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Abstract: Using the net effect of all relevant regressors omitted from a model to form its error term
is incorrect because the coefficients and error term of such a model are non-unique. Non-unique
coefficients cannot possess consistent estimators. Uniqueness can be achieved if; instead; one uses
certain “sufficient sets” of (relevant) regressors omitted from each model to represent the error
term. In this case; the unique coefficient on any non-constant regressor takes the form of the
sum of a bias-free component and omitted-regressor biases. Measurement-error bias can also be
incorporated into this sum. We show that if our procedures are followed; accurate estimation of
bias-free components is possible.
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1. Introduction

The quality of econometric practice is reflected in the assumptions made to build a model.
We compare two kinds of practice: one labeled “conventional” and the other labeled “new”.
In conventional practice, the structural form of each equation in a complete model of linear simultaneous
equations has (i) one of the jointly dependent or endogenous variables as its dependent variable;
(ii) some relevant endogenous and exogenous variables with relevant predetermined variables as its
included regressors; and (iii) relevant but omitted regressors constituting the structural disturbance.
However, as shown by Pratt and Schlaifer (1984, 1988) [1,2] (hereafter PS), problems in estimation arise
because the error term of an equation made up of relevant regressors omitted from the equation is
non-unique. As a consequence, the coefficients of such equations cannot be unique, however estimated.
Conventional practice also uses non-linear regression models which have problems of their own.

The new proposed practice remedies shortcomings, arising from non-uniqueness of the coefficients
and error terms of models, uniqueness being a property that holds jointly for both coefficients and error
term of each equation. For the purpose of our discussion, we shall employ a definition of uniqueness
based on earlier work of ours. To anticipate, we will show that the error term of an equation made up
of certain “sufficient sets”, to be defined later, of relevant regressors omitted from the equation and its
coefficients are unique, where the unique coefficient on a non-constant regressor takes the form of the
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sum of a bias-free component and an omitted-regressors bias component. If necessary, one may add
a measurement-error bias component to this sum.1

The main purpose of this paper is to illuminate the differences between conventional practices
and our new proposed methodology. We begin by demonstrating exactly how conventional practice
gives rise to (i) non-unique coefficients that cannot be consistently estimated and (ii) a conflict between
non-uniqueness of the coefficients and error term of an equation and the exogeneity of some or all of
its regressors. We follow this discussion by introducing our new practice, which, as promised, employs
models with unique coefficients and error terms, as laid out in a series of papers by Swamy and his
associates, a recent contribution to which is Swamy et al. (2016) [3]. Although our earlier work has
dwelled on aspects of the new methodology, there is a substantial amount of material in this paper
that is novel. For example, Theorem 1 and Corollaries 1 and 2 proved in this paper are new. Further,
in contrast to our earlier work on models with time-varying coefficients, this paper introduces the
idea of included endogenous regressors with time-varying coefficients, leading to insights that to
our knowledge have not heretofore been discussed in the literature. As a consequence, there is little
overlap between this and our earlier work.

To be specific about the problems emanating from non-unique coefficients and error terms of
models, we choose a linear regression of the earnings of an individual on a set of regressors including
a dummy variable that takes the value 1 if the individual attended a college and the value zero
otherwise. If the error term of this regression represents the net effect on the earnings of relevant
regressors omitted from the regression, then both of its coefficients and error term are non-unique,
as we show in this paper. These non-unique coefficients are not consistently estimable. Furthermore,
since causality designates a property of the real-world and the above regression with non-unique
coefficients and error term cannot be a real-world relationship, the coefficient on the dummy variable
in the regression is not the causal effect of attendance at a college. We show in this paper how this
causal effect can be measured when education is endogenous.

The remainder of this paper is arranged as follows: Section 2 has three parts. The first part
discusses problems with linear simultaneous equations models employed in conventional practice.
The second part derives a new simultaneous-equations system in which the functional form of every
non-identity is linear-in-variables and nonlinear-in-coefficients. From this non-linear system we then
derive another system of equations that is of considerable importance to estimation in that none
of the new equations will contain exogenous variables but instead will feature a unique error term
and unique coefficients. The coefficient on each non-constant regressor of the final model featuring
observable variables contains a bias-free component plus omitted-regressor and measurement-error
bias components. We parameterize the system by making each of its coefficients a linear function
of appropriate coefficient drivers plus a random error. The third part of Section 2 shows that the
parameterized model can yield accurate estimates of the bias-free components of the final model’s
coefficients. Section 3 concludes.

2. Simultaneous Equations Model

2.1. Conventional Practice

2.1.1. Constant Coefficients

Typically, the econometric literature distinguishes between jointly dependent (or endogenous),
exogenous, and predetermined variables.2

1 The concept of “sufficient sets” of omitted regressors is due to PS (1988) [2] (p. 34). The term “bias-free component” means
the component free of omitted-regressor and measurement-error biases.

2 See Greene (2012) [4] (pp. 317,318). We will have an occasion below to discuss the inaccuracy of exogeneity assumption.
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The linear structural form of a model is then usually written as

YΓ + XB = U (1)

where Y is a T ×M matrix containing T observations on M jointly dependent or endogenous variables,
Γ is an M ×M matrix of constant coefficients, X is a T × K matrix of T observations on K exogenous
and predetermined variables, B is a K ×M matrix of constant coefficients, and U is a T ×M matrix of
structural disturbances that are assumed to be serially independent. The above notation implies that
model (1) is a system of M linear simultaneous equations. Suppose that the identities have already been
removed from (1). The linearity assumption in Equation (1) and implied constancy of the elements of
Γ and B are unduly restrictive and are relaxed in the next section.3

Interpretation of U: Greene (2012) [4] (p. 13) pointed out that the disturbance of each equation in (1)
captures the net effect on the dependent variable of those regressors that are omitted from the equation.

This is the usual interpretation. We investigate the consequences of adopting this interpretation
in this section.4

The findings of PS (1988) [2] (p. 34): The condition that the included regressors be independent of
“the” omitted regressors themselves is meaningless unless the definite article is deleted and can then
be satisfied only for certain “sufficient sets” of omitted regressors, some if not all of which must be
defined in a way that makes them unobservable as well as unobserved. We prove below that certain
problems cannot be avoided unless one takes these findings of PS seriously.

Regardless of the endogeneity and exogeneity of omitted influences on the dependent variables,
each row of U is assumed to be randomly drawn from an M-variate distribution. Furthermore,
conventional practice imposes three additional assumptions which we now state.

