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Abstract: Empirical studies of the determinants of cross-country differences in long-run development
are characterized by the ingenious nature of the instruments used. However, scepticism remains
about their ability to provide a valid basis for causal inference. This paper examines whether
explicit consideration of the statistical adequacy of the underlying reduced form, which provides an
embedding framework for the structural equations, can usefully complement economic theory as
a basis for assessing instrument choice in the fundamental determinants literature. Diagnostic
testing of the reduced forms in influential studies reveals evidence of model misspecification,
with parameter non-constancy and spatial dependence of the residuals being almost ubiquitous.
This feature, surprisingly not previously identified, potentially undermines the inferences drawn
about the structural parameters, such as the quantitative and statistical significance of different
fundamental determinants.
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1. Introduction

Interpreting patterns of causation from growth regressions is fraught with difficulties. By the
nature of the process of economic growth, ‘proximate’ determinants, such as human capital, physical
capital, and technology are interrelated and jointly determined with income per capita. One
response is to step back from the evaluation of the effects of these ‘proximate’ determinants and
investigate the ‘deeper’, more fundamental, determinants of long-term growth and hence levels
of development. The search for fundamental determinants has concentrated on relatively slowly
changing factors that have a pervasive effect on economies over long periods, with the initial focus
on the relative importance of institutions and geography, and, more recently, history, biology, and
culture (Acemoglu et al. 2005; Spolaore and Wacziarg 2013, 2014). Whether a variable is considered to
be exogenous or endogenous has not, however, been used as a criterion to distinguish proximate from
fundamental determinants. For example, whereas many aspects of geography, history, and biology are
temporally predetermined, institutions are more obviously endogenous, if only because more highly
developed economies demand and can afford better quality institutions.

Consequently, widespread use of instrumental variables (IV) estimation, specifically two-stage
least squares (2SLS), is a defining feature of the literature examining the fundamental determinants
of cross-country differences in levels of development. As The Economist (2006, p. 84) pointedly observes,
“all of the fun in the recent spate of papers is in the instruments themselves. Economists are outdoing
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each other with ever more curious instruments, ranging from lethal mosquitoes (Sachs 2003) to heirless
maharajahs (Iyer 2010), or . . . wind speeds and sea currents (Feyrer and Sacerdote 2009) . . . [i]ndeed,
‘reverse causality’, which was once a frustrating problem, is now seen as a chance to demonstrate ingenuity.”

Despite the ingenious nature of many of these instruments, there is scepticism about their ability
to provide a convincing basis for causal inference. Durlauf et al. (2005, p. 638) express this view
forcefully: “ . . . the belief that it is easy to identify valid instrumental variables in the growth context is
deeply mistaken. We regard many applications of instrumental variable procedures in the empirical
growth literature to be undermined by the failure to address properly the question of whether these
instruments are valid, i.e., whether they may be plausibly argued to be uncorrelated with the error
term in a growth regression”. Some authors (e.g., Freedman 2006; Qin 2015; Swamy et al. 2015) express
despair at the usefulness of IV estimation methods more generally.

Justification of instrument validity conventionally relies on ‘telling a good story’ and on the
a priori degree of realism of any counter-example (Frankel 2003). This is usually supported by
reporting results of tests of overidentifying restrictions, although these cannot test the validity of
the overall instrumentation strategy. Concerns about the validity and relevance of instruments have
led to practical suggestions for strengthening the basis for causal inference based on IV estimation
(Murray 2006; Angrist and Pischke 2009; Bazzi and Clemens 2013; Kraay 2015), but these focus mainly
on assessing the plausibility of estimates or addressing weak instrumentation.

This paper applies the approach proposed by Spanos (1990, 2006, 2007, 2015) to consider
the statistical dimensions of the instrumentation strategies used in the fundamental determinants
literature, as a complement to assessing instrument choice primarily on the basis of economic theory.
Spanos’ approach emphasizes that behind every structural model there exists a statistical model,
which comprises the totality of the probabilistic assumptions imposed on the data; consequently,
the validity of these statistical assumptions (‘statistical adequacy’) is crucial for securing reliable
inference. He focuses on the probabilistic underpinnings of IV estimation by explicit consideration
of the implicit reduced form (RF) as the statistical model that summarizes the information in the
observed data. This highlights the need to probe the statistical adequacy of the RF (i.e., whether
the probabilistic assumptions are valid for the data under consideration) by misspecification testing.
This step is a prerequisite for testing overidentification restrictions and whether instruments are
weak, and, ultimately, for reliable inference on structural parameters. In contrast, standard practice
in the application of 2SLS estimation in this literature (and more widely) is to focus on these latter
characteristics and ignore the statistical adequacy of the overall framework.

