component of volatility in finance for
portfolio allocation, derivative pricing and risk management. The method has a two-step procedure
with detection and estimation. In Step 1, we detect the jump locations by performing wavelet
transformation on the observed noisy price processes. Since wavelet coefficients are significantly
larger at the jump locations than the others, we calibrate the wavelet coefficients through a threshold
and declare jump points if the absolute wavelet coefficients exceed the threshold. In Step 2 we
estimate the jump variation by averaging noisy price processes at each side of a declared jump point
and then taking the difference between the two averages of the jump point. Specifically, for each jump
location detected in Step 1, we get two averages from the observed noisy price processes, one before
the detected jump location and one after it, and then take their difference to estimate the jump
variation. Theoretically, we show that the two-step procedure based on average realized volatility
processes can achieve a convergence rate close to OP(n−4/9), which is better than the convergence
rate OP(n−1/4) for the procedure based on the original noisy process, where n is the sample size.
Numerically, the method based on average realized volatility processes indeed performs better than
that based on the price processes. Empirically, we study the distribution of jump variation using
Dow Jones Industrial Average stocks and compare the results using the original price process and the
average realized volatility processes.

Keywords: high frequency financial data; jump variation; realized volatility; integrated volatility;
microstructure noise; wavelet methods; nonparametric methods

JEL: C01; C14; C22; C51; C52; C58; G17

1. Introduction

1.1. Motivation

Volatility analysis plays an important role in finance. For example, portfolio allocation, derivative
pricing and risk management all require accurate estimation of volatility. With the advance of
technology, financial instruments are traded at frequencies as high as milliseconds, which produces
large numbers of trading records each day and enables us to better estimate volatility. Such data are
often referred to as high-frequency financial data. There are a growing number of volatility analysis
studies based on high-frequency financial data. One popular approach is to use realized volatility,
which is the sum of the squared difference of the log prices. See, for example, Barndorff-Nielsen
and Shephard (2002) [1], Zhang et al. (2005) [2] and Zhang (2006) [3]. If the observed data are
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assumed to be a continuous semi-martingale price process, realized volatility yields a consistent
estimator of integrated volatility. However, high-frequency financial data are contaminated with
market microstructure noise, and the contaminated price observations make the realized volatility
inconsistent. If we assume that high-frequency financial data follow semi-martingale price processes
with additive microstructure noises, several methods are proposed to consistently estimate integrated
volatility based on high-frequency financial data. See, for example, Bandi and Russell (2008) [4],
Barndorff-Nielsen et al. (2008) [5], Jacod et al. (2009) [6], Jacod et al. (2010) [7], Xiu (2010) [8] and
Zhang et al. (2005) [2].

Jumps are often observed in financial markets due to events happening around the globe
or the release of financial reports. See Aït-Sahalia et al. (2002) [9], Barndorff-Nielsen and
Shephard (2004) [10]. Actually, a jump-diffusion model has been studied back in Merton (1976) [11].
Such jumps lead to a violation of the continuous assumption and, thus, cause the inconsistency of those
established estimators. To accurately estimate and predict volatility, it is important to have methods
that estimate jumps and that separate it from the continuous part. Many existing methods have
focused on testing for jumps under the strong assumption that we can observe the exact price process
(see Aït-Sahalia 2004 [12], Aït-Sahalia and Jacod 2009 [13], Andersen et al. 2012 [14], Barndorff-Nielsen
and Shephard 2006 [15], Carr and Wu 2003 [16], Eraker et al. 2003 [17], Eraker 2004 [18],
Fan and Fan 2011 [19], Huang and Tauchen 2005 [20], Jiang and Oomen 2008 [21], Lee and
Hannig 2010 [22], Lee and Mykland 2008 [23], Bollerslev et al. 2009 [24] and Todorov 2009 [25]).
Recently, a few tests started to take microstructure noise into account; for example, the pre-averaging
method is used to take care of the microstructure noise, and a test for jumps based on power variation
is employed in Aït-Sahalia et al. (2012) [26]. Furthermore, some interesting jump research going
on includes, but is not limited to: estimating the degree of jump activities (see Ait-Sahalia and
Jacod 2009 [27], Jing et al. 2011 [28], Jing et al. 2012 [29] and Todorov and Tauchen 2011 [30]), modeling
return using pure jump process (see Jing et al. 2012 [31] and Kong et al. 2015 [32]), modeling jumps in
volatility processes (see Todorov and Tauchen 2011 [33]) and forecasting volatility with the existence of
jumps (see Andersen et al. 2007 [34], Andersen et al. 2011 [35] and Andersen et al. 2011 [36]).

The method proposed in this paper mainly focuses on the wavelet-based detection and
estimation of jump variation based on high-frequency financial data with market microstructure noise.
Wavelet analysis is a tool for decomposing signals and functions into time-frequency contents that
can unfold a signal or function over the time-frequency plane to provide information on “when” such
“frequency” occurs (Wang 2006 [37]). It enables us to analyze non-stationary time series and to detect
local changes. With such features, wavelet methods are developed to detect sudden localized changes in
Wang (1995) [38] and to study jump variation based on high-frequency financial data with
microstructure noise in Fan and Wang (2007) [39]. In this paper, we are going to take advantage of the
nice properties of wavelets and adopt a new approach to improve the wavelet estimation methods.

The paper is organized as follows. In the remaining part of Section 1, we will introduce the basic
model and wavelet techniques. In Section 2, we analyze the statistical properties of the original log
price process, realized volatility process and average realized volatility process. The simulation is in
Section 3, and the empirical study of jump variation is in Section 4. Section 5 provides some concluding
remarks about our results. The proofs of the main theorems are in Section 6. More detailed proofs of
the lemmas are in Appendix A. Tables and figures for further illustration are in Appendix B.

1.2. Integrated Volatility, Realized Volatility and Jump Variation

Let St be the price process of a financial asset. We assume that the log price Xt = log St is a
semi-martingale satisfying the stochastic differential equation

dXt = µtdt + σtdBt + LtdΛt, t ∈ [0, 1], (1)
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where we assume µt and σt are both bounded and continuous, Bt is a standard Brownian motion, Λt is
a counting process and the total number of jumps in time period [0, 1] is finite. The three terms on the
right-hand side of Equation (1) correspond to the drift, diffusion and jump parts of X, respectively.

Integrated volatility, as an important measure of the variation of the return process during a time
period [0, 1], is defined as ∫ 1

0
σ2

t dt. (2)

In financial practice, the estimation of the integrated volatility is of great interest.
Suppose {X(ti), ti ∈ [0, 1], i = 1, ..., n} are n observations of the log price process in time period

[0, 1]. Define the realized volatility of X as

[X, X]1 ≡∑
ti

(
X(ti+1)− X(ti)

)2
. (3)

Stochastic analysis shows that as max(ti − ti−1)→ 0,

[X, X]1 →p

∫ 1

0
σ2

t dt + ∑
0≤t≤1

L2
t , (4)

where the first term on the right-hand side is the integrated volatility, and the second term is called the
jump variation, which is the main focus of this paper. We denote it as Ψ,

Ψ ≡ ∑
0≤t≤1

L2
t . (5)

Equation (4) says that, as the number of observations n increases, realized volatility [X, X]1
converges in probability to integrated volatility plus jump variation Ψ. Thus, to better model
and predict volatility, we need methods to estimate jump variation and to separate it from the
integrated volatility.

1.3. Market Microstructure Noises

Microstructure noise plays a big role in the analysis of high-frequency financial data. It is often
assumed that the observed data Y(ti) are a noisy version of X(ti) at time points ti,

Y(ti) = X(ti) + ε(ti), i = 1, ..., n, ti = i/n, (6)

where ε’s are the microstructure noises. We assume that ε’s are i.i.d. random variables with mean zero
and variance η2. We also assume that ε and X are independent.