Assumption 1.

(i) E(U|X) = 0; (ii) E(Y|X) is finite; and (iii) E[(1/T) U′U
∣∣X] = Σ (2)

The conditional expectation E(Y|X) does not always exist, but sufficient conditions for its existence
are given in Rao (1973) [5] (p. 97), although not all economists and statisticians interpret the condition
E(U|X ) = 0 in the same way. For example, Greene (2012) [4] (p. 223) interpreted it to mean that X is
exogenous in model (1) in the sense that X is determined outside of the model. Engle et al. (1983) [6]
listed four distinct concepts of exogeneity corresponding to different notions of what is “determined
outside the model under consideration” according to the purposes of the inferences being conducted.
In Friedman and Schwartz’s (1991) [7] (pp. 41–42) view, it may be appropriate to regard a variable as
exogenous for some purposes and as endogenous for others. In this respect, the assumptions of one of
Lehmann and Casella’s (1988) [8] (Theorem 4.12, p. 184) theorems are the same as our Assumption 1.
Finally, PS (1988) [2] (p. 34) showed that the stronger version of E(U|X ) = 0, i.e., X independent of U,
is meaningless if the error term of each equation in (1) is made up of relevant regressors omitted from

3 The constancy assumption about the coefficients of (1) may mean that this equation system is not the correct specification of
the model of Y. Here we do not want to use the term “true specification”. Econometricians generally disapprove of the
use of the word “true model.” Note that we do not use the econometrician’s term “data-generating process” because it is
not informative about omitted-regressors unrepresented by any data in our analysis, preferring instead the term “correct”
to “true”.

4 Some economists and statisticians believe that if model (1) were correctly specified, then the rows of U would be identically
and independently distributed (i.i.d.), being free of omitted influences. First of all, one cannot prove that any model is
“correctly specified,” and second, the i.i.d. assumption about the rows of U does not mean that each row of U is free of
omitted influences.
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the equation. We show below that Assumption 1(i) does not hold if the coefficients and error term of
each equation in (1) are non-unique.

Next, consider the important issue of identification. For this, define

Reduced form: When Γ−1 exists,

Y = X(−BΓ−1) + UΓ−1 = XΠ + V (3)

where Π = −BΓ−1 and V = UΓ−1.

Normalization rule: There will be at least one “1” in each column of Γ.

Identification: To achieve identification in all M equations of model (1), one imposes the above
normalization rule and certain exclusion and other restrictions on the elements of Γ and B, such that
only the identity matrix of order M is the admissible value for an M × M nonsingular matrix P in
−BPP−1Γ−1 = Π. The econometric literature has evolved a necessary order and a sufficient rank
condition for obtaining unique solutions for the unknown coefficients of the equations in (1) using
equations ΠΓ = −B where, under Assumption 1(i), the conditional mean of Y given X is5

E(Y|X) = XΠ. (4)

But this conditional mean may not exist if Rao’s (1973) [5] (p. 97) conditions for its existence do not
apply. In order to trace through the effects of autonomous changes in the variables in (1), it is necessary
to work through the reduced form, where by convention, the change in Y induced by a change in X
has the interpretation of a partial derivative, since X is determined outside model (1).6 However, in the
case of endogenous variables, the ratio of a change in one of them to a change in another cannot have
a partial derivative interpretation and is therefore meaningless without first determining what caused
the change in the denominator (see Greene (2012) [4] (p. 320)).

To demonstrate cases where Assumption 1(i) is false, we consider the following jth equation of (1):

yj = Yjγj + Xjβj + uj (j = 1, . . . , M) (5)

where yj is a T × 1 vector of observations on the dependent variable of the jth equation, Yj is

a T× (M j − 1
)

matrix consisting of T observations on a set of Mj − 1 included endogenous regressors
that appear on the right-hand side of the jth equation, γj is a column vector of (Mj − 1) coefficients on
the included endogenous regressors, Xj is a T×Kj matrix consisting of T observations on Kj included
exogenous regressors, βj is a Kj × 1 vector of coefficients on the included exogenous regressors, and uj
is a T× 1 vector of disturbances.

Specific Example: An economic example of Equation (5) is

Earnings-Education (EE) Relationship : earningsi = x′iβi + δCi + ui (6)

where i indexes individuals, the non-constant elements of xi are defined in Krueger and Dale (1999) [9],
Ci is a dummy variable taking the value 1 if individual i attended a college and taking the value 0 if
individual i did not attend a college, and ui is the error term.

5 These order and rank conditions do not hold if the coefficients and error term of each equation in (1) are non-unique,
as shown below.

6 It is shown below that the exogeneity of X does not hold; so analyses based on the reduced form in (4) cannot be carried out
if the coefficients and error term of each equation in (1) are non-unique.
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Greene (2012) [4] (p. 890) showed that the coefficient δ does not measure the causal effect of
a college education if individuals who choose to go to college would have relatively high earnings
whether or not they had gone to college. He further pointed out (see [4] (p. 252)) that (i) Ci cannot vary
autonomously outside the model of the EE relationship; and (ii) variations in Ci are determined partly
by the same hidden influences that determine lifetime earnings. Statements (i) and (ii) mean that Ci is
an endogenous regressor. For this reason, measurement of the effect δ of a college education cannot be
done with multiple linear regressions, as shown by Greene (2012) [4] (p. 252). Causal implications can
only be drawn from the EE relationship in (6), if it is a real-world (or misspecifications-free) relationship
(see Swamy et al. (2016) [10]). We show below that (6) is not a misspecifications-free relationship.
Thus, the EE relationship in (6) nicely illustrates the problems of interpretation that can arise with (5).
We will refer to the EE relationship several times below.

2.1.2. Conflict between the Exogeneity Assumption about Certain Regressors in a Model and
Non-Uniqueness of Its Coefficients and Error Term

Conventional practice always obeys this assumption:

Assumption 2. Omitted relevant regressors constituting the error term of an econometric model do not
introduce omitted-regressor biases into the coefficients of the included regressors.

