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Abstract: It is well known that inference on the cointegrating relations in a vector autoregression
(CVAR) is difficult in the presence of a near unit root. The test for a given cointegration vector can have
rejection probabilities under the null, which vary from the nominal size to more than 90%. This paper
formulates a CVAR model allowing for multiple near unit roots and analyses the asymptotic
properties of the Gaussian maximum likelihood estimator. Then two critical value adjustments
suggested by McCloskey (2017) for the test on the cointegrating relations are implemented for the
model with a single near unit root, and it is found by simulation that they eliminate the serious size
distortions, with a reasonable power for moderate values of the near unit root parameter. The findings
are illustrated with an analysis of a number of different bivariate DGPs.
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1. Introduction

Elliott (1998) and Cavanagh et al. (1995) investigated the test on a coefficient of a cointegrating
relation in the presence of a near unit root in a bivariate cointegrating regression. They show convincingly
that when inference on the coefficient is performed as if the process has a unit root, then the size
distortion is serious, see top panel of Figure A1 for a reproduction of their results. This paper analyses
the p-dimensional cointegrated VAR model with r cointegrating relations under local alternatives

∆yt = (αβ′ + T−1α1cβ′1)yt−1 + εt, t = 1, . . . , T, (1)

where α, β are p× r and εt is i.i.d. Np(0, Ω). It is assumed that α1 and β1 are known p× (p− r) matrices
of rank p− r, and c is (p− r)× (p− r) and an unknown parameter, such that the model allows for
a whole matrix, c, of near unit roots. We consider below the likelihood ratio test, Qβ, for a given
value of β, calculated as if c = 0, that is, as if we have a CVAR with rank r. The properties of the test
Qβ can be very bad, when the actual data generating process (DGP) is a slight perturbation of the
process generated by the model specified by αβ′. The matrix αβ′ describes a surface in the space of
p× p matrices of dimension p2 − (p− r)2. Therefore a model is formulated that in some particular
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“directions”, given by the matrix α1cβ′1, has a small perturbation of the order of T−1 and (p− r)2 extra
parameters, c, that are used to describe the near unit roots.

A similar model could be suggested for near unit roots in the I(2) model, see Di Iorio et al. (2016),
but this will not be attempted here.

The model (1) contains as a special case the DGP used for the simulations in Elliott (1998), whe the
errors are i.i.d. Gaussian and no deterministic components are present. The likelihood ratio test, Qβ,
for β equal to a given value, is derived assuming that c = 0 and analyzed when in fact near unit roots
are present, c 6= 0. The parameters α, β, and Ω can be estimated consistently, but c cannot, and this is
what causes the bad behaviour of Qβ.

The matrix Π(α, β, c) = αβ′ + T−1α1cβ′1 is an invertible function of the p2 parameters (α, β, c),
see Lemma 1, so that the Gaussian maximum likelihood estimator in model (1) is least squares,
and their limit distributions are found in Theorem 2. The main contribution of this paper, however,
is a simulation study for the bivariate VAR with p = 2, r = 1. It is shown that two of the methods
introduced by McCloskey (2017, Theorems Bonf and Bonf -Adj), for allowing the critical value for Qβ

to depend on the estimator of c, give a much better solution to inference on β, in the case of a near unit
root. The results of McCloskey (2017) also allow for multivariate parameters and for more complex
adjustments, but in the present paper we focus for the simulations on the case with p = 2 and r = 1,
so there is only one parameter in c. In case r = 1, the matrix Ip + Π is linear in c ∈ R, and for c = 0,
it has an extra unit root. Therefore there is a near unit root for c 6= 0, and we choose the vector α1 such
c ≥ 0 corresponds to the non-explosive near unit roots of interest.

The assumption that α1 and β1 are known is satisfied under the null, in the DGP analyzed by Elliott,
see (15) and (16). This is of course convenient, because α1, β1 as free parameters, are not estimable.

Let θ denote the parameters α, β and Ω and let θ̂ and ĉ denote the maximum likelihood estimators
in model (1). For a given η (here 5% or 10%), the quantile cθ,η(c) is defined by Pc,θ{ĉ ≤ cθ,η(c)} = η.
Simulations show that the quantile is increasing in c, and solving the inequality for c, a 1− η confidence
interval, [0, c−1

θ,η(ĉ)], is defined for c. For given ξ (here 90% or 95%) the quantile qθ,ξ(c) is defined by
Pc,θ{Qβ ≤ qθ,ξ(c)} = ξ, and McCloskey (2017) suggests replacing the critical value qθ,ξ(c), by the
stochastic critical value qθ,ξ(c−1

θ,η(ĉ)), or introducing the optimal ξ by solving the equation

max
0≤c≤∞

Pc,θ

{
Qβ ≤ qθ,ξ

(
c−1

θ,η(ĉ)
)}

= υ,

for a given nominal size υ (here 10%).
These methods are explained and implemented by a simulation study, and it is shown that they

offer a solution to the problem of inference on β in the presence of a near unit root.

