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Abstract: In this paper, we study the asymptotic behavior of the sequential empirical process and
the sequential empirical copula process, both constructed from residuals of multivariate stochastic
volatility models. Applications for the detection of structural changes and specification tests of the
distribution of innovations are discussed. It is also shown that if the stochastic volatility matrices
are diagonal, which is the case if the univariate time series are estimated separately instead of being
jointly estimated, then the empirical copula process behaves as if the innovations were observed;
a remarkable property. As a by-product, one also obtains the asymptotic behavior of rank-based
measures of dependence applied to residuals of these time series models.
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1. Introduction

In many financial applications, it is necessary to model both the serial dependence and the
dependence between different time series. This can be done instantly by proposing a full parametric
model for the multivariate time series, or by modeling the serial dependence for each series and
then achieving the interdependence between the series through copulas, which are joint distribution
functions of random variables with uniform margins. In any case, one has to deal with the residuals of
the model since the innovations are not observable.

Working with residuals complicates the inference procedure since the limiting distribution of
statistics and parameters depend in general on unknown parameters. See, e.g., Bai [1] and Ghoudi and
Rémillard [2]. In particular, as shown in Bai [3] and Horváth et al. [4], the distribution of the empirical
process of GARCH residuals in the univariate case (or their squares) is not trivial. Here, we aim to
extend the results of these authors to find the asymptotic behavior of sequential empirical processes
constructed from the residuals of multivariate stochastic volatility models. The reason for considering
sequential processes is that we want to be able to construct tests for the detection of structural changes
in the distribution of the innovations, which is an important problem in practice. Unveiling the punch,
one can show that the limiting distribution of the test statistics used for change point analysis will not
depend on the estimated parameters of the conditional mean and covariance.

Empirical processes can also be used to test hypotheses about the distribution. In particular,
one method involves trying to fit copula models for the dependence between the innovations of
several time series. In many applications so far, the serial dependence problem is either ignored, i.e.,
the data are not “filtered” to remove serial dependence, as in Dobrić and Schmid [5], Dobrić and
Schmid [6] and Kole et al. [7], or the data are “filtered” but the potential inferential problems of using

Econometrics 2017, 5, 13; doi:10.3390/econometrics5010013 www.mdpi.com/journal/econometrics

http://www.mdpi.com/journal/econometrics
http://www.mdpi.com
http://www.mdpi.com/journal/econometrics


Econometrics 2017, 5, 13 2 of 23

these transformed data are not taken into account. For example, Panchenko [8] uses a goodness-of-fit
test on “filtered” data (residuals of GARCH models in his case), without proving that his proposed
methodology works for residuals. However, he mentioned in passing that working with residuals
could destroy the asymptotic properties of his test. A similar situation appears in Breymann et al. [9]
where both the problem of working with residuals and the problem of the estimation of the copula
parameters are ignored.

It seems that the first paper that rigorously addresses the problems raised by the use of residuals
in estimation and goodness-of-fit of copulas is Chen and Fan [10]. Using a multivariate GARCH-like
model with diagonal stochastic volatility matrices, Chen and Fan [10] showed the remarkable result that
estimating the copula parameters using the rank-based maximum pseudo-likelihood method [11,12]
with the ranks of the residuals instead of the (non-observable) ranks of innovations, leads to the
same asymptotic distribution. In particular, the limiting distribution of the estimation of the copula
parameters does not depend on the unknown parameters used to estimate the conditional mean and
the conditional variance. This property is crucial if one wants to develop goodness-of-fit tests for the
copula family of the innovations. In Chen and Fan [10], the authors also proposed ways of selecting or
more precisely ranking copulas, based on pseudo-likelihood ratio tests.

Here, under similar assumptions, one can show that the limiting distribution of the empirical
copula process does not depend on the conditional mean and conditional variance parameters.
As a by-product, the limiting distribution of rank-based dependence measures computed with the
residuals are the same as if the dependence measures were computed with the innovations. It is worth
noting that, even if Duchesne et al. [13], and Oh and Patton [14] (Section 3.4) were published before
this paper, the authors actually build on results proved here.

In what follows, one starts, in Section 2, by describing the model and stating the convergence
result for the main sequential empirical process. As a result, tests of structural change and specification
tests can be defined for the innovations. Also, as a corollary, one obtains the remarkable result that the
limiting copula process does not depend on the estimated parameters of the conditional mean and
variance, if the stochastic volatility matrices are diagonal (called Model 2 here and defined in Section 2).
This is indeed the case in Chen and Fan [10]. Under this model, specification tests for the copula are
proposed in Section 3. These tests are either based on the empirical copula or the empirical Rosenblatt
process, whose limiting distribution is studied. Also, since the specification tests rely on estimators of
the copula parameters, the asymptotic behavior of rank-based estimators is studied. In particular, one
recalls the remarkable result of Chen and Fan [10] concerning maximum pseudo-likelihood estimators.
One also obtains the asymptotic behavior of rank-based dependence measures. Finally, a real data
example is treated in Section 4, using a data set from Chen and Fan [10]. The main results are proved
in a series of Appendices.

2. Weak Convergence of Empirical Processes of Residuals

Consider the stochastic volatility model

Xi = µi(θ) + σi(θ)εi,

where the innovations εi = (ε1i, . . . , εdi)
> are i.i.d., E(ε ji) = 0, E(ε2

ji) = 1, with continuous distribution
function K, and µi, σi are Fi−i-measurable and independent of εi. Here Fi−1 contains information from
the past and possibly information from exogenous variables as well. Since the distribution function K
is continuous, there exists a unique copula C [15] so that for all x = (x1, . . . , xd)

> ∈ Rd,

K(x) = C{F(x)}, F(x) = (F1(x1), . . . , Fd(xd))
>, (1)

where F1, . . . , Fd are the marginal distribution functions of K, i.e., Fj is the distribution function of
ε ji, j ∈ {1, . . . , d}. Defining Ui = F(εi), i ∈ {1, . . . , n}, one obtains that U1, . . . , Un are i.i.d. with
distribution function C. However they are not observable since F is unknown.
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Given an estimator θn of θ, compute the residuals ei,n = (e1i,n, . . . , edi,n)
>, where

ei,n = σ−1
i (θn){Xi − µi(θn)}.

The main results of the paper are deduced from the asymptotic behavior of the sequential
empirical process

Kn(s, x) =
1√
n

bnsc

∑
i=1
{1(ei,n ≤ x)− K(x)} , (s, x) ∈ [0, 1]× R̄d, (2)

where 1 stands for the indicator function and y ≤ x means that the inequality holds componentwise.
Further set

Kn(x) =
1
n

n

∑
i=1

1(ei,n ≤ x), x ∈ R̄d,

and Fn(x) = (F1n(1, x1), . . . , Fdn(1, xd))
>, where

Fjn(s, xj) =
1

n + 1

bnsc

∑
i=1

1(eji,n ≤ xj), j ∈ {1, . . . , d}, (s, x) ∈ [0, 1]× R̄d. (3)

Finally, for j ∈ {1, . . . , d}, the marginal processes Fj,n are defined, for any s ∈ [0, 1] and any xj ∈ R̄ by

Fj,n(s, xj) =
1√
n

bnsc

∑
i=1
{1(eji,n ≤ xj)− Fj(xj)} =

√
n{Fj,n(s, xj)− sFj(xj)}+ oP(1).

From now on, convergence of processes means convergence with respect to the Skorohod topology
for the space of càdlàg processes, and is denoted by . The processes studied here are indexed by
[0, 1]× [0, 1]d, [0, 1]× [−∞,+∞]d, or products of theses spaces. Note that random vectors belong to
these spaces because they are constant random functions.

To be able to state the convergence result for Kn, one needs to introduce auxiliary empirical
processes. Set

αn(s, x) =
1√
n

bnsc

∑
i=1
{1(εi ≤ x)− K(x)} , (s, x) ∈ [0, 1]× R̄d,

βn(s, u) =
1√
n

bnsc

∑
i=1
{1(Ui ≤ u)− C(u)} , (s, u) ∈ [0, 1]1+d,

and β j,n(s, uj) = βn(s, 1, . . . , 1, uj, 1, . . . , 1) = 1√
n ∑
bnsc
i=1

{
1(Uji ≤ uj)− uj

}
, j = 1 . . . , d.

It is well known [16] that αn  α and βn  β where α is a K-Kiefer process and β is
a C-Kiefer process. Recall that α is a K-Kiefer process if it is a continuous centered Gaussian
process with Cov {α(s, x), α(t, y)} = (s ∧ t) {K(x∧ y)− K(x)K(y)}, s ∈ [0, 1] and x, y ∈ Rd.
Here (x∧ y)j = min(xj, yj), j = 1 . . . , d. Note that for all (s, x) ∈ [0, 1]× R̄d, α(s, x) = β{s, F(x)}.