Confusion may arise if we do not point out here that Theil’s specification-error analysis reproduced
in Greene (2012) [4] (p. 56) and other econometric textbooks also involves terms such as “omitted
regressors” and “omitted-regressor biases,” but that their meanings are different from those used
in Assumption 2. For Theil, omitted regressors are those relevant regressors that get removed from
model (5) when some columns of Xj are deleted; and the omitted-regressor biases are those biases
that get introduced into the least squares estimators of some of the elements of Π as a result of this
deletion. These omitted regressors and omitted-regressor biases are different from omitted regressors
constituting uj and the biases they introduce, respectively. A less confusing definition of uniqueness is
the following:

Definition (Uniqueness): The coefficients and error term of a model are said to be unique if they are invariant
under the addition and subtraction of the product of the coefficient of any omitted relevant regressor and any
included regressor on the right-hand side of the model.

Note that the coefficients and error term of any model are non-unique if they are not unique.
Now we use the preceding definition to show that the coefficients and error term of Equation (5)

are not unique, which, for the tth element of yj is

ytj = γ′jyt,−j + β′jxtj + ω′jwtj (7)

where ytj is the jth element of yt = (yt1, yt2, . . . ., ytM)′, yt,−j is the transpose of the tth row

( yt1, . . . yt,j−1, yt,j+1, . . . , yt,Mj

)
of Yj, γ′j is the transpose of γj =

(
γ1j, . . . , γj−1,j, γj+1,j, . . . , γMj j

)′
,

xtj is the transpose of the tth row
(

xt1, . . . , xtKj

)
of Xj, β′j is the transpose of the column vector

βj =
(

β1j, . . . , βKj ,j

)′
, wtj =

(
wt1, . . . , wtLj

)′
is the column vector of (unknown) observations at time t

on omitted regressors constituting uj. To forestall omission of any relevant element of wtj, we further

assume that the value of Lj is unknown, ω′j =
(

ω1j, . . . , ωLj ,j

)
is a row vector of the coefficients of

omitted regressors, wtj, utj = ω′jwtj is the tth element of uj appearing in (5).
The elements of wtj in (7), labeled “omitted regressors”, are not used as the included regressors

but are used to form the error term utj of (5). This is what we mean whenever we say that the elements
of wtj are omitted regressors constituting the error term utj. PS (1984) [1] (p. 13) pointed out that
Equation (7) can be treated as a linear deterministic equation, even though econometricians treat uj in
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(5) as random. Given that econometricians’ treatment is arbitrary, PS’s treatment is entirely appropriate.
Therefore, we shall use only mathematical methods to analyze (7).

PS (1984) [1] (p. 13) proved that γj, βj, ωj, and wtj in (7) are not unique without the help of our
definition of uniqueness. Nevertheless, because little attention has been given to this important result
by mainstream econometricians, it is useful to restate it here as Theorem 1 and to prove it by employing
our definition of uniqueness.

Theorem 1. If relevant regressors omitted from each of several simultaneous-econometric equations form its error
term, then its coefficients and error term are non-unique, and such coefficients are not consistently estimable.

Proof. The omitted regressors wtj in (7) are not unique because ω′jwtj does not change if it is written

as (ω′jP)(P
−1wtj) for any Lj × Lj nonsingular matrix P 6= I, the Lj × Lj identity matrix. Hence the

error term utj is not unique. Lehmann and Casella (1998) [8] (p. 57) proved that a parameter that
is unidentifiable cannot be estimated consistently. Therefore, we should first check whether the
coefficients of (5) with random uj are identifiable. According to econometric textbooks, a necessary
condition for the coefficients of (5) to be identifiable is that the number of exogenous variables omitted
from (5) but included in other equations of model (1) must be at least as large as Mj − 1. This condition
is inappropriate if Assumption 1(i) is false. (We show below that this assumption is indeed false when
the coefficients and error term of (5) are not unique). To prove non-uniqueness, rewrite (7) as

ytj =

Mj

∑
h = 1
h 6= j

γhjyth +

Kj

∑
k=1

βkjxtk+

Lj

∑
`=1

ω`jwt` (8)

Let k′ be one of the values the subscript k takes and let ň be one of the values the subscript ` takes.
The term ωňjxtk′ is the product of an element of ωj and an element of xtj. To apply the above definition
of uniqueness, we add and subtract this product on the right-hand side of Equation (8). Doing so gives

ytj =

Mj

∑
h = 1
h 6= j

γhjyth +

Kj

∑
k = 1
k 6= k′

βkjxtk +
(

βk′ j + ωňj

)
xtk′+

Lj

∑
` = 1
` 6= ň

ω`jwt` + ωňj(wtň − xtk′) (9)

Thus, going from (8) to Equation (9) makes one of the coefficients of Equation (8) to change from

βk′ j to
(

βk′ j + ωňj

)
and makes one of the terms of the sum

Lj

∑
`=1

ω`jwt` in (8) to change from ωňjwtň to

ωňj(wtň − xtk′).7 Even when xtk′ is not associated with wtň in (8), xtk′ is associated with (wtň − xtk′)

in (9). Since the coefficients and omitted variables wtj in (8) are unknown, we cannot prove that the

values
(

βk′ j + ωňj

)
and (wtň − xtk′) in (9) are inadmissible. Therefore, we can validly state that the

coefficient βk′ j and the term ωňjwtň of
Lj

∑
`=1

ω`jwt` taking two different values in (8) and (9) are not

unique. Similarly, assuming that Kj < Lj, we can show that the coefficients and error term of (5) are
not unique and also show that all the regressors of (5) assumed to be exogenous are associated with

any Kj terms of
Lj

∑
`=1

ω`jwt`. This means that when the coefficients and error term of (5) are not unique,

the exogeneity assumption about Xj stated in Assumption 1(i) can be made true and false at the whim
of an arbitrary choice between two observationally equivalent models in (8) and (9). Since the jth

7 Equations (8) and (9) are treated as deterministic.
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equation can be any one of the equations in (1), what we have proved about (5) is also true of other
equations in (1). If the unknown coefficients and error term of every equation in (1) are not unique,
then Assumption 1(i) and the so-called necessary order condition for identification in every equation
of model (1) do not hold. Hence, the unknown coefficients of model (1) are not identified and are
therefore not consistently estimable. Q.E.D.

