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Abstract: We analyze the interdependence between the government yield spread and stock returns
of the banking sector in Italy during the years 2003–2015. In a first step, we find that the Spearman’s
rank correlation between the yield spread and the Italian banking system changed significantly after
September 2008. According to this finding, we split the time window in two sub-periods. While we
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significantly in the second time interval, we find no contagion effects from changes in the yield spread
to returns of the banking system.
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1. Introduction

During the recent financial crisis, a strong nexus between the financial sector and the sovereign
credit risk has emerged worldwide. This potentially dangerous linkage is particularly pronounced
in Europe, where banks—compared to the US or UK—are more important for providing liquidity to
the economy and hold a much higher share of local government debt. The home bias is extreme for
countries in the periphery, where in 2011 the holdings of sovereign bonds amounted to more than 15%
of GDP (Merler and Pisan-Ferry 2011). While the vicious spiral in Ireland started with problems in the
financial sector and the bailouts triggered the sovereign default risk, the country’s high debt-to-GDP
ratio seems to be the starting point of the problems for Italian banks (Acharya et al. 2012).

The distinct and peculiar Italian circumstances require an accurate analysis of the linkage
between the sovereign risk and the banking sector. First, in the past, Italian banks were much
more focused on classical business and were less exposed to risky financial products. Therefore,
before 2008 they had lower Credit default swap (shortly, CDS) spreads than banks from other
European countries (Acharya et al. 2012). Second, the amount of wealth invested by Italian
banks in government bonds of their own country (the so-called home bias) is historically higher
than in any other troubled country (Merler and Pisan-Ferry 2011). Moreover, Italian banks used
part of the cheap liquidity offered by the European Central Bank (ECB) via the two long-term
refinancing operations (LTROs) to further increase their exposure in government bonds to more
than 40% until May 2012 (Bank of Italy 2012). Therefore, their fate is particularly linked to the
creditworthiness of the state. In fact, rising credit spreads cause direct losses in the treasury of the banks
(Angeloni and Wolff 2012; De Bruyckere et al. 2013), and they have an impact (although less evidently)
on the net interest income (Albertazzi et al. 2014). Furthermore, an increase in the government yield
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induces higher interest rates on loans and a consequent decline in the lending volume of banks.
In addition and more generally, higher sovereign credit spreads might be a signal that potential future
bailouts become less affordable.

Since the beginning of the European government crisis in the years from 2011 to 2013, the main
issue has been how to mitigate the systemic risk and how to ensure that the future probability of such
a crisis reoccurring is reduced. In particular, the relationship between sovereigns and the banking
industry is still at the center of academic attention, and various papers have investigated different
aspects of this issue (e.g., Baglioni and Cherubini (2013); Delis and Mylonidis (2011); Kalbaska and
Gatkowski (2012); Kohonen (2014); Reboredo and Ugolini (2015a, 2015b); Xu et al. (2017)). The current
paper addresses the following three research questions: (1) Is there a statistically significant dependence
between the sovereign default risk and the stock returns of Italian banks, especially in the period
2011–2013? (2) Do large and small capitalized banks differ with respect to this relationship? (3) Is an
increasing sovereign risk transferred through contagion to the equity returns of Italian banks?
Compared to the literature, as a methodological contribution our investigation is mainly based on a
two-step approach. First, we remove possible heteroscedasticity in the estimation of the time-varying
dependence by using a parametric filtering procedure. Second, the research questions are answered by
referring to the framework of (rank-invariant) association measures and tail dependence (Patton 2012).

The remainder of the paper is organized as follows: Section 2 provides a discussion on the meaning
of the idiom financial contagion and an overview of the tools for investigating the interdependence
between the government yield spread and stock returns of the banking sector in Italy during the years
2003–2015. Section 3 provides a detailed description of our empirical analysis. Section 4 concludes and
provides a discussion on the financial and policy implications of the empirical findings.

