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Abstract: This is a simulation-based warning note for practitioners who use the MGLS unit root tests
in the context of structural change using different selection lag length criteria. With T = 100, we find
severe oversize problems when using some criteria, while other criteria produce an undersizing
behavior. In view of this dilemma, we do not recommend using these tests. While such behavior
tends to disappear when T = 250, it is important to note that most empirical applications use smaller
sample sizes such as T = 100 or T = 150. The ADFGLS test does not present an oversizing or
undersizing problem. The only disadvantage of the ADFGLS test arises in the presence of MA(1)
negative correlation, in which case the MGLS tests are preferable, but in all other cases they are very
undersized. When there is a break in the series, selecting the breakpoint using the Supremum method
greatly improves the results relative to the Infimum method.

Keywords: unit root tests; structural change; truncation lag; GLS detrending; information criteria;
sequential general to specific t-sig method

JEL Classification: C22; C52

1. Introduction

Testing for the presence of a unit root in a time series (i.e., whether or not a structural change can
be identified) is now a common starting point in advanced models frequently used in macroeconomics
and finance. Recent efficient unit root tests are the ADFGLS and the PGLS

T tests proposed by
Elliott et al. (1996), and the MGLS tests proposed by Ng and Perron (2001).1 All these (GLS-based) tests
have been extended to the unit root with one unknown structural change as suggested by Perron

1 For excellent surveys, see Stock (1994), Maddala and Kim (1998), Phillips and Xiao (1998), Haldrup and Jansson (2006),
Perron (2006), and Choi (2015).
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and Rodríguez (2003), who show that these tests enjoy the same efficiency characteristics. MGLS tests
have become increasingly popular in the literature. For example, Haldrup and Jansson (2006) argue
that practitioners should abandon the use of ADF tests altogether in favor of MGLS tests because of
their excellent size properties and nearly optimal power properties. However, this note arrives at
the opposite conclusion, suggesting that the choice of the most suitable testing method should be
carefully assessed.

Currently, it is widely accepted that the selection of the lag length (denoted by k) has important
implications for the (size and power) behavior of the different unit root tests. See, for instance,
Schwert (1989), Ng and Perron (1995), Agiakloglou and Newbold (1992), Agiakloglou and Newbold (1996),
Elliott et al. (1996), Ng and Perron (2001), Del Barrio Castro et al. (2011), and Fossati (2012). The consensus is
to use data-dependent methods. These rules include AIC (Akaike Information Criterion), BIC (Bayesian
Information Criterion), Modified AIC (MAIC), Modified BIC (MBIC), and the t-sig method, which are
briefly explained below.

Recently, we performed a routine empirical application of the MGLS tests and obtained strange
results. For example, applying the MZGLS

α̂ and the AIC method to the labor market of the Spanish
region of Cantabria,2 we obtained an unemployment rate of −3’140,463, a huge (explosive) negative
value with k = 9. Using the t-sig procedure , we obtained −50’078,041 with k = 10, which is even more
impressive. A straightforward interpretation implies an overwhelming rejection of the null hypothesis,
given any of the asymptotic or finite critical values tabulated in Perron and Rodríguez (2003). However,
it is clear that the magnitude of this value is counter-intuitive and inadmissible, because its magnitude
is very far from standard values. In contrast, other rules yield opposite results (very small values in
absolute value). When applied to other three time series (unemployment rates in the Spanish regions of
Galicia and Murcia, and to Peru’s monetary policy rate), similar results are obtained.3 In consequence,
we consider that it is worth analyzing the source of the poor behavior of the MGLS tests in the cases
mentioned above. Hence, we perform extensive finite sample simulations for the MGLS tests using
different lag-length criteria, where the size performance is our primary interest.

This note (to our best knowledge) represents the first simulation-based attempt to study the
size and the eccentric behavior of the MGLS unit root tests in the context of structural change.
We do not pretend to perform an exhaustive analysis of each rule. Rather, this document is only
a simulation-based note of caution for users of these unit root tests.4

This note is structured as follows. In Section 2, the GLS approach with structural break, the test
statistics, the rules used to select k, and the two methods to select the break date are briefly reviewed.
In Section 3 we present simulation evidence about the size of the MZGLS

α̂ test linking the results with
an explosive behavior of the test. Section 4 provides some conclusions.