Theorem 1 essentially warns against interpreting the disturbance in (5) as capturing the net effect
of omitted regressors on the dependent variable because under such an interpretation, the coefficients
and error term of (5) are non-unique; and non-unique coefficients are not consistently estimable. It is
in this sense that there is a conflict—alluded to in the introduction—between non-uniqueness of the
coefficients and error term of (5) and the exogeneity of some or all of its regressors. We have shown
here that if one follows conventional practice, employing a linear simultaneous equations model with
non-unique coefficients and error term, then the assumption that any of its regressors are exogenous is
false. In this case, it is futile to impose restrictions on the model that ostensibly “identify” it.8

Corollary 1. The least squares estimators of the non-unique coefficients of a reduced form with non-unique
error terms are biased and inconsistent.

Proof. Whenever Assumption 1(i) is false, E(U|X) 6= 0 which proves the corollary.

Corollary 2. None of the regressors of any linear simultaneous equation with non-unique coefficients and error
term can be exogenous in the sense of Assumption 1(i).

Therefore, Theorem 1 and Corollaries 1 and 2 are in complete alignment with results given
in PS (1984, 1988) [1,2]. Note that Lehmann and Casella (1998) [8] claim to have proved (see their
Theorem 4.12, p. 184) that under certain assumptions, the least squares estimators of the coefficients
of a general linear model are uniform minimum variance and unbiased among all linear estimators.
However, their conclusion conflicts with PS (1984) [1] in that they neither (i) take account of the
real-world sources of the error term in the general linear model nor (ii) offer any examination of
possible non-uniqueness of its coefficients and error terms.9 The consistency proofs of limited and
full information estimators given, e.g., in Greene (2012) [4] (p. 326–336), are based on Assumption 1(i)
which is not satisfied when the coefficients and error terms of the M equations in (1) are not unique,
as shown by PS (1984, 1988) [1,2].

Referring to the EE example in (6), it follows from Theorem 1 that its coefficients β and δ are not
unique and therefore not consistently estimable, and that the non-constant regressors in xi cannot
be exogenous if ui is made up of relevant regressors omitted from the EE relationship. Causality
is the property of real-world relationships which will have the unique coefficients and error terms.
The linear functional form of the EE relationship in (6) can mean that its functional form is misspecified.
However, misspecified models cannot be real-world relationships and hence cannot be causal. All these
statements suggest that δ cannot be the causal effect of attending any college.

8 There is a connection between Theorem 1 and a related theorem in Swamy et al. (2015) [11] that derives uniqueness of the
coefficients and error term of a model as a necessary condition for its correct specification.

9 To avoid a possible misunderstanding, we hasten to point out here that Section 2.1 is written not to criticize econometricians
and statisticians in general and Lehmann and Casella [8] in particular but merely to point out the implication of a PS’s
result about a meaningless assumption typically made in conventional practice for the consistency of regression coefficient
estimators. Note that in proving Theorem 1, only Greene’s (2012) [4] (p. 13) interpretation of the error terms of econometric
models was required without resort to further potentially arbitrary assumptions.
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2.2. New Practice

2.2.1. Time-Varying Coefficients

Having learned the preceding lesson about the undesirable consequences of non-unique
coefficients and error terms of models, we now turn to models with unique coefficients and error terms.
In the interest of generality, which characterizes the new practice, we drop Assumption 2 as well as the
assumption that the coefficients of model (1) are fixed.

Assumption 3. All relevant regressors omitted from each of several simultaneous-econometric equations
introduce omitted-regressor biases into the coefficients on the included regressors of the equation.

Now consider (5) with its fixed coefficients changed to time-varying coefficients (TVCs):

y∗tj = α∗t0j +

Mj

∑
h = 1
h 6= j

α∗thjy
∗
th +

Kj

∑
k=1

β∗tkjx
∗
tk+

Lj

∑
`=1

ω∗t`jw
∗
t` (j = 1, . . . , M) (10)

where all the relevant regressors are explicitly shown, none of y∗th, x∗tk, and w∗t` is equal to 1 for all h, k,
and `, respectively, the variables with an asterisk are the true values, and the coefficients are called
“time-varying structural coefficients (TVSCs)”. With these coefficients, Equation (10) defines a variety
of non-linear functional forms covering the linear form as a special case and the correct functional
form of (10) can be any one of those forms. An innovation of Equation (10) is that, in contrast to
previous work on time-varying coefficients, we now study a model with endogenous regressors (y∗th).
In (5), the endogenous regressor matrix Yj is correlated with its error term, uj. This means that the
regressors y∗th of Equation (10) are associated with the variables (w∗t`’s). We treat (10) as a deterministic
equation. Instead of assuming that the x∗tk’s in (10) are exogenous, we assume that they are also
associated with “the” w∗t` in (10).10 This means that we heed the warning by PS (1988, p. 34) regarding
the meaninglessness of the assumption that the regressors x∗tk included in (10) are not associated
with “the” regressors (w∗t`) to be used to form the error term of (10). When all the regressors in the
M equations of (10) are endogenous, the model has more endogenous variables than equations and
hence is incomplete. As a remedy, additional K equations, each with one of the K x’s as its dependent
variable, should be added to (10) to make it a complete model. The functional form of (10) can be
described as linear in variables but nonlinear in coefficients. Since (10), which we treat as deterministic,
does not involve measurement errors and explicitly reveals all its (relevant) regressors, we refer to
its non-random coefficients as “bias-free components”. Equation (10) being very general can cover
a misspecifications-free equation as a special case. If this special case occurs, then the coefficient on any
regressor of the misspecifications-free equation is the causal effect of the regressor on the dependent
variable. This definition of causal effects makes sense because of the misspecifications-free condition.

Importantly, we no longer assume that for h = 1, . . . , j − 1, j + 1, . . . , Mj, the time-varying
coefficient of y∗th is equal to the partial derivative of y∗tj with respect to y∗th because, as noted
earlier, the ratio of a change in an endogenous variable to a change in another endogenous variable
is meaningless without first determining what caused the change in the denominator variable
(see Greene (2012) [4] (p. 320)).

10 For ease of comparison of the derivation in this section with that in the previous section, we do not change the notation
x∗tk to y∗tk .
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2.2.2. Unique Coefficients and Error Term

Assumption 4. In each of several simultaneous-econometric equations, the included regressors act partly as
“stand-in” variables for each of its omitted regressors.

Under this assumption, the following theorem is true.

Theorem 2. If the error term of a simultaneous-econometric equation with time-varying coefficients is made up
of certain ”sufficient sets” of relevant regressors omitted from the equation, then the coefficients and error term of
the equation are unique.