Section 2 contains an overview of the nature of the instruments used in the literature on the
fundamental determinants of comparative development. Section 3 discusses the contributions of
economic theory and statistics in devising valid instrumentation strategies in this context and outlines
Spanos’ arguments on the role of the RF. Section 4 outlines the tests used to assess the statistical
adequacy of RFs and Section 5 reports and discusses the results for a representative selection of
influential studies. Section 6 concludes.

2. Ingenious Instruments for Fundamental Determinants of Economic Development

Empirical studies in the fundamental determinants literature use parsimonious models to evaluate
the relevance of different fundamental determinants in explaining comparative levels of long-run
economic development, usually measured by income per capita. The slowly evolving nature of
variables identified as fundamental determinants and the lack of long runs of relevant time-series data
lead to reliance on exploiting cross-country variation in cross-sectional analyses. Most of the earlier
studies focus on competing claims about the primacy of the quality of institutions (Hall and Jones 1999;
Acemoglu et al. 2001, 2002; Easterly and Levine 2003; Rodrik et al. 2004) versus the role of geographical
endowments (Bloom and Sachs 1998; Gallup et al. 1999; Sachs 2003; Olsson and Hibbs 2005).
The multiple mechanisms by which geography and institutions can affect income are discussed
in detail in many of the original papers and later reviews (Easterly and Levine 2003; Rodrik et al. 2004;
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Acemoglu et al. 2005; Olsson 2005; Spolaore and Wacziarg 2013); the following comments, therefore,
concentrate on the nature of the instruments used in this literature.

Institutional quality is likely to be endogenous in a model explaining income per capita for
several reasons: reverse causality (higher levels of income per capita provide the resources to
enhance institutional quality), omitted variables correlated with both income and institutions, and
measurement error. Finding appropriate instruments for institutions is therefore a priority in
order to obtain consistent estimates of the partial effect of institutions on income per capita. In
contrast, it has been argued that geography is “as exogenous a determinant as an economist can ever
hope to get” (Rodrik et al. 2004, p. 133). However, the predetermined nature of variables reflecting
aspects of geography (or biology or history) does not necessarily imply they are exogenous, i.e.,
orthogonal to the error term in the structural model. Error terms in models fitted to observational
data are ‘derived’ variables, reflecting model specification (Hendry and Nielsen 2007, p. 160).
Consequently, omitted relevant explanatory variables correlated with geographical, biological, or
historical variables may induce econometric endogeneity, and hence bias and inconsistency. In a
similar vein, Deaton (2010, p. 431) emphasizes the crucial difference between exogenous variables
and variables that are ‘external’ (i.e., not caused by variables in the model): “[w]hether any of these
instruments is exogenous (or satisfies the exclusion restrictions) depends on the specification of the
equation of interest and is not guaranteed by its externality” (emphasis in original).

Hall and Jones (1999), in an early empirical contribution demonstrating the importance of
institutional quality, choose instruments on the basis that societies more strongly influenced by Western
Europeans were more likely to adopt favourable institutions. Their proxies for Western European
influence include absolute latitude, the fraction of the population speaking one of the five major
Western European languages as their first language, and the fraction speaking English as their first
language. Their identification strategy relies on these variables being correlated with their measure of
institutional quality but having no direct effect on current output per worker (especially for latitude)
and not reflecting targeting of Western influence to areas with higher present-day output per worker
(especially for the language fractions).

Acemoglu et al. (2001), in the most influential study in the fundamental determinants literature,
instrument institutional quality, specifically the strength of property rights, using historical European
settler mortality. Favourable disease environments (lower settler mortality) initially led to ‘settler
colonies’ with higher-quality institutions, whereas unfavourable disease environments (higher settler
mortality) led to ‘extractive colonies’ with poorer-quality institutions geared to expropriating returns
from local resources. The persistence of institutions after colonization resulted in these choices having
long-lasting effects on current institutions and current living standards. Acemoglu et al. (2001, 2002)
argue that settler mortality satisfies the required exclusion restriction for a valid instrument because
the effect of historical disease environment on current living standards is entirely indirect, via its effect
on historical and current institutions. The restriction would be questionable if historical and current
disease environments are correlated and the latter has a direct effect not controlled for in the model, or
if institutional quality is correlated with other persistent settler characteristics (e.g., human capital or
culture) that have important impacts on development.