2. The Vector Autoregressive Model with near Unit Roots

2.1. The Model

The model is given by (1) and the following standard I(1) assumptions are made.

Assumption 1. It is assumed that r < p, c is (p− r)× (p− r), and that the equation

det
(

Ip(1− z)− αβ′z
)
= 0

has p− r roots equal to one, and the remaining roots are outside the unit circle, such that |eigen(Ir + β′α)| < 1.
Moreover Π = αβ′ + T−1α1cβ′1 has rank p and

det
(

Ip(1− z)− αβ′z− T−1α1cβ′1z
)
= 0, (2)

has all roots outside the unit circle for all T ≥ T0.
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For the asymptotic analysis we need condition (2) to hold for T tending to ∞, and for the
simulations, we need it to hold for T = 100. In model (1) with cointegrating rank r and α1 and β1

known, the number of free parameters in α and β is 2pr− r2 = p2 − (p− r)2. The next result shows
how the parameters α, β, c are calculated from Π. For any p×m matrix of rank m < p, we use the
notation a⊥ to indicate a p × (p − m) matrix of rank p − m, for which a′⊥a = 0, and the notation
ā = a(a′a)−1.

Lemma 1. Let Π = αβ′ + T−1α1cβ′1 and let Assumption 1 be satisfied. Then, for β normalized as β′b = Ir,

α = Πβ1⊥(α
′
1⊥Πβ1⊥)

−1α′1⊥Πb, (3)

β′ = (α′1⊥Πb)−1α′1⊥Π, (4)

c = T(β′1Π−1α1)
−1. (5)

To discuss the estimation we introduce the product moments of ∆yt and yt−1

S00 = T−1
T

∑
t=1

∆yt∆y′t, S11 = T−1
T

∑
t=1

yt−1y′t−1, S10 = S′01 = T−1
T

∑
t=1

yt−1∆y′t.

Theorem 2. In model (1) with α1 and β1 known, the Gaussian maximum likelihood estimator of Π = αβ′ +

T−1α1cβ′1 is the coefficient in a least squares regression of ∆yt on yt−1. For β normalized on some p× r matrix
b, β′b = Ir, the maximum likelihood estimators (α, β, c) are given in (3)–(5) by inserting Π̂.

For c = 0, such that the rank of Π is r, the likelihood ratio test for a given value of β is

Qβ = T log
det
(

S00 − S01β(β′S−1
11 β)β′S10

)
det
(

S00 − S01 β̆(β̆′S−1
11 β̆)β̆′S10

) , (6)

where the maximum likelihood estimator β̆ is determined by reduced rank regression assuming the rank is r.

2.2. Asymptotic Distributions

The basic asymptotic result for the analysis of the estimators and the test statistic is that α′⊥yt

converges to an Ornstein-Uhlenbeck process. This technique was developed by Phillips (1988), and
Johansen (1996, chp. 14) is used as a reference for details related to the CVAR. The results for the test
statistic can be found in Elliott (1998).

Under Assumption 1, the process given by (1) satisfies

T−1/2α′⊥y[Tu]
D→ K(u),

where K is the Ornstein-Uhlenbeck process

K(u) = α′⊥

∫ u

0
exp

{
α1cβ′1C(u− s)

}
dWε(s),

C = β⊥(α
′
⊥β⊥)

−1α′⊥ and Wε is Brownian motion generated by the cumulated εt.

Theorem 3. The test Qβ for a given value of β, derived assuming c = 0, see (6), satisfies

Qβ
D→ χ2

(p−r)r + B, (7)

where the stochastic noncentrality parameter
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B = tr

{
β1c′ζcβ′1β⊥

(
α′⊥β⊥

)−1
(∫ 1

0
KK′du

) (
β′⊥α⊥

)−1
β′⊥

}
, (8)

is independent of the χ2 distribution and has expectation

E(B) = tr

{
β1c′ζcβ′1C

(∫ 1

0
(1− v) exp(vτC)Ω exp(vC′τ′)dv

)
C′
}

. (9)

Here ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1 and τ = α1cβ′1, so it follows that E(B) = 0 if and only if α′1Ω−1α = 0,

in which case Qβ
D→ χ2

(p−r)r.

Let β be normalized as β′β1⊥ = Ir. The asymptotic distribution of the estimators, α̂, β̂, ĉ, see (3)–(5),
are given as

T1/2(α̂− α)
D→Np×r(0, Σ−1

ββ ⊗Ω), (10)

T(β̂− β)′β⊥
D→(α′1⊥α)−1α′1⊥

∫ 1

0
(dWε)K′

(∫ 1

0
KK′du

)−1

α′⊥β⊥, (11)

ĉ− c D→(α′⊥α1)
−1α′⊥

∫ 1

0
(dWε)K′

(∫ 1

0
KK′du

)−1

α′⊥β⊥(β′1β⊥)
−1. (12)

Note that the asymptotic distributions of β̂ and ĉ given in (11) and (12) are not mixed Gaussian,
because α′1⊥Wε(u) and α′⊥Wε(u) are not independent of K(u), which is generated by α′⊥εt.