The following assumptions are needed in order to prove the convergence of Kn. First, assume
that µi and σi are continuously differentiable with respect to θ ∈ O ⊂ Rp, and set γ0i = σ−1

i µ̇i and
γ1ki = σ−1

i σ̇ki, where

(µ̇i)jl = ∂θl µji, (σ̇ki)jl = ∂θl σjki = ∂θl (σi)jk, j, k ∈ {1, . . . , d}, l ∈ {1, . . . , p}.

Let di,n = εi − ei,n − (γ0iΘn + ∑d
k=1 εkiγ1kiΘn)/

√
n, where Θn = n1/2(θn − θ). Note that di,n is the

error term in the first order Taylor expansion of ei,n about θ. These terms are needed in order to be
able to measure the difference between Kn and αn. Next, assume that for any j ∈ {1, . . . , d}, and any
x ∈ R̄d, the following properties hold:
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(A1) Γ0,n(s) =
1
n

bnsc

∑
i=1

γ0i
Pr−→ sΓ0, Γ1k,n(s) =

1
n

bnsc

∑
i=1

γ1ki
Pr−→ sΓ1k, uniformly in s ∈ [0, 1], where Γ0

and Γ1k are deterministic, k = 1, . . . , d.

(A2)
1
n

n

∑
i=1

E
(
‖γ0i‖k

)
and

1
n

n

∑
i=1

E
(
‖γ1ji‖k

)
are bounded, for k = 1, 2.

(A3) There exists a sequence of positive terms ri > 0 so that ∑i≥1 ri < ∞ and such that the sequence
max

1≤i≤n
‖di,n‖/ri is tight.

(A4) max1≤i≤n ‖γ0i‖/
√

n = oP(1) and max1≤i≤n |ε ji|‖γ1ji‖/
√

n = oP(1).

(A5) (αn, Θn) (α, Θ) in D([−∞, ∞]d)×Rp.

(A6) ∂xj K(x) and xj∂xj K(x) are bounded and continuous on R̄d = [−∞,+∞]d. In addition, F1, . . . , Fd
have continuous bounded densities f1, . . . , fd respectively.

(A7) For all k 6= j, f j(xj)E{|εk1|1(ε1 ≤ x)|ε j1 = xj} and xj f j(xj)E{|εk1|1(ε1 ≤ x)|ε j1 = xj} are
bounded and continuous on R̄d.

Remark 1. Note that (A1) and (A2) are trivially satisfied if the sequences γ0i and γ1ki are stationary, ergodic and

square integrable. Also, if 1
n ∑n

i=1 γ0i
Pr−→ Γ0, 1

n ∑n
i=1 γ1ki

Pr−→ Γ1k, and 1
n ∑n

i=1 E(‖γ0i‖2), 1
n ∑n

i=1 E(‖γ1ki‖2)

converge, then (A1) and (A2) are satisfied.

In order to present the main results, and in view of applications, one needs to consider two models:

• Model 1. In this model, for the sake of identifiability, we assume that the correlation matrix
E
(
εiε
>
i
)

is the identity matrix. This means that the conditional covariance matrix of the
observations relative to Fi−1 is σiσ

>
i . In particular, the conditional correlation is not necessarily

constant and it is estimated.
• Model 2. In this model, σi is a diagonal matrix for any i, and there is no restriction on the

correlation matrix of the innovations. This means σiσ
>
i is diagonal and for any j ∈ {1, . . . , d},(

σiσ
>
i
)

jj is the conditional variance of the observations Xji relative to Fi−1. In particular, this
implies that the conditional correlation between the observations is constant, does not depend
on θ, and it is implicitly incorporated in the copula C of the innovations. This model appears
naturally in practice when the parameters of univariate time series are estimated separately as
in Chen and Fan [10]. This model is not the same as the diagonal representation in Engle and
Kroner [17], which is included in Model 1.

Remark 2. If in Model 1 the conditional correlations are constant (say R), then this model can be transformed
into the Model 2 representation. In fact, one can then find a matrix a so that R = aa> and σi = σ̃ia, where σ̃i
diagonal. Then ε̃i = aεi has correlation R and Xi = µi + σ̃i ε̃i.

One can now state the main convergence result. Its proof is given in Appendix A.1.

Theorem 1. Under Model 1 and assumptions (A1)–(A7), Kn  K, with

K(s, x) = α(s, x) + s∇K(x)>Γ0Θ + s
d

∑
j=1

d

∑
k=1

Gjk(x)(Γ1kΘ)j,
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where Gjk(x) = f j(xj)E
{

εk11(ε1 ≤ x)|ε j1 = xj
}

. In particular, Gjj(x) = xj∂xj K(x). Furthermore, for all
j ∈ {1, . . . , d}, Fj,n  Fj, where

Fj(s, xj) = β j{s, Fj(xj)}+ s f j(xj)
{
(Γ0Θ)j + xj(Γ1jΘ)j

}
+ s ∑

k 6=j
f j(xj)E(εk1|ε j1 = xj)(Γ1kΘ)j.

Under Model 2 and assumptions (A1)–(A6), Kn  K, where

K(s, x) = α(s, x) + s∇K(x)>Γ0Θ + s
d

∑
j=1

Gjj(x)(Γ1jΘ)j.

Remark 3. One immediate application of Theorem 1 if for goodness-of-fit tests for K. For example,
one can be interested in testing the null hypothesis H0 : K ∈ K = {Kφ; φ ∈ P}, for some
parametric family K. Using Theorem 1, such tests could be based on functionals of the empirical process√

n(Kn − Kφn) = Kn(1, ·)−
√

n(Kφn − K), provided φn is a “good estimator” of φ. Goodness-of-fit tests
could also be based on the so-called Rosenblatt transform of K. See, e.g., Genest and Rémillard [18] and
Rémillard [19] for details.

To state the next result, which is crucial for change point problems involving innovations, define,
for all (s, x) ∈ [0, 1]× R̄d, the sequential process

An(s, x) =
1√
n

bnsc

∑
i=1
{1(ei,n ≤ x)− Kn(x)} = Kn(s, x)− bnsc

n
Kn(1, x). (4)

Note that many test statistics for detecting structural changes in the distribution of innovations are
based on functionals of An. From the representation of An in terms of Kn given in (4) and Theorem 1,
one obtains a surprising result for the asymptotic behavior of An.

Corollary 1. Under Model 1 and assumptions (A1)–(A7), or under Model 2 and assumptions (A1)–(A6),
An  A, with

A(s, x) = α(s, x)− sα(1, x), (s, x) ∈ [0, 1]× R̄d.

In particular A is parameter-free, depending only on K.

Remark 4. Although the distribution of A depends on the unknown distribution function K, it is still possible
to bootstrap A, i.e., to generate asymptotically independent copies of A, making it possible to detect structural
changes in the distribution of the innovations. See Rémillard [20] for details.

Empirical Processes Related to the Copula

So far, we have discussed two applications of Theorem 1: specification tests and change point
problems for the distribution of the innovations. Next, if one is interested in modeling the dependence
between innovations, one has to deal with the (unique) copula C associated with K. Since the copula is
independent of the margins, one way to estimate it is to remove their effect by replacing ei,n with the
associated rank vectors

Ui,n = (U1i,n, . . . , Udi,n)
>, Uji,n = Rank(eji,n)/(n + 1), i ∈ {1, . . . , n},

where Rank(eji,n) being the rank of eji,n amongst ej1,n, . . . , ejn,n, j ∈ {1, . . . , d}. This can also be written
as Ui,n = Fn(ei,n), i ∈ {1, . . . , n}. Now define the empirical copula

Cn(u) =
1
n

n

∑
i=1

1(Ui,n ≤ u), u ∈ [0, 1]d,
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together with the sequential copula process

Cn(s, u) =
1√
n

bnsc

∑
i=1
{1(Ui,n ≤ u)− C(u)} , (s, u) ∈ [0, 1]1+d,

and set

Gn(s, u) =
1√
n

bnsc

∑
i=1
{1(Ui,n ≤ u)− Cn(u)} = Cn(s, u)− bnsc

n
Cn(1, u).

In order to work on the space of continuous functions on [0, 1]d, one assumes from now on the following
additional technical assumption [21] (Condition 2.1) on the partial derivatives of C.

Condition 1. For each j ∈ {1, . . . , d}, the j-th first-order partial derivative ∂uj C exists and is continuous on
{u ∈ [0, 1]d; 0 < uj < 1}.

The next result follows directly from Theorem 1, using Genest et al. [22] (Proposition A.1), and the
representation of Gn.

Corollary 2. Under Model 1 and assumptions (A1)–(A7), Cn  C, with

C(s, u) = Č(s, u) + s ∑
j 6=k

G̃jk(u)(Γ1kΘ)j, (5)

where G̃jk(u) = fj ◦ F−1
j (uj)

[
E
{

εk11(U1 ≤ u)|Uj1 = uj
}
− ∂uj C(u)E

{
εk1|Uj1 = uj

}]
, j ∈ {1, . . . , d}, and

Č(s, u) = β(s, u)− s
d

∑
j=1

∂uj C(u)βj(1, uj), (s, u) ∈ [0, 1]1+d. (6)

Moreover, Gn  G, where

G(s, u) = β(s, u)− sβ(1, u), (s, u) ∈ [0, 1]1+d. (7)

Furthermore, under Model 2 and assumptions (A1)–(A6), Cn  Č.