Engerman and Sokoloff (1997) emphasize mineral and crop endowments as the driving force
behind the mode of colonization. Abundance of minerals and of crops such as sugarcane, tobacco,
and cotton, combined with high indigenous population density, encouraged the use of plantation
agriculture and slave labour to exploit economies of scale, and led to inequality and poor-quality
institutions. In contrast, endowments suited to grain and livestock, combined with sparse population,
promoted more egalitarian family farming, development of a sizeable middle class, and good-quality
institutions. Thus, a distinctive aspect of Easterly and Levine’s (2003) instrumentation strategy is the
inclusion of a set of crop and mineral endowment dummies. Similarly, Easterly (2007) proposes the
ratio of the share of arable land suitable for growing wheat to the corresponding share suitable for
growing sugarcane as the basis for an instrument for inequality.



Econometrics 2017, 5, 38 4 of 33

Early empirical studies in this literature (Acemoglu et al. 2001; Easterly and Levine 2003;
Rodrik et al. 2004) conclude that geographic conditions affect development purely via their indirect
effect on institutions. In response, Sachs (2003) shows that a measure of malaria transmission is
statistically significant when added to representative specifications from these studies, implying that
geographical variables also have a direct effect on GDP per capita. Because richer countries can marshal
more resources to eradicate malaria, malarial risk is treated as endogenous, so Sachs adds an index of
malarial ecology, based on external bio-geographical variables, to his set of instruments.

Bockstette et al. (2002) propose state antiquity, measuring the historical depth of experience with
state-level institutions, as a possible instrument for institutional quality and demonstrate its positive
association with Hall and Jones’ (1999) measure of institutional quality. More recently, it has been
included in equations explaining income per capita or population density as a potential historical
fundamental determinant (Chanda and Putterman 2007; Putterman and Weil 2010). Classification
of legal origin, especially English common law versus French civil law, has been widely used
as an instrument for institutional quality and financial market development, with common law
regarded as providing greater protection for investors’ rights (La Porta et al. 1999). Measures of
ethnolinguistic diversity of populations have been used to instrument for corruption, or institutions
more broadly (Mauro 1995). However, legal origin, ethnolinguistic fractionalization, and other
instruments (such as latitude and whether a country is landlocked) are also frequently included
as control variables in fundamental determinants regressions, especially when checking robustness
(Easterly and Levine 2003, 2016). Whether a variable is used as an instrument or included as a control
variable is therefore often not consistent across different studies (Bazzi and Clemens 2013). Exogenous
control variables enter the instrument set in first-stage regressions (for all endogenous explanatory
variables), but if they are relevant control variables this precludes them counting as additional
instruments required for identification of the effect of the endogenous fundamental determinant(s).

As well as European settler mortality, the colonization process of different locations yielded
natural experiments that have been exploited to provide other plausible instrumentation strategies for
institutional quality. Feyrer and Sacerdote (2009) report evidence that current development outcomes
for a sample of island colonies are positively associated with the length of time as a colony. They use
variations in prevailing wind patterns as instruments for centuries of colonial rule or the first year as a
colony. Wind speed and direction were crucial in determining which islands were colonized in the age
of sail but would not have a direct effect on their current levels of income per capita or infant mortality.

Iyer (2010) compares development outcomes for Indian states that were under direct British rule
compared to indirect rule. The ‘Doctrine of Lapse’ between 1848 and 1856, whereby the death of native
rulers without a natural heir led to direct rule, provides a natural experiment that avoids selection
problems. Iyer uses the death of a ruler without a natural heir as an instrument for direct rule and finds
states that experienced direct rule have poorer post-colonial development outcomes. Identification is
based on the plausible assumption that the death of an heirless maharajah would have no direct effect
on modern outcomes.