Corollary 1. In the special case where r = p− 1, we choose α1 so that c ≥ 0, and find

E(B) =
e2δc − 1− 2δc

(2δ)2 κζ, (13)

where
δ = β′1Cα1, κ = β′1CΩC′β1, ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1.

3. Critical Value Adjustment for Test on β in the CVAR with near Unit Roots

3.1. Bonferroni Bounds

In this section the method of McCloskey (2017, Theorem Bonf) is illustrated by a number of
simulation experiments. The simulations are performed with data generated by a bivariate model (1),
where p = 2 and r = 1. The direction α1 is chosen such that c ≥ 0. The test Qβ for a given value of β,
is calculated assuming c = 0, see (6). The simulations of Elliott (1998), see Section 3.3, show that there
may be serious size distortions of the test, depending on the value of c and ρ, if the test is based on the
quantiles from the asymptotic χ2(1) distribution.

The methods of McCloskey (2017) consists in this case of replacing the χ2(1) critical value with
a stochastic critical value depending on ĉ, in order to control the rejection probability under the
null hypothesis.

Let θ = (α, β, Ω) and let Pc,θ denote the probability measure corresponding to the parameters c, θ.
The method consists of finding the η quantile of ĉ, see (5) with Π replaced by Π̂, as defined by

Pc,θ

(
ĉ ≤ cθ,η(c)

)
= η,

for η = 5% or 10%, say, and the ξ quantile qθ,ξ(c) of Qβ as defined by
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Pc,θ

(
Qβ ≤ qθ,ξ(c)

)
= ξ,

for ξ = 90% or 95%, say.
By simulation for given θ and a grid of given of values c ∈ (c1, . . . , cn), the quantiles cθ,η(ci) and

qθ,ξ(ci) are determined. It turns out, that both cθ,η(c) and qθ,ξ(c) are increasing in c, see Figure A2.
Therefore, a solution c−1

θ,η(ĉ) can be found such that

Pc,θ

{
ĉ > cθ,η(c)

}
= Pc,θ

{
c ≤ c−1

θ,η(ĉ)
}
= 1− η. (14)

This gives a 1− η confidence interval [0, c−1
θ,η(ĉ)] for c, based on the estimator ĉ. Note that for

c ≤ c−1
θ,η(ĉ) it holds by monotonicity of qθ,ξ(·) that qθ,ξ(c) ≤ qθ,ξ(c−1

θ,η(ĉ)), such that

Pc,θ

[
Qβ > qθ,ξ

{
c−1

θ,η(ĉ)
}

and c ≤ c−1
θ,η(ĉ)

]
≤ Pc,θ

{
Qβ > qθ,ξ(c)

}
≤ 1− ξ,

but we also have

Pc,θ

[
Qβ > qθ,ξ

{
c−1

θ,η(ĉ)
}

and c > c−1
θ,η(ĉ)

]
≤ Pc,θ

[
c > c−1

θ,η(ĉ)

]
= η,

such that

Pc,θ

[
Qβ > qθ,ξ

{
c−1

θ,η(ĉ)
}}
≤ 1− ξ + η.

In the paper from McCloskey (2017) it is proved under suitable conditions that we have the much
stronger result

1− ξ ≤ lim sup
T→∞

sup
0≤c<∞

Pc,θ

[
Qβ > qθ̂,ξ

{
c−1

θ̂,η
(ĉ)
}]
≤ 1− ξ + η.

Thus, the limiting rejection probability, for given θ, of the test on β, calculated as if c = 0,
but replacing the χ2

ξ(1) quantile by the estimated stochastic quantile qθ̂,ξ(c
−1
θ̂,η

(ĉ)), lies between 1− ξ

and 1− ξ + η. In the simulations we set η = 0.05 and ξ = 0.95, so that the limiting rejection probability
is bounded by 10%.

Note that θ is replaced by the consistent estimator θ̂. It obviously simplifies matters that in all the
examples we simulate, it turns out that cθ,η(c) is approximately linear and increasing in c, and qθ,ξ(c)
is approximately quadratic and increasing in c for the relevant values of c, see Figure A2.

3.2. Adjusted Bonferroni Bounds

McCloskey (2017, Theorem Bonf-Adj) suggests determining by simulation on a grid of values of c
and ξ, the quantitity

P̄θ,η(ξ) = max
0≤c≤∞

Pc,θ

(
Qβ > qθ,ξ(c−1

θ,η(ĉ)
)

.