With noisy observations Y(ti), now it becomes even more challenging. Let us define the realized
volatility based on Y as

[Y, Y]1 ≡∑
ti

(
Y(ti+1)−Y(ti)

)2
. (7)

It can be shown (Zhang et al., 2005 [2]) that:

[Y, Y]1 ≈L
∫ 1

0
σ2

t dt + ∑
0≤t≤1

L2
t + 2nη2 +

[
4nEε4 +

2
n

∫ 1

0
σ4

t dt
]1/2

Ztotal, (8)

where ≈L is convergence in law and Ztotal is a standard normal random variable. The result (8) implies
that realized volatility [Y, Y]1 is an inconsistent estimator of integrated volatility.
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1.4. Wavelet Basics

Let ϕ and ψ be the specially-constructed father wavelet and mother wavelet, respectively.
Then, the wavelet basis is ϕ(t), ψj,k(t) = 2j/2ψ(2jt− k), j = 0, 1, 2, ..., k = 0, ..., 2j − 1. We can expand a
function f (t) over the wavelet basis as follows. Denote by f j,k the wavelet coefficient of f (t) associated
with location k2−j and frequency 2j,

f j,k =
∫

f (t)ψj,k(t)dt. (9)

Then, we have

f (t) = f−1,0 ϕ(t) +
∞

∑
j=0

2j−1

∑
k=0

f j,kψj,k(t), (10)

where f−1,0 =
∫

f (t)ϕ(t)dt.
There are two cases regarding the order of the wavelet coefficients f j,k (Daubechies, 1992 [40]):
Case 1: If f is a Hölder continuous function with exponent α, 0 < α ≤ 1, i.e., | f (x)− f (y)| ≤

C|x− y|α for any x, y, then f j,k satisfies

| f j,k| ≤ C12−j(α+1/2). (11)

That means, for a Hölder continuous function f , the wavelet coefficients decrease at the order of
2−j(α+1/2) as the frequency level 2j increases. Details are in Lemmas A1 and A2 in Appendix A.

Case 2: If f is a Hölder continuous function with exponent α, 0 < α ≤ 1, except for a jump of
size L at s. Then, for sufficiently large j with 2js− k ∈ Gd, there exists a constant CL depending on L,
such that

| f j,k| ≥ CL2−j/2, (12)

where Gd ⊂
{

x : |
∫
(−∞,x) ψ(y)dy| ≥ d

}
is an interval around zero for some positive constant d.

That means, nearby this jump point, the wavelet coefficients decrease no faster than the order of
2−j/2 as the frequency level 2j increases. Details are in Lemma A3 in Appendix A. Examples will be
shown later in Section 5 for the Daubechies wavelets used in this paper.

Note that with n discrete observations, j takes values 0, 1, 2, ...J − 1, where 2J = n.

2. Statistical Analysis

2.1. Choosing a Frequency Level to Differentiate Jumps

In this section, we are going to study several different processes and the orders of their wavelet
coefficients for both the continuous part and the jump part. For each process, we will determine a
frequency level for which the order of the corresponding wavelet coefficients is significantly larger
nearby jumps than the continuous part.

2.1.1. Starting from X and [X, X]

We first focus on the processes without noises. We consider X(ti) and [X, X](ti) at time points
{ti = i/n, i = 1, ..., n}.

From Equation (1), we have

X(ti) = X0 +
∫ ti

0
µsds +

∫ ti

0
σsdBs + ∑

0<s≤ti

Ls. (13)
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For simplicity, we assume that X(t) in Equation (1) is defined in [−1, 1]. Define [X, X](ti) as:

[X, X](ti) ≡ ∑
ti−1≤tr<ti

(
X(tr+1)− X(tr)

)2
. (14)

For [X, X](ti), by Lemma A7 and Corollary 1 in Appendix A, we have:

[X, X](ti) ≈L
∫ ti

ti−1
σ2

s ds +

√
2
n

∫ ti

ti−1
σ2

s dBdiscrete
s + ∑

ti−1<s≤ti

L2
s , (15)

where Bdiscrete is a standard Brownian motion whose associated diffusion term in the above equation
is due to discretization, and ≈L is convergence in law.

We let Xj,k and [X, X]j,k be the wavelet coefficients of X and [X, X] associated with location k2−j

and frequency 2j, respectively.
For Xj,k, from Equation (13), the drift term is Hölder continuous with exponent α = 1.

The diffusion term is Hölder continuous with exponent α arbitrarily close to 1/2, so the order of the
continuous component of Xj,k is dominated by the diffusion term. The order of the jump component is
no less than 2−j/2. Therefore, if we pick a frequency level at 2jn ∼ n, the order of the jump component
is significantly larger than the other terms.

For [X, X]j,k, from Equation (15), the drift term is Hölder continuous with exponent α = 1.
The diffusion term is Hölder continuous with exponent α arbitrarily close to 1/2 and multiplied by an
extra n−1/2. Thus, again, if we pick a frequency level at 2jn ∼ n, the order of the jump component is
significantly larger than the others.

2.1.2. Moving on to Y and [Y, Y]

We now consider the noisy observations Y(ti) from Equation (6):

Y(ti) = X0 +
∫ ti

0
µsds +

∫ ti

0
σsdBs + ∑

0<s≤ti

Ls + ε(ti). (16)

We let Yj,k be the wavelet coefficients of Y, so Yj,k = Xj,k + εj,k. εj,k’s are i.i.d with mean zero and
variance n−1η2, so the order of noise component is OP(n−1/2). If we pick a frequency level at
2jn ∼ n/ log2 n, the order of the jump component is significantly larger than the others
(Fan and Wang, 2007 [39]).

Next, let us consider [Y, Y]. Similar to the way we rewrite [X, X](ti) in Equation (13), we rewrite
Equation (8) as follows:

[Y, Y](ti) ≈L
∫ ti

ti−1
σ2

s ds +

√
2
n

∫ ti

ti−1
σ2

s dBdiscrete
s

+ 2nη2 +
√

4nEε4
∫ ti

ti−1
dBnoise

s + ∑
ti−1≤s≤ti

L2
s ,

(17)

where the Bdiscrete term is a diffusion term due to discretization, the Bnoise term is a diffusion term due
to noise, Bdiscrete and Bnoise are independent Brownian motions and 2nη2 is a constant (mean of the
noise term).

We let [Y, Y]j,k be the wavelet coefficients of [Y, Y]. The order for the continuous component
dominated by the diffusion term due to noise is no greater than n1/22−j(α+1/2), where α is arbitrarily
close to 1/2. The order of the jump component is greater than 2−j/2. However, in this situation, since
the order of the diffusion term due to noise is too large, we are not able to have a frequency level 2jn at
which we can differentiate the jumps.
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2.1.3. Subsampling and Averaging on [Y, Y]

We now consider subsampling and averaging [Y, Y] to reduce the order of the diffusion term due
to noise. Subsampling: Create M grids (sub-samples) on the time line so that the distance between
two consecutive observations within each grid is M/n and the average size of each grid is n̄ = n/M.
Denote by [Y, Y](m), m = 1, ..., M, the realized volatility of Y using grid m.

Averaging: [Y, Y](avg) denotes the average of the realized volatilities of Y using all M grids:

[Y, Y](avg) =
1
M

M

∑
m=1

[Y, Y](m). (18)

Rewriting the results in Zhang et al. (2005) [2], we have

[Y, Y](ti)
(avg) ≈L

∫ ti

ti−1
σ2

s ds +

√
4

3n̄

∫ ti

ti−1
σ2

s dBdiscrete
s

+ 2n̄η2 +

√
4n̄
M

Eε4
∫ ti

ti−1
dBnoise

s + ∑
ti−1≤s≤ti

L2
s .

(19)

Let [Y, Y](avg)
j,k be the wavelet coefficients of [Y, Y](avg). We choose M ∼ nγ, 0 < γ ≤ 2/3. Then, the

order of the continuous component is no greater than n(1−2γ)/22−j(α+1/2), where α is arbitrarily close
to 1/2. Therefore, if we pick a frequency level at 2jn ∼ n, the order of the jump component is larger
than the others.