Olsson and Hibbs (2005) use an index of biogeographic conditions, based on the numbers of
domesticable native species of plants and animals in different parts of the world, as an explanatory
variable in regressions explaining income per capita and the number of years since the Neolithic
transition (from hunter-gatherer to agricultural societies). Ashraf and Galor (2011) subsequently
use these biogeographic components as instruments for the timing of the transition in regressions
explaining population density and technology levels in years 1, 1000, and 1500. Their findings
support Diamond’s (1997) arguments on the importance of biogeographical factors for the timing of
the Neolithic transition, with an earlier transition leading to positive long-term effects on levels of
non-agricultural technology and population density.
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Recent studies emphasize the effects of genetic diversity (Ashraf and Galor 2013) and genetic
distance (Spolaore and Wacziarg 2009, 2013) on economic development. According to Ashraf and
Galor’s (2013) ‘out of Africa’ hypothesis, a settlement’s migratory distance from East Africa affects
its degree of genetic diversity, which, in turn, has a long-lasting hump-shaped effect on productivity.
Because genetic diversity could be endogenous in regressions explaining productivity, they use
migratory distance from East Africa as an instrument for genetic diversity.

Overall, considerable imagination and ingenuity have been demonstrated in identifying natural
experiments that provide plausible instruments for endogenous regressors in empirical studies of
the fundamental determinants of comparative development. This brief review also highlights how
justification for the various instrumentation strategies is based primarily on informal economic
theory arguments.

3. Instrumental Variables Estimation and Reduced Forms

IV estimation is designed to provide consistent estimates when explanatory variables are
endogenous, i.e., correlated with the error term in the structural model. Implementation requires the
selection of a set of instruments sufficient to ensure identification. To obtain consistent estimates, the
instruments need to be exogenous, i.e., uncorrelated with the error term (at least asymptotically), and
relevant, i.e., have high (partial) correlations with the endogenous explanatory variables.

Existing cross-country empirical studies of the fundamental determinants of levels of development
can be characterized in the generic framework

yi = α′Xi + εi εi ~ N(0, σ2) i = 1, 2, . . . , N (1)

where y is, conventionally, the natural logarithm of income per capita (or output per worker) or, for
earlier historical dates, population density, and Xi a m × 1 vector of explanatory variables representing
the fundamental determinants and relevant control variables.1 Subscript i denotes observations for
country i. Xi can be decomposed as

(
X′1i X′2i

)′, where X1i and X2i are, respectively, m1 × 1 and
m2 × 1 vectors of endogenous and exogenous determinants of income levels, and α′ = (α′1 α′2) is an
appropriately dimensioned parameter vector. For the stochastic error term, εi, this categorization
assumes E(X1iεi) 6= 0 and E(X2iεi) = 0.

To deal with the endogeneity of X1i, IV estimation introduces Zi, a p × 1 vector of additional
instruments (p ≥ m1) that satisfy exclusion restrictions, i.e., are not included in Equation (1). Zi
is assumed to satisfy: (a) E(Ziεi) = 0; (b) E(X1iZ′i) = ΣXZ 6= 0; and (c) E(ZiZ′i)= ΣZZ > 0. The
crucial exogeneity requirement in (a), without which IV estimates are not consistent, is essentially
non-verifiable because of the unobservable nature of the error term. Implicitly, if α1 6= 0, it is also
assumed that (d) E(Ziyi) 6= 0, i.e., the additional instruments need to be correlated with the dependent
variable as well as the endogenous explanatory variable(s) (Spanos 2007, p. 38).2 If the theory-based
story motivating the choice of instruments conflicts with the implication that Z needs to be correlated
with y, then this is a matter for concern. From this perspective, Angrist and Pischke (2009, p. 213)
recommend inspecting the signs and significance of the coefficients on excluded instruments in the
reduced form for y, noting that “if you can’t see the causal relation of interest in the reduced form, it’s
probably not there”.

1 A small minority of studies adopt other measures of development as the dependent variable, either as a complement to
examining income per capita, e.g., infant mortality (Feyrer and Sacerdote 2009), or as an alternative, e.g., life expectancy
(Knowles and Owen 2010) or output volatility (Malik and Temple 2009).

2 To simplify the notation, observed variables are assumed to have zero means. Assumptions (a)–(d) are the relevant
finite-sample conditions; most formal treatments of the properties of IV estimation focus on the corresponding asymptotic
conditions: (a)′: plim(N−1Z′ε) = 0; (b)′: plim(N−1X1