2. What Financial Contagion Is, and How to Detect It

Financial contagion refers to the diffusion of financial distress from one market/economy to
another. In a recent survey by Pericoli and Sbracia (2003), for instance, various definitions of contagion
are discussed that reflect the wide variety of meanings ascribed to this term. A contagious episode
typically results in an unprecedented high correlation level among the affected systems: If a financial
crisis arises, stock returns may start behaving more similarly than they did in the pre-crisis period.
A common approach to detecting the occurrence of contagion therefore consists of identifying breaks
in the transmission of shocks and inferring from them a significant rise in the correlation of asset
returns. In practice, analysts compare cross-market correlations in tranquil and crisis periods, under the
assumption that a significant rise in the correlation is caused by a break in the data-generating process.
Such a method is consistent with the “very restrictive” definition of contagion provided by the
World Bank (World Bank 2016).

Although increased correlation may provide one way of measurement, simultaneous jumps in
correlation are hardly contagion per se. For instance, Pericoli and Sbracia (2003) define contagion as an
episode with excessive comovements in prices and quantities, conditional upon a crisis occurring in
one market or a group of markets, which cannot be explained by simple interdependence. A similar
definition is provided by Kaminsky et al. (2003), who make an explicit condition, writing “Only if
there is excess comovement in financial and economic variables [...] in response to a common shock do
we consider it contagion”.

This paper contributes to the discussion in the following way. First, our technique avoids a
potential sample selection bias (and consequently, spurious results) in the identification of specific
shocks or tranquil/crisis periods. As Pericoli and Sbracia (2003) point out, the correct identification
of the origin of the crisis matters—in particular for those tools based on correlation breakdown
(i.e., structural breaks in correlation): Empirical analysis may be affected by a sample selection bias
problem, which occurs whenever tests are conducted on ad hoc subsamples. Second, we refer to
the “No Contagion, Only Interdependence” principle (see Forbes and Rigobon (2002)), since during
turmoils some increase in comovements is merely an implication of interdependence. To be consistent
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with the previously mentioned definitions of contagion, we focus on the observed joint distribution
function of the asset returns over the whole period, and we distinguish between comovements
merely implied by interdependence, mainly related to the central region of the joint distribution,
and comovements implied by contagious episodes, associated with the Left tail of the distribution
(where extreme losses are located). We thus ground our analysis on the following general definition of
financial contagion.

Definition 1. Financial contagion stands for a significant increase in excessive comovements of prices above
typical comovements.

Definition 1 first recalls the use of excessive comovements, and second, it implicitly requires a
comparison between comovements associated with different regions of the whole joint distribution
function. This definition is consistent with that provided in Bradley and Taqqu (2004, 2005), who
locally analyze the dependence structure of the involved financial time series by using a linear measure
of association. Definition 1 is also consistent with the group of empirical works on the international
transmission of shocks, where contagion is defined in terms of discontinuities in the data-generating
process, and its presence is tested by checking for structural breaks in correlation (see the classification
in Pericoli and Sbracia (2003) and the references therein).

According to Definition 1, the key point is the specification of an appropriate measure of contagion,
able to distinguish contagious episodes from simple interdependence. To illustrate our methodology,
we exploit some results from early works (see Durante and Jaworski (2010); Durante and Foscolo (2013);
Durante et al. (2013)), in which contagion in European markets during the Great Recession and the
European sovereign debt crisis has been investigated.

Generally speaking, we say that there is contagion between market/asset X and market/asset Y if
there is more dependence between X and Y when they perform (very) badly than when they exhibit a
typical performance. Thus, contagion is related to the strength of the dependence between X and Y at
different regions of the domain of the joint distribution of (X, Y). Durante and Jaworski (2010) propose
a contagion test grounded on the concept of copula (i.e., a function able to capture the rank-invariant
dependency among random variables). Such an approach is based on the determination of a suitable
threshold (i.e., quantile level) α ∈ (0, 0.5) that draws a distinction between normal comovements due
to simple interdependence and excessive comovements.

Let X and Y be the random variables representing the returns of two financial markets/assets.
In order to analyze contagion according to our definition, we are interested in the conditional
distribution function of [X, Y | (X, Y) ∈ B], which is supposed to be well defined in the following,
where the conditioning set B ⊂ R2

is one of the following types:

• B is a tail set (usually denoted by T) that includes the realizations of (X, Y) that are judged to
represent a risky scenario;

• B is a central set, or mediocre set (usually denoted by M) that includes the realizations of (X, Y) that
are judged to represent an “untroubled scenario”.