2.2. Threshold Selection and Jump Location Estimation

For each process discussed in the above section, we are able to choose a frequency level 2jn to
differentiate jumps, and thus, we develop a threshold on the wavelet coefficients at such a frequency
level to detect those jumps. To accomplish the task, we first standardize the wavelet coefficients
at chosen frequency level jn by dividing them by their median. Given a process, if the continuous
component is dominated by the diffusion term at chosen frequency level jn, by Lemma A5, the
standardized wavelet coefficients nearby a jump point are at least of the order 2jnα, where α is arbitrarily
close to 1/2. As volatility process σ2

t is bounded, using Lemma A6, we can show that with probability
tending to one, the maximum of standardized wavelet coefficients for the continuous part can be

bounded by c
√

2 log 2jn /0.6745, where c ≥ 1 is some constant that may depend on σ2
t , and 0.6745 is

the median absolute deviation of the standard normal distribution.
For [Y, Y](avg) in (19), if we take γ < 2/3, the continuous part is dominated by the Bnoise term, and

by Lemma A6, we have that with probability tending to one, the maximum of standardized wavelet

coefficients is bounded by
√

2 log 2jn /0.6745. Therefore, we may use threshold

Tjn =

√
2 log 2jn

0.6745
. (20)

If any standardized wavelet coefficients exceed threshold Tjn , then their associated locations
are considered to be estimated jump locations. Let {τ1, ..., τq} be q true jump locations in
Xt, t ∈ [0, 1]. Denote those estimated locations by {τ̂1, ..., τ̂q̂}. It is shown in Wang (1995) [38] and
Raimondo (1998) [41] that at chosen frequency level 2jn , we have P(q̂ = q)→ 1 as n→ ∞ and:

q

∑
l=1
|τ̂l − τl | = OP(2−jn). (21)
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Note that for processes X, [X, X], Y and [Y, Y](avg), to differentiate jumps, we have chosen
frequency levels 2jn ∼ n, n, n/ log2 n and n, respectively. The orders of wavelet coefficients of different
components and convergence rates of wavelet jump location estimators are summarized in Tables B1
and B2 in Appendix B.

2.3. Estimation of Jump Variation

Finally, our goal is to estimate jump variation Ψ. For each estimated jump location τ̂l , we choose
a small neighborhood δn and calculate the average of the process over [τ̂l − δn, τ̂l) and [τ̂l , τ̂l + δn].
We estimate the jump size by taking the difference of two averages. The jump variation is estimated by
the sum of squares of all jump size estimators.

2.3.1. Without Microstructure Noise Assumption

To estimate jump variation without noises, we have the results using X and [X, X] in the following
two theorems. Since [X, X] is smoother, its associated method can achieve a convergence rate
OP
(
n−1/2), which is higher than convergence rate OP

(
n−1/3) for the method based on X.

Theorem 1. Assume we observe X(ti), i = 1, ..., n, ti = i/n. Under model (1), let X̄τ̂l+
be the average

of X over [τ̂l − δn, τ̂l) and X̄τ̂l− the average over [τ̂l , τ̂l + δn]. For each estimated jump location τ̂l , let
L̂l = X̄τ̂l+

− X̄τ̂l−. Define

Ψ̂X ≡
q̂

∑
l=1

L̂2
l . (22)

Choose δn ∼ n−2/3; we have
Ψ̂X −Ψ = OP

(
n−1/3

)
. (23)

Theorem 2. Assume we observe X(ti), i = 1, ..., n, ti = i/n. Under model (1), let [X, X]τ̂+ be the average of
[X, X] over [τ̂, τ̂ + δn] and [X, X]τ̂− the average of [X, X] over (τ̂ − δn, τ̂]. For each estimated jump location

τ̂l , let L̂2
l = [X, X]τ̂l+

− [X, X]τ̂l−. Define

Ψ̂[X,X] ≡
q̂

∑
l=1

L̂2
l . (24)

Choose δn ∼ n−1/2; we have
Ψ̂[X,X] −Ψ = OP

(
n−1/2

)
. (25)

2.3.2. With the Microstructure Noise Assumption

For noisy observations, we are able to improve the convergence rate OP
(
n−1/4) in Fan and

Wang (2007) [39] by using a smoother [Y, Y](avg) to obtain a higher convergence rate OP
(
n−4/9).

Theorem 3. Under models (1) and (6), let [Y, Y](avg)
τ̂l+

be the average of [Y, Y](avg) over [τ̂, τ̂ + δn]

and [Y, Y](avg)
τ̂l− be the average of [Y, Y](avg) over (τ̂ − δn, τ̂]. For each estimated jump location τ̂l , let

L̃2
l = [Y, Y](avg)

τ̂l+
− [Y, Y](avg)

τ̂l−. Define

Ψ̂[Y,Y](avg) ≡
q̂

∑
l=1

L̃2
l . (26)
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Let M = nγ, 0 < γ ≤ 2/3. If we choose δn ∼ n(2/3)γ−1, then we have

Ψ̂[Y,Y](avg) −Ψ = OP

(
n−(2/3)γ

)
. (27)

Moreover, the convergence rate is arbitrarily close to OP(n−4/9) as γ can get arbitrarily close to

2/3 for the threshold in Equation (20). For γ = 2/3, if we choose the threshold to be c
√

2 log 2jn /0.6745

for some constant c > 1, then the convergence rate is OP(n−4/9).
See the proof of Theorems 1–3 in Section 6. The orders of the convergence rates of the jump

variation estimators are summarized in Table B3 in Appendix B.

3. Simulations

We have conducted a simulation study that assumes 32,768 = 215 number of observations for one
day. Here are the simulation model and procedure.

1. A sample path of σ2
t is from the geometric OU volatility model

d log σ2
t = −2.5(log σ2

t − log 0.25)dt + 0.5dWt. (28)

2. A sample path of Xt is from
dXt = σtdBt (29)

with corr(Wt, Bt) = −0.5.
3. Jump locations are randomly selected, and three jumps are added to Xt with size from i.i.d.

N(0, 0.32).
4. Noises ε’s are from i.i.d. N(0, η2) with η at four different levels: 0.01, 0.02, 0.03, 0.04. Then, a

sample path of Yt is from Yt = Xt + εt.
5. Realized volatility processes are calculated using a moving window of 32,768 observations.

We actually simulate 65,536 of records, so that we have 32,768 complete observations of all
processes for calculating these realized volatility processes. There are eight of such processes:
X, [X, X], Y, [Y, Y], [Y, Y](avg)

M=8 , [Y, Y](avg)
M=16, [Y, Y](avg)

M=32, [Y, Y](avg)
M=64. Figure 1 displays their sample

paths as an example to show how those processes look under our scheme.
6. Discrete wavelet transformations are performed using Daubechies wavelet D20 on those realized

volatility processes. We illustrate the behaviors of the wavelet coefficients at different frequency
levels in Figures B1 and B2 in Appendix B using those of the X process and the Y process as an
example. We use the notations in Percival and Walden (2000) [42]: W1 represents the highest
frequency level, W2 the second highest, and so on and so forth. At each frequency level from W1
to W5, if any standardized wavelet coefficient exceeds the threshold Tjn in (20), we declare the
location associated with that coefficient as an estimated jump location. Here, we use Tjn , since the
results in Section 2 and the simulation study show that the method based on [Y, Y](avg) is better
than others.

7. For each estimated jump location, we estimate the jump size and jump variation as described
in Section 2. For X and Y, we use intervals of length 64. For [X, X], [Y, Y], [Y, Y](avg)

M=8 , [Y, Y](avg)
M=16,

[Y, Y](avg)
M=32, [Y, Y](avg)

M=64, we use intervals of length 128.
8. The whole simulation procedure is repeated 1000 times.
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Figure 1. Processes simulated with a true jump at location 9424, noise level η = 0.02.