′Z) = ΣXZ 6= 0; (c)′: plim(N−1Z′Z) = ΣZZ > 0, and (d)′: plim(N−1Z′y)
6= 0, where Z = (Z1, Z2, . . . , ZN)′, X1 = (X11, X12, . . . , X1N)′, y = (y1, y2, . . . , yN)′ and ε = (ε1, ε2, . . . , εN)′ (Spanos 2007,
pp. 37–8).
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IV estimation is sometimes characterized as an atheoretical strategy (Deaton 2010; Heckman
and Urzúa 2010), in part because only the structural equation of interest, such as Equation (1),
is usually specified explicitly. However, exclusion restrictions “are motivated by subject matter,
that is economic, rather than statistical, knowledge” (Imbens 2010, p. 403), as is evident from
the review in Section 2. The most influential studies in the literature on the fundamental
determinants of development (Acemoglu et al. 2001, 2002) are regarded as providing good examples
of historical natural experiments generating quasi-random variation in fundamental determinants
(Angrist and Pischke 2010; Fuchs-Schuendeln and Hassan 2015). Judgements on the plausibility of
identification strategies rely primarily on the plausibility of their a priori theoretical arguments.

Statistical considerations are not entirely ignored. If the equation of interest is overidentified
(i.e., p > m1), testing for overidentifying restrictions is commonly implemented. Overidentification
tests (Sargan 1958; Hansen 1982) implicitly compare whether alternative sets of just-identified IV
estimates, corresponding to different subsets of instruments, are equal (Wooldridge 2010, pp. 134–37).
They therefore rely on the untestable validity of sufficient of the instruments to obtain at least exact
identification; although informative, such tests cannot provide definitive evidence on instrument
validity, as non-rejection is possible even if none of the instruments is exogenous.

In contrast, assumptions (b)–(d) can be checked directly using observable sample data, but,
as Spanos (2006, p. 48) points out, this is “pitiably inadequate from the statistical viewpoint
because there will be thousands of instruments whose sample second moments would seem to
satisfy [these requirements]”. The implications of using instruments only weakly correlated with the
endogenous regressors have received considerable attention. If instruments are weak, IV estimates
can be badly biased and their finite-sample distribution may be very different from their asymptotic
distribution, even for large samples, distorting the size of tests and the coverage of confidence intervals
(Andrews and Stock 2007). However, as Spanos (2007) emphasizes, weak instrumentation is only one
of several potential deviations from the underpinning probabilistic assumptions of IV estimation.

A justification for instrument choice based solely (or primarily) on economic theory is not sufficient
for valid inference because (a)–(d) are probabilistic conditions that apply to the vector stochastic process
of the observable random variables. “[T]heory-based concepts like structural parameters, structural
errors, orthogonality and non-orthogonality conditions, gain statistical ‘operational meaning’ when
embedded into a statistical model specified exclusively in terms of the joint distribution of the observable
random variables involved” (Spanos 2007, p. 39, emphasis in original). In this context, the relevant
statistical model, specified in terms of the observable variables, is the full RF, equivalent to the
multivariate linear regression (MLR)

yi = β′1Zi + β′2X2i + u1i (2a)

X1i = B′1Zi + B′2X2i + u2i (2b)

with

(
u1i
u2i

)
∼ N

((
0
0

)
,

(
ω11 ω12

ω21 Ω22

))
. (2c)

Equations (2a) and (2b) are, respectively, the RFs for the dependent variable and endogenous
right-hand-side variables. B1, B2, β1, and β2 are appropriately dimensioned matrices and vectors
of reduced-form parameters. The MLR explicitly considers both the ‘first-stage’ regression(s) in
Equation (2b) and the “now rarely considered regression of the variable of interest on the instrument[s]”
(Deaton 2010, p. 428) in Equation (2a).

The MLR/RF provides the implicit framework within which the structural model is embedded.
A key insight of Spanos’ analysis is that Equation (1), subject to E(X1iεi) 6= 0, E(X2iεi) = 0 and conditions
(a)–(d), is equivalent to imposing restrictions on Equation (3), which is a reparameterized version of
the reduced form in Equation (2)
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yi = α′0Xi + γ′0Zi + ε0i (3a)

X1i = B′1Zi + B′2X2i + u2i (3b)

with

(
ε0i
u2i

)
∼ N

((
0
0

)
,

(
σ2

0 0
0 Ω22

))
. (3c)

Spanos proves that imposing the (non-testable) identification restriction γ0 = 0 in Equation (3a),
in conjunction with B1 6= 0 (in Equations (2b) and (3b)) and β1 6= 0 (in Equation (2a)), triggers a
reparameterization/restriction on the MLR/RF, maintaining E(X1iεi) 6= 0 (in contrast to E(X1iε0i) = 0
in Equation (3a)) and E(Ziεi) = 0, and with conditions (b)–(d) holding (Spanos 2007, pp. 42–5).3