2. DGP, GLS Detrending, MGLS Tests with Structural Change, Rules for Selecting the Lag Length,
and Methods for Selecting the Breakpoint

2.1. The DGP

Following Perron and Rodríguez (2003), the data generating process (DGP) is:

yt = dt + ut, (1)

ut = αut−1 + vt,

2 Quartely data covering the period Q3 1976–Q2 2012 (T = 144 observations).
3 The sample size for Galicia and Murcia are the same as for Cantabria. For Peru’s monetary policy rate, the data are monthly

for February 2002–August 2010 (T = 92 observations).
4 We recognize the limitations of this note, which is only based on simulations. We agree with a Referee that formal proofs are

needed in the spirit of Del Barrio Castro et al. (2013). Hence, further work in the direction of a formal treatment will be
addressed in a future research project.
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for t = 0, 1, 2, ..., T, where vt = ∑∞
j=0 γjet−j, γ(L) = ∑∞

j=0 γjLj, that is, vt is an unobserved stationary
zero-mean process, where ∑∞

j=0 j|γj| < ∞ and et is a martingale difference sequence. We assume that
u0 = 0 throughout, although the results generally hold for the weaker requirement that E(u2

0) < ∞
(even as T → ∞). The process et has a non-normalized spectral density at frequency zero given by
σ2 = σ2

ε γ(1)2 , where σ2 = limT→∞ T−1 ∑∞
i=0 E(e2

t ).
In the first equation of (1), dt = ψ′zt, where zt is a set of deterministic components. Perron and

Rodríguez (2003) consider two models in the context of an unknown structural break: (i) Model I,
where there is a single structural change in the slope, that is, zt = {1, t, 1(t > TB)(t− TB)} where 1(.)
is the indicator function and TB is the time of change and can be expressed as a fraction of the whole
sample as TB = δT for some δ ∈ (0, 1); and (ii) Model II, which includes a single structural change in
intercept and slope, that is, zt = {1, 1(t > TB), t, 1(t > TB)(t− TB)}.5

2.2. GLS Detrending and MGLS Statistics

The class of MOLS tests are due to Stock (1999) and further analyzed by Perron and Ng (1996).
These tests are shown to have far less size distortions in the presence of important negative serial
correlation. The MGLS tests are constructed using ỹt = yt − ψ̂GLS′zt, where ψ̂GLS = (zα′

t zα
t )
−1(zα′

t yα
t ),

with yα
t ≡ [y1, (1− αL)yt], and zα

t ≡ [z1, (1− αL)zt], for t = 2, 3, 4....., T, and for a chosen α = 1 + c/T
and where zt has been defined in Section 2.1. We also use the PGLS

T test, as defined in Perron and

Rodríguez (2003). Hence, defining S(ρ, δ) = ∑T
t=1(y

ρ
t−ψ̂GLS′zρ

t )
2

for ρ = α, 1, the MGLS and the
PGLS

T are:

MZGLS
α̂

(δ) =
T−1ỹ2

T − s2

2T−2 ∑T
t=1 ỹ2

t−1

, MSBGLS(δ) =

[
T−2 ∑T

t=1 ỹ2
t

s2

]1/2

,

MZGLS
tα̂

(δ) =
T−1ỹ2

T − s2

[4s2T−2 ∑T
t=1 ỹ2

t−1]
1/2

, MPGLS
T,µ (δ) =

c2T−2 ∑T
t=1 ỹ2

t−1 − cT−1ỹ2
T

s2 ,

MPGLS
T,τ (δ) =

c2T−2 ∑T
t=1 ỹ2

t−1 + (1− c)T−1ỹ2
T

s2 , PGLS
T (δ) =

S(α, δ)− αS(1, δ)

s2 .