Proof. Assumption 4 implies that for ` = 1, . . . , Lj:

w∗t` = λ∗t0` +
Mj

∑
h = 1
h 6= j

λ∗th`y
∗
th +

Kj

∑
k=1

ϕ∗tk`x∗tk (` = 1, . . . , Lj) (11)

where each omitted regressor (w∗t`) constituting the error term of (5) is related to the regressors, the y∗th’s
and x∗tk’s, included in (10). Previously, PS (1984) [1] (p. 13, (3.2b)) used a linear form of Equation (11).
Our new practice uses (11) to split each omitted regressor (w∗t`) constituting the error term of (10)

into “a sufficient (λ∗t0`) piece” and “the effect (
Mj

∑
h = 1
h 6= j

λ∗th`y
∗
th +

Kj

∑
k=1

ϕ∗tk`x∗tk) of all included regressors

(the y∗th’s and x∗tk’s) on each omitted regressor (w∗t`) piece”.

The Equations in (11) are most general in the sense that, in contrast to conventional practice, their
functional forms are linear in variables and nonlinear in coefficients. Substituting the right-hand side
of Equation (11) for w∗t` in (10) gives the following equations: For j = 1, . . . , M:

y∗tj = α∗t0j +

Lj

∑
`=1

ω∗t`jλ
∗
t0` +

Mj

∑
h = 1
h 6= j

(α∗thj +

Lj

∑
`=1

ω∗t`jλ
∗
th`)y

∗
th +

Kj

∑
k=1

(β∗tkj +

Lj

∑
`=1

ω∗t`j ϕ
∗
tk`)x∗tk (12)

The deterministic equations in (10) and (11) together give the interdependent system (12) of M equations.
Note, these equations are generalizations of a result PS (1984) [1] (p. 13 (3.3a,b)) obtained previously.

Noteworthy features of Equation (12): (i) The pieces, the λ∗t0`’s, of omitted regressors (w∗t`’s) in
conjunction with the included regressors (the y∗th’s and x∗tk’s) are at least sufficient to determine the
value of y∗tj. This is the reason why PS (1988) [2] (p. 34) called the λ∗t0`’s “‘sufficient sets’ of omitted
regressors”. Equation (11) does not miss any relevant sufficient set as long as Lj is the correct number
of all the terms in the last sum on the right-hand side of (10).

The error term of (12):
Lj

∑
`=1

ω∗t`jλ
∗
t0`

(ii) PS (1988) [2] showed that the function
Lj

∑
`=1

ω∗t`jλ
∗
t0` of sufficient sets of omitted regressors can

be treated as the error term.
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(iii) Swamy et al. (2014) [12] (pp. 199,217–219) proved that the coefficients and error term of
(12) are unique.11 Specifically, the coefficients and error term of a model are non-unique or unique
according as the error term is made up of regressors omitted from the model, as in (5), or made up of
certain “sufficient sets” of such regressors, as in (12). By construction then, the equations in (12) do not
have the defects of (5).

(iv) If the error term
Lj

∑
`=1

ω∗t`jλ
∗
t0` is treated as random, then according to PS (1988) [2] (p. 34),

the included regressors of (12) can be assumed to be independent of the error term or, alternatively,

Assumption 1(i) can be replaced by E(
Lj

∑
`=1

ω∗t`jλ
∗
t0` |the y∗th’s and x∗tk’s in (11)) = 0. The equations in

(11) ensure that the included regressors (the y∗th’s and x∗tk’s) in (12) are independent of the error term

(
Lj

∑
`=1

ω∗t`jλ
∗
t0`) (see PS (1988) [2] (p. 34)).

(v) Whereas conventional practice treats the function
Lj

∑
`=1

ω`jwt` of all omitted regressors (the wt`’s)

as the error term of (5), the new practice treats the function
Lj

∑
`=1

ω∗t`jλ
∗
t0` of only pieces or “sufficient

sets” (λ∗t0`’s) of omitted regressors (w∗t`’s) as the error term.

Omitted-regressor biases of the coefficients of (12):
Lj

∑
`=1

ω∗t`jλ
∗
th` and

Lj

∑
`=1

ω∗t`j ϕ
∗
tk`

(vi) In the new practice, the piece
Mj

∑
h = 1
h 6= j

λ∗th`y
∗
th +

Kj

∑
k=1

ϕ∗tk`x∗tk of each omitted regressor (w∗t`) in

(11) contributes to omitted-regressor biases of the coefficients of the included regressors (the y∗th’s and
x∗tk’s) in (12), meaning that Assumption 3 is satisfied.

(vii) The adjectives “biased” and “unbiased” can only be associated with estimators. Since the
coefficients of (10) are not estimators, the coefficients of (12) containing omitted-regressor biases cannot
be said to be biased. Q.E.D.

Corollary 3. (i) Any model with only endogenous regressors and with time-varying coefficients can be expressed
as a model with unique coefficients and error term; (ii) All these endogenous regressors can be independent of
certain “sufficient sets” of regressors omitted from the model.

Proof. Equation (12), featuring unique coefficients and a unique error term, expresses model (10)
with time-varying coefficients and without exogenous regressors. Equations (11) assure that all the
endogenous regressors of (12) can be independent of the sufficient sets (λ∗t0`’s) of omitted relevant
regressors (see PS (1988) [2] (p. 34)). Q.E.D.

A failure to accept (12) dooms econometricians to estimating models with non-unique coefficients
and error terms, leading to their inconsistent estimation.

Measurement errors: y∗tj = ytj − ν∗tj, j = 1, . . . , M, y∗th = yth − ν∗th, h = 1, . . . , j − 1, j + 1, . . . , Mj,
x∗tk = xtk − ν∗tk, k = 1, . . . , K, where the variables without an asterisk are observed and (ν∗tj, ν∗th, ν∗tk)
with different j, h, and k are measurement errors.