An immediate application of Corollary 2 is that tests for detecting structural change in the copula
of the innovations can be based on the process Gn and that the limiting process G is parameter-free,
depending only on the unknown copula C. However, as it was also true for A, it is easy to simulate
asymptotically independent copies of G. See Rémillard [20].

Remark 5. It is remarkable that under Model 2, Cn converges to Č defined by (6), which does not depend on Θ,
even if K does. This important property will play a major role in the next section, where specification tests for the
copula are discussed. Also, recall that Č(1, ·) is the asymptotic limit of the empirical copula process constructed
from innovations if they were observable; see, e.g., Gänssler and Stute [23], Fermanian et al. [24], Tsukahara
[25]. In fact, setting Ǔi,n = Ri/(n + 1), where R1, . . . , Rn are the associated rank vectors of U1, . . . , Un,
one easily obtains the result that Č is the asymptotic limit of Čn(s, u) = 1√

n ∑
bnsc
i=1

{
1
(
Ǔi,n ≤ u

)
−C(u)

}
,

(s, u) ∈ [0, 1]1+d.
Under Model 1, to obtain a limit C that does not depend on the estimated parameters, it follows from (5)

that the following condition is necessary: (Γ1kθ)j = 0 for all θ and all j 6= k, which is equivalent to the condition:
(Γ1k)jl = 0 for all l and all j 6= k. The latter occurs for example if

{σi(θ)}jk = {σi(θ)}kk(Ai)jk, with (Ai)jj = 1 and Ai invertible.
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In this case Ai must be known since it is parameter-free. This is true in particular if σi is diagonal, in which case
Ai is the identity matrix. Setting Hi to be the diagonal matrix with (Hi)jj = (σi)jj, j ∈ {1, . . . , d}, then one
can rewrite the model as Xi = µi + AiHiεi, which is a simple rescaling of Model 2. This justifies the restriction
to this family for models in the next section.

Semiparametric Estimation of the Copula

As proposed by Xu [26], another method to estimate the copula C, called IFM (Iterated Function
Method), is to find parametric estimators for each margin, and then use the estimator Kn of K with these
estimated margins. More precisely, if F̂n is the vector of estimated parametric marginal distributions,
then the copula C is estimated by Ĉn satisfying Kn = Ĉn ◦ F̂n. Even for Model 2, it is easy to check that
the limiting process Ĉ of Ĉn = n1/2 (Ĉn −C

)
will then depend on all estimated parameters. This is

another reason why one should always estimate the copula with the ranks.

3. Specification Tests for the Copula

We have seen in Corollary 2 that, under Model 2, the sequential copula process Cn converges to a
limit Č not depending on the parameters of conditional mean and covariance. In fact, as already said
in Section 2 this is the model considered by Chen and Fan [10], where

Xji = µji(θ) + hji(θ)
1/2ε ji, i ≥ 1, j ∈ {1, . . . , d},

the innovations εi = (ε1i, . . . , εdi)
> are independent, and ε ji has mean zero and variance 1 for any

j ∈ {1, . . . , d}. It amounts to fit the d univariate stochastic volatility models separately, which is
often the case in applications. Then, θ is either estimated by maximum likelihood, which requires
assuming parametric families for the marginal distributions Fj of ε ji, or by quasi maximum likelihood.
The dependence between the innovations components ε1i, . . . , εdi is then modeled by the copula C of εi.

The aim of this section is to study tests of goodness-of-fit for parametric copula families, i.e., we
want to test the null hypothesis

H0 : C ∈ C = {Cφ; φ ∈ P},

for some parametric family of copula C. Typical families are of the elliptical type (Gaussian and Student
copulas) and Archimedean copulas (Clayton, Frank, Gumbel). See, e.g., Joe [27] and Cherubini et al. [28]
for general references. As proposed in Dias and Embrechts [29], Chen and Fan [10] and Patton [30],
one could also consider mixtures of copulas, while for high-dimensional data, parametric vine models
would be useful; see, e.g., Aas et al. [31], Kurowicka and Joe [32], and references therein.

Under H0, each copula Cφ is assumed to admit a density cφ satisfying the following assumptions:

(B1) For every φ ∈ P , the density cφ of Cφ admits first and second order derivatives with respect
to all components of φ. The gradient (column) vector with respect to φ is denoted ċφ, and the
Hessian matrix is represented by c̈φ.

(B2) For arbitrary u ∈ (0, 1)d and every φ0 ∈ P , the mappings φ 7→ ċφ(u)/cφ(u) and
φ 7→ c̈φ(u)/cφ(u) are continuous at φ0.

(B3) For every φ0 ∈ P , there exist a neighborhood N of φ0 and Cφ0-integrable functions
h1, h2 : Rd → R such that for every u ∈ (0, 1)d,

sup
φ∈N

∥∥∥∥ ċφ(u)
cφ(u)

∥∥∥∥ ≤ h1/2
1 (u) and sup

φ∈N

∥∥∥∥ c̈φ(u)
cφ(u)

∥∥∥∥ ≤ h2(u).

In order to test the null hypothesis that C ∈ C, i.e., C = Cφ for some φ ∈ P , it is natural to consider
functionals of the empirical process Pn =

√
n(Cn − Cφn), where φn is an estimator of φ. Specification

tests based on Pn are described in Section 3.1 together with a bootstrapping method to estimate
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p-values. In Section 3.2, one describes processes constructed from the Rosenblatt transform; their
asymptotic behavior is studied, tests statistics are proposed together with a bootstrapping method.
All these tests use the estimation φn, hence the importance of finding the asymptotic behavior of
Φn =

√
n(φn −φ). In Section 3.3, we consider the most common estimation methods based on ranks,

i.e., φn = Tn(U1,n, . . . , Un,n), for some deterministic function Tn. Finally, estimation methods based on
common dependence measures are described in Section 3.4, and arguments in favor of the Rosenblatt
transform vs. the copula are given in Section 3.5.

3.1. Test Statistics Based on the Empirical Copula

For testing H0, one could use the Cramér-von Mises type statistic based on

Sn =
∫
[0,1]d

P2
n(u)dCn(u) =

n

∑
i=1

{
Cn(Ui,n)−Cφn(Ui,n)

}2 . (8)

According to Genest et al. [33], Sn is one of the best statistics constructed from Pn for an omnibus
test, and is much more powerful and easier to compute than the Kolmogorov-Smirnov type statistic
‖Pn‖ = supu∈[0,1]d |Pn(u)|. Of course, if the parametric family under H1 is specified, then one can find
better tests statistics than Sn. See, e.g., Berg and Quessy [34]. As in Genest and Rémillard [18], assume,
for identifiability purposes, that for every δ > 0,

inf

{
sup

u∈[0,1]d
|Cφ(u)−Cφ0(u)‖ : φ ∈ P and |φ−φ0| > δ

}
> 0.

Furthermore, the mapping φ 7→ Cφ is assumed to be Fréchet differentiable with derivative Ċ, i.e., for all
φ0 ∈ P ,

lim
h→0

sup
u∈(0,1)d

|Cφ0+h(u)−Cφ0(u)− Ċ(u)h|
r(u)‖h‖ = 0, (9)

for some function r such that infu∈(0,1)d r(u) > 0 and E{r(U1)} < ∞. For example, in the Gaussian
copula case, one can take r(u) ≡ 1.

Remark 6. Although Sn was the best test statistic amongst those considered in Genest et al. [33], it might not
remain the case here due to the extra level of variability induced by using residuals. It would be interesting to
reproduce the study in Genest et al. [33] by using residuals of GARCH models to check if the same hierarchy of
tests is obtained.

Before stating the main result of the section, one needs to extend the notion of regularity of φn as
defined in Genest and Rémillard [18]. To this end, define

Wn =
1√
n

n

∑
i=1

ċ(Ui)

c(Ui)
. (10)

One says that φn is regular for φ if (αn,Wn, Φn)  (α,W, Φ) where the latter is centered Gaussian
with E

(
ΦW>

)
= I, and Φ does not depend on θ or Θ. It is an immediate consequence of the delta

method that the property of being regular is preserved by homeomorphisms. The basic result for
testing goodness-of-fit using Pn is stated next and its proof is given in the Appendix B.

Proposition 1. Under Model 2 and assumptions (A1)–(A6), if φn is regular for φ, then Pn  P, and Sn  
S =

∫
[0,1]d P

2(u)dC(u), where P(u) = Č(1, u)− Ċ(u)>Φ, u ∈ [0, 1]d. In fact, if ψ is a continuous function
on the space C([0, 1]), then Tn = ψ(Pn) T = ψ(P). Moreover, the parametric bootstrap algorithm described
next or the two-level parametric bootstrap proposed in Genest et al. [33] can be used to estimate p-values of
Sn or Tn.
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Parametric Bootstrap for Sn

The following procedure leads to an approximate p-value for the test based on Sn. The changes
required for any other function of Pn are obvious. It can be used only if there is an explicit expression
for Cφ. Otherwise, the 2-level parametric bootstrap must be used [18].