If we do not assume the existence of market microstructure in the model, we are able to improve
our estimation of jump variation using the [X, X] process from using the X process, as shown in
Theorems 1 and 2. The simulation results without adding noises are given in Tables 1 and 2. Table 1
gives the average number of detected jumps and the corresponding standard deviation. We find that
we are able to detect all three jumps most of the time using either X or [X, X] at any frequency level
from W1–W5. Table 2 is the mean squared error (MSE) of jump variation estimation and shows a
smaller MSE using [X, X] at every frequency level from W1 to W5.

Table 1. Mean number of detected jumps at frequency levels from W1 to W5 using X and [X, X] with
the corresponding standard deviation in parenthesis.

level X [X, X]

W1 3.3 (0.8) 3.1 (0.6)
W2 3.2 (0.8) 3.1 (0.6)
W3 3.0 (0.9) 3.3 (0.8)
W4 2.9 (0.8) 4.0 (1.3)
W5 2.8 (0.8) 3.4 (0.9)

Table 2. MSE of the jump variation estimation at frequency levels from W1 to W5 using X and [X, X].

level X [X, X]

W1 3.0 × 10−4 1.4 × 10−5

W2 3.7 × 10−4 3.0 × 10−5

W3 1.7 × 10−3 8.6 × 10−5

W4 6.0 × 10−3 2.4 × 10−4

W5 2.2 × 10−2 8.4 × 10−4
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If we assume the existence of market microstructure in the model, we are able to improve
our estimation of jump variation using [Y, Y](avg) processes from using the Y process, as shown in
Theorem 3. The simulation results are summarized in Tables 3 and 4. The results are illustrated
at frequency levels from W1 to W5 and noise levels η = 0.01, 0.02, 0.03, 0.04 for processes Y,
[Y, Y], [Y, Y](avg)

M=8 , [Y, Y](avg)
M=16, [Y, Y](avg)

M=32 and [Y, Y](avg)
M=64. Table 3 displays the average number of

detected jumps and the corresponding standard deviation, with Table 4 for the MSEs of the jump
variation estimation.

The results show that if we falsely detect some jumps while they are not, it does not affect too
much the jump variation estimation since the estimated jump sizes are very small. However, if our
detection misses some of the true jumps, it does have a certain effect on jump variation estimation.
[X, X] and X are both able to detect the jumps fairly well. As the noise level increases, the Y- and
[Y, Y]-based methods start to miss one or two jumps; the method based on [Y, Y](avg) can also miss
detecting the jumps when M is small and noise is large, but it improves with a bigger M. In terms
of the MSE of the jump variation estimation, the methods based on [X, X] and [Y, Y](avg) perform
better than those based on X and Y, respectively. As the noise level increases, we need to increase
M for the [Y, Y](avg) method in order to improve its performance. [Y, Y] does poorly compared to
other processes.

Table 3. Mean number of detected jumps at frequency levels from W1 to W5 and noise levels

η = 0.01, 0.02, 0.03, 0.04 using Y, [Y, Y], [Y, Y](avg)
M=8 , [Y, Y](avg)

M=16, [Y, Y](avg)
M=32 and [Y, Y](avg)

M=64, with the
corresponding standard deviation in parenthesis.

level η Y [Y , Y] [Y , Y](avg)
M=8 [Y , Y](avg)

M=16 [Y , Y](avg)
M=32 [Y , Y](avg)

M=64

W1 0.01 2.3 (0.9) 2.5 (0.7) 2.5 (0.8) 2.5 (0.8) 2.6 (0.9) 2.7 (0.9)
W2 0.01 2.4 (0.9) 2.7 (0.9) 2.6 (0.8) 2.7 (0.9) 3.6 (1.3) 5.1 (1.8)
W3 0.01 2.3 (0.9) 2.9 (1.1) 3.3 (1.0) 3.6 (1.2) 5.3 (1.8) 7.6 (2.6)
W4 0.01 2.6 (0.8) 3.3 (1.3) 4.2 (1.3) 6.6 (2.1) 7.8 (2.4) 9.9 (3.0)
W5 0.01 2.7 (0.8) 2.7 (1.0) 3.2 (0.9) 5.1 (1.8) 6.6 (2.1) 7.0 (2.4)

W1 0.02 1.5 (1.0) 2.0 (0.9) 2.0 (0.9) 2.1 (0.9) 2.2 (0.9) 2.2 (0.9)
W2 0.02 1.7 (0.9) 2.1 (1.0) 2.1 (0.9) 2.1 (0.9) 2.3 (0.9) 2.8 (1.1)
W3 0.02 1.7 (1.0) 2.3 (1.2) 2.7 (0.9) 2.6 (0.9) 3.0 (1.1) 4.1 (1.5)
W4 0.02 2.3 (0.9) 2.7 (1.4) 3.2 (1.0) 3.7 (1.3) 4.0 (1.4) 5.9 (2.1)
W5 0.02 2.6 (0.9) 2.0 (1.1) 2.8 (0.9) 3.3 (1.2) 4.0 (1.4) 4.7 (1.7)

W1 0.03 1.0 (0.9) 1.5 (0.9) 1.6 (0.9) 1.7 (0.9) 1.8 (0.9) 1.9 (0.9)
W2 0.03 1.1 (0.9) 1.7 (1.1) 1.7 (0.9) 1.8 (0.9) 1.9 (0.9) 2.1 (0.9)
W3 0.03 1.2 (0.9) 1.8 (1.2) 2.5 (1.0) 2.3 (0.9) 2.4 (1.0) 2.8 (1.1)
W4 0.03 1.9 (0.9) 2.2 (1.4) 2.9 (1.1) 3.2 (1.2) 3.1 (1.2) 3.7 (1.5)
W5 0.03 2.4 (0.9) 2.5 (1.1) 2.6 (1.0) 2.9 (1.1) 2.9 (1.1) 3.2 (1.4)

W1 0.04 0.6 (0.8) 1.2 (0.9) 1.2 (0.9) 1.4 (0.9) 1.5 (0.9) 1.6 (0.9)
W2 0.04 0.8 (0.8) 1.3 (1.0) 1.3 (0.9) 1.4 (0.9) 1.6 (0.9) 1.8 (0.9)
W3 0.04 0.8 (0.8) 1.4 (1.2) 2.3 (1.0) 2.0 (2.0) 2.1 (1.0) 2.2 (1.0)
W4 0.04 1.5 (0.9) 1.8 (1.4) 2.6 (1.1) 3.0 (1.2) 2.7 (1.2) 3.0 (1.3)
W5 0.04 2.2 (0.9) 1.2 (1.0) 2.3 (1.1) 2.7 (1.2) 2.5 (1.0) 2.6 (1.1)
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Table 4. MSE of the jump variation estimation at frequency levels from W1 to W5 and noise levels

η = 0.01, 0.02, 0.03, 0.04 using Y, [Y, Y], [Y, Y](avg)
M=8 , [Y, Y](avg)

M=16, [Y, Y](avg)
M=32 and [Y, Y](avg)

M=64.

level η Y [Y , Y] [Y , Y](avg)
M=8 [Y , Y](avg)

M=16 [Y , Y](avg)
M=32 [Y , Y](avg)