Following Perron and Rodríguez (2003), we use c = −22.5.6 The statistics are modified versions
of the Zα̂ test of Phillips and Perron (1988), Bhargava (1986)’s R1 statistic, and the Ztα̂

test proposed
by Phillips and Perron (1988), respectively. The term s2 is an autoregressive estimate of (2π times)
the spectral density at frequency zero of ut, suggested by Perron and Ng (1998), and defined by
s2 = s2

ek/[1− b̂(1)]2, where s2
ek = (T − kmax)−1 ∑T

t=k+1 ê2
tk, b̂(1) = ∑k

j=1 b̂j, with b̂j and {êtk} obtained
from the autoregression:

∆ỹt = α0ỹt−1 + ∑k
j=1 bj∆ỹt−j + etk. (2)

Another test is the so-called ADFGLS(δ) test, which is the t-statistic for testing the null hypothesis
that α0 = 0 in (2).

2.3. Rules for Selecting the Lag Length (k)

In the derivation of the asymptotic distributions of the different unit root tests, the theoretical
conditions provide little practical guidance for choosing k. The literature suggests to use
data-dependent rules like the AIC and the BIC where k is chosen by minimizing: ICk = ln σ̂2

k +
kCT

T−kmax
,

where σ̂2
k = (T − kmax)−1 ∑T

t=k+1 ê2
tk, CT

T−kmax
is the penalty attached to an additional regressor, and

5 See Rodríguez (2007) for the crash model proposed by Perron (1989).
6 Following Elliott et al. (1996) and Ng and Perron (2001), the parameter c is selected in such a way that 50% of the Gaussian

power envelope is attained.
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T− kmax is the number of observations effectively available.7 The AIC and the BIC are obtained when
CT = 2 and CT = ln(T − kmax), respectively. Another procedure is the sequential t-sig procedure
described in Campbell and Perron (1991).8 Selecting a value for kmax, the lag k is selected in a
general to specific recursive procedure based on a two-tailed t-statistic on the coefficient associated
with the last lag in (2). This approach is denoted by t-sig(10). In a more recent contribution, Ng
and Perron (2001) proposed a class of Modified Information Criteria (MIC) that selects k satisfying:
arg min MICk = ln σ̂2

k + CT [τ̂T(k)+k]
T−kmax

, with τ̂T(k) = (σ̂2
k )
−1α̂2

0 ∑T
t=kmax+1

ỹ2
t−1. The modified Akaike

(MAIC) is obtained when CT = 2, and the modified BIC (MBIC) is obtained when CT = ln(T− kmax).
Recently, in order to improve finite (size and power) sample performance, Perron and Qu (2007) have
proposed a hybrid approach consisting of two steps: (i) OLS detrended data are used to select k using
AIC, BIC, MAIC or MBIC; and (ii) estimating (2) using GLS detrended data to construct s2. In the
simulations, we consider this hybrid approach and the methods used are classified as AICOLS, BICOLS,
MAICOLS and MBICOLS, respectively.

2.4. Selecting the Breakpoint

Given that the break date (δ) is considered to be unknown, we follow Perron and Rodríguez (2003)
using two methods for selecting the break date. The first is to define the break date as the point that
minimizes the statistic tα̂0 in (2). This procedure is known as the Infimum method; see Zivot and
Andrews (1992) and Perron and Rodríguez (2003) for further details. The second method is based on
the maximum absolute value of the t-statistic associated with the dummy variable of the break in the
slope. This procedure is known as the Supremum method, which is equivalent to minimizing the SSR;
see Perron (1997) and Perron and Rodríguez (2003) for further details.

3. Finite Sample Simulations

3.1. Setup

The DGP is yt = αyt−1 + ut with three scenarios for the autocorrelation of ut: (i) the i.i.d.
case: ut = et; (ii) the AR(1) case: ut = φut−1 + et; and (iii) the MA(1) case: ut = et + θet−1.
For all cases, et ∼ i.i.d. N(0, 1), 1000 replications, T = 100 and 250, φ = −0.8,−0.4, 0.4, 0.8 and
θ = −0.8,−0.5, 0.3, 0.8 and α = 1 (null hypothesis). We performed extensive simulations for all MGLS

tests, using both models and both ways to select the break point. We present a selected set of results.
We have selected the MZGLS

α̂
test as the representative test for the entire family of the MGLS tests.