In particular, we assume here that the tail and the central set can be defined as suitable rectangles
of R2 whose boundaries are determined by quantile levels of X and/or Y. For instance, given two
financial markets X and Y, if the contagion from X to Y is of main interest, then the following sets can
be considered:

• Tα = [−∞, qX(α)]×R, representing possible extreme negative returns of X;
• Mα = [qX(α), qX(1− α)]×R, representing returns of X that are judged to be usual fluctuations

in the markets.

Here, α ∈ (0, 0.5) and qX is the quantile function associated with X.
As shown in Durante and Jaworski (2010), contagion can be introduced in terms of a suitable

comparison between copulas associated with the joint conditional distribution of a tail and a central set
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(see Cherubini et al. (2011); Durante and Sempi (2016); Mai and Scherer (2012)). To this end, we recall here
the definition of concordance ordering in the bivariate case; see Durante and Sempi (2016). Given two
continuous random pairs (X1, Y1) and (X2, Y2) with marginal distribution functions FX1 , FY1 , FX2 , FY2

and copulas C1 and C2, respectively, (X2, Y2) is said to be more concordant than (X1, Y1), written
C1 � C2, if C1 (u, v) ≤ C2 (u, v) for all (u, v) ∈ [0, 1]2, u = FX• (x) and v = FY• (y), x, y ∈ R. In order
to indicate the case when C1 � C2 but C1 (u, v) 6= C2 (u, v) for at least one (u, v) ∈ [0, 1]2, the symbol
≺ is used.

Definition 2. Let X and Y be the random variables representing the returns of two financial markets/assets.
Let Tα and Mα be a tail and a central set, respectively, for (X, Y) which are determined by a suitable level α.
Contagion between X and Y at the level α ∈ (0, 0.5) exists if CMα ≺ CTα , where CMα (respectively, CTα ) is the
copula of the conditional distribution function of (X, Y | (X, Y) ∈ Mα) (respectively, (X, Y | (X, Y) ∈ Tα)).

Definition 2 has the following interesting features. It is a distribution-based notion, since it is
grounded on the comparison between the dependence in a tail region (the copula related to the tail
set) and the dependence in a central region (the copula of the central set) of the joint distribution
function of (X, Y). It is more informative than other methods based on linear Pearson’s correlation
coefficient or tail dependence coefficients, since it is able to catch nonlinear dynamics and it is not
restricted to the extreme tail. It depends on a suitable definition of tail (and central) set, according
to the threshold α. Finally, it appears when there is a strict order between the copulas. For instance,
two markets that are perfectly comonotone (i.e., one market is an increasing function of the other)
exhibit no (symmetric) contagion, since their dependence does not change at any time—these markets
are simply interdependent.

Checking contagion as in Definition 2 could be difficult to implement in practice because
the identification of the copula of the conditional distribution function of (X, Y) may be
complicated. In order to avoid such troubles, a non-parametric procedure has been suggested by
Durante and Jaworski (2010). Given two copulas C and D, if C ≺ D, then ρ (C) ≤ ρ (D), where ρ is
the Spearman’s rank correlation coefficient (see Schmid et al. (2010)), which for any pair of continuous
random variables X and Y with copula C is given by

ρ (C) = 12
∫
[0,1]2

C (u, v) du dv− 3.