M=64

W1 0.01 4.3 × 10−4 3.0 × 10 −4 8.9 × 10−5 1.2 × 10−4 2.1 ×10 −4 5.8 × 10−4

W2 0.01 4.6 × 10−4 1.4 × 10 −3 8.9 × 10−5 1.5 × 10−4 2.4 × 10−4 6.3 × 10−4

W3 0.01 1.9 × 10−3 1.8 × 10 −3 1.8 × 10−4 1.6 × 10−4 2.7 × 10−4 6.1 × 10−4

W4 0.01 7.2 × 10−3 2.5 × 10 −3 2.1 × 10−4 2.7 × 10−4 3.9 × 10−4 5.0 × 10−4

W5 0.01 1.2 × 10−2 8.0 × 10 −3 1.2 × 10−2 2.8 × 10−4 4.2 × 10−4 5.1 × 10−4

W1 0.02 2.4 × 10−3 1.8 × 10−3 3.5 × 10−4 2.9 × 10−4 3.3 × 10−4 6.7 × 10−4

W2 0.02 2.0 × 10−3 3.5 × 10−3 3.5 × 10−4 2.8 × 10−4 3.2 × 10−4 6.9 × 10−4

W3 0.02 3.7 × 10−3 4.2 × 10−3 5.2 × 10−4 2.0 × 10−4 3.0 × 10−4 6.2 × 10−4

W4 0.02 7.5 × 10−3 9.9 × 10−3 5.1 × 10−4 3.6 × 10−4 4.6 × 10−4 5.3 × 10−4

W5 0.02 1.4 × 10−2 2.8 × 10−2 4.1 × 10−2 7.3 × 10−4 5.6 × 10−4 5.2 × 10−4

W1 0.03 1.2 × 10−2 6.1 × 10−3 1.6 × 10−3 9.6 × 10−4 7.0 × 10−4 7.8 × 10−4

W2 0.03 1.2 × 10−2 9.2 × 10−3 1.6 × 10−3 5.1 × 10−4 6.8 × 10−4 6.9 × 10−4

W3 0.03 1.3 × 10−2 1.3 × 10−2 1.0 × 10−3 4.9 × 10−4 3.5 × 10−4 7.2 × 10−4

W4 0.03 8.7 × 10−3 2.2 × 10−2 6.4 × 10−4 5.9 × 10−4 5.4 × 10−4 5.8 × 10−4

W5 0.03 1.5 × 10−2 4.9 × 10−2 5.1 × 10−2 1.8 × 10−3 6.9 × 10−4 6.6 × 10−4

W1 0.04 3.5 × 10−2 1.5 × 10−2 4.4 × 10−3 2.7 × 10−3 1.8 × 10−3 1.5 × 10−3

W2 0.04 2.6 × 10−2 2.1 × 10−2 4.7 × 10−3 3.2 × 10−3 1.6 × 10−3 1.2 × 10−3

W3 0.04 3.0 × 10−2 3.1 × 10−2 1.9 × 10−3 1.2 × 10−3 7.2 × 10−4 7.4 × 10−4

W4 0.04 1.1 × 10−2 4.3 × 10−2 1.4 × 10−3 1.2 × 10−3 5.6 × 10−4 6.6 × 10−4

W5 0.04 1.5 × 10−2 7.1 × 10−2 5.3 × 10−2 3.0 × 10−3 1.5 × 10−3 7.7 × 10−4

4. Empirical Study

4.1. Distribution of Jump Variation

We study the distribution of jump variation for returns of each Dow Jones Industrial Average
stock in January 2013. We collect the tick by tick prices from 9:30 a.m.–4 p.m. for each trading day
from the TAQ database. There are 21 trading days and 30 stocks, which correspond to 630 stock-days.
We compare the jump variation estimation of the 630 stock-days using Y, [Y, Y] and [Y, Y](avg) and
at different sampling frequencies: 1 tick, 2 ticks, 4 ticks. Here, we consider tick time equidistant, as
discussed in Andersen et al., 2012 [14].

To detect the jump locations, we use Daubechies wavelet D4 at W4, W3, W2 for sampling
frequencies at 1 tick, 2 ticks, 4 ticks, respectively, with the thresholds in Equation (20). We take such
wavelet frequency levels to make sure of the consistency of jump detection along different sampling
frequencies. To estimate the jump variation, at each estimated jump location, we take the difference
between the means of intervals with width four. For [Y, Y](avg), we use M = 2. We transform the
data by the Box–Cox power transformation with power selected by the data, so that the Gaussian
assumption of the threshold should be approximately followed.

The histograms of estimated jump variation for these 630 stock-days are illustrated in Figure 2.
From left to right, the first column shows the result from using process Y, the second column using
[Y, Y] and the third column using [Y, Y](avg). From top to bottom, the first row is the result from
sampling data at every one tick, the second row at every two ticks and the third row at every four ticks.
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Figure 2. Histograms of jump variation: The first row from left to right (a1,a2,a3) shows the results
using processes Y, [Y, Y] and [Y, Y](avg), respectively, sampled at every one tick, the second row
(b1,b2,b3) sampled at every two ticks and the third row (c1,c2,c3) sampled at every four ticks.

Compared to Y, processes [Y, Y] and [Y, Y](avg) are able to pick up much larger jump variation at
the same sampling frequency level. We find that around 25% of the jump variation is above 1× 10−5

using [Y, Y] and [Y, Y](avg), while using Y, we only have around 1.5% (note that a price change from
100 to 99.99 leads to a squared log return change of around 1× 10−8). On the other hand, for the same
process, the distribution of jump variation looks very similar across different sampling frequencies.

4.2. Evidence of Microstructure Noises

To remove the idiosyncratic effects of each single stock, we plot the weighted average of the daily
realized volatility using all stocks in Figure 3. They are before removing jump variation in (a) and
after removing jump variation using processes Y, [Y, Y] and [Y, Y](avg) in (b), (c) and (d), respectively.
The solid lines are calculated from sampling at every one tick, the dashed lines at every two ticks and
the dotted lines at every four ticks. The weight is decided by the mean level of the realized volatility of
each stock. The larger it is, the smaller the weight is, so that each stock will contribute equally to the
weighted average.

We see from Figure 3 that there is clear evidence of microstructure noises, since as the sampling
frequency increases, the realized volatility increases, as well, in each case, just as we show in theory.
Moreover, the effects of removing jumps are more significant using [Y, Y] and [Y, Y](avg) than Y.
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Figure 3. Realized volatility: (a) before removing jump variation; (b–d) after removing jump variation
using processes Y, [Y, Y] and [Y, Y](avg), respectively. The solid lines are calculated from sampling at
every one tick, the dashed lines at every two ticks and the dotted lines at every four ticks.

5. Discussion

We develop a nonparametric method for estimating jump variation with noisy high frequency
financial data. With a better approach based on new process [Y, Y](avg) and the wavelet techniques,
we are able to detect and estimate jump variation more efficiently if the variance of microstructure
noise η2 is assumed to be a constant. Numerically, we show that the proposed [Y, Y](avg) method
indeed has smaller mean square errors.

From the empirical results, we observe that the method based on [Y, Y] outperforms that based
on Y. This may suggest that η2 is not a constant, so if we modify η2 to be some decreasing function of
n, for example, η2

n ∼ log n/n and Eε4 ∼ (log n/n)2, then the [Y, Y]-based method can achieve a better
convergence rate than that for Y.

For the Daubechies wavelets D4 and D20 used in the paper, we display their graphs below in
Figure 4, as well as the graphs of the absolute values of their integrations. Using Daubechies wavelet
D4, we may pick Gd = (−0.28, 0.14) for d = 0.2, while using Daubechies wavelet D20, we may pick
Gd = (−0.21, 0.28) for d = 0.1.
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Figure 4. (a,b) Daubechies wavelets D4 and D20, respectively; (c,d) absolute values of integrated D4
and D20, respectively.

We leave some open problems for future study, including the extension to estimate jump size,
optimal frequency level selection in practice, the irregular spaced observations, data-dependent
threshold selection and its sensitivity study.

6. Proof of Theorems

Theorem 1. (Estimation of jump size/variation using X) Let τ̂ be an estimated jump location. Denote X̄τ̂+ the
average of X over [τ̂, τ̂ + δn] and X̄τ̂− the average of X over (τ̂ − δn, τ̂]. We estimate the jump size by

L̂ = X̄τ̂+ − X̄τ̂−. (30)

If we choose δn ∼ n−2/3, then
L̂− L = OP(n−1/3) (31)

and
L̂2 − L2 = OP(n−1/3). (32)

Proof. Denote m± the number of ti in Î+ = [τ̂, τ̂ + δn] and Î− = (τ̂ − δn, τ̂], respectively.
Then, |m+ −m−| ≤ 2 and m+ ∼ m− ∼ nδn. We decompose L̂− L as

L̂− L = U1 + U2 + U3, (33)

where U1, U2 and U3 correspond to the drift, diffusion and jump part.