11 This result arises as a direct consequence of (11).
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Inserting measurement errors at the appropriate places in model (12) gives a model that can be
expressed in terms of observed variables as

ytj = γt0j +

Mj

∑
h = 1
h 6= j

γthjyth +

Kj

∑
k=1

ηtkjxtk (j = 1, . . . , M) (13)

where γt0j = ν∗tj + α∗t0j +
Lj

∑
`=1

ω∗t`jλ
∗
t0`, γthj = (α∗thj +

Lj

∑
`=1

ω∗t`jλ
∗
th`)(1 −

ν∗th
yth

), and ηtkj = (β∗tkj +

Lj

∑
`=1

ω∗t`j ϕ
∗
tk`)(1−

ν∗tk
xtk

).12

Measurement-error biases: The formulas (α∗thj +
Lj

∑
`=1

ω∗t`jλ
∗
th`)(−

ν∗th
yth

) and (β∗tkj +
Lj

∑
`=1

ω∗t`j ϕ
∗
tk`)(−

ν∗tk
xtk

)

measure measurement-error biases of γthj and ηtkj, respectively. To simplify the method of estimating

the bias-free components (α∗thj’s and β∗tkj’s), we treat the proportions, ν∗th
yth

, h = 1, . . . , j− 1, j + 1, . . . , Mj,

and ν∗tk
xtk

, k = 1, . . . , Kj, of measurement errors as unknown deterministic values.

Components of the coefficients of model (13): The intercept, γt0j = ν∗tj + α∗t0j +
Lj

∑
`=1

ω∗t`jλ
∗
t0` =

measurement error in the dependent variable (ytj) + the intercept of very general equation (10) +

the error term of (12); the coefficients of the non-constant regressors, γthj = (α∗thj +
Lj

∑
`=1

ω∗t`jλ
∗
th`)(1−

ν∗th
yth

)

= bias-free component + omitted-regressor biases + measurement-error biases, and ηtkj = (β∗tkj +
Lj

∑
`=1

ω∗t`j ϕ
∗
tk`)(1−

ν∗tk
xtk

) = bias-free component + omitted-regressor biases + measurement-error biases.

The above labeling hopefully helps explain what the components of the coefficients of (13) are
and how they arise.

2.2.3. Comparison of Conventional and New Practices

In this section, all references to any one of Equations (1)–(9) involve conventional econometric
practice, while all references to any one of Equations (10)–(13) relate to our new practice.
The normalization rule is the same in both (5) and (10). Swamy et al. (2016) [10] (p. 9) proved
that, unlike model (5), model (13) is free of four major specification errors. While conventional practice
routinely ignores omitted-regressor and measurement-error biases, the new practice incorporates them
into the coefficients of the included regressors of (13). As a consequence, the coefficients and error
term of (5) are not unique, and those of (12) are unique. As noted, conventional practice routinely
adopts the exogeneity Assumption 1(i); but the presence of non-unique coefficients and error terms
in models in (5) renders this assumption invalid. As PS (1988) [2] (p. 34) required, all of certain
“sufficient sets” of omitted regressors in model (11) are defined in a way that makes them unobservable
as well as unobserved. The included regressors (the y∗th’s and x∗tk’s) in (12) can be independent of

the error term
Lj

∑
`=1

ω∗t`jλ
∗
t0` which is a function of certain “sufficient sets” of omitted regressors, as PS

(1988) [2] (p. 34) pointed out. A result due to PS (1988) [2] (p. 34) is that the assumption—routinely
made in conventional practice—that the included regressors (xtk’s) are independent of “the” omitted

12 The γ’s in (13) should not be confused with those in (8).
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regressors (wt`’s) in (8) is meaningless. Our new practice, which assumes that Equations (10)–(12) are
deterministic, does not rely on such meaningless assumptions.

Now consider re-writing the EE example (6) from Section 2.1.1 in the form of (13),

earnings = γt0j + γt1j education (14)

where Mj = 1 and Kj = 0, the coefficients γt0j and γt1j have three components each, as in (13),
and the causal effect of education on earnings is the bias-free component of γt1j times the true
value of education, even though education in this equation is treated as endogenous (see Swamy et al.
(2016) [10]). Note particularly that Equation (14) has all the good properties of (13) in that it embodies
causal implications that (6) cannot have.

2.3. Estimation

Our proposed methodology posits as objects of estimation the bias-free components of the
coefficients of (13). This task requires accurate separation of the estimates of the bias-free components
from those of the corresponding omitted-regressor and measurement-error biases. In this section,
we show how this separation can be accomplished. In conventional practice, the structural parameters
of model (5) are assumed not to contain any biases and are estimated from a sample drawn from the
M-dimensional distribution of endogenous variables, given K exogenous variables. This distribution
is inherently misspecified, since the so-called K exogenous variables are not strictly exogenous if the
coefficients as well as the error term of (5) are not unique (see Theorem 1).

2.3.1. Parameterization of Model (13)

We assume that for h = 0, 1, . . . , j− 1, j + 1, . . . , Mj:

γthj = π0hj + π1hjzt1j + . . . + πphjztpj + εthj (15)

and for k = 1, . . . , Kj:
ηtkj = β0kj + β1kjzt1j + . . . + βpkjztpj + ςtkj (16)

where Equation (15) for h = 0 implies that the second term on the right-hand side of (12) is distributed
with nonzero mean, zero restrictions on π’s and β’s can be imposed if they are appropriate, and the z’s
are called “the coefficient drivers” satisfying the following condition:

Admissibility Condition: For j = 1, . . . , M, the vector Ztj = (1, Zt1j, . . . , Ztpj)′ in Equations (15) and
(16) is an admissible vector of coefficient drivers if, given Ztj, the value that the coefficient vector of (13)

would take at time t, had Yt,−j =
(

1, Yt1, . . . , Yt,j−1, Yt,j+1, . . . , YtMj

)′
and Xtj =

(
Xt1, . . . , XtKj

)′
been

yt,−j =
(

1, yt1, . . . , yt,j−1, yt,j+1, . . . , ytMj

)′
and xtj =

(
xt1, . . . , xtKj

)′
is independent of Yt,−j and Xtj for

all t, respectively.13

The purpose of Equations (15) and (16) is to decompose the coefficients of (13) into their respective
parts, necessary for estimation of bias-free components of the coefficients of (13), as shown below.
A further condition is that the ranges of the coefficient drivers in (15) (or (16)) should be the same as that
of the dependent variable of (15) (or (16)). It is important to stress here that the bias-free components
(α∗thj, β∗tkj) of the coefficients of (13) will have theoretically correct signs and magnitudes only if one