Then, we check the absence of contagion by comparing the values of the associated Spearman’s
rank-correlation coefficient. The following test can be thus performed:

H0 : ρ (CTα) ≤ ρ (CMα) (no contagion)

against H1 : ρ (CTα) > ρ (CMα) , (contagion)

where CTα and CMα are the copulas associated with the conditional distribution function of X and
Y with respect to the tail and the central set, respectively. We define ∆ρ = ρ (CT) − ρ (CM), and
∆ρ̂ = ρ̂ (CT) − ρ̂ (CM) its empirical counterpart. Under some mild assumptions on the involved
threshold copulas (Durante and Jaworski 2010), the asymptotic behavior of ∆ρ̂ is given by

√
N (∆ρ̂− ∆ρ)

d→ N (0, σ2
T,M), (1)

where N stands for the sample size and the subscript of the variance term reflects the fact that
the variance depends on the way the tail and the central sets are defined. By using the Gaussian
approximation in Equation (1), a contagion test could be easily implemented. The one-sided hypothesis
test procedure reads as follows (Dobric et al. 2013; Durante and Jaworski 2010):

1. Compute ρ̂ (CTα) and ρ̂ (CMα) from the observations in Tα and Mα, for a given α.
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2. Compute bootstrap replications from the entire sample.1 For each replication, calculate ρ̂B (CTα)

and ρ̂B (CMα), as well as the corresponding difference ∆ρ̂B.
3. On the basis of the vector of the bootstrap estimated difference between Spearman correlation

coefficients ∆ρ̂B, estimate the asymptotic variance of ∆ρ̂and calculate the test statistic
t = ∆ρ̂/σ̂T,M, where σ̂2

T,M is the bootstrap estimate of σ2
T,M/N.

4. Reject the null hypothesis H0 : ρ (CTα) ≤ ρ (CMα) if t > Φ−1 (1− ξ), where Φ denotes the
standard normal distribution function and ξ the chosen significance level.

An approach connected with our methodology has been recently proposed by Li and Zhu (2014),
who use Kendall’s tau instead of Spearman’s coefficient. There are two main differences between
our procedure and that introduced in Li and Zhu (2014): First, our test statistic does not require the
identification of the trigger events that discriminate tranquil and crisis periods, since it is implicitly
determined by choosing a suitable threshold α. Second, our methodology directly works on the
dependence structure—it is grounded on the comparison between typical comovements, implied
by interdependence and mainly related to the central region of the joint distribution, and excessive
comovements implied by contagious episodes and associated with the tail of the joint distribution.

As shown by Durante et al. (2013), the occurrence of contagion strongly depends on the choice of
the threshold α—a fact that could represent a key point when one wants to draw conclusions from the
empirical analysis.

A formal test of contagion may have the drawback that it cannot quantify the size of the “jump”
in the comovement—information that could be useful for classifying different markets according to
their “extreme” linkages. In order to provide this feature, an empirical measure of contagion has been
proposed in Durante and Foscolo (2013), called Spearman’s Contagion Index (briefly, SCIα). The SCIα at
level α ∈ (0, 0.5) is defined as

SCIα =
ρ(CTα)− ρ(CMα)

2
. (2)

The domain of the SCIα is by construction [−1, 1]: the higher the dependence in the tail of the
distribution compared to its center, the larger the values of the SCIα (in absolute terms) as evidence of
contagion. The SCIα assumes that during crisis times the correlation in the tail increases compared
to the center. Under mild assumptions, the estimator of SCIα is asymptotically Gaussian distributed.
Moreover, its variance—which depends on α—can be estimated with bootstrapping, as explained in
Durante and Jaworski (2010) and Dobric et al. (2013).

The value of SCIα may be interpreted as follows. If SCIα > 0, then ρ (CTα) > ρ (CMα), which
could indicate the presence of contagion. Analogously, if SCIα < 0, then ρ (CTα) < ρ (CMα), and
contagion does not occur. If there is no difference in the conditional correlation between tail and central
set, then SCIα = 0, meaning that no shift of the dependence structure has been realized. As for the test
statistic, in order to prevent the arbitrary choice of α, Durante et al. (2014) suggest an average measure
of contagion, where the index SCIα is evaluated on an interval of threshold values.

The contagion index SCIα thus goes beyond the use of linear correlation: it can be calculated via
non-parametric methods, and it does not require the specification of crisis/tranquil periods a priori.
As such, it avoids possible problems of mis-specifying the dependence structure.