It turns out that P̄θ,η(ξ) is monotone in ξ, and we can determine for a given nominal size υ (here 10%)

ξopt = P̄−1
θ,η (υ).

The Adjusted Bonferroni quantile is then

qθ,ξopt

(
c−1

θ,η(ĉ)
)

,
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and we find
Pc,θ

(
Qβ > qθ,ξopt(c

−1
θ,η(ĉ)

)
≤ υ.

The result of McCloskey (2017, Theorem Bonf-Adj) is that under suitable assumptions

lim sup
T→∞

sup
0≤c<∞

Pc,θ

[
Qβ > qθ̂,ξopt

{
c−1

θ̂,η
(ĉ)
}]

= υ,

where we illustrate the upper bound.

3.3. The Simulation Study of Elliott (1998)

The DGP is defined by the equations,

y1t =
(

1− c
T

)
y1t−1 + u1t, (15)

y2t = γy1t + u2t. (16)

It is assumed that ut = (u1t, u2t)
′ are i.i.d. N2(0, Ωu) with

Ωu =

(
1 ρ

ρ 1

)
,

and the initial values are y10 = y20 = 0. The data y1, . . . , yT are generated from (15) and (16), and the
test statistic Qβ for the hypothesis γ = 0, is calculated using (6).

The DGP defined by (15) and (16) is contained in model (1) for p = 2. Note that y2t = γ(1−
c/T)y1t−1 + γu1t + u2t such that

α =

(
0
1

)
, β =

(
γ

−1

)
, α1 =

(
−1
−γ

)
, β1 =

(
1
0

)
, (17)

where the sign on α1 has been chosen such that c ≥ 0. Finally ε1t = u1t and ε2t = u2t +γu1t, and therefore

Ω =

(
1 ρ + γ

ρ + γ 1 + γ2 + 2γρ

)
.

For c = 0, the process yt = (y1t, y2t)
′ is I(1) and γy1t − y2t is stationary, and if c/T is close to zero,

yt has a near unit root.
Applying Corollary 1 to the DGP (15) and (16), the expectation of the test statistic Qβ is found

to be

E(Qβ) = p− 1 +
e−2c − 1 + 2c

4
ρ2

1− ρ2 , (18)

which increases approximately linearly in c.
Based on N = 1000 simulations of errors u1, . . . , uT, T = 100, the data y1, . . . , yT, are constructed

from the DGP for each combination of the parameters

(γ, c, ρ) ∈ [−0.5 : (0.01) : 0.5]× [1 : (1) : 20]× [−0.9 : (0.1) : 0.9],

where [a : (b) : c] indicates the interval from a to c with step b. Based on each simulation, ĉ and the test
Qβ for γ = 0 are calculated.
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Top panel of Figure A1 shows the rejection probabilities of the test Qβ as a function of (c, ρ),
using the asymptotic critical value, χ2

0.90(1) = 2.71, for a nominal rejection probability of 10%.
The rejection probability increases with |ρ| and with c. When c = 10 (corresponding to an autoregressive
coefficient of c/T = 0.9) and |ρ| = 0.7, the size of the test Qβ is around 50%, as found in Elliott (1998).
The results are analogous across models with an unrestricted constant term, or with a constant restricted
to the cointegrating space. In the paper by Elliott (1998) a number of tests are analyzed, and it was
found that they were quite similar in their performance and similar to the above likelihood ratio test
Qβ from the CVAR with rank equal to 1.

3.4. Results with Bonferroni Quantiles and Adjusted Bonferroni Quantiles for Qβ

Data are simulated as above and first the rank test statistic, Qr, see Johansen (1996, chp. 11) for
rank equal to 1, is calculated. The rejection probabilities for a 5% test using Qr are given in the bottom
panel of Figure A1 and they show that for c = 20, the hypothesis that the rank is 1, is practically certain
to be rejected. If c = 8, the probability of rejecting that the rank is 1 is around 50%, so that plotting the
rejection probabilities for 0 ≤ c ≤ 10, covers the relevant values, see Figure A3.

For η = 5% and 10%, the quantiles cη(c) of ĉ are reported in Figure A2 as a function of c.
The quantiles cη(c) are nearly linear in c, and they are approximated by

c̃η(c) = aη + bηc,

where the coefficients (aη, bη) depend on η, which is used to construct the upper confidence limit
in (14) as

c̃−1
η (ĉ) = (ĉ− aη)b−1

η .