Furthermore, the Infimum method is used to select the break date and results are only reported for
Model I. All other results or Tables are available upon request.9

3.2. The Problem of Size

Table 1 shows the size of the MZGLS
α̂ test for T = 100 and for the different criteria for selecting k.

The kmax = int[10 × ( T
100 )

1/4], that is, kmax = 10. For the i.i.d. case, the results indicate that the
test constructed using BIC and BICOLS have a size around 3.0%, suggesting an undersized test.
Testing based on all MAIC (OLS and GLS versions) seems to be extremely conservative (with an
exact size of 0.0%). On the other side, testing constructed with AIC, AICOLS and the t-sig(10) present
values implying an extremely oversized test (22%, 27% and 63%, respectively). This same result

7 Note that in all experiments we use T − kmax as the available number of observations, which is fixed, as suggested by Ng
and Perron (2005).

8 See also Hall (1994) and Ng and Perron (1995).
9 We are agree with the Editor that our scenario is the worst possible scenario because we are using the Infimum method

jointly (in some cases) with the t-sig(10) rule. However, this worst scenario is widely used in typical empirical applications.
Furthermore, it is a regular or natural option in many statistical packages used by practitioners. Minimizing SSR
(or Supremum) is better, as we mention later.
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appears when we use some fixed values of k (k = 5, 6, ..., 10), where sizes go from 43% to 82%. Indeed,
the size is greater when the selected k is higher. For the AR(1) case, very similar results are found.
In the MA(1) case, we observe the standard result that the test is oversized. In fact, when θ = −0.80,
all selection criteria yield an oversized test. Even when using MAIC and MBIC, the sizes are 23% and
24%, respectively.

Table 1. Size of the MZGLS
α̂ Test, Model I, T = 100.

i.i.d. AR(1) Case MA(1) Case
φ = −0.8 φ = −0.4 φ = 0.4 φ = 0.8 θ = −0.8 θ = −0.5 θ = 0.3 θ = 0.8

AIC 0.22 0.17 0.23 0.30 0.49 0.73 0.30 0.30 0.66
BIC 0.03 0.01 0.07 0.09 0.19 0.90 0.41 0.09 0.40
MAIC 0.00 0.00 0.00 0.01 0.10 0.23 0.04 0.01 0.06
MBIC 0.00 0.00 0.00 0.00 0.10 0.24 0.04 0.00 0.00
AICOLS 0.27 0.21 0.27 0.33 0.53 0.80 0.36 0.33 0.70
BICOLS 0.03 0.01 0.09 0.09 0.20 0.93 0.45 0.10 0.42
MAICOLS 0.00 0.00 0.00 0.01 0.11 0.32 0.04 0.00 0.05
MBICOLS 0.00 0.00 0.00 0.00 0.09 0.33 0.04 0.00 0.00
t− sig(10) 0.63 0.54 0.60 0.67 0.82 0.64 0.57 0.66 0.76
k = 5 0.43 0.23 0.36 0.46 0.64 0.42 0.30 0.45 0.58
k = 6 0.53 0.36 0.48 0.57 0.71 0.44 0.40 0.55 0.46
k = 7 0.64 0.48 0.60 0.67 0.79 0.49 0.51 0.65 0.71
k = 8 0.70 0.57 0.65 0.73 0.84 0.51 0.58 0.71 0.68
k = 9 0.77 0.66 0.75 0.80 0.89 0.55 0.67 0.79 0.81
k = 10 0.82 0.73 0.81 0.82 0.91 0.62 0.73 0.83 0.80

In Table 2, the results are presented for T = 250, where kmax = 13. The values of the distortions
decrease, meaning that the explosiveness (oversizing) problem decreases. For the i.i.d. case, the tests
constructed with BIC and BICOLS yield 2.6% and 2.7%, respectively which are very similar when
T = 100. With MIC and MICOLS, the test has sizes of 1.7% and 1.6%, respectively which are better
than for T = 100, but are still very undersized. Tests using the AIC, AICOLS and t-sig(10) have sizes
of 9%, 11.2%, and 37.9%, respectively, which are smaller than the values for T = 100, but they still
indicate an oversized test, in particular the t-sig(10) criterion. With a fixed k (k = 5, 6, ..., 13), sizes are
greater when k is higher, although smaller compared with T = 100.