3. Data, Empirical Investigation, and Results

Our empirical analysis is based on first differences (i.e., changes) in the 10-year bond yield
spread between Italy (TRYDE10Y-FDS) and Germany (TRYDE10Y-FDS), and log-returns of the FTSE
Italy All Share Bank Index (T8300-FTX) over the period 01/2003–07/2015 (Datastream mnemonics
in parenthesis). We use first differences, as changes in the yield spread influence the market price of

1 The length of the simulated time series is typically set equal to the size of the original sample.
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government bonds. To measure the impact of changes in the yield spread on Italian banks, we rely on
equity returns because they seem to lead other market indicators (e.g., CDS rates) (Fung et al. 2008;
Norden and Weber 2009). In order to alleviate non-synchronous trading hours in the past, we stick to a
weekly frequency (Cappiello et al. 2006). Furthermore, we also use all time series of those constituents
of the banking index (date July 2015) listed since January 2003, which corresponds to the start of the
index and the start of our investigation period.

Figure 1 shows the evolution of the Italian yield spread (as solid black line) and the 1-year rolling
window Spearman’s rank correlation between differences in yields and log-returns of the banking
index (solid gray line) with 95% confidence intervals (dotted gray lines).2 While before 2008 the
independence assumption between changes in yield spread and stock returns of the bank index cannot
be rejected (at 5% level) according to a nonparametric test of independence for multivariate time series
proposed by Genest and Rémillard (2004), afterwards it turned out that the Spearman’s rank correlation
was significant. Given that Figure 1 suggests two different regimes for the correlation over time, we
conduct the nonparametric test for change-point detection based on the (multivariate) empirical
distribution function proposed by Holmes et al. (2013) and implemented in R by Kojadinovic (2015).
We find a change-point to be located approximately at the end of September 2008,3 the time when the
investment bank Lehman Brothers filed for Chapter 11 bankruptcy protection. Indeed, the Spearman’s
correlation in the two highlighted periods is statistically different: While until September 2008 the
correlation between the two time series is −0.032 with a 95% block bootstrap confidence interval of
[−0.156, 0.091] (indicating that the independence assumption cannot be rejected at the 5% significance
level), afterwards the correlation declines to −0.634 with the corresponding confidence interval
[−0.698,−0.563], with a peak of −0.704 and a corresponding confidence interval [−0.768,−0.620] in
the period 2011–2013. We observe that the negative dependence is statistically significant after 2008. In
the following, for simplicity we refer to these two time intervals as first and second period, respectively.
For each period, we carry out a dependence analysis by estimating several measures of association
between changes in the yield spread and stock returns of the banking system.

In order to focus on the contagion effect, following Forbes and Rigobon (2002) it should
be considered that heteroscedasticity in the univariate financial time series might induce a
bias in the estimation of the dependence. Moreover, the calculation of copula-based measures
(like Spearman’s correlation) usually benefits from considering data that are not serially dependent.
For all these reasons, it is convenient to filter each time series in each sub-period with a univariate time
series model for the conditional mean and the conditional variance, and hence apply our methodology
to the residuals of the fitted models. As shown in Rémillard (2017), the limiting distribution of
rank-based dependence measures computed with the residuals are the same as if the dependence
measures were computed with the innovation (i.e., they are able to detect the (marginal-free)
dependence among the time series). Specifically, in order to capture stylized facts in financial markets,
we assume that each time series follows an ARMA-GJR-GARCH model (Glosten et al. 1993), whose
standardized residuals have a constant conditional t-distribution. The Bayesian information criterion
(BIC) is used to select the model order. The estimated standardized residuals are given by

ε̂j,t =
yj,t − µ̂j

(
zj,t−1; ψ̂j

)
σ̂j

(
zj,t−1; λ̂j

) ,

2 We calculate the confidence intervals by using the adjusted bootstrap percentile method (see Davison and Hinkley 1997).
For the (linear) Pearson correlation (not shown) the graph is qualitatively similar.