For ξ = 90% and 95%, the quantiles qρ,ξ(c) of Qβ are reported in Figure A2 as function of c for four
values of ρ. It is seen that for given ρ, the quantiles qρ,ξ(c) are monotone and quadratic in c, for relevant
values of c, and hence they can be approximated by

q̃ρ,ξ(c) = fρ,ξ + gρ,ξc + hρ,ξc2, (19)

where the coefficients ( fρ,ξ , gρ,ξ , hρ,ξ) depend on ρ and ξ. The modified critical value is then constructed
replacing (c, ρ) by (c̃−1

η (ĉ), ρ̂) in (19), and thus one finds the adjusted critical value

q̃ρ̂,ξ,η(ĉ) = fρ̂,ξ + gρ̂,ξ(ĉ− aη)b−1
η + hρ,ξ

(
(ĉ− aη)b−1

η

)2
(20)

which depends on estimated values, ĉ and ρ̂, and on discretionary values, ξ and η.
The adjusted Bonferroni quantile is explained in Section 3.2. Simulations show that P̄θ,η(ξ) is

linear in ξ and the solution of the equation

P̄θ,η(ξ) = υ,

where υ = 0.10 is the nominal size of the test, determines ξopt; the adjusted Bonferroni q-quantile is
then found like (20) as

q̃ρ̂,ξopt,η(ĉ) = fρ̂,ξopt + gρ̂,ξopt(ĉ− aη)b−1
η + hρ,ξopt

(
(ĉ− aη)b−1

η

)2
, (21)

where η = 0.05.
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The rejection frequency of Qβ, the test for γ = 0, calculated using the χ2(1)0.90 quantile,
the Bonferroni quantile in (20) for ξ = 95% and η = 5% and the adjusted Bonferroni quantile
in (21) for η = 5% is reported as a function of c for four values of ρ in Figure A3. For both corrections
the rejection frequency is below the nominal size of 10%; hence both procedures are able to eliminate
the serious size-distortions of the χ2 test. While the Bonferroni adjustment leads to rather conservative
test with rejection frequency well below the nominal size, the adjusted Bonferroni procedure is closer
to the nominal value. The power of the two procedures is shown in Figures A4 and A5 for values of
|γ| ≤ 1/2. It is seen that the better rejection probabilities in Figure A3 are achieved together with a
reasonable power for c ≤ 5, where the probability of rejecting the hypothesis of r = 1 is around 30%, see
bottom panel of Figure A1. Notice that both tests become slightly biased, that is, the power functions
are not flat around the null γ = 0.

In conclusion, the simulations indicate that the adjusted Bonferroni procedure works better than
the simple Bonferroni, the reason being that the former relies on the joint distribution of Qβ and ĉ.

3.5. A Few Examples of Other DGPs

Four other data generating processes are defined in Table 1, to investigate the role of different
choices of α1 and β1 for the results on improving the rejection probabilities for test on β under the
null and alternative. The DGPs all have α = −β = (−1, 1)′/2. The vectors α1 and β1 are chosen to
investigate different positions of the near unit root in the DGP.

The choice of DGP turns out to be important also for the test, Qr, for r = 1. In fact the probability
of rejecting r = 1 is around 50% for DGP 1 if c = 4, for DGP 2 if c = 20, whereas for DGP 3 and 4
the 50% value value is 8.

The rejection probabilities in Figure A6 are plotted for 0 ≤ c ≤ 10, to cover the most relevant values.
The results are summarized in Figures A6–A8. It is seen that the conclusions from the study of

the DGP analyzed by Elliott seem to be valid also for other DGPs. For moderate values of c, using the
Bonferroni quantiles gives a rather conservative test while the adjusted Bonferroni procedure is closer
to the nominal size and the power curves look reasonable for c ≤ 5, although the tests are slightly
biased, except for DGP 1. For this DGP, α1 = β1 = (1, 1)′, Ω = I2, such that α′1Ω−1α = 0, which means
that the asymptotic distribution of Qβ is χ2(1), see Theorem 3, despite the near unit root. It is seen from
Figure A6, there is only moderate distortion of the rejection probability in this case and in Figures A7
and A8, the power curves are symmetric around γ = 0, so the tests are approximately unbiased.

Table 1. The matrix Π for four different DGPs given by α = −β = (−1, 1)′/2 which are the basis for
the simulations of rejection probabilities for the adjusted test for β = (1,−1)′/2. The positions of c/T
give the different α1 and β1.

Four DGPs Allowing for near Unit Roots, Ω = I2

1:
(
− 1

4 − c/T 1
4 − c/T

1
4 − c/T − 1

4 − c/T

)
2:

(
− 1

4
1
4

1
4 − 1

4 − c/T

)

3:
(

− 1
4

1
4

1
4 − c/T − 1

4 − c/T

)
4:

(
− 1

4 − c/T 1
4 − c/T

1
4 − 1

4

)

4. Conclusions

It has been demonstrated that for the DGP analyzed by Elliott (1998), it is possible to apply the
methods of McCloskey (2017) to adjust the critical value in such a way that the rejection probabilities
of the test for β are very close to the nominal values. By simulating the power of the test for β, it is seen
that for c ≤ 5, the test has a reasonable power. Some other DGPs have been investigated and similar
results have been found.
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Appendix A. Proofs

Proof of Lemma 1. Multiplying Π = αβ′ + T−1α1cβ′1 by β1⊥, we find

Πβ1⊥ = αβ′β1⊥. (A1)

Multiplying Π by α′1⊥ we find

α′1⊥Π = α′1⊥αβ′ = α′1⊥Πβ1⊥(β′β1⊥)
−1β′. (A2)

Multiplying by b we find
(β′β1⊥)

−1 = (α′1⊥Πβ1⊥)
−1α′1⊥Πb.