Table 2. Size of the MZGLS
α̂ Test, Model I, T = 250.

i.i.d. AR(1) Case MA(1) Case
φ = −0.8 φ = −0.4 φ = 0.4 φ = 0.8 θ = −0.8 θ = −0.5 θ = 0.3 θ = 0.8

AIC 0.091 0.054 0.102 0.129 0.197 0.345 0.154 0.155 0.373
BIC 0.026 0.002 0.024 0.053 0.077 0.697 0.246 0.087 0.203
MAIC 0.017 0.000 0.008 0.033 0.056 0.038 0.025 0.040 0.089
MBIC 0.015 0.000 0.012 0.008 0.058 0.046 0.029 0.003 0.007
AICOLS 0.112 0.074 0.124 0.155 0.217 0.445 0.173 0.173 0.390
BICOLS 0.027 0.001 0.026 0.053 0.078 0.802 0.259 0.088 0.211
MAICOLS 0.016 0.000 0.010 0.035 0.057 0.057 0.028 0.041 0.077
MBICOLS 0.015 0.000 0.013 0.006 0.060 0.059 0.029 0.001 0.005
t− sig(10) 0.379 0.266 0.345 0.395 0.514 0.233 0.312 0.392 0.467
k = 5 0.161 0.051 0.122 0.188 0.229 0.229 0.075 0.173 0.259
k = 6 0.204 0.081 0.173 0.223 0.261 0.143 0.110 0.202 0.136
k = 7 0.244 0.126 0.216 0.251 0.320 0.152 0.159 0.244 0.315
k = 8 0.283 0.168 0.265 0.293 0.359 0.152 0.202 0.278 0.221
k = 9 0.304 0.204 0.284 0.333 0.421 0.140 0.219 0.317 0.371
k = 10 0.357 0.243 0.329 0.381 0.461 0.162 0.258 0.363 0.335
k = 11 0.407 0.287 0.378 0.424 0.507 0.157 0.302 0.419 0.459
k = 12 0.459 0.343 0.431 0.479 0.540 0.173 0.354 0.452 0.447
k = 13 0.496 0.406 0.462 0.533 0.602 0.191 0.416 0.517 0.537
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If we increase kmax, the size of the test for higher k values increases considerably. We may
emphasize this issue comparing with the same class of test, but without a structural change, that is, with
some of the results obtained by Ng and Perron (2001). If we observe Table II.B of Ng and Perron (2001),
the MZGLS

α̂ for θ = −0.80 using k = 10 yields a size of 18% with T = 100. In our case, for the same
values, we have a size of 62%. With T = 250, Ng and Perron (2001) obtain 3.6%, a size close to the
nominal size (5%). However, in our case, for this sample we have a size of 19% (Table 2, k = 13). In fact,
our simulations suggest that we need T = 350 in order to obtain a size close to 5% when θ = −0.80.
The results are surely due to the higher number of deterministic components in our models compared
with Ng and Perron (2001). However, our conclusion is that practitioners interested in applying the
MZGLS

α̂ need a non-trivial number of observations.
A further comparison with Ng and Perron (2001) is possible if we select k using different criteria.

Again, in the MA(1) case, where θ = −0.80 and T = 100, the test constructed with MAIC and MBIC
yields sizes of 23% and 24%, respectively. The OLS versions of these criteria yield 32% and 33%,
respectively (see Table 1). However, in the case shown in Table VI.A of Ng and Perron (2001), sizes of
5.9% are obtained using MIC and 12.3% using MICOLS (T = 100). In Table 2, for T = 250, the tests
constructed with MAIC and MBIC yield sizes of 3.8% and 4.6%, respectively. In the case of Ng and
Perron (2001), MIC and MICOLS yield 1.2% and 1.6%, respectively.

3.3. Some Additional Results10

Two values are used in the construction of s2: s2
ek and b̂(1). Available simulations show that

the reason why s2 → ∞ is b̂(1) → 1. That is, when a higher k is selected, it is possible to incur in
overparameterization in (2) and b̂(1) → 1. If s2 tends to +∞, then the MZGLS

α̂
and MZGLS

tα̂
statistics

tend to −∞ and MSBGLS and PGLS
T converge in probability to zero.