U1 =
1

m+
∑

ti∈ Î+

∫ ti

τ̂
µsds− 1

m−
∑

ti∈ Î−

∫ τ̂

ti

µsds

=
1

m+
OP

(
m+

∑
i=1

i/n

)
+

1
m−

OP

(
m−

∑
i=1

i/n

)
= OP(δn),

(34)
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U2 =
1

m+
∑

ti∈ Î+

∫ ti

τ̂
σsdWs −

1
m−

∑
ti∈ Î−

∫ τ̂

ti

σsdWs

=
1

m+
∑

ti∈ Î+

∫ ti

τ−2δn
σsdWs −

1
m−

∑
ti∈ Î−

∫ ti

τ−2δn
σsdWs

=

 1
m+

∑
ti∈ Î+

∫ ti

τ−2δn
σsdWs −

1
m+

∑
ti∈I+

∫ ti

τ−2δn
σsdWs


−

 1
m−

∑
ti∈ Î−

∫ ti

τ−2δn
σsdWs −

1
m−

∑
ti∈I−

∫ ti

τ−2δn
σsdWs


+

(
1

m+
∑

ti∈I+

∫ ti

τ−2δn
σsdWs −

1
m−

∑
ti∈I−

∫ ti

τ−2δn
σsdWs

)
= A1 − A2 + A3,

(35)

where I+ = [τ, τ + δn] and I− = [τ − δn, τ).
Because τ̂ − τ = OP

(
n−1), the total non-zero terms in A1 and A2 is OP(1). Furthermore, by

maximal martingale inequality,

P
(

max
{∣∣∣∣∫ ti

τ−2δn
σsdWs

∣∣∣∣ , ti ∈ Î+ ∪ I+

}
>
√

δn log n
)

≤ P
(

max
τ−δn≤ti≤τ+2δn

{∣∣∣∣∫ ti

τ−2δn
σsdWs

∣∣∣∣} >
√

δn log n
)
+ P(|τ − τ̂| > δn)

= E
[

Pτ

(
max

τ−δn≤ti≤τ+2δn

{∣∣∣∣∫ ti

τ−2δn
σsdWs

∣∣∣∣} >
√

δn log n
)]

+ o(1)

≤ 1
δn log n

E
[∫ τ+2δn

τ−2δn
E(σ2

s )ds
]
+ o(1) ≤ max E(σ2

s )O
(

1
log n

)
+ o(1)→ 0.

(36)

Therefore, A1 ∼ A2 ∼ OP

(
1

nδn

√
δn log n

)
.

For A3, since

Eτ

(∫ ti

τ−2δn
σsdWs

)
= 0 (37)

and

Eτ

(∫ ti

τ−2δn
σsdWs

∫ tj

τ−2δn
σsdWs

)
=
∫ ti∧tj

τ−2δn
E(σs)

2ds (38)

and τ independent of (σ, W), we have
E(A3) = 0 (39)

and

Var(A3) = E(Varτ(A3))

≤ E

[
3

m+
∑

ti∈I+

∫ ti

τ−2δn
E(σ2

s )ds +
4

m−
∑

ti∈I−

∫ ti

τ−2δn
E(σ2

s )ds

]

≤ 4 max E(σ2
s )

(
4δn +

1
m+

m+

∑
i=1

i/n +
1

m−

m−

∑
i=1

i/n

)
= O(δn).

(40)

Together, we have

U2 = OP

(
1
n

√
log n

δn
+
√

δn

)
. (41)
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Finally,

U3 =
1

m+
∑

ti∈ Î+

1{ti≥τ}L−
1

m−
∑

ti∈ Î−

1{ti≥τ}L

=

{
1

m+
n(τ − τ̂)L if τ ≥ τ̂

1
m− n(τ̂ − τ)L if τ < τ̂

= OP

(
1

nδn

)
.

(42)

Thus, if we take δn ∼ n−2/3, we have

L̂− L = OP(n−1/3). (43)

And
L̂2 − L̂2 = (L̂− L)(L̂ + L) = OP(n−1/3). (44)

Theorem 2. (Estimation of jump variation using [X, X]) Denote [X, X]τ̂+ the average of [X, X] over [τ̂, τ̂ + δn]

and [X, X]τ̂− the average of [X, X] over (τ̂ − δn, τ̂]. We estimate the jump variation by

L̂2 = [X, X]τ̂+ − [X, X]τ̂−. (45)

If we choose δn ∼ n−1/2, then
L̂2 − L2 = OP(n−1/2). (46)

Proof. Similar to the proof of the previous theorem, we decompose the L̂2 − L2 as

L̂2 − L2 = U1 + U2 + U3, (47)

where U1, U2, U3 correspond to the drift, diffusion and jump parts.
We still have

U1 = OP(δn) (48)

and

U3 = OP

(
1

nδn

)
. (49)

U2 has changed to

U2 = OP

(
n−1/2

(
1
n

√
log n

δn
+
√

δn

))
. (50)

Thus, if we take δn ∼ n−1/2, we have

L̂2 − L2 = OP(n−1/2). (51)

Theorem 3. (Estimation of jump variation using [Y, Y](avg)) Denote [Y, Y](avg)
τ̂+ the average of [Y, Y](avg)

over [τ̂, τ̂ + δn] and [Y, Y](avg)
τ̂− the average of [Y, Y](avg) over (τ̂− δn, τ̂]. We estimate the jump variation by

L̃2 = [Y, Y](avg)
τ̂+ − [Y, Y](avg)

τ̂−. (52)



Econometrics 2016, 4, 34 17 of 26

Let M = nγ, 0 < γ ≤ 2/3. If we choose δn ∼ n(2/3)γ−1, then

L̃2 − L2 = OP(n−(2/3)γ). (53)

Moreover, the convergence rate is arbitrarily close to OP(n−4/9) as γ can get arbitrarily close to 2/3 for

the threshold in Equation (20). For γ = 2/3, if we choose the threshold to be c
√

2 log 2jn /0.6745 for some

constant c > 1, then, the convergence rate is OP(n−4/9).

Proof. This time, we have
U1 = OP(δn), (54)

U2 = OP

(
n(1/2)−γ

(
1
n

√
log n

δn
+
√

δn

))
, (55)

U3 = OP

(
1

nδn

)
. (56)

Thus, if we take δn ∼ n(2/3)γ−1, we have

L̃2 − L2 = OP(n−(2/3)γ).
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Appendix A. Proof of Lemmas

Lemma A1. (Order of wavelet coefficients in the continuous case) Suppose that
∫
|ψ(t)|(1 + |t|)dt < ∞. If f

is Hölder continuous with exponent α, 0 < α ≤ 1, i.e., | f (x)− f (y)| ≤ C|x− y|α. Then, its wavelet transform
f j,k satisfies

| f j,k| ≤ C12−j(α+1/2), (A1)

where C1 = C
∫
|y|α|ψ(y)|dy.

Proof. First, note that
∫

ψ(t)dt = 0, so we have

f j,k = 2j/2
∫

f (t)ψ(2jt− k)dt− 2j/2
∫

f (2−jk)ψ(2jt− k)dt

= 2j/2
∫ (

f (t)− f (2−jk)
)

ψ(2jt− k)dt.
(A2)

Taking the absolute value, we have

| f j,k| ≤ 2j/2
∫

C|t− 2−jk|α|ψ(2jt− k)|dt

= 2j/2
∫

C|2−jy|α|ψ(y)|2−jdy

= 2−j(α+1/2)
∫

C|y|α|ψ(y)|dy.

(A3)



Econometrics 2016, 4, 34 18 of 26

Note that the integral in the last equation is finite. The result then follows.

Lemma A2. (Necessary condition: order of wavelet coefficients in the continuous case) Suppose that ψ is
compactly supported. Suppose also that f ∈ L2(R) is bounded and continuous. If for some α ∈ (0, 1), the
wavelet transform f j,k of f satisfies

| f j,k| ≤ C2−j(α+1/2),

then f is Hölder continuous with exponent α.

See Section 2.9 in Daubechies, 1992 [40].