Algorithm 1: Parametric bootstrap for the empirical copula process.

For some large integer N, do the following steps:

1.- Compute Cn and estimate φ with φn = Tn (U1,n, . . . , Un,n).
2.- Compute the value of Sn, as defined by (8).
3.- Repeat the following steps for every k ∈ {1, . . . , N}:

(a) Generate a random sample Y(k)
1,n, . . . , Y(k)

n,n from distribution Cφn and compute the

pseudo-observations U(k)
i,n = R(k)

i,n /(n + 1), where R(k)
1,n, . . . , R(k)

n,n are the associated rank

vectors of Y(k)
1,n, . . . , Y(k)

n,n.

(b) Set

C(k)
n (u) =

1
n

n

∑
i=1

1
(

U(k)
i,n ≤ u

)
, u ∈ [0, 1]d

and estimate φ by φ
(k)
n = Tn

(
U(k)

1,n, . . . , U(k)
n,n

)
.

(c) Compute

S(k)
n =

n

∑
i=1

{
C(k)

n

(
U(k)

i,n

)
−C

φ
(k)
n

(
U(k)

i,n

)}2
.

An approximate p-value for the test is then given by ∑N
k=1 1

(
S(k)

n > Sn

)
/N.

An important feature of Algorithm 1 is that one generates observations from the copula Cφn ,
instead of having to generate the whole process Xi and re-estimate θ and φ each time. This is possible
only because P does not depend on Θ or θ. However, for Model 1 where P depends on Θ and possibly
on margin parameters, fitting the copula requires as much work as fitting K since one needs to generate
the whole process Xi each time!

Remark 7. Some authors, e.g., Kole et al. [7], proposed tests statistics of the Anderson-Darling type, dividing

Pn(u) by
√

Cφn(u){1−Cφn(u)}, and then integrating or taking the supremum. As argued in Genest et al. [33]
and Ghoudi and Rémillard [35], these tests should be avoided. First, the denominator only makes sense in the
univariate case when parameters are not estimated. In the present context, the limiting distribution of such
weighted processes has not been proven and in fact, Ghoudi and Rémillard [35] gave an example where the
limiting variance of the weighted process is infinite.

3.2. Tests Statistics Based on the Rosenblatt Transform

Instead of using the empirical copula process, one might also use goodness-of-fit tests constructed
from the Rosenblatt’s transform [36]. Based on recent results of Genest et al. [33], such tests were
among the most powerful omnibus tests.

Recall that the Rosenblatt’s mapping of a d-dimensional copula C is the mapping R from
(0, 1)d → (0, 1)d so that u = (u1, . . . , ud) 7→R(u) = (v1, . . . , vd) with v1 = u1 and

vk =
∂k−1C(u1, . . . , uk, 1, . . . , 1)

∂u1 · · · ∂uk−1

/∂k−1C(u1, . . . , uk−1, 1, . . . , 1)
∂u1 · · · ∂uk−1

,
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k ∈ {2, . . . , d}. Rosenblatt’s transforms for Archimedean copulas and meta-elliptic copulas are quite
easy to compute for any dimension; see, e.g., Rémillard et al. [37]. The usefulness of Rosenblatt’s
transform lies in the following properties [38]: suppose that V ∼ Π, where Π is the independence
copula, which is equivalent to saying that V is uniformly distributed over (0, 1)d. Recall that the
independence copula Π is given by

Π(u1, . . . , ud) =
d

∏
j=1

uj, u1, . . . , ud ∈ [0, 1].

Then R(U) ∼ Π if and only if U ∼ C. In addition, R−1(V) ∼ C. Since U = R−1(V) can be computed
in a recursive way, this is particularly useful for simulation purposes. It follows that the null hypothesis
H0 : C ∈ {Cφ; φ ∈ P} can be stated in terms of Rosenblatt’s transforms viz.

H0 : R ∈ {Rφ; φ ∈ P}.

Using an idea of Breymann et al. [9], extending previous ideas of Durbin [39] and Diebold et al. [40,41],
one can build tests for H0 by comparing the empirical distribution function of Ei,n = Rφn(Ui,n),
i ∈ {1, . . . , n}, with Π, since under H0, Ei,n has approximately distribution Π. More precisely, set

Dn(u) =
1√
n

n

∑
i=1
{1(Ei,n ≤ u)−Π(u)}, u ∈ [0, 1]d, (11)

and define

S(B)
n =

∫
[0,1]d

D2
n(u)du

=
n
3d −

1
2d−1

n

∑
i=1

d

∏
k=1

(
1− E2

ki,n

)
+

1
n

n

∑
i=1

n

∑
j=1

d

∏
k=1

(
1− Eki,n ∨ Ekj,n

)
, (12)

where a ∨ b = max(a, b).
To say what is a regular estimators in this setting, one needs to define

Bn(u) =
1√
n

n

∑
i=1
{1(Ei ≤ u)−Π(u)}, u ∈ [0, 1]d,

in terms of Ei = Rφ(Ui) ∼ Π, i ∈ {1, . . . , n}. It is easy to check that check that (Bn,Wn)  (B,W),
where the joint law is Gaussian, and B is a Π-Brownian bridge. One then says that φn is regular for
φ if (Bn,Wn, Φn) (B,W, Φ) where the latter is centered Gaussian with E

(
ΦW>

)
= I, and Φ does

not depend on θ or Θ.
As in the case of copula processes studied in the previous section, in order to prove the next result,

one must assume that Rφ is Fréchet differentiable, i.e.,

lim
h→0

sup
u∈(0,1)d

|Rφ0+h(u)−Rφ0(u)− Ṙ(u)h‖
r(u)‖h‖ = 0, (13)

for some function r such that infu∈(0,1)d r(u) > 0 and E{r(U1)} < ∞. For example, in the Gaussian

copula case, one can take r(u) = 1+ ∑d−1
j=1

{
N−1(uj)

}2. One also has to assume that R is continuously
differentiable with respect to u ∈ (0, 1). One can now state the main result of the section: giving the
convergence of the empirical Rosenblatt process.

Recall that Ǔi,n = Ri/(n + 1), where R1, . . . , Rn are the associated rank vectors of U1, . . . , Un, and
let Ěi,n = Rφ̌n

(Ǔi), where φ̌n is the estimator of φ calculated with Ǔi,n = Ri/(n + 1), i ∈ {1, . . . , n}.
Further set
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Ďn(u) =
1√
n

n

∑
i=1
{1(Ěi,n ≤ u)−Π(u)}, u ∈ [0, 1]d. (14)

Theorem 2. Under Model 2 and assumptions (A1)–(A6), if (φn) is regular for φ, then Dn − Ďn  0 and
Ďn  Ď, with Ď given by

Ď(u) = B(u)− κ(u)−Φ>$(u),

where B is a Π-Brownian bridge, E{B(u)W} = $(u), E{κ(u)W} = 0, and

κ(u) =
d

∑
j=1

j

∑
k=1

E
{

1(Ẽ ≤ u)β j(1, Ũk)∂ukR
(j)(Ũ)|Ẽj = uj

}
,

where Ũ ∼ C = Cφ and Ẽ = R(Ũ), with Ũ independent of all other observations.

The proof of Theorem 2 is given in Appendix A.2. Note that as in the case of the copula process,
the limiting process Ď does not depend on θ, as if θ were known. The following result is then a direct
application of the continuous mapping theorem.

Proposition 2. Under the assumptions of Theorem 2, S(B)
n  S(B) =

∫
[0,1]d Ď

2(u)du. In fact, if ψ is a

continuous function on the space C([0, 1]), then the statistic Tn = ψ(Dn) converges in law to T = ψ(Ď).
Moreover, the parametric bootstrap algorithm described next in Section 3.2 can be used to estimate p-values of
S(B)

n or Tn.

A Parametric Bootstrap for S(B)
n

The following algorithm is described in terms of statistic S(B)
n but can be applied easily to any

statistic of the form Tn = ψ(Dn).

Algorithm 2: Parametric bootstrap for the empirical Rosenblatt process.

For some large integer N, do the following steps:

1. Estimate φ by φn = Tn (U1,n, . . . , Un,n), compute Dn and S(B)
n according to formulas (11)

and (12).
2. For some large integer N, repeat the following steps for every k ∈ {1, . . . , N}:

(a) Generate a random sample Y(k)
1,n, . . . , Y(k)

n,n from distribution Cφn and compute the

pseudo-observations U(k)
i,n = R(k)

i,n /(n + 1), where R(k)
1,n, . . . , R(k)

n,n are the associated

rank vectors of Y(k)
1,n, . . . , Y(k)

n,n.

(b) Estimate φ by φ
(k)
n = Tn

(
U(k)

1,n, . . . , U(k)
n,n

)
, and compute and compute

E(k)
i,n = Rφn(k)

(
U(k)

i,n

)
, i ∈ {1, . . . , n}.