3 22 September 2008–26 September 2008.
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where yj,t stands the observation of the time series j at time t, ψ̂j is the vector of estimated parameters

for the ARMA models, λ̂j is the vector of estimated parameters for the GJR-GARCH models, and zj,t−1
stands for past information of the time series. The goodness-of-fit of this model choice is checked
by different diagnostic tests. The Box–Ljung and the ARCH test (at one and four lags) assess the
absence of residual autocorrelation and heteroscedasticity at a significance level of 1%. Moreover, the
Kolmogorov–Smirnov test confirms the t-distribution assumption for the residuals, and the Augmented
Dickey–Fuller test does not show the presence of unit roots at a significance level of 1%.4
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Figure 1. In the Upper Panel, the black solid line shows the evolution of the Italian yield spread.
The solid gray line indicates the rolling 1-year Spearman’s rank correlation between FTSE Italy All
Share Bank Index and the 10-year yield spread (the gray dotted lines give the 95% confidence interval);
The Bottom Panel highlights the period 2011–2013.

In order to focus on rank-invariant dependence, we further compute the so-called
pseudo-observations ûj,t: Therefore, for each time series and sub-period, the estimated standardized
residuals ε̂j,t have been sorted and scaled by 1/ (n + 1),5 where n stands for the sample size
(see Patton 2012). Figure 2 shows the scatter plot of pseudo-observations for the yield spread û1,t
against the returns of the banking index û2,t, separately for the first (Upper Left Panel) and second
period (Upper Right Panel), respectively, with a focus on the period 2011–2013 in the Bottom Panel of
Figure 2. By focusing on the enlarged Right Rectangles of the bivariate distributions (which focus on the
upper tail sets of the time series), for the second period we notice an increased (negative) dependence
between high changes in the yield spread and low returns of the banking index, as previously
quantified and shown in Figure 1; i.e., the Italian banking industry seems to suffer more under a severe
increase in the sovereign default risk during the second period than during the first one.

4 All results of the different tests are available upon request.
5 This asymptotically negligible scaling factor is used to force the variates to fall inside the open unit hypercube.
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û1,t
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û 2
,t

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.90 0.94 0.98

0.
0

0.
2

0.
4

0.
6

0.
8
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Figure 2. Scatter plots of pseudo-observations between the yield spread û1,t and the FTSE All Share
Banks index û2,t for the first (second) period are given in the Upper Left (Right) Panel. The scatter plot
in the Bottom Panel focuses on the period 2011–2013.

In order to analyze the behavior in the tails and to better understand the change observed in
the second period, the Upper Left Panel of Figure 3 shows the estimated quantile dependence (also
called tail concentration function, see Patton (2012) and Durante et al. (2015)) for the first period (solid
line) and the second period (dashed line), respectively, by conditioning on the the yield spread. Once
again, a focus on the period 2011–2013 is provided in the Bottom Panel of Figure 3. The upper quantile
dependence is defined by

λ̂U
α = P (û2,t < 1− α |û1,t > α ) ,

i.e., gives the probability to observe low pseudo-observations in stock returns conditional on high
pseudo-observations in changes of the yield spread with α ∈ [0.5, 1); analogously, the lower quantile
dependence is defined by

λ̂L
α = P (û2,t > 1− α |û1,t < α ) ,

with α ∈ (0, 0.5]. Two findings are noteworthy. First, the right-tail quantile dependence is higher than
the left-tail one in both periods. Therefore, the probability that large increases in the yield spread induce
low stock returns is higher than for the contrary case of large declines in the yield spread. Second, the
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dependence in the second period (dashed line) is generally higher than in the first period (solid line).
In the Upper Right Panel of Figure 3, we calculate the difference between the tail dependence in both
periods together with 95% bootstrap confidence intervals. The figure confirms that for all quantile
values the difference between the dependence in the two periods is statistically significant.
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Figure 3. The Upper Left Panel shows the estimated quantile dependence between the
pseudo-observations of the yield spread and the FTSE All Share Banks index in the first (solid line)
and second (dashed line) periods, while the Bottom Panel shows the estimated quantile dependence in
the period 2011–2013 with a 95% bootstrap confidence interval. The Upper Right Panel presents the
difference of the tail dependence estimates between the second and the first period along with a 95%
bootstrap confidence interval.