Lemma A3. (Order of wavelet coefficients in the jump case) Suppose that
∫
|ψ(t)|(1 + |t|)dt < ∞. If g is

Hölder continuous with exponent α, 0 < α ≤ 1. Let

f (t) =

{
g(t) if t < s
g(t) + L if t ≥ s.

(A4)

Then, for sufficiently large j with 2js− k ∈ Gd, there exists a constant CL depending on L, such that

| f j,k| ≥ CL2−j/2, (A5)

where Gd ⊂
{

x : |
∫
(−∞,x) ψ(y)dy| ≥ d

}
for some positive constant d.

More specifically, for j ≥ N, we have

| f j,k| ≥ 2−j/2 (|L|d− C1) , (A6)

where N = max
(

0, 1
α log2

C1
|L|d + 1

)
and C1 is defined in Equation (A1).

Proof.
f j,k = 2j/2

∫
(−∞,s)

(−L)ψ(2jt− k)dt + 2j/2
∫

g(t)ψ(2jt− k)dt. (A7)

For the first part, we have its absolute value

|2j/2(−L)
∫
(−∞,s)

ψ(2jt− k)dt| = 2−j/2|L||
∫
(−∞,2js−k)

ψ(y)dy|

≥ 2−j/2|L|d.
(A8)

For the second part, by Lemma A1, we have its absolute value

|2j/2
∫

g(t)ψ(2jt− k)dt| ≤ C12−j(α+1/2). (A9)

Let N = max
(

0,
1
α

log2
C1

|L|d + 1
)

. Putting Equations (A8) and (A9) together, we have for j ≥ N,

| f j,k| ≥ 2−j/2
(
|L|d− C12−jα

)
≥ 2−j/2

(
|L|d− C12−Nα

)
≥ 2−j/2 (|L|d− C1) .

(A10)

The proof is complete.
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Lemma A4. (Robustness of the median) Let f j,k = f ′j,k + f ∗j,k, where f ′j,k is the wavelet coefficient corresponding

to the continuous part and f ∗j,k to the jump part. Suppose no more than a% of { f ∗j,k, k = 1, ..., 2j} is nonzero.

Let mq be the q-th quantile of {| f j,k|, k = 0, ..., 2j − 1} and m′q be the q-th quantile of {| f ′j,k|, k = 0, ..., 2j − 1}.
Then

m′0.5−a% −m′0.5 ≤ m0.5 −m′0.5 ≤ m′0.5+a% −m′0.5. (A11)

Proof. Suppose there is only one nonzero f ∗j,k, so α% = 1/2j. Let f ∗j,l denote this nonzero coefficient.
If its corresponding | f ′j,l | ≤ m′0.5, we have the following three cases:

Case 1: | f j,l | ≤ m′0.5. Since all other f j,k = f ′j,k, we have m0.5 −m′0.5 = 0.
Case 2: m′0.5 < | f j,l | ≤ m′0.5+a%. Then, we have m0.5 = | f j,l |, so m0.5 −m′0.5 = | f j,l | −m′0.5 ≤ m′0.5+a% −m′0.5.
Case 3: | f j,l | > m′0.5+a%. Then, we have m0.5 = m′0.5+a%, so m0.5 −m′0.5 = m′0.5+a% −m′0.5.

Together, we have
m0.5 −m′0.5 ≤ m′0.5+a% −m′0.5.

If its corresponding | f ′j,l | > m′0.5, similarly, we can prove

m′0.5−a% −m′0.5 ≤ m0.5 −m′0.5.

This proves the result when we have only one nonzero f ∗j,k. For more than one nonzero f ∗j,k
coefficient, we can use iteration by adding one at one time. Therefore, the result holds.

Lemma A5. (Order of the maximum to median ratio of wavelet coefficients in the jump case) Suppose ft is a
Hölder continuous process with exponent α, 0 < α ≤ 1, except for a jump of size L. Then, for sufficiently large j,

max(| f j,k|)
median(| f j,k|)

≥ C′L2jα, (A12)

where max(| f j,k|) = max{| f j,k|, k = 0, ..., 2j − 1}, median(| f j,k|) = median{| f j,k|, k = 0, ..., 2j − 1} and C′L
is a constant and increases as L increases.

Proof. First, we consider max(| f j,k|). In a neighborhood of point t where ft is continuous, by
Lemmas A1 and A2, wavelet coefficients at such points are at order 2−j(α+1/2) with α close to 1/2.
On the other hand, nearby a jump point in ft, by Lemma A3, for sufficiently large j, | f j,k| converges no
faster than 2−j/2. Since the order 2−j/2 is much larger than 2−j(α+1/2), we have max(| f j,k|) regulated
by the jump part.

Second, we consider median(| f j,k|). Assume we have n = 2J discrete observations and that
the number of jumps is R. Since the wavelet functions have compact support, among the wavelet
coefficients at a fine level, no more than bR (%) of them will be affected by the jumps, where b is very
small. For example, if we use a wavelet of support length S, we have 2J−1 wavelet coefficients at the
finest level, and there will be no more than SR of them affected by jumps. Thus, in this case, we have
bR = SR/2J−1 = (2S/n)R, which goes to zero as n goes to infinity. Since the number of coefficients
affected by jumps is very small compared to the total number of wavelets coefficients, i.e. bR� 0.5,
if we order the wavelet coefficients at fine levels, by Lemma A4, median(| f j,k|) will be surely regulated
by the continuous part.



Econometrics 2016, 4, 34 20 of 26

Together, when j is sufficiently large, the ratio

max(| f j,k|)
median(| f j,k|)

≥ CL2−j/2

C2−j(α+1/2)
= C′L2jα. (A13)

Lemma A6. (Order of the maximum to median ratio of wavelet coefficients in the Brownian motion case) Let
Bt, 0 ≤ t ≤ 1 be a Brownian motion and Bj,k be the corresponding wavelet coefficients. Then,

lim
j→∞

P

 max(|Bj,k|)
median(|Bj,k|)

≥

√
2 log 2j

0.6745

 = 0, (A14)

where max(|Bj,k|) = max{|Bj,k|, k = 0, ..., 2j − 1}, and median(|Bj,k|) is the median of |Bj,k| for
k = 0, . . . , 2j − 1.

Proof. For fixed j, Bj,k is a stationary Gaussian process with mean zero and variance function

Var
(

Bj,k
)
= 2j

∫
(ψ(2jt− k))2dt =

∫
(ψ(t))2dt = 1.

Therefore, we have
median(|Bj,k|) = 0.6745. (A15)

We have

P
(

max
k

(|Bj,k|) ≥
√

2 log 2j
)
≤

2j−1

∑
k=0

P
(
|Bj,k| ≥

√
2 log 2j

)
≤ 2j 1

√
2π
√

2 log 2j
exp

(
−2 log 2j

2

)
≤ 1

2
√

π log 2j
(A16)

where the second inequality is derived using the inequality P(Bj,k > x) ≤ 1√
2πx

exp(− x2

2 ).
By (A15) and (A16), Equation (A14) follows.

Remark. The covariance function of Bj,k is

E
(

Bj,kBj,k′
)
= E

[(
2j/2

∫
ψ(2jt− k)dBt

)(
2j/2

∫
ψ(2jt− k′)dBt

)]
= 2j

∫
ψ(2jt− k)ψ(2jt− k′)dt

=
∫

ψ(t)ψ(t− (k− k′))dt,

which is zero when |k − k′| is bigger than the range of supp(ψ). That is, Bj,k, k = 0, 1, . . . , 2j − 1,
a stationary Gaussian process with the m-dependent covariance structure, and we can derive an
asymptotic distribution of maxk(|Bj,k|).

Lemma A7. (Equivalent representation of the realized volatility of X) Suppose X follows an Itô process
satisfying the stochastic differential equation

dXt = µtdt + σtdBt, t ∈ [0, 1]. (A17)
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The realized volatility of X at t = 1 is defined by

[X, X]1 ≡
n

∑
k=1

(Xtk − Xtk−1)
2, (A18)

where {tk, k = 1, ...n} is an equidistant partition on [0, 1]. Then, we have√
n
2

(
[X, X]1 −

∫ 1

0
σ2

s ds
)
L stably→

∫ 1

0
σ2

s dBdiscrete
s , (A19)

where stable convergence is defined in Rényi, 1963 [43], Aldous and Eagleson, 1978 [44], and Hall and Heyde,
1980 [45].