Hence, although E(Ziεi) = 0 is not directly testable, by embedding structural Equation (1) in the
MLR/RF in Equation (2), the conditions E(X1iεi) 6= 0 and E(Ziεi) = 0 are ‘operationalized’ via the
reparameterization/restriction on the MLR/RF.4

Because the structural model in Equation (1) constitutes a reparameterization/restriction of the
statistical model, i.e., the MLR/RF, “the statistical adequacy of the latter ensures the reliability of
inference in the context of the former” (Spanos 2007, p. 48). Inference, based on conventional formulae,
will be appropriate if the following probabilistic assumptions apply to the MLR/RF in Equations (2a)
and (2b) (Spanos 2007, Table 2.2), where D(.) denotes the joint distribution, and yi = (yi, X′1i)

′, Ω: is the
error covariance matrix in Equation (2c) and Θ =

(
β′1, β′2, B′1, B′2, Ω)

Normality D(yi | Zi, X2i, Θ) is normally distributed (4a)
Linearity E(yi | Zi, X2i) is linear in Zi and X2i (4b)
Homoskedasticity Var(yi | Zi, X2i) = Ω is homoskedastic (free of Zi, X2i) (4c)
Independence (yi | Zi, X2i), i = 1, 2, . . . , N are independent random variables (4d)
i-invariance Θ =

(
β′1, β′2, B′1, B′2, Ω) is constant for all i (4e)

Assessment of statistical adequacy of the MLR/RF requires testing these assumptions. As well as
a potentially destructive role in probing the theory-based selection of instruments, this process is also
constructive. If the MLR/RF is misspecified, this suggests a need to respecify the model to take account
of statistical information in the data that is not accounted for in the original statistical model (i.e., the
original MLR/RF), with any additional (exogenous) variables added to ensure statistical adequacy
becoming part of the extended instrument set.

Estimates of the RF parameters can be obtained using ordinary least squares (OLS); if
assumptions (4a)–(4e) are valid, then these estimates are unbiased and efficient, even in finite samples.
The corresponding 2SLS estimates of the structural parameters in Equation (1) will still be biased
because the parameters in Equation (2b) have to be estimated (Hahn and Hausman 2002); however,
these estimates will be consistent and, because they are based on a statistically adequate model, will
provide a valid basis for inference (as long as any overidentifying restrictions are also valid).

3 If the structural model is exactly identified (p = m1), this involves a pure reparameterization with a one-to-one correspondence
between reduced form and structural parameters. If the structural model is overidentified (p > m1), it involves a
reparameterization/restriction; in this case, Equation (3a), despite its ‘reduced-form’ label, is more general than the
structural model in Equation (1).

4 Details of the mapping between structural and MLR/RF parameters are provided by Spanos (2007, pp. 41–4). Note that
the restrictions γ0 = 0 are non-testable identifying restrictions imposed together with B1 6= 0 and β1 6= 0 to identify the
structural parameters in α1. Imposing γ0 = 0 independent of B1 6= 0 and β1 6= 0 is equivalent to treating X1i as exogenous,
which leads to a contradiction.
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From this perspective, the statistical adequacy of the RF underpins the testing that conventionally
occurs in most IV applications, i.e., testing overidentifying restrictions, testing for weak instruments,
Hausman-type exogeneity tests and, ultimately, inference on the key parameters of interest in the
structural model. The results from such tests are potentially misleading if prior testing reveals the
MLR/RF to be misspecified.

Spanos’ approach stands in stark contrast to common practice in applications of IV estimation,
which treats fitting a linear projection in the first-stage regression in Equation (2b) as no more than
a pure predictive exercise. This ignores the fact that the MLR/RF, the statistical model specified in
terms of the joint distribution of the observable variables, provides the framework within which
the structural equation is embedded and which reflects instrument exogeneity assumptions in the
parameterizations for the structural parameters in the context of the MLR/RF.

Standard textbook treatments of 2SLS/IV estimation instead tend to emphasize that the
asymptotic properties of 2SLS estimation and inference are retained under weaker assumptions.
For example, consistency does not require normality of the errors, instead relying on asymptotic
normality of the IV estimator, based on the central limit theorem under the assumption E(Ziεi) = 0
and finite second-moment assumptions (Wooldridge 2010, Chapter 5). In addition, an asymptotic
variance-covariance matrix for IV estimators can be derived assuming the error terms are
heteroskedastic (Wooldridge 2010, pp. 106–7); this has led to widespread use of heteroskedastic-robust
inference.5 However, all these results are only asymptotic, i.e., they require large samples for their
validity, and the central limit theorems used to derive them rely on untested dependence and
heterogeneity restrictions (Spanos 2017).