It follows that from (A2)

β′ = β′β1⊥(α
′
1⊥Πβ1⊥)

−1α′1⊥Π = (α′1⊥Πb)−1α′1⊥Π

and from (A1)
α = Πβ1⊥(β′β1⊥)

−1 = Πβ1⊥(α
′
1⊥Πβ1⊥)

−1α′1⊥Πb,

which proves (3) and (4).
Inserting these results in the expression for Π, we find using α′1⊥Πbβ′ = α′1⊥αβ′bβ′ = α1⊥Π

Π = αβ′ + T−1α1cβ′1 = Πβ1⊥(α
′
1⊥Πβ1⊥)

−1α′1⊥Π + T−1α1cβ′1. (A3)

Next Π is decomposed using

Π = Πβ1⊥(α
′
1⊥Πβ1⊥)

−1α′1⊥Π + α1(β′1Π−1α1)
−1β′1, (A4)

which is proved by premultiplying (A4) by α′1⊥ and β′1Π−1. Subtracting (A3) and (A4) and multiplying
by ᾱ′1 and β̄1, it is seen that

(β′1Π−1α1)
−1 = c/T.

Proof of Theorem 2. The unrestricted maximum likelihood estimator of Π is Π̂ = S01S−1
11 , and

Ω̂ = S00 − S01S−1
11 S10, and the results for α̂, β̂, ĉ follow from Lemma 1. If c = 0, the maximum

likelihood estimator β̆ can be determined by reduced rank regression, see (Johansen (1996, chp. 6)).

Proof of Theorem 3. Proof of (7) and (8): The limit results for the product moments are given first,
using the normalization matrix CT = (β, T−1/2α⊥) and the notation S1ε = T−1 ∑T

t=1 yt−1ε′t,

C′TS11CT =

(
β′S11β T−1/2β′S11α⊥

T−1/2α′⊥S11β T−1α′⊥S11α⊥

)
D→
(

Σββ 0
0

∫ 1
0 KK′du

)
, (A5)

T1/2C′TS1ε =

(
T1/2β′S1ε

T−1α′⊥S1ε

)
D→
(

Nr×p(0, Ω⊗ Σββ)∫ 1
0 K(dWε)′

)
. (A6)
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The test for a known value of β is given in (6). It is convenient for the derivation of the limit
distribution of Qβ, to normalize β̆ on the matrix α(β′α)−1, such that β̆′α(β′α)−1 = Ir, and define
θ̆ = (β′⊥α⊥)

−1β′⊥(β̆− β). This gives the representation

β̆− β = α⊥(β′⊥α⊥)
−1β′⊥(β̆− β) + β(α′β)−1α′(β̆− β) = α⊥ θ̆.

The proof under much weaker conditions can be found in Elliott (1998), and is just sketched here.
The estimator for θ for known α, Ω and c = 0, is given by the equation

Tθ̆ = (α′⊥T−1S11α⊥)
−1(α′⊥S1ε + α′⊥T−1S11β1cα′1)αΩ,

where αΩ = Ω−1α(α′Ω−1α)−1. The limit distribution of Tθ̆ follows from (A5) and (A6) as follows.

Because T−1α′⊥S11β
P→ 0 it follows that

α′⊥T−1S11β1cα′1 = α′⊥T−1S11

(
α⊥(β′⊥α⊥)

−1β′⊥ + β(α′β)−1α′
)

β1cα′1

D→
(∫ 1

0
KK′du

)
(β′⊥α⊥)

−1β′⊥β1cα′1,

and from α′⊥S1ε
D→
∫ 1

0 K(dWε), it is seen that

Tθ̆
D→
(∫ 1

0
KK′du

)−1 (∫ 1

0
K(dWε) +

(∫ 1

0
KK′du

)
(β′⊥α⊥)

−1β′⊥β1cα′1

)
αΩ = U,

say. Conditional on K, the distribution of U is Gaussian with variance (α′Ω−1α)−1 ⊗ (
∫ 1

0 KK′du)−1

and mean (β′⊥α⊥)
−1β′⊥β1cα′1αΩ. The information about θ satisfies

T−2 Iθθ = tr
{

Ω−1α(dθ)′α′⊥S11α⊥(dθ)α′
}

D→ tr
{

α′Ω−1α(dθ)′
∫ 1

0
KK′du(dθ)

}
,

and inserting U for (dθ) determines the asymptotic distribution of Qβ. Conditional on K, this has a
noncentral χ2((p− r)r) distribution with noncentrality parameter

B = tr
{
(β′⊥α⊥)

−1β′⊥β1c′ζcβ′1β⊥(α
′
⊥β⊥)

−1
∫ 1

0
KK′du

}
,

where ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1, which proves (8). The marginal distribution is therefore a
noncentral χ2 distribution with a stochastic noncentrality parameter, which is independent of the χ2

distribution, as shown by Elliott (1998).