Additional simulations show a link between the excessive size of the test and a high probability
of selecting higher values of k. Following Ng and Perron (1995), we examine the number of times
that k = i is selected by each rule for i = 0, 1, 2, ..., 10 and T = 100. In the i.i.d. case, the results show
that AIC, BIC, MAIC and MBIC have probabilities to select k = 1 of 56.2%, 93.2%, 74.4%, and 81.6%,
respectively. The t-sig(10) criterion has probabilities of selecting lag lengths that are equally distributed
for all values of k. For instance, the recursive t-sig(10) has a probability of around 53% of selecting k ≥ 7.
Until now, a basic conclusion is that the AIC, AICOLS, and t-sig(10) methods are not recommended,
as they have high probabilities of selecting higher values of k, which are associated with the size
distortions observed in Tables 1 and 2.

When we calculate the mean value for MZGLS
α (in the i.i.d. case), explosive negative values

are obtained for k ≥ 5 in AIC, AICOLS, BICOLS and t-sig(10). In contrast, reduced values of the
test (in absolute value) are given by MAIC, MBIC, MAICOLS and MBICOLS. We also examine the
number of times that the MZGLS

α̂ test is smaller than a threshold. We consider six possible values:
−500,−1000,−5000,−10, 000,−50, 000,−100, 000, and the i.i.d. case. For all thresholds considered,
we find that the number of explosive values of MZGLS

α̂ increases as the value of k is larger. For example,
for k = 7, the probability of getting a value of MZGLS

α̂ ≺ −1000 is 13.4%; and the probabilities for
k = 9 and k = 10 are 31% and 40.2%, respectively. Furthermore, the probabilities of finding values of
MZGLS

α̂ ≺ −100, 000 are 18% and 22.7% for k = 9 and k = 10, respectively.
All previous results are less severe when T = 250. Among other things, the probabilities of

finding elevated k values are lower. In this regard, the oversizing problem is attenuated (see Table 2).
Moreover, when a break is included in the simulations, the improvement is greater when T = 250.
However, explosive negative values are still observed when the lag is selected with AIC, AICOLS,
and t-sig (10).

10 We present a summary of the Tables from the Working Paper version of this Note (see Quineche and Rodríguez (2015)).
All other tables are available upon request.



Econometrics 2017, 5, 17 7 of 10

3.4. The ADFGLSStatistic

While the MZGLS
α̂ test (and the entire family of the MGLS tests) shows either oversizing or

undersizing problems, depending on the criteria used to choose k, the ADFGLS statistic works well.
In the available Tables, we find that the mean value for ADFGLS is not explosive irrespective of the
selection criterion used. There are some slightly large negative values when θ = −0.8, but it is a
standard result in the literature.

Table 3 shows the exact size of the ADFGLS statistic when T = 100. For the i.i.d. case, the tests
constructed with MAIC and MAICOLS yield sizes of 3.1% and 3.4%, respectively; that is, they are
slightly undersized, but closer to 5%. A similar observation is valid for MBIC and MBICOLS.
Other information criteria, like AIC, AICOLS and t-sig(10), generate oversized tests; but the values are
much smaller compared with Table 1 for the MZGLS

α̂ test. For example, for the t-sig (10) procedure,
Table 1 (i.i.d. case) shows that the statistic MZGLS

α̂ has a size of 63%, which is poor. However, this value
is reduced to 14.6% in the case of the ADFGLS test (Table 3). In general, the values in all scenarios are
smaller compared with Table 1 for MZGLS

α̂ . The only difference (as expected) arises when θ = −0.80.
In this case, the MZGLS

α̂ test has sizes of 23% and 24% for the MAIC and MBIC, respectively, while for
the ADFGLS test the values are 31.5% and 32.6%, respectively.

Table 3. Size (5%) of ADF Test, Model I, T = 100.