(c) Let

D(k)
n (u) =

1√
n

n

∑
i=1

{
1
(

E(k)
i,n ≤ u

)
−Π(u)

}
, u ∈ [0, 1]d

and compute

S(B)
n,k =

∫
[0,1]d

{
D(k)

n (u)
}2

du.

An approximate p-value for the test is then given by ∑N
k=1 1

(
S(B)

n,k > S(B)
n

)
/N.
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3.3. Estimation of Copula Parameters

In what follows, it is shown that many estimation methods produce regular estimators, as needed
in Propositions 1–2 and Theorem 2.

3.3.1. Maximum Pseudo-Likelihood Estimators

In Chen and Fan [10], it is shown that under smoothness conditions on the densities cφ

(conditions D, C, and N in their article), the maximum pseudo-likelihood estimator

φn = arg max
φ∈P

{
n

∑
i=1

log cφ(Ui,n)

}

is asymptotically Gaussian with covariance matrix depending only on cφ. Therefore, the asymptotic
behavior does not depend on the estimation of the parameter θ required for the evaluation of the
residuals! In fact, it has the same representation as the estimator studied by Genest et al. [11] in the
serially independent case, i.e., if θ were known. More precisely, one has

Φn = J−1(Wn −Zn) + oP(1), (15)

where Wn is defined by (10), Zn = 1√
n ∑d

j=1 ∑n
i=1 Qj(Uji), with

Qj(uj) =
∫
(0,1)d

ċ(v)∂vj c(v)
c(v)

{1(uj ≤ vj)− vj}dv,

j ∈ {1, . . . , d}, and where J is the Fisher’s information matrix
∫
(0,1)d

ċ(u)ċ(u)>

c(u) du. Note that

(
Wn

Zn

)

converges in law to

(
W
Z

)
∼ N(0, Σ), with Σ =

(
J 0
0 J

)
. In particular, W ∼ N(0, J) is

independent of Z ∼ N(0,J ). It follows that Φn converges in law to Φ ∼ N
(
0, J−1 + J−1J J−1).

Therefore φn is a regular estimator for φ since (Φn,Wn)  (Φ,W) which is centered Gaussian,
and E

(
ΦW>

)
= I. Note also that (Bn,Wn, Φn)  (B,W, Φ) where the latter is centered Gaussian,

so the assumptions of Theorem 2 are also met.

Remark 8. For Model 1, it is easy to check that under the same conditions, the limiting distribution of Φn

depends on (Γ1jΘ)k for all j 6= k.

3.3.2. Two-Stage Estimators

In addition to maximum pseudo-likelihood estimators, one may consider a two-stage estimator.

That is, suppose that φ =

(
φ1

φ2

)
, and that φ1 is estimated first by φ1,n, and then φ2 is estimated,

using a pseudo-likelihood with φ1,n instead of φ1. Two-stage estimation is often used for elliptical
copulas which depend on a correlation matrix r and possibly other parameters. It is known that r
can be expressed in terms of functions of Kendall’s tau, playing the role of φ1, while the remaining
parameters are defined as φ2. In fact, τjk = τ(Uji, Uki) = 2

π arcsin(rjk) [42]. For example, in the
Student copula case, φ2 would be the degrees of freedom. Since many estimators could be functions of
dependence measures, and the regularity of estimators is preserved by homeomorphisms, one should
check that the latter are regular. This is done next in Section 3.4.
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Now, decompose also Wn and Zn accordingly. Suppose that φ1,n is an estimator of φ1 that is
regular in the sense that Φ1,n =

√
n(φ1,n −φ1) Φ1 ∼ N(0, Σ1) and E(Φ1W>1 ) = I, E(Φ1W>2 ) = 0.

Next, define φ2,n as the pseudo-likelihood estimator of the reduced log-likelihood viz.

φ2,n = arg max
φ2∈O2

[
n

∑
i=1

log cφ1,n ,φ2(Ui,n)

]
.

It is then easy to check that W2,n − Z2,n = J21Φ1,n + J22Φ2,n + oP(1), so Φn  Φ =

(
Φ1

Φ2

)
,

with Φ2 = J−1
22 (W2 − Z2 − J21Φ1). As a result, E(Φ2W>1 ) = 0 and E(Φ2W>2 ) = I. This proves

that φn is a regular estimator of φ since (Φn,Wn) (Φ,W) which is a centered Gaussian vector with
E(ΦW>) = I. Also if Φ1 does not depend on θ, then Φ does not either. This is the case if φ1,n is
a function of Cn.

3.4. Estimators Based on Measures of Dependence

In this section, we investigate the asymptotic behavior of four well-known rank-based dependence
measures constructed from the residuals: Kendall’s tau, Spearman’s rho, van der Waerden and
Blomqvist’s coefficients. The main result is that these measures behave asymptotically like the ones
computed from innovations, extending the results of Chen and Fan [10]. This property is remarkable
and justifies many results in the literature, where the dependence measures were computed on the
residuals. The proofs depend on the asymptotic behavior of the empirical copula process and they
are given in Appendix B. Another important property is that these estimators are all regular, which in
the present context is equivalent to the following property: If ρn and ρ are respectively the empirical
and theoretical dependence measures, then Kn =

√
n(ρn − ρ) K, with E(KW) = ∂φρ. Moreover,

in all cases, (Bn,Wn,Kn) (B,W,K) which is centered Gaussian, since Kn = 1√
n ∑n

i=1 ψ(Ui) + oP(1),

with E{ψ(Ui)} = 0 and E{ψ2(Ui)} < ∞.

3.4.1. Kendall’s Tau

The empirical Kendall’s coefficient for the pairs (eji,n, eki,n), i ∈ {1, . . . , n}, denoted τjk,n, is

τjk,n =
2

n(n− 1)
( number of concordant pairs− number of concordant pairs) ,

where the pairs (eji,n, eki,n) and (ejl,n, ekl,n) are concordant if (eji,n − ejl,n)(eki,n − ekl,n) > 0, i 6= l.
Otherwise, they are discordant. Its theoretical counterpart is

τjk = 4
∫ 1

0

∫ 1

0
C(j,k)(uj, uk)dC(j,k)(uj, uk)− 1,

with values in [−1, 1] and with value 0 under independence.

Proposition 3. Under Model 2 and assumptions (A1)–(A6), for all 1 ≤ j < k ≤ d,

√
n(τjk,n − τjk) =

1√
n

n

∑
i=1

{
8C(j,k)(Uji, Uki)− 8Uji − 8Uki + 6− 2τjk

}
+ oP(1).

converge to centered Gaussian variables ZK
jk, with

E
(
ZK

jkW
)
= 8

∫ 1

0

∫ 1

0
Ċ(j,k)(uj, uk)dC(j,k)(uj, uk) = ∂φ

(
τjk

)
.
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3.4.2. Spearman’s Rho

Spearman’s empirical coefficient ρS
jk,n is the correlation coefficient of the pairs (Uji,n, Uki,n),

i ∈ {1, . . . , n}, while its theoretical counterpart ρS
jk is Cor(Uji, Uki) = 12Cov(Uji, Uki) =

12
∫ 1

0

∫ 1
0

{
C(j,k(uj, uk)− ujuk

}
dujduk. It has values in [−1, 1] and has value 0 under independence.

Proposition 4. Under Model 2 and assumptions (A1)–(A6),

√
n
(

ρS
jk,n − ρS

jk

)
=

12√
n

n

∑
i=1

{
12(Uji − 1/2)(Uki − 1/2)− ρS

jk

+6(Uji − 1/2)2 + 6(Uki − 1/2)2 − 1
}
+ oP(1).

converge to centered Gaussian variables ZS
jk with

E
(
ZS

jkW
)
= 12

∫ 1

0

∫ 1

0
Ċ(j,k)(uj, uk)dujduk = ∂φ

(
ρS

jk

)
.

3.4.3. Van der Waerden’s Coefficient

LetN andN−1 be respectively the distribution function and the quantile function of the standard
Gaussian distribution. Then the van der Waerden’s empirical coefficient ρW

jk,n is the correlation

coefficient of the pairs
(
Zji,n, Zki,n

)
, i ∈ {1, . . . , n}, where Zji,n = N−1(Uji,n). Its theoretical counterpart

ρW
jk is defined by

Cor(Zji, Zki) = E(ZjiZki) =
∫ 1

0

∫ 1

0

{
C(j,k(uj, uk)− ujuk

}
dN−1(uj)dN−1(uk),

with Zji = N−1(Uji). It has values in [−1, 1] and has value 0 under independence.

Proposition 5. Under Model 2 and assumptions (A1)–(A6),

√
n
(

ρW
jk,n − ρW

jk

)
=

1√
n

n

∑
i=1

{
ZjiZki − ρW

jk − κjk(Zji)− κkj(Zki)
}
+ oP(1)

converge to ZW
jk centered Gaussian variables, with

E
(
ZW

jk W
)
= 12

∫ 1

0

∫ 1

0
Ċ(j,k)(uj, uk)dN−1(uj)dN−1(uk) = ∂φ

(
ρW

jk

)
,

where
κjk(zj) =

∫
R
{1(zj ≤ x)−N (x)E(Zk1|Zj1 = x)}dx

and
κkj(zk) =

∫
R
{1(zk ≤ y)−N (y)}E(Zj1|Zk1 = y)dy.