accounts for omitted-regressor and measurement-error biases (
Lj

∑
`=1

ω∗t`jλ
∗
th`, (α

∗
thj +

Lj

∑
`=1

ω∗t`jλ
∗
th`)(−

ν∗th
yth

),

13 Pearl (2000) [13] (p. 99) elaborated on this condition.
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Lj

∑
`=1

ω∗t`j ϕ
∗
tk`, (β∗tkj +

Lj

∑
`=1

ω∗t`j ϕ
∗
tk`)(−

ν∗tk
xtk

)) separately. To explain, note that the coefficients of (13) have

three components each, where the components of the intercept are different from those of the
coefficients on non-constant regressors. The coefficient on each non-constant regressor consists of
(i) a bias-free component; (ii) an omitted-regressor bias; and (iii) a measurement-error bias. Of these,
only (i) and (ii) are the additive components of γthj and ηtkj for all h 6= 0 and all k. The theoretical
signs of the values of bias-free components may be known a priori from economic theory. However,
theory will not generally instruct us about the signs of omitted-regressor and measurement-error
biases. Therefore, the signs of the coefficients, being functions of (i), (ii), and (iii), will generally not be
known a priori, and estimates of their bias-free components will have correct theoretical signs and
magnitudes only, if they are separated accurately from those of the corresponding omitted-regressor
and measurement-error biases. For example, estimates of the causal effect of education on earnings
in model (14) are accurate with correct sign and magnitude only if the bias components of γt1j are
removed completely from it. Likewise, published estimates of own- and cross-price elasticities of
the demand for goods and services or the demand for liquid assets using model (5) are very likely
incorrect in sign and magnitude because they are based on Assumption 2, which we have shown to be
false, rather than on Assumption 3, which is true.

2.3.2. Choice of Dependent Variable and Regressors to be Included in (13) and Choice of Coefficient
Drivers to Be Included in (15) and (16)

In our proposed methodology, the coefficients of model (13) are the sources of the error terms
of Equations (15) and (16). Note that the error term of (12) is absorbed into γt0j appearing in (13).
Equation (15) for h = 0 implies that γt0j is random with a nonzero mean. This is a reasonable assumption.
The choice of dependent variable and regressors to be included in (13) is entirely dictated by the
bias-free components one wants to learn. For example, in the EE relationship in (14), the variable
“earnings” is its dependent variable, and the variable “education” is its non-constant regressor because
we want to learn about the bias-free component of the coefficient γt1j. After choosing the dependent
variable and a set of non-constant regressors on this basis, we can insert them into (13) and thus
complete its specification.

As far as possible the coefficient drivers in (15) (or (16)) should be selected in such a way that some
of them are strongly related to (and has the same range and variation as) the bias-free component, and
the rest of them are strongly related to the omitted-regressor bias component of the dependent variable
of Equation (15) (or (16)).14 The choice of coefficient drivers in (15) and (16) is best explained in terms of
a specific example, for which we again resort to EE relationship (14). Greene (2012) [4] (p. 14) presented
various arguments justifying the inclusion of additional variables such as age, age square, number
of children, the husband’s age, the husband’s education, family income, etc., as separate regressors
in a constant-coefficient version of the relationship between earnings and education. In contrast,
Swamy et al. (2016) [3] included these additional variables as coefficient drivers and not as separate
regressors (or explanatory variables), as is common practice when studying what are theoretically bivariate
relationships. In their methodology, Swamy et al. (2016) [3] do not merely include such additional
variables but they also study the interactions between them and education as separate regressors
in a constant-coefficient version of the EE relationship, an approach that we believe is preferable to
Greene’s (2012) [4] (pp. 14, 15, 708) conventions described above. Based on our preferred model (13),
we use Greene’s proposed additional explanatory variables not as separate regressors but as coefficient

14 This procedure is different from that of PS (1988) [2] (p. 49). Their method is to search like a non-Bayesian for concomitants
that absorb “proxy effects” for omitted regressors. Section 4.2 of their paper shows how they use the concomitants
they found.
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drivers in (15) and (16).15 Given that (13) but not (5) should be estimated, the choice of appropriate
coefficient drivers for (15) and (16) is a must. If all econometricians use Equations (13), (15), and (16),
then given (13), there can be a consensus about what coefficient drivers one should include in (15) and
(16). In any case, no one should use false models like (5).

In various disciplines, models that look like our model (13), (15), and (16) are labeled “hierarchical,”
“mixed,” “random parameter,” or “random effects”. However, because such models are not derived
from (10)–(12), they suffer from the same defects previously enumerated for model (5) and do not
therefore possess unique coefficients and error terms.

2.3.3. Identification

In his book, Greene (2012) [4] (p. 322) provides two examples, noting the standard definition of
observational equivalence that if more than one theory is consistent with the same “data”, then the
theories are observationally equivalent and cannot be distinguished on the basis of those data alone.
In the first example, observational equivalence arises from extreme multicollinearity among the
regressors of a model, a problem he eliminates by using some exclusion restrictions. We may do the
same if this problem occurs in (13). In his second example, the problem is that of an under-identified
model (see Greene (2012) [4] (p. 322)). The problem of identification arises because the probability
limit of the least squares estimator of a coefficient is a mixture of all the parameters in the model where
both the dependent variable and the non-constant regressor are measured with error. Greene (2012) [4]
(p. 241)) points out that in this case, bringing in outside information may provide identification. Here,
we follow this procedure in evaluating estimators (21) and (22) given below.

The models in (13) are identified when the coefficients of different models or different coefficients
of the same model are made the functions of different coefficient drivers. This is a counterexample to
the conventional demonstration that equations with all endogenous regressors are not identifiable.

2.3.4. Vector Formulation of Equations (13), (15) and (16)

We use the following vector notation: : j = 1, . . . , M, yj =
(
y1j, . . . , yTj

)′ is the T × 1
vector of observations on the dependent variable of (13), h = 0, 1, . . . , j − 1, j + 1, . . . , Mj,

yt,−j =
(

1, yt1, . . . , yt,j−1, yt,j+1, . . . , ytMj

)′
is the Mj×1 vector, γtj =

(
γt0j, γt1j, . . . , γt,j−1,j, γt,j+1,j, . . . , γtMj j

)′
is the Mj × 1 vector, k = 1, . . . , Kj, xtj =

(
xt1, . . . , xtKj

)′
is the Kj × 1 vector, and ηtj =

(
ηt1j, . . . , ηtKj j

)′
is

the Kj × 1 vector. Using these notations, (13) can be written as

ytj = y′t,−jγtj + x′tjηtj (17)

Another set of vector and matrix notations we use is ztj =
(
1, zt1j, . . . , ztpj