Finally, we use the Spearman’s contagion index proposed by Durante and Foscolo (2013) to
quantify potential contagion effects from changes of the yield spread to returns of the banking index.
The SCIα from û1,t to û2,t is defined by

SCIα (û1,t, û2,t) =
ρ (û1,t, û2,t | û1,t > α)− ρ (û1,t, û2,t | 1− α < û1,t < α)

2
,

where ρ indicates the operator to calculate the Spearman correlation and α the chosen quantile
value. Figure 4 shows the SCIα (û1,t, û2,t) for extreme pseudo-observations of changes in the yield
spread by choosing α ∈ {0.90, 0.91, 0.92, 0.93, 0.94, 0.95} with the 95% bootstrap confidence interval
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in the second period. Although the SCIα is negative, which indicates that the dependence in the
tails is smaller than in the center, we cannot claim that our findings are statistically significant in
the second period (as also confirmed by the formal test of contagion shown in Figure 7). Therefore,
in line with other papers (Caporin et al. 2013; Forbes and Rigobon 2002; Serwa and Bohl 2005),
we cannot claim that contagion effects caused the increased dependence in the recent past (compared to
Broto and Perez-Quiros (2015); De Bruyckere et al. (2013)). We repeated the same exercise for other
EU countries. Interestingly, the same conclusion—an unclear picture of contagion effects—applies to
France (one core European country) and other peripheral countries (i.e., Greece, Ireland, Portugal, and
Spain, respectively); see Figure 4.
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Figure 4. Spearman’s contagion index (overlay points) for extreme changes in the yield spread
(α ∈ {0.90, 0.91, 0.92, 0.93, 0.94, 0.95} in descending order, respectively) during the second period for
Italy, France, Greece, Ireland, Portugal, and Spain, respectively, along with the 95% bootstrap confidence
interval (solid lines).

3.1. Large vs. Small Banks

In Figure 5, we use a network representation to compare the dependence of pseudo-observations
between changes in the yield spread and the returns of the single constituent Italian banks.6 The width

6 The list of the Italian banks: Intesa Sanpaolo (ISP), Unicredit (UCG), Mediobanca (MB), Unione di Banche Italiane (UBI),
Banco Popolare (BP), Monte dei Paschi di Siena (BMPS), Popolare di Milano (PMI), Popolare dell Emilia Romagna (BPE),
Credito Emiliano (CE), Popolare di Sondrio (BPSO), Carige (CRG), Credito Valtellinese (CVAL), Desio e Brianza (BDB),
Banca Profilo (PRO), Finnat Euramerica (BFE), Popolare Etruria Lazio (PEL), Banco di Sardegna (BSRP).
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of the lines shows the extent of the dependence, and the gray (respectively, black) color indicates a
positive (respectively, negative) correlation.

spread

ISP

UCG
MB

UBI

BP

BMPS

PMI

BPE

CE

BPSO

CRG

CVAL

BDB

PRO

BFE

PEL

BSRP
spread

ISP

UCG

MB

UBI

BPBMPS

PMI

BPE

CE

BPSO

CRG

CVAL

BDB

PRO

BFE

PEL

BSRP

Figure 5. Networks derived from the Spearman’s rank correlation between the pseudo-observations
of changes in the yield spread and the equity returns of the single banks (first period on the Left and
second period on the Right, respectively). The width of the lines shows the extent of the dependence,
and gray (black) color indicates a positive (negative) correlation. BDB: Desio e Brianza; BFE: Finnat
Euramerica; BMPS: Monte dei Paschi di Siena; BP: Banco Popolare; BPE: Popolare dell Emilia Romagna;
BPSO: Popolare di Sondrio; BSRP: Banco di Sardegna; CE: Credito Emiliano; CRG: Carige; CVAL:
Credito Valtellinese; ISP: Intesa Sanpaolo; MB: Mediobanca; PEL: Popolare Etruria Lazio; PMI: Popolare
di Milano; PRO: Banca Profilo; UBI: Unione di Banche Italiane; UCG: Unicredit.