3.4.4. Blomqvist’s Coefficient

Blomqvist’s empirical coefficient ρB
jk,n is defined as

ρB
jk,n =

4
n

n

∑
i=1

1(Uji,n ≤ 1/2, Uki,n ≤ 1/2)− 1.
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Its theoretical counterpart ρB
jk = 4P(Uji ≤ 1/2, Uki ≤ 1/2)− 1, has values in [−1, 1] with value zero

under independence.

Proposition 6. Under Model 2 and Assumptions (A1)–(A6),

√
n
(

ρB
jk,n − ρB

jk

)
=

4√
n

n

∑
i=1

[
1(Uji ≤ 1/2, Uki ≤ 1/2)− C(j,k)(1/2, 1/2)

−{1(Uji ≤ 1/2)− 1/2}∂uj C
(j,k)(1/2, 1/2)

−{1(Uki ≤ 1/2)− 1/2}∂uk C(j,k)(1/2, 1/2)
]
+ oP(1)

converge to centered Gaussian variables ZB
jk with

E
(
ZB

jkW
)
= 4Ċ(j,k)(1/2, 1/2) = ∂φ

(
ρB

jk

)
.

3.5. Copula vs. Rosenblatt Transform

In general, specification tests based on Pn are quite powerful [33]; however, if there is no explicit
formula for Cφ as in the multivariate Gaussian or Student cases, then one has to rely on simulation
methods that are time-consuming [18]. This is why one should use tests based on the Rosenblatt
transform. In general, these tests are easier to perform since the Rosenblatt transform is simple to
compute, even for multivariate distributions. Moreover, they are also among the most powerful
omnibus tests according to Genest et al. [33]. In fact, according to the aforementioned article, the best
test statistic is S(B)

n . This is the one used here for the application presented next.

4. Example of Application

In this example, we want to model the dependence between the innovations of two time series.
In order to be able to make comparisons with Chen and Fan [10], we take the Deutsche Mark/US and
Japanese Yen/US exchanges rates, from 28 April 1988 to 31 December 1998. AR(3)-GARCH(1,1) and
AR(1)-GARCH(1,1) models were fitted on the 2684 log-returns.

For such a large sample size, one must be sure that there is no structural change point. To this
end, univariate change point tests were performed first on the standardized residuals and the null
hypothesis was not rejected each time. Then, the copula change point test was performed, leading
once again to the non rejection of the null hypothesis, since the p-value was estimated to be 33%, using
N = 100 replications. See Rémillard [20] and [38] (Algorithm 8.E.2) for details.

Since there is no significant structural change in the distribution of the innovations, one can now
try to model the dependence between the innovations.

First, the usual standard copula models (Gaussian, Student, Clayton, Frank, Gumbel) were
checked for goodness-of-fit, using statistic S(B)

n constructed from the Rosenblatt process. In each case,
the null hypothesis was rejected since the p-value was estimated to be 0%, using N = 100 replications.
With this number of replications, one may conclude that the true p-value is less than 5%, rejecting
the null hypothesis. Note that, according to Chen and Fan [10], the proposed model was a Student
copula. Here, this hypothesis is rejected. Having rejected the standard copula models, one can try to fit
a mixture of Gaussian copulas. In this case, the copula is given by

π1Φ2

{
Φ−1(u), Φ−1(v); ρ1

}
+ π2Φ2

{
Φ−1(u), Φ−1(v); ρ2

}
, u, v ∈ (0, 1),

where Φ2(x, y; ρ) is the bivariate distribution function of two standard Gaussian random variables
with correlation ρ ∈ (−1, 1), Φ is the distribution function of the univariate standard Gaussian,
π2 = 1− π1 ∈ (0, 1), ρ1, ρ2 ∈ (−1, 1), with ρ1 6= ρ2. Similar models were proposed by Dias and
Embrechts [29], Chen and Fan [10] and Patton [30].
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For the mixture of two Gaussian copulas, the null hypothesis is not rejected since the p-value is
84% corresponding to S(B)

n = 0.0183, computed with N = 100 replications. The parameters of the two
Gaussian copulas are ρ̂1 = 0.8205, ρ̂2 = 0.3749, and π̂1 = 0.4017, π̂2 = 0.5983.

5. Conclusions

The asymptotic behavior of empirical processes constructed from residuals of stochastic volatility
models was studied. The results show that one can easily perform tests of change point on the full
distribution, the margins or the copula, as if the parameters of the conditional mean and volatility were
known. It was also shown that, under Model 2, when the stochastic volatility matrices are diagonal,
the empirical copula process and the associated Rosenblatt process also behave as if the parameters
were known. This remarkable property makes it possible to construct consistent tests of specification
for the copula of innovations using the residuals, as if they were the innovations. Then one can apply all
the methodologies recently developed for goodness-of-fit of copulas in a serially independent context.
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Appendix A. Proofs of the Main Results

Appendix A.1. Proof of Theorem 1

For any A ⊂ Sd = {1, . . . , d}, set

µA,n(s, x) =
1√
n

bnsc

∑
i=1

∏
j∈A

{
1(eji,n ≤ xj)− 1(ε ji ≤ xj)

}
∏

k∈Ac
1(εki ≤ xk),

with µj,n = µ{j},n for any j ∈ Sd. Using the multinomial formula, one has

Kn(s, x) =
1√
n

bnsc

∑
i=1

[
∑

A⊂Sd

∏
j∈A

{
1(eji,n ≤ xj)− 1(ε ji ≤ xj)

}
∏

j∈Ac
1(ε ji ≤ xj)− K(x)

]

=
1√
n

bnsc

∑
i=1

{
d

∏
j=1

1(ε ji ≤ xj)− K(x)

}

+
1√
n

bnsc

∑
i=1

d

∑
j=1

{
1(eji,n ≤ xj)− 1(ε ji ≤ xj)

}
∏
k 6=j

1(εki ≤ xk)

+
1√
n

bnsc

∑
i=1

∑
|A|>1

∏
j∈A

{
1(eji,n ≤ xj)− 1(ε ji ≤ xj)

}
∏

k∈Ac
1(εki ≤ xk)

= αn(s, x) +
d

∑
j=1

µj,n(s, x) + ∑
|A|>1

µA,n(s, x).

To prove the theorem, it suffices to show that for any 1 ≤ j ≤ d, uniformly in (s, x), µj,n(s, x)
converges in probability to s∂xj K(x)(Γ0Θ)j + s ∑d

k=1 Gjk(x)(Γ1kΘ)j = sΘ>Lj(x), and that for any
|A| > 1, µA,n(s, x) converges in probability to zero. These proofs will be done for j = 1 and A ⊃ {1, 2},
the other cases being similar.
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Let δ ∈ (0, 1) be given. From (A2), (A3) and (A5), one can find M > 0 such that if n is large
enough, then P(BM,n) > 1− δ, where

BM,n = {‖Θn‖ ≤ M} ∩n
i=1 {‖di,n‖ ≤ Mri} ∩

{
1
n

n

∑
i=1
‖γ0i‖ ≤ M

}
∩d

j=1

{
1
n

n

∑
i=1
‖γ1ji‖ ≤ M

}
.

Let λ ∈ (0, 1/2) be given. Further set Cλ,n = {max1≤i≤n(‖γ0i‖ + maxj∈Sd |ε ji|‖γ1ji‖)/
√

n ≤ λ}.
By (A4), P(Cλ) ≥ 1− δ if n is large enough.

Next, for κ = (κ1, κ2, κ3) ∈ R×Rp ×R, set

ηi,n(κ) = κ1ri + {(γ0iκ2)1 +
d

∑
k=1

εki(γ1kiκ2)1 + κ3‖γ0i‖+ κ3

d

∑
k=1
|εki|‖γ1ki‖}/

√
n,

and define

µ̃1,n(s, x; κ) =
1√
n

bnsc

∑
i=1

[1 {ε1i ≤ x1 + ηi,n(κ)} − 1(ε1i ≤ x1)]
d

∏
k=2

1 (εki ≤ xk) .

Then set µ̃12,n(x1, x2; κ) = µ̃1,n(1, x1, x2, ∞, . . . , ∞; κ), and define

L̃1,n(s, x; κ) =
1√
n

bnsc

∑
i=1

[P ( ε1i ≤ x1 + ηi,n(κ), ε2i ≤ x2, . . . , εdi ≤ xd| Fi−1)− K(x)] .