Proof. By Itô’s Lemma, we have for any k = 1, . . . , n,

(Xtk − Xtk−1)
2 = 2

∫ tk

tk−1

(Xs − Xtk−1)dXs +
∫ tk

tk−1

σ2
s ds. (A20)

Then, we have

[X, X]1 =
n

∑
k=1

{
2
∫ tk

tk−1

(Xs − Xtk−1)dXs +
∫ tk

tk−1

σ2
s ds
}

= 2
n

∑
k=1

∫ tk

tk−1

(Xs − Xtk−1)dXs +
∫ 1

0
σ2

s ds. (A21)

Now, it is enough to show

√
2n

n

∑
k=1

∫ tk

tk−1

(Xs − Xtk−1)dXs
L stably→

∫ 1

0
σ2

t dBdiscrete
t . (A22)

Let Xt = XD
t + XM

t , where XD
t =

∫ t
0 µsds and XM

t =
∫ t

0 σsdBs. Simple algebraic manipulations show

n

∑
k=1

∫ tk

tk−1

(Xs − Xtk−1)dXs

=
n

∑
k=1

∫ tk

tk−1

(XD
s − XD

tk−1
)dXD

s +
n

∑
k=1

∫ tk

tk−1

(XM
s − XM

tk−1
)dXD

s

+
n

∑
k=1

∫ tk

tk−1

(XD
s − XD

tk−1
)dXM

s +
n

∑
k=1

∫ tk

tk−1

(XM
s − XM

tk−1
)dXM

s

= T1 + T2 + T3 + T4.

For T1, since µt is bounded, we have

max
k

max
s∈[tk−1,tk ]

|XD
s − XD

tk−1
| ≤ max

t∈[0,1]
|µt|max

k
max

s∈[tk−1,tk ]
|s− tk−1|

≤ Op(n−1) a.s. (A23)

Then, we have

|T1| ≤ Op(n−1)
n

∑
k=1

∫ tk

tk−1

|µs|ds

≤ Op(n−1) max
t∈[0,1]

|µt|
n

∑
k=1

(tk − tk−1)

= Op(n−1) a.s., (A24)
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where the first and last lines are due to (A23) and the boundedness of µt, respectively.
For T2, we have

T2 =
n

∑
k=1

∫ tk

tk−1

(XM
s − XM

tk−1
)(µs − µtk−1)ds +

n

∑
k=1

∫ tk

tk−1

(XM
s − XM

tk−1
)µtk−1 ds

= T21 + T22.

First consider that T21. µt is continuous, and so, we have |µs − µbsnc/n| → 0 a.s. The boundedness of

µ2
t and dominated convergence theorem imply E

[∫ 1
0 (µs − µbnsc/n)

2ds
]
= o(1). Thus, we have

E [|T21|] = E
[∣∣∣∣∫ 1

0
(XM

s − XM
bnsc/n)(µs − µbnsc/n)ds

∣∣∣∣]
≤

(
E
[∫ 1

0
(XM

s − XM
bnsc/n)

2ds
])1/2 (

E
[∫ 1

0
(µs − µbnsc/n)

2ds
])1/2

≤ O(n−1/2)E
[∫ 1

0
(µs − µbnsc/n)

2ds
]1/2

= o(n−1/2), (A25)

where the first inequality is due to Hölder’s inequality, and the second inequality is by the fact that

E
[
(XM

s − XM
tk−1

)2
]

= E
[∫ s

tk−1

σ2
x dx
]

= O(n−1), (A26)

where the first and second equalities are due to the Itô isometry and the boundedness of σt,
respectively. For T22, since

∫ tk
tk−1

(XM
s − XM

tk−1
)µtk−1 ds, k = 1, . . . , n, are uncorrelated, simple algebraic

manipulations show

E
[

T2
22

]
=

n

∑
k=1

E

[(∫ tk

tk−1

(XM
s − XM

tk−1
)µtk−1 ds

)2
]

+
n

∑
k 6=k′

E

[∫ tk

tk−1

(XM
s − XM

tk−1
)µtk−1 ds

∫ tk′

tk′−1

(XM
s − XM

tk′−1
)µtk′−1

ds

]

=
n

∑
k=1

E

[(∫ tk

tk−1

(XM
s − XM

tk−1
)µtk−1 ds

)2
]

≤
n

∑
k=1

E
[∫ tk

tk−1

(XM
s − XM

tk−1
)2ds

∫ tk

tk−1

µ2
tk−1

ds
]

≤ O(n−1)
n

∑
k=1

∫ tk

tk−1

E
[
(XM

s − XM
tk−1

)2
]

ds

= O(n−2), (A27)

where the first inequality is due to Hölder’s inequality and the fifth and sixth lines are due to the
boundedness of µt and (A26), respectively. By (A25) and (A27), we have

T2 = op(n−1/2). (A28)
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For T3, the sequence,
∫ tk

tk−1
(XD

s −XD
tk−1

)dXM
s , k = 1, . . . , n, is a martingale difference sequence, and

so, we have

E

( n

∑
k=1

∫ tk

tk−1

(XD
s − XD

tk−1
)dXM

s

)2


=
n

∑
k=1

E

[(∫ tk

tk−1

(XD
s − XD

tk−1
)dXM

s

)2
]

=
n

∑
k=1

E
[∫ tk

tk−1

(XD
s − XD

tk−1
)2σ2

s ds
]

= O(n−2),

where the second equality is due to the Itô isometry and the last equality is from (A23) and the
boundedness of σt. Thus,

T3 = Op(n−1). (A29)

For T4, since σt is bounded and integrable,
∫ 1

0 σ4
t dt < ∞. Thus, an application of Theorem 5.1 in

Jacod and Protter (1998) [46] leads to:

√
n

n

∑
k=1

∫ tk

tk−1

(XM
s − XM

tk−1
)dXM

s
L stably→ 1√

2

∫ 1

0
σ2

t dBdiscrete
t . (A30)

Collecting (A24), (A28)–(A30), we have (A22).

Corollary 1. Suppose X follows (1). Then, [X, X]1 defined by Equation (A18) follows

[X, X]1 ≈L
∫ 1

0
σ2

t dt + ∑
0<s≤1

L2
s +

√
2
n

∫ 1

0
σ2

t dBdiscrete
t . (A31)

Appendix B. Tables and Figures

Note that in the following tables, we take α close to 1/2 and 0 < γ ≤ 2/3.

Table B1. Summary of the order of the wavelet coefficients of different components.

Component X [X, X] Y [Y , Y] [Y , Y](avg)

cont. drift (≤) 2−j(3/2) 2−j(3/2) 2−j(3/2) 2−j(3/2) 2−j(3/2)

cont. diffusion (≤) 2−j(1/2+α) n−1/22−j(1/2+α) 2−j(1/2+α) n1/22−j(1/2+α) n(1−2γ)/22−j(1/2+α)

jump (≥) 2−j/2 2−j/2 2−j/2 2−j/2 2−j/2

noise (OP) 0 ∼ 0 n−1/2 ∼ 0 ∼ 0

Table B2. Summary of the convergence rate of jump location estimation.

X [X, X] Y [Y , Y] [Y , Y](avg)

OP(n−1) OP(n−1) OP(n−1 log2 n) NA OP(n−1)

Table B3. Summary of the convergence rate of jump variation estimation.

X [X, X] Y [Y , Y] [Y , Y](avg)

OP(n−1/3) OP(n−1/2) OP(n−1/4) NA OP(n−(2/3)γ)
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Figure B1. Wavelet coefficients of X at levels W1–W5, with a jump at location 9424.

Figure B2. Wavelet coefficients of Y at levels W1–W5, with a jump at location 9424.
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