AR(1) Case MA(1) Casei.i.d.
φ = −0.8 φ = −0.4 φ = 0.4 φ = 0.8 θ = −0.8 θ = −0.5 θ = 0.3 θ = 0.8

AIC 0.136 0.117 0.149 0.128 0.167 0.826 0.362 0.145 0.147
BIC 0.072 0.069 0.173 0.069 0.089 0.976 0.568 0.095 0.151
MAIC 0.031 0.024 0.039 0.008 0.042 0.315 0.106 0.005 0.004
MBIC 0.034 0.025 0.040 0.000 0.034 0.326 0.109 0.004 0.000
AICOLS 0.145 0.130 0.163 0.132 0.177 0.881 0.402 0.152 0.152
BICOLS 0.076 0.070 0.196 0.070 0.092 0.985 0.633 0.097 0.155
MAICOLS 0.033 0.030 0.042 0.008 0.042 0.435 0.123 0.006 0.003
MBICOLS 0.038 0.030 0.043 0.000 0.031 0.444 0.127 0.004 0.000
t− sig(10) 0.146 0.129 0.154 0.141 0.193 0.516 0.256 0.148 0.136
k = 5 0.058 0.056 0.052 0.061 0.058 0.243 0.063 0.056 0.094
k = 6 0.054 0.052 0.053 0.054 0.068 0.148 0.054 0.055 0.029
k = 7 0.053 0.055 0.061 0.047 0.059 0.122 0.057 0.052 0.060
k = 8 0.041 0.037 0.036 0.039 0.063 0.097 0.039 0.037 0.035
k = 9 0.049 0.031 0.037 0.049 0.071 0.075 0.034 0.045 0.060
k = 10 0.047 0.038 0.047 0.054 0.069 0.059 0.043 0.050 0.036

Table 4 shows the exact size of the ADFGLS test when T = 250. Again, the size distortions are
clearly smaller compared to those of the MZGLS

α̂ test (Table 2). As in Table 3, the results using the
MZGLS

α̂ test are better when θ = −0.80. In Table 4, the ADFGLS test yields 11.5% and 12.8% when
MAIC and MBIC are used, respectively. In the case of the MZGLS

α̂ test, the values are 3.8% and 4.6%,
respectively. Furthermore, our calculations show that the ADFGLS test will have a size closer to 5% for
θ = −0.80 when T = 350. This sample size is even more prohibitive for most empirical applications.

A comparison of Tables 1 and 2 against Tables 3 and 4 suggests that it is recommendable to use the
ADFGLS test, except when practitioners are sure that they face a strong MA(1) negative correlation.
In this case, practitioners should use T = 350 or T = 250 for ADFGLS or MZGLS

α̂ , respectively.
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Table 4. Size (5%) of ADF Test, Model I, T = 250.

AR(1) Case MA(1) Casei.i.d.
φ = −0.8 φ = −0.4 φ = 0.4 φ = 0.8 θ = −0.8 θ = −0.5 θ = 0.3 θ = 0.8

AIC 0.088 0.078 0.075 0.089 0.098 0.527 0.190 0.102 0.102
BIC 0.054 0.049 0.052 0.061 0.059 0.831 0.351 0.092 0.095
MAIC 0.032 0.028 0.027 0.033 0.041 0.115 0.054 0.036 0.011
MBIC 0.036 0.030 0.031 0.007 0.044 0.128 0.062 0.003 0.004
AICOLS 0.097 0.085 0.084 0.096 0.107 0.612 0.205 0.106 0.111
BICOLS 0.054 0.050 0.053 0.061 0.059 0.900 0.373 0.093 0.099
MAICOLS 0.034 0.029 0.029 0.035 0.041 0.156 0.064 0.037 0.011
MBICOLS 0.039 0.033 0.033 0.006 0.047 0.162 0.069 0.003 0.004
t− sig(10) 0.092 0.091 0.095 0.100 0.107 0.309 0.153 0.104 0.104
k = 5 0.054 0.054 0.052 0.059 0.068 0.501 0.059 0.061 0.099
k = 6 0.052 0.054 0.055 0.052 0.058 0.361 0.050 0.057 0.036
k = 7 0.058 0.052 0.055 0.056 0.056 0.275 0.056 0.055 0.083
k = 8 0.059 0.056 0.055 0.058 0.054 0.214 0.063 0.057 0.042
k = 9 0.056 0.055 0.054 0.053 0.058 0.171 0.051 0.049 0.064
k = 10 0.046 0.056 0.052 0.046 0.066 0.136 0.053 0.048 0.036
k = 11 0.044 0.050 0.050 0.050 0.061 0.117 0.049 0.043 0.061
k = 12 0.044 0.047 0.052 0.058 0.064 0.117 0.049 0.043 0.061
k = 13 0.053 0.053 0.050 0.056 0.054 0.089 0.055 0.054 0.052