The main problem working with residuals is the fact they depend on θn, making them dependent.
However, because the closed ball of radius M in Rp is compact, it can be covered by finitely many
balls of radius λ centered at ζ ∈ C, for some finite subset C of Rp, so one can replace the random
vector Θn by any of these centers. So let ζ ∈ C be given. On BM,n ∩ Cλ,n ∩ {‖Θn − ζ‖ < λ}, one
has ηi,n(−M, ζ,−λ) ≤ ε1i − e1i,n ≤ ηi,n(M, ζ, λ), and |ε1i − e1i,n| ≤ ai,n, with ai,n = ηi,n(M, 0, c),
where c = M + 1. Hence 1{ε1i ≤ x1 − ηi,n(M,−ζ, λ)} ≤ 1(e1i,n ≤ x1) ≤ 1{ε1i ≤ x1 + ηi,n(M, ζ, λ)},
|1(e1i,n ≤ x1)− 1(ε1i ≤ x1)| ≤ 1(x1 − ai,n < ε1i ≤ x1 + ai,n), and

|1(e2i,n ≤ x2)− 1(ε2i ≤ x2)| ≤ 1(x2 −Mri − cλ ≤ ε2i ≤ x2 + Mri + cλ)

≤ 1(x2 − 2cλ < ε2i ≤ x2 + 2cλ),

if i ≥ i0, for some i0, since ri → 0. As a result, for any A ⊃ {1, 2},

|µA,n(s, x)| ≤ i1√
n
+

1√
n

n

∑
i=1

1(x1 − ai,n < ε1i ≤ x1 + ai,n)1(x2 − 2cλ < ε2i ≤ x2 + 2cλ).

Then µ̃1,n(s, x; −M, ζ,−λ) ≤ µ1,n(s, x) ≤ µ̃1,n(s, x; M, ζ, λ), and

|µA,n(s, x)| ≤ i1√
n
+ µ̃12,n(x1, x2 + 2cλ; M, 0, cλ)− µ̃12,n(x1, x2 − 2cλ; M, 0, cλ)

−µ̃12,n(x1, x2 + 2cλ; −M, 0,−cλ) + µ̃12,n(x1, x2 − 2cλ; −M, 0,−cλ).

The proof will be completed if one can prove the following properties: if κ3 small enough, then on
BM,n, and uniformly in (s, x), both L̃1,n(s, x; κ)− sκ>2 L1(x) and µ̌1,n(s, x; κ) = µ̃1,n(s, x; κ)− L̃1,n(s, x)
can be made arbitrarily small with probability close to 1. For if these two statements are proved,
then because of the previous inequalities, and because λ can be chosen as small as needed, one may
conclude that as n → ∞, µj,n(s, x) converges in probability to Θ>Lj(x), and that for any A ⊃ {1, 2},
µA,n(s, x) converges in probability to zero. For the rest of the proof, to simplify notations, assume that
d = 2.
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To prove the first statement, P ( ε1i ≤ x1 + ηi,n(κ), ε2i ≤ z1, . . . , εdi ≤ zd−1| Fi−1) is given by

P
{

ε1i > 0, ε1i ≤
x1 + κ1ri + (γ0iκ2)1/

√
n + ε2i(γ12iκ2)1/

√
n + κ3|ε2i|‖γ12i‖/

√
n

1− (γ11iκ2)1/
√

n− κ3‖γ11i‖/
√

n
, ε2i ≤ x2

∣∣∣∣Fi−1

}
+ P

{
ε1i ≤ 0, ε1i ≤

x1 + κ1ri + (γ0iκ2)1/
√

n + ε2i(γ12iκ2)1/
√

n + κ3|ε2i|‖γ12i‖/
√

n
1− (γ11iκ2)1/

√
n + κ3‖γ11i‖/

√
n

, ε2i ≤ x2

∣∣∣∣Fi−1

}
It follows from (A1), (A2), (A6) and (A7) that on BM,n, there is a constant c0 so that

sup
s∈[0,1]

sup
x∈R̄d

∣∣∣L̃1,n(s, x; κ)− sκ>2 L1(x)
∣∣∣ ≤ c0

{
|κ1|√

n

n

∑
i=1

ri +
|κ3|
n

n

∑
i=1
{‖γ0i‖+ ‖γ11i‖+ ‖γ12i‖}

}
,

which can be made arbitrarily small with large probability by choosing κ3 small enough. Under Model 2,
(γ12iκ2)1 = 0 for any κ2, so (A7) is not necessary.

It only remains to show that the partial sum of martingale differences µ̌1,n(s, x; κ) can be made
arbitrarily small by choosing κ3 small enough. The proof is similar to the proof of Lemmas 7.1–7.2
in Ghoudi and Rémillard [2]. Suppose 1/2 < ν < 1 and set Nn = bnνc. Then, set yk = F−1

1 (k/Nn),
1 ≤ k < Nn. Further, set y0 = −∞ and yNn = +∞. Now, if yk ≤ x1 < yk+1, and z = (x2, . . . , xd). First,
note that one can cover R̄d by a finite number Nn× J of intervals of the form [a, b) = [yk, yk+1)× [ul , vl),
for which 0 ≤ K(yk+1, z)− K(yk, z) ≤ F1(yk+1)− F1(yk) = 1/Nn.

Set Ui,n(x) = [1{εi1 ≤ x1 + ηi,n(κ)} − 1(ε1i ≤ x1)] 1(ε2i ≤ x2) and set Vi,n(x) = E{Ui,n(x)|Fi−1}.
One cannot work directly with Ui,n −Vi,n. Better bounds are obtained by decomposing Ui,n and Vi,n as
follows: set

U+
i,n(x) =

[
1{εi1 ≤ x1 + η+

i,n(κ)} − 1(ε1i ≤ x1)
]

1(ε2i ≤ x2),

and
U−i,n(x) =

[
1(ε1i ≤ x1)− 1{εi1 ≤ x1 − η−i,n(κ)}

]
1(ε2i ≤ x2).

Similarly, set V±i,n(x) = E{U±i,n(x)|Fi−1} and define µ̌±1,n(s, x; κ) = 1√
n ∑
bnsc
i=1 {U

±
i,n(x) − V±i,n(x)}.

Then Ui,n − Vi,n = U+
i,n − V+

i,n − {U
−
i,n − V−i,n}, so µ̌1,n = µ̌+

1,n − µ̌−1,n. To complete the proof, it is
enough to show that µ̌±1,n can be made arbitrarily small. Only the proof for the + part is given, the other
one being similar. Now, for x ∈ [yk, yk+1)× [ul , vl), observe that

U+
i,n(yk, ul)− 1(yk < ε1i ≤ yk+1) ≤ U+

i,n(x) ≤ U+
i,n(yk+1, vl) + 1(yk < ε1i ≤ yk+1).

Taking expectations over the last inequality and summing over i yield the following bound:

sup
s∈[0,1]

sup
x∈[yk ,yk+1)×[ul ,vl)

∣∣∣µ̌±1,n(s, x; κ)
∣∣∣

≤ sup
s∈[0,1]

max
{
|µ̌±1,n(s, yk+1, vl ; κ)|, |µ̌±1,n(s, yk, ul ; κ)|

}
+ 2
√

n
Nn

+ sup
s∈[0,1]

|β1,n(s, yk+1)− β1,n(s, yk)|+
1√
n

n

∑
i=1

{
V+

i,n(yk+1, vl)−V+
i,n(yk, ul)

}
.

Next ξi,n = U+
i,n − V+

i,n is a martingale difference such that |ξi,n| ≤ 2 and
E(ξ2

i,n|Fi−1) = V+
i,n(1−V+

i,n) ≤ V+
i,n. As a result, from the maximum inequality for martingales,

P

{
sup

s∈[0,1]
max

1≤k≤Nn
max
1≤l≤J

∣∣∣µ̌±1,n(s, yk, ul ; κ)
∣∣∣ > λ0

}
≤ (Nn × j)λ−4

0 sup
x∈R̄d

E
[{

µ̌±1,n(1, x; κ)
}4
]
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which is bounded by c(Nn × j)λ−4
0 supx∈R̄d

[
16
n + 1

n2 E
{(

∑n
i=1 V+

i,n(x)
)2
}]

, for some universal

constant c.
Using (A3), (A6) and (A7), the latter is O(Nn/n), proving that sup

s∈[0,1]
max

1≤k≤Nn
max
1≤l≤J

∣∣∣µ̌±1,n(yk, ul ; κ)
∣∣∣

converges in probability to zero.
Similarly, sup

s∈[0,1]
max

1≤k≤Nn
max
1≤l≤J

∣∣∣µ̌±1,n(yk, vl ; κ)
∣∣∣ also converges in probability to zero. Next,

sup
s∈[0,1]

max
1≤k≤Nn

|β1,n(s, yk+1)− β1,n(s, yk)| = sup
s∈[0,1]

max
1≤k≤Nn

∣∣β̃1,n(s, (k + 1)/Nn)− β̃1,n(s, k/Nn)
∣∣

converges in probability to zero, where β̃1,n is the empirical Kiefer process constructed from uniform
variables. Finally, set f̃1(x) = ∂x1 K(x) and g1(x) = x1 f̃1(x). From (A1), (A2), (A6) and (A7), one may
conclude that for some constants c1, . . . , c4 depending on ‖ f̃1‖ and ‖g1‖,

1√
n

n

∑
i=1

{
V+

i,n(yk+1, vl)−V+
i,n(yk, ul)

}
≤ c1|κ1|

∑n
i=1 ri

n
+ c2 max

0≤k<Nn
max
1≤l≤J

| f1(yk+1, vl)− f1(yk, ul)|

+ c3 max
0≤k<Nn

max
1≤l≤J

|g1(yk+1, vl)− g1(yk, ul)|+ c4|κ3|.