Leamer (2010) provides a trenchant and compelling critique of over-reliance on methods
(including heteroskedastic-robust standard errors) “which promise results without assumptions, as if
we were already in Asymptopia where data are so plentiful that no assumptions are needed. But like
procedures that rely explicitly on assumptions, these new methods work well in the circumstances in
which explicit or hidden assumptions hold tolerably well and poorly otherwise” (Leamer 2010, p. 32).
In the final reckoning, inference is based solely on the N data points available, so its reliability will
depend on the approximate validity of such probabilistic assumptions with respect to the sample
data (Spanos 2017). An appeal to asymptotic normality, for example, would be problematic if the
relevant sampling distributions of the estimators are not approximately normal for the N available
data points. From this perspective, “limit theorems ‘as [N] tends to infinity’ are logically devoid of
content about what happens at any particular [N]. All they can do is suggest certain approaches whose
performance must then be checked on the case at hand.” (Le Cam 1986, p. xiv). In the fundamental
determinants regressions examined in Section 5, typical sample sizes range from N = 21 to less than
100, with, for example, about 64 observations if Acemoglu et al.’s (2001) settler mortality instrument is
used. In Leamer’s (2010, p. 43) terms, this is distinctly “in the Land of the Finite Sample, infinitely far
from Asymptopia”, so that reliance on asymptotic results requires a good deal of faith. Particularly in
such contexts, inference based on a statistical framework subject to a comprehensive set of explicit and
non-rejected assumptions is more appealing than relying on asymptotic properties that depend on a
weaker set of implicit and untested (or untestable) assumptions.

Overall, the bottom line in Spanos’ approach is that instrument choice cannot be based solely on
theoretical considerations (including the design of natural experiments) but also has an important
statistical dimension, i.e., testing for the statistical adequacy of the statistical model, the underlying

5 Although rarely discussed explicitly in the fundamental determinants literature, some applied researchers also weaken the
linearity assumption, interpreting linear regression as providing a best linear predictor that approximates some nonlinear
conditional expectation function (CEF) of the observable variables (Angrist and Pischke 2009). On this interpretation, how
well the regression line fits the nonlinear CEF will vary with the values of the explanatory variables, with the consequent
residual heteroskedasticity regarded as a natural feature of this characterization. This further shifts the focus to reliance on
asymptotic results and heteroskedastic-robust inference.
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MLR/RF, which depends on both the specification of the structural model and the instrumentation
strategy. In most fundamental determinants studies, the full RF is not usually explicitly reported;
some studies report the first-stage regressions for the endogenous explanatory variable(s), i.e., X1,
but the corresponding reduced form for y is rarely reported. Testing for misspecification of the RF
(or, indeed, the structural equation) is not evident in any of the studies. Emphasis on the statistical
adequacy of the RF is consistent with Deaton’s (2010, p. 435) broader argument that “the reduced form
. . . contains substantive information about the relationship between growth and the instruments. . . .
direct consideration of the reduced form is likely to generate productive lines of enquiry.”

4. Testing Statistical Adequacy

Models in the fundamental determinants literature are highly parsimonious. They vary in terms
of what is included in X, which explanatory variables are assumed to be endogenous (i.e., in X1), and
the additional instruments included in Z. Brock and Durlauf (2001) emphasize that growth theories are
‘open-ended’, i.e., the relevance of one growth determinant does not normally preclude the relevance of
other potential determinants. This makes choosing relevant instruments difficult; the risk of potential
omitted variables, arising from the parsimonious nature of the models, and the likely correlations
between these omitted variables and the instruments cast doubt on the exogeneity assumption for the
instruments. Because this assumption is not directly testable, more emphasis on assessment of the
statistical adequacy of the embedding statistical model of the observable variables may provide useful
insights into the validity of the overall model/instrumentation combinations.