Proof of (9): For τ = α1cβ′1 it is seen that

Etr

{
(β′⊥α⊥)

−1β′⊥β1c′ζcβ′1β⊥(α
′
⊥β⊥)

−1
∫ 1

0
KK′du

}

= Etr

{
β1c′ζcβ′1C

∫ 1

0

(∫ u

0
exp

(
τC(u− s)

)
dW(s)

)(∫ u

0
dW(t)′ exp

(
C′τ′(u− t)

))
duC′

}

= tr

{
β1c′ζcβ′1C

∫ 1

0

(∫ u

0
exp

(
τC(u− s))Ω exp(C′τ′(u− s)

)
ds
)

duC′
}

= tr

{
β1c′ζcβ′1C

(∫ 1

0
(1− v) exp(vτC)Ω exp(vC′τ′)dv

)
C′
}

,
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which proves (9). Note that this expression is zero if and only if ζ = 0, or α′1Ω−1α = 0, in which case
the asymptotic distribution of Qβ is χ2.

Proof of (10) and (11):

It follows that Π̂ = S01S−1
11 can be expressed as

Π̂ = αβ′ + T−1α1cβ′1 + Sε1S−1
11 (A7)

= αβ′ + T−1α1cβ′1 + T−1/2(T1/2Sε1CT)(C′TS11CT)
−1
(

β, T−1/2α⊥
)′

= αβ′ + T−1α1cβ′1 + T−1/2M1T β′ + T−1M2Tα′⊥,

where, using (A5) and (A6),

M1T
D→ M1 = Np×r(0, Σ−1

ββ ⊗Ω), (A8)

M2T
D→ M2 =

∫ 1

0
dWεK′

(∫ 1

0
KK′du

)−1

. (A9)

From β̂′ = (α′1⊥Π̂b)−1α′1⊥Π̂, it follows that

T(β̂− β)′β⊥ = T(α′1⊥Π̂b)−1α′1⊥(Π̂− αβ′)β⊥

= (α′1⊥Π̂b)−1α′1⊥(T
1/2M1T β′ + M2Tα′⊥)β⊥

D→ (α′1⊥αβ′b)−1α′1⊥M2α′⊥β⊥ = (α′1⊥α)−1α′1⊥M2α′⊥β⊥,

where T1/2M1T β′β⊥ = 0, α′1⊥α1cβ′1 = 0 and β′b = Ir. This proves (11).
From the normalization β̂′b = Ir we find, replacing β̂ by β

T1/2(α̂− α) = T1/2(Π̂β1⊥(β̂′β1⊥)
−1 −Πβ1⊥(β′β1⊥)

−1)

= T1/2(T−1/2M1T + T−1M2Tα′⊥β1⊥(β′β1⊥)
−1) + oP(1)

= M1T + T−1/2M2Tα′⊥β1⊥(β′β1⊥)
−1 + oP(1)

D→ M1,

which proves (10).

Proof of (12): To analyse the limit distribution of ĉ, define

AT = (T−1/2ᾱ, α⊥) and BT = (T−1/2 β̄, β⊥),

and write
ĉ = T(β′1Π̂−1α1)

−1 = (β′1BT(A′TTΠ̂BT)
−1A′Tα1)

−1.

The expansion (A7), and the limits (A8) and (A9) are then applied to give the limit results

T−1/2ᾱ′(TΠ̂)T−1/2 β̄ = Ir +O(T−1) +OP(T−1),

T−1/2ᾱ′(TΠ̂)β⊥ = 0 +O(T−1/2) +OP(T−1/2),

α′⊥(TΠ̂)β̄T−1/2 = 0 +O(T−1/2) + α′⊥M1T,

α′⊥(TΠ̂)β⊥ = 0 + α′⊥α1cβ′1β⊥ + α′⊥M2Tα′⊥β⊥.
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Thus

A′T(TΠ̂)BT
D→
(

Ir 0
α′⊥M1 α′⊥α1cβ′1β⊥ + α′⊥M2α′⊥β⊥

)
,

BT(A′T(TΠ̂)BT)
−1A′T

D→ (0, β⊥)

(
Ir 0

α′⊥M1 α′⊥α1cβ′1β⊥ + α′⊥M2α′⊥β⊥

)−1

(0, α⊥)
′

= β⊥(α
′
⊥α1cβ′1β⊥ + α′⊥M2α′⊥β⊥)

−1α′⊥.