This can be made as small as necessary, provided n is large, κ3 is small and the mesh of the covering is
small enough. Hence the result.

Appendix A.2. Proof of Theorem 2

First, note that Bn(u) = 1√
n ∑n

i=1 [1{R(Ui) ≤ u} −Π(u)] B, where B is a Π-Brownian bridge.

Next, set Ȟn(x) = Rφ̌n

{
F̌n(x)

}
and H(x) = R{F(x)}, where F̌n =

(
F̌1,n, . . . , F̌d,n

)
, with

F̌j,n(xj) =
1

n + 1

n

∑
i=1

1(ε ji ≤ uj), j ∈ {1, . . . , d}.

Note that Ǔi,n = F̌n(εi), i ∈ {1, . . . , n}. By hypothesis, φn = Tn(U1,n, . . . , Un,n). Further set
φ̌n = Tn{Ǔ1,n, . . . , Ǔn,n}. Then V̌i,n = Ȟn(εi) and Vi = H(εi), for all i ∈ {1, . . . , n}.

Now
√

n(φ̌n − φ)  Φ, using the results in Sections 3.3–3.4, Ȟn =
√

n(Ȟn − H)  Ȟ,
and ‖Ȟn‖r = supx |Ȟn(x)|/r ◦ F(x) is tight, where for j ∈ {1, . . . , d},

Ȟ(j)(x) = Φ>Ṙ(j){F(x)}+
j

∑
k=1

∂ukR
(j){F(x)}βk{1, Fk(uk)}.

It then follows from the results in Ghoudi and Rémillard [2] that Ďn  Ď, where

Ď(u) = B(u)− κ(u)−Φ>
{

d

∑
j=1

$j(u)

}
, u ∈ [0, 1]d,

with
$j(u) = E

{
Ṙ(j)

(Ũ)1(Ẽ ≤ u)|Ẽj = uj

}
, j ∈ {1, . . . , d}. (16)
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From computations in Rémillard [19] (Lemma 1), one gets $ = ∑d
j=1 $j, so Ď = B − κ − Φ>$.

Hence E {B(u)W} = $(u), as claimed. Next, since we already know that for any j ∈ {1, . . . , d},
E
{

β j(1, uj)W
}
= 0, it follows that E {κ(u)W} = 0, for all u ∈ [0, 1]d. As a result, for any u ∈ [0, 1]d,

E
{
Ď(u)W

}
= $(u)− E

(
Φ>W

)
$(u) = 0,

since any φn in Sections 3.3–3.4 is a regular estimator of φ, implying that E
(
ΦW>

)
= I. It then follows

from Genest and Rémillard [18] that the parametric bootstrap work for Ďn. To complete the proof,
it only remains to show that Dn− Ďn  0. To this end, note that Vi,n = Hn(ei,n), where Hn = Rφn ◦ Fn,
so if Hn =

√
n(Hn − H), then Hn  H, where, for all j ∈ {1, . . . , d},

H(j)(x) = Φ>Ṙ(j){F(x)}+
j

∑
k=1

∂ukR
(j){F(x)}Fk{1, Fk(uk)}

= Ȟ(j) +
j

∑
k=1

∂ukR
(j){F(x)} fk(xk) {(Γ0Θ)k + xk(Γ1kΘ)k} .

Next, for i ∈ {1, . . . , n},

Vji −Vji,n = −H(j)
n (ei,n)√

n
+ H(j)(εi)− H(j)(ei,n)

= −H(j)
n (ei,n)√

n
+

j

∑
k=1

∂ukR
(j)(Ui)

{
dki,n + (γ0iΘn +

d

∑
l=1

ε liγ1liΘn)k/
√

n

}
.

It then follows from the proof of Theorem 1, the tightness of H and Ghoudi and Rémillard [2]
(Lemma 5.1) that Dn − Ďn  0.

Appendix B. Other Proofs

Before starting the proofs, the following lemma is quite useful in some proofs.

Lemma B.1. Suppose that C and D and distribution functions on [0, 1]2, so that C is a copula and D has mean
1/2 for each marginal distribution. Then∫

D(u, v)dC(u, v) =
∫

C(u, v)dD(u, v).

Proof. Suppose (U, V) ∼ C, (Ũ, Ṽ) ∼ D, and (U, V) is independent of (Ũ, Ṽ). Then, since C is
a copula, P(U < Ũ) = E(Ũ) = 1/2, P(V < Ṽ) = E(Ũ) = 1/2, by hypothesis. As a result,∫

D(u, v)dC(u, v) = E{D(U, V)} = E
{

1(Ũ ≤ U, Ṽ ≤ V)
}

= 1− P(U < Ũ)− P(V < Ṽ) + E
{

1(U < Ũ, V < Ṽ)
}

= 1− E(Ũ)− E(Ṽ) + E{C(Ũ, Ṽ)}

= 1− 1
2
− 1

2
+
∫

C(u, v)dD(u, v) =
∫

C(u, v)dD(u, v).
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Appendix B.1. Proof of Proposition 1

The convergence of
√

n(Cn − C) follows from Corollary 2 and the joint convergence of (αn, Φn)

follows from the representation of αn and the estimators of Sections 3.3–3.4. Using the smoothness of
cφ, it follows that Ċ = ∂φCφ is continuous and under H0,

Pn =
√

n(Cn − Cφn) = Cn(1, ·)−
√

n(Cφn − Cφ) = Cn − Ċ>Φn.

As a result, An  A = C− Ċ>Φ = Č− Ċ>Φ. Following Genest and Rémillard [18], the parametric
bootstrap approach will work since E

(
ΦW>

)
= I, as shown in Sections 3.3–3.4.

Appendix B.2. Proof of Propositions 3–6

To prove Proposition 3, note that∫
C(j,k)

n dC(j,k)
n =

∫ {
C(j,k)

n − C(j,k)
}

dC(j,k)
n +

∫
C(j,k)dC(j,k)

n

=
∫ {

C(j,k)
n − C(j,k)

}
dC(j,k)

n +
∫

C(j,k)
n dC(j,k),

using Lemma B.1, since C(j,k)
n and C(j,k) satisfy the assumptions. Then

ZK
jk,n =

√
n(τjk,n − τjk) = 4

√
n
{∫

C(j,k)
n dC(j,k)

n −
∫

C(j,k)dC(j,k)
}
+ oP(1)

= 4
∫

C(j,k)
n dC(j,k)

n + 4
∫

C(j,k)
n dC(j,k) + oP(1)

= 8
∫

C(j,k)
n dC(j,k)

n + oP(1).

Similarly,
√

n(τ̌jk,n − τjk) = 8
∫
Č(j,k)

n dC(j,k)
n + oP(1). By Corollary 2, Cn = Čn + oP(1)  Č, proving

that ZK
jk,n converges to 8

∫
C(j,k)dC(j,k)

n .

Next, it is easy to check that Ĉn(u) = 1√
n ∑n

i=1

{
1(Ui ≤ u)− C(u)−∑d

j=1 1(Uji ≤ uj)∂uj C(u)
}

converges to Č. Hence, for any 1 ≤ j < k ≤ d,

8
∫

ĈndC =
1√
n

n

∑
i=1

{
8C(j,k)(Uji, Uki)− 4Uji − 4Uki + 2− 2τjk

}
converges to ZK

jk.

To compute the covariance between ZK
jk and W, note that E

{
Č(u)W>

}
= Ċ(u), and the latter is

0 if uj = 1 for at least d− 1 indices. As a result,

E
(
ZK

jkW
)
= 8

∫
Ċ(j,k)dC(j,k) = ∂φ

{
τjk

}
,

using integration by parts, since τjk = 4
∫

C(j,k)dC(j,k) − 1. The proof of Propositions 4–6 is similar. It is
sufficient to note that for the three estimators, one has

√
n(ρjk,n − ρjk) =

√
n
[∫
{L(uj)− L̄}{L(uk)− L̄}dC(j,k)

n (uj, uk)

−
∫
{L(uj)− L̄}{L(uk)− L̄}dC(j,k)(uj, uk)

]
+ oP(1)

=
∫

C(j,k)
n {J(x), J(y)}dxdy + oP(1),
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for an appropriate distribution function J with left-continuous inverse L. For example, J = N for
van der Waerden, J is the distribution of the uniform over [0,

√
12] for Spearman’s rho while J is

the distribution function of the discrete random variable taking values 0 and 2 with p = 1/2 for
Blomqvist’s coefficient.

According to Genest and Rémillard [43] and Corollary 2, the latter converges to∫
C(j, k){J(x), J(y)}dxdy. =

∫
Č(j, k){J(x), J(y)}dxdy.

The representations come from the convergence of Ĉn to Č. The proof of the covariance with W can be
dealt with in a similar way to the one involving Kendall’s tau.
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