It can be easily seen that during the first period there is basically no relationship between changes in
the yield spread and the single banks. During the second period, a high negative correlation (shown by
thick black lines) between changes in the yield spread and the single banks can be observed. Furthermore,
compared to the first period, the correlation among the banks seems to increase considerably. In order to
investigate the relationship between the dependence and the size of the banks, in Figure 6 we indicate
the corresponding market capitalization (in billions). By ranking the Italian banks according to their
market capitalization, it can be seen that especially during the crisis period, large capitalized banks
are highly and negatively correlated to changes in the yield spread (see the Right Panel of Figure 5).
This might also explain the high correlation among the large capitalized banks at the center of the
network, while small capitalized banks in the outer regions seem to be less affected.

Despite the observed increased correlation in the second period, we are not able to detect a
significant evidence of contagion from spread to banks in both periods (Figure 7, Upper Panels).
Reverse causality has also been tested, since impaired interbank markets raised funding costs of
all banks, and increased the expectations that governments have to bailout their indigenous banks.
The contagion test procedure rejects this conjecture (Figure 7, Bottom Panels). Therefore, potential
bi-directional contagious effects seem to be unlikely according to our methodology.
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Figure 6. Market capitalization of the single constituent banks.

FIT2B2E
ISP

UCG
MB
UBI
BP

BMPS
PMI
BPE

CE
BPSO

CRG
CVAL
BDB
PRO
BFE
PEL

BSRP

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.2452
0.1456

0.2981
0.6635

0.474
0.472

0.2964
0.0332

0.1368
0.2099

0.7614
0.5243

0.104
0.0186

0.0482
0.4436

0.0645
0.6407

FIT2B2E
ISP

UCG
MB
UBI
BP

BMPS
PMI
BPE

CE
BPSO

CRG
CVAL
BDB
PRO
BFE
PEL

BSRP

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.7325
0.6255

0.7649
0.4172

0.7772
0.8756

0.6295
0.9242

0.8204
0.6764

0.6482
0.6166

0.8534
0.9819

0.4059
0.4527

0.8466
0.6564

FIT2B2E
ISP

UCG
MB
UBI
BP

BMPS
PMI
BPE

CE
BPSO

CRG
CVAL
BDB
PRO
BFE
PEL

BSRP

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.3641
0.4059

0.4671
0.8917

0.9908
0.4236

0.5403
0.0516

0.9992
0.8543

0.215
0.5972

0.7619
0.5315

0.7841
0.8882
0.8896

0.5863

FIT2B2E
ISP

UCG
MB
UBI
BP

BMPS
PMI
BPE

CE
BPSO

CRG
CVAL
BDB
PRO
BFE
PEL

BSRP

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.9944
0.9809
0.9969

0.7814
0.9395
0.9482
0.9375

0.8216
0.582

0.8834
0.9415

0.9006
0.824

0.9265
0.6757

0.7025
0.6999

0.7316

Figure 7. p-values associated with the contagion test statistic at the level α′ = 0.95. In the (Upper Panels),
the null hypothesis of absence of contagion from spread to banks is tested in the first (Left Panel) and
second period (Right Panel), respectively. In the Bottom Panels, the null hypothesis of absence of contagion
from banks to spread is tested in the first (Left Panel) and second period (Right Panel), respectively.

4. Conclusions

The two recent financial crises (the U.S. subprime mortgage crisis and the European Sovereign
Debt Crisis) revealed significant deficiencies in both the analytical framework and the policymaker’s
ability to mitigate emerging system-wide vulnerabilities. Macro-financial linkages have not been fully
appreciated, and the transmission of risk across the financial systems has been severely underestimated.
In the present paper, we propose a non-linear approach in order to measure the dependence between
the sovereign credit spread and the stock returns of Italian banks. We find significant negative
dependence starting from September 2008, but no contagion effects from the government yield spread
to the banking system. As an interesting result, compared to small capitalized banks, during the
second period large capitalized banks are highly and negatively correlated to changes in the yield
spread. From the policymaker’s perspective, the proposed tools are useful in at least two ways: First,
our method—which reduces the impact of arbitrary model choices—allows supervisors to monitor
the banking system based on empirical evidence. Second, the insights of this exercise might be used
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to update necessary size-dependent capital buffers in response to an increased systematic risk in
the market.
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