Multiplying by β′1 and α1 and inverting, it is seen that because β′1β⊥ and α′1α⊥ are (p− r)× (p− r) of
full rank,

ĉ = (β′1BT(A′TTΠ̂BT)
−1A′Tα1)

−1 D→ [β′1β⊥(α
′
⊥α1cβ′1β⊥ + α′⊥M2α′⊥β⊥)

−1α′⊥α1]
−1

= (α′⊥α1)
−1(α′⊥α1cβ′1β⊥ + α′⊥M2α′⊥β⊥)(β′1β⊥)

−1

= c + (α′⊥α1)
−1α′⊥M2α′⊥β⊥(β′1β⊥)

−1,

which proves (12).

Proof of Corollary 1. Proof of (13): If r = p − 1, the expression (9) can be reduced as follows.
For τ = α1cβ′1

(τC)2 = cα1c(β′1Cα1)β′1C = c(β′1Cα1)α1cβ′1C = cδτC,

for δ = β′1Cα1, and in general for n ≥ 0, it is seen that

(τC)n+1 = (cδ)nτC.

Therefore, using β1c′ζcβ′1 = β1c′τΩ−1α(α′Ω−1α)−1α′Ω−1τ′,

E(B) = tr{Ω−1α(α′Ω−1α)−1α′Ω−1τC
(∫ 1

0
(1− v) exp(vτC)Ω exp(vC′τ′)dv

)
C′τ′}.

The integral can be calculated by the expansion

τC exp(vτC)Ω exp(vC′τ′)C′τ′ =
∞

∑
n,m=0

vn

n!
(τC)n+1Ω(C′τ′)m+1 vm

m!

=
∞

∑
n,m=0

(vcδ)n+m

n!m!
τCΩC′τ′ = exp(2vcδ)c2κα1α′1,

where κ = β′1CΩC′β1. This allows the integral to be calculated

τC
(∫ 1

0
(1− v) exp(vτC)Ω exp(vC′τ′)dv

)
C′τ′

=

(∫ 1

0
(1− v) exp(2vcδ)dv

)
c2κα1α′1 =

e2δc − 1− 2cδ

(2δc)2 c2κα1α′1.

Therefore

E(B) =
e2cδ − 1− 2cδ

(2δ)2 κα′1Ω−1α(α′Ω−1α)−1α′Ω−1α1 = (e2cδ − 1− 2cδ)
κζ

(2δ)2 ,

where ζ = α′1Ω−1α(α′Ω−1α)−1α′Ω−1α1.
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Appendix B. Figures
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Figure A1. Top panel: Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile as a
function of c and ρ. Bottom panel: Rejection frequency of the 5% test Qr for r = 1 using Table 15.1 in
Johansen (1996) as a function of c. N = 1000 simulations of T = 100 observations from the DGP (15)
and (16).



Econometrics 2017, 5, 25 14 of 20

0 5 10 15 20
−5

0

5

10

15

5% quantile of ĉ
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Figure A2. Quantiles and fitted values in the distributions of ĉ and Qβ as a function of c for different
values of ρ; N = 1000 simulations of T = 100 observations from the DGP (15) and (16).
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Figure A3. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (Unadjusted),
the Bonferroni quantile in (20) for ξ = 95% and η = 5% (Bonf) and the adjusted Bonferroni quantile
in (21) for η = 5% (Adjusted Bonf) as a function of c for different values of ρ; N = 1000 simulations of
T = 100 observations from the DGP (15) and (16).
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Figure A4. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (c = 0, chisq) and
the Bonferroni quantile in (20) for ξ = 95% and η = 5%, as a function of γ for different values of c
and ρ; N = 1000 simulations of T = 100 observations from the DGP (15) and (16).
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Figure A5. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (c=0, chisq) and
the adjusted Bonferroni quantile in (21) for η = 5% as a function of γ for different values of c and ρ;
N = 1000 simulations of T = 100 observations from the DGP (15) and (16).
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Figure A6. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (Unadjusted),
the Bonferroni quantile in (20) for ξ = 95% and η = 5% (Bonf) and the adjusted Bonferroni quantile
in (21) for η = 5% (Adjusted Bonf) as a function of c; N = 1000 simulations of T = 100 observations
from the DGPs in Table 1.
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Figure A7. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (c = 0, chisq) and
the Bonferroni quantile in (20) for ξ = 95% and η = 5%, as a function of γ for different values of c;
N = 1000 simulations of T = 100 observations from the DGPs in Table 1.
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Figure A8. Rejection frequency of the test Qβ for γ = 0 using the χ2(1)0.90 quantile (c = 0, chisq) and
the adjusted Bonferroni quantile in (21) for η = 5% as a function of γ for different values of c; N = 1000
simulations of T = 100 observations from the DGPs in Table 1.
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