In general, this literature places little emphasis on reporting evidence on statistical adequacy.
For example, over 200 regression models are fitted in the studies by Acemoglu et al. (2001), Easterly and
Levine (2003), and Rodrik et al. (2004), but the only diagnostic test reported is a test for overidentifying
restrictions and the null is rejected for few of the different model/instrument combinations considered.
However, the sampling distribution of an overidentification test, and hence its size and power,
depends on the statistical adequacy of the statistical model, so that misspecification of the RFs would
potentially undermine the reliability of such a test. Instead of misspecification testing, the response
to model/instrument uncertainty is to conduct a robustness analysis by adding control variables,
singly or in sets, to regressions that include the key explanatory variable(s) of interest. Without
explicit misspecification testing, there is no guarantee that all—or indeed any—of these models are
statistically adequate.6

Inference, based on conventional formulae, will be appropriate if probabilistic assumptions (4a)–(4e)
apply to the MLR/RF, which forms the relevant statistical model specified in terms of the observable
random variables, and if overidentification restrictions are also satisfied. These assumptions, which
underwrite the validity of inference with IV estimation, are tested for each of the replicated studies.
As noted in Section 3, common practice regards assumptions (4a) and (4c) as not necessary, but
instead relies on weaker assumptions to deliver consistent point estimates and asymptotic standard
errors. For example, heteroskedasticity is widely regarded as a natural feature of cross-sectional
data and use of heteroskedastic-consistent standard errors (White 1980), as a default, is common
in the fundamental determinants literature, both for OLS and IV estimates. However, such
corrections are valid only asymptotically and their finite-sample properties can be unsatisfactory

6 One response to concerns about validity of underlying statistical assumptions is the development and application of
Generalized Method of Moments (GMM) estimation, which requires less restrictive assumptions. However, as Spanos (2015,
p. 183) argues, this comes at a price: “weaker premises will always give rise to less precise inferences without any guarantee
that they will be more adequate for the particular data, especially when the inference is unduly reliant on asymptotics . . .
Even if one has to rely on asymptotic results, the adequacy of the premises renders such results a lot more reliable for the
given n. In contrast, asymptotic properties such as [consistent and asymptotically normal], stemming from nonvalidated
premises, provide no guarantee for reliable inferences in practice.” In any case, all the studies examined rely on 2SLS
estimation, applied to relatively small samples, fitting simple linear-in-parameters models with additive errors and constant
parameters across countries.
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(MacKinnon and White 1985; Angrist and Pischke 2009, Chapter 8). Although degrees of freedom
adjustments can yield heteroskedasticity-robust standard errors with improved finite-sample properties
(MacKinnon 2013; Imbens and Kolesár 2016), it is important to appreciate that residual heteroskedasticity
can be a symptom of model misspecification (e.g., neglected nonlinearity or heterogeneity) rather
than heteroskedastic errors (Zietz 2001; Hendry and Nielsen 2007, pp. 133–34; Sims 2010; King and
Roberts 2015), and such statistical misspecification does not, in general, disappear as N goes to infinity.
Widespread use of standard-error corrections has tended to lead to this being ignored. Moreover,
ignoring departures from normality and relying on heteroskedastic-consistent standard errors can lead
to sizeable distortions in size and power of ‘robust’ F-tests (Spanos and Reade 2016).

Table 1 summarizes the misspecification tests applied to the models examined. These correspond
to tests of assumptions (4a)–(4e), i.e., normality (denoted Norm), functional form (RESET), absence
of heteroskedasticity (Hetero and HeteroX), lack of spatial dependence (Moran’s I and LMρλ), and
parameter constancy. For ease of evaluating test results, subsequent tables report p-values for
the diagnostic tests, with p-values less than 0.05 in bold. Given the MLR nature of the RFs,
system misspecification tests, multivariate equivalents of the single-equation tests (with the suffix
Vec), are also reported. Some tests have power against other alternatives, e.g., functional form
misspecification may also be reflected in rejection of the normality and homoskedasticity tests and
apparent parameter non-constancy.

With cross-country data, lack of independence (failure of assumption (4d)) is likely to manifest
itself as spatial dependence, where ‘spatial’ may be interpreted broadly to involve socio-economic
as well as geographical distance. Surprisingly, relatively few studies (e.g., Moreno and Trehan 1997;
Conley and Ligon 2002; Ertur and Koch 2007) have explored spatial dependence in economic growth
and development arising, for example, from cross-country spillovers in the growth process. To test for
spatial dependence, p-values for Moran’s I statistic (Moran 1948; Cliff and Ord 1973) and a Lagrange
Multiplier (LM) test (Anselin et al. 1996) applied to the residuals of the fitted RFs are reported.
Both have asymptotic distributions under the null, but have reasonable small-sample properties
(Anselin and Florax 1995; Anselin et al. 1