3.5. The Supremum Method and a Single Breakpoint

The results change favorably when the Supremum method is used to select the breakpoint.
Several simulations have been performed under the setup of Section 3.1 for Model I:
zt = β1 + β2t + β31(t > TB)(t− TB) with two scenarios: (i) β3 = 0, that is, no break; and
(ii) β3 = 0.5, 1.0, 1.5 with δ = 0.50 × T. Similar experiments have been performed for Model II.
In the first case, the MZGLS

α̂ test still has explosive values, although less frequently; and the values are
negative but of a smaller magnitude (in absolute value) than when using the Infimum method. In the
second case, the results show considerable improvement, especially when T = 250. The explosive
values of the MZGLS

α̂ test practically disappear for the MIC and MICOLS rules, although the cost is to
have small values (in absolute value), which produce a conservative test. On the other hand, the rules
AIC, AICOLS, and t-sig(10) continue to present an MZGLS

α̂ test with explosive values which, however,
are very small compared to the previous cases, and occur only when a higher k is selected.

The best results with the Supremum method are important, since this method is recommended
in the literature to select the break date. For instance, Vogelsang and Perron (1998) argue that this
method is to be preferred, since it allows a consistent estimate of the breaking point, a matter that the
Infimum method cannot do.

The evidence suggests that, in the empirical applications, the Supremum method should be used
to select the breakpoint along with the MIC and MICOLS rules, although the potential cost is to have a
conservative test. The evidence suggests avoiding the use of rules such as AIC, AICOLS, and t-sig(10)
to select k, as well as the use of the Infimum method to select the breakpoint.

4. Conclusions

This note aims to examine the performance of the size of the MGLS statistics to test for the presence
of a unit root using different lag length selection criteria in the context of an unknown structural change.
In particular, we have focused on the size performance of the MZGLS

α̂ test. Overall, the results show
that there is a strong relationship between the explosive negative values of the MZGLS

α̂ test and the
values of the selected k. Using the Infimum method to select the break point jointly with some rule,
such as AIC, AICOLS or t-sig(10), produces the worst scenario, in the sense that the test yields explosive
negative values, which generates severe oversizing problems. On the opposite side, using other criteria
for k implies conservative tests. These issues seem to improve when T = 250 (relative to T = 100) or
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more, which creates sample size difficulties for most macroeconomic applications, especially in Latin
American countries.

The results indicate that ADFGLS should be used, because it does does not result in explosiveness.
Although for other reasons, this recommendation is in the same vein as Harvey et al. (2013).
The advantage of the MZGLS

α̂ test is that it is intrinsically conservative. So, if we obtain a good
size when θ = −0.80, this is achieved at the cost of having an undersized test in the other cases,
including the i.i.d. case. Our results are in line with those obtained in Del Barrio Castro et al. (2011),
Del Barrio Castro et al. (2013), and Del Barrio Castro et al. (2015)11.

The results change for the better when using the Supremum method (minimizing the SSR) to
select the breakpoint. However, this result only occurs when there is a break in the series. With this
method, the test values are reduced (in absolute value) and no explosiveness is observed. Furthermore,
the advantage is that the method offers a consistent breakpoint estimator which is currently suggested
in the literature. Although a possible undersizing problem is addressed, then a possible best scenario
is to use the Supremum method together with rules for selecting k such as MIC. This potential need to
perform a pre-testing to see the existence of a break is similar to what is proposed by Kim and Perron
(2009) when there is only one break and the proposal of Carrión-i-Silvestre et al. (2009) when there are
multiple breaks.
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