)′ is the (p + 1)× 1 vector

of coefficient drivers, πhj =
(

π0hj, π1hj, . . . , πphj

)′
is the (p + 1) × 1 vector of fixed coefficients,

Π1 is the Mj × (p + 1) matrix having π′hj as its hth row vector, βkj =
(

β0kj, β1kj, . . . , βpkj

)′
is the

(p + 1) × 1 vector of fixed coefficients, B is the Kj × (p + 1) matrix having β′kj as its kth row,

εtj =
(

εt0j, εt1j, . . . , εtj−1j, εtj+1j, . . . , εtMj j

)′
is the Mj × 1 vector of errors in Equation (13),

15 The rationale for these coefficient drivers is: (i) If we do not make the coefficients of the EE relationship functions of age,
then the relationship neglects the fact that most people have higher incomes when they are older than when they are young,
regardless of their education. Thus, without the coefficient driver “Age” or without the interaction term between education
and age, the coefficient will overstate the marginal effect of education on earnings; (ii) It is often observed that income tends
to rise less rapidly in the latter earning years than in the early years. To accommodate this possibility, we enter the square of
age to the list of coefficient drivers; (iii) In addition, previous empirical work of ours has shown that the husband’s education
and family income are strongly related to the bias-free component and that the other coefficient drivers are strongly related
to the omitted-regressor bias component of γt1j.
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ςtj =
(

ςt1j, . . . , ςtKj j

)′
is the Kj× 1 vector of errors in Equation (16); γtj = Π1 ztj + εtj; and ηtj = B ztj + ςtj.

Using these notations, Equation (17) can be written as

ytj = y′t,−jΠ1ztj + x′tj Bztj + y′t,−jεtj + x′tjςtj

= (y′t,−j, x′tj)

(
Π1

B

)
ztj + (y′t,−j, x′tj)

(
εtj
ςtj

)
= y′xt,−j ΠBztj + y′xt,−j εςtj

(18)

where y′xt,−j = (y′t,−j, x′tj), ΠB =

(
Π1

B

)
, and εςtj =

(
εtj
ςtj

)
.

Since yt,−j and xtj are not the sources of the errors in (15) and (16), we can assume the following:

Assumption 5. For all t and j, given ztj, yxt,−j is conditionally independent of εςtj.

Assumption 6. For all t and j, given ztj, the εςtj, t = 1, . . . , T, are serially independent with E(εςtj | ztj) = 0
and E(εςtj ε′ςtj | ztj) = σ2 ∆.

Under Assumptions 5 and 6, we apply an iteratively rescaled generalized least squares (IRSGLS)
method to (18) to obtain the estimators of ΠB and σ2∆. The second-order properties of these estimators
are thoroughly studied by Cavanagh and Rothenberg (1995) [14]. Under certain conditions these
IRSGLS estimators of ΠB and σ2∆ are consistent.

The IRSGLS method also gives the empirical best linear unbiased predictors of εtj and ςtj. Inserting
the observations on z’s, the predictions of εthj and ςtkj, and the IRSGLS estimates of π’s and β’s in (15)
and (16), respectively, gives the predictions of the coefficients of (13).

2.3.5. Estimation of the Bias-Free Components of the Coefficients of (13)

To prevent the differences in the functional forms of γthj in (13) and (15) and of ηtkj in (13) and
(16) from introducing inconsistencies into our analysis, we consider

γthj = π0hj + π1hjzt1j + . . . + πphjztpj + εthj = (α∗thj +

Lj

∑
`=1

ω∗t`jλ
∗
th`)(1−

ν∗th
yth

) (19)

and

ηtkj = β0kj + β1kjzt1j + . . . + βpkjztpj + ςtkj = (β∗tkj +

Lj

∑
`=1

ω∗t`j ϕ
∗
tk`)(1−

ν∗tk
xtk

) (20)

Using Equation (19) gives the estimator (α̂∗thj) of the bias-free component of γthj as

[
1−

ν̂∗th
yth

]−1

(π̂0hj + ∑
s∈G1

π̂shjztsj) (21)

where ν̂∗th
yth

is an assumed value of the proportion ν∗th
yth

, the π̂’s are the IRSGLS estimates of the π’s in
Equation (19), and G1 is a subset of the z’s which we believe is appropriate to estimate α∗thj in (19).

Similarly, using Equation (20) gives the estimator (β̂∗tkj) of the bias-free component of ηtkj as

[
1−

ν̂∗tk
xtk

]−1

(β̂0kj + ∑
s∈G2

β̂skjztsj) (22)

where ν̂∗tk
xtk

is an assumed value of the proportion ( ν∗tk
xtk

), the β̂’s are the IRSGLS estimates of the β’s in
Equation (20), and G2 is a subset of the z’s which we believe is appropriate to estimate β∗tkj in (20).
An application of formulas (21) and (22) is given in Swamy et al. (2016) [3].
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These formulas are not pure sample estimators because they involve (prior) non-sample values:

the numbers G1 and G2, G1 and G2 coefficient drivers, and the assumed values ν̂∗th
yth

and ν̂∗tk
xtk

of the

proportions of measurement errors ν∗th
yth

and ν∗tk
xtk

, respectively. We call them “the (prior) non-sample
values” because the sample data on the variables, ytj, yxt,−j, and ztj do not contain any information on
them. Therefore, the accuracy of estimates given by α̂∗thj and β̂∗tkj depends not only on the accuracy of
the sample estimates of π’s and β’s but also on our ability to obtain accurate prior information on the
non-sample values.16 This approach would have been objectionable had econometricians never used
any non-sample (prior) information. In conventional practice, the crucial issue is econometricians’
ability to deduce the values of structural parameters uniquely from sample information in terms
of sample moments coupled with non-sample information such as restrictions on parameter values
(see Greene (2012) [4] (p. 326)).

3. Conclusions

We distinguish between conventional and new practices in econometrics and show that the
latter yield different and, in our view, better results than the former. After defining uniqueness of
the coefficients and error terms of models, we show that conventional practices are handicapped by
a focus on models with necessarily non-unique coefficients and error terms. We prove further that such
coefficients do not possess consistent estimators. In contrast, our new practice employs very general
models featuring time-varying and unique coefficients and error terms. By construction, these models
are free from four major specification errors cited in the body of the paper. Since certain non-sample
(prior) information besides sample information is needed to estimate these models, we show how
such non-sample information can be obtained and used. Finally, given the importance of empirical
validation of our theory, we plan to offer some applications using real-world data in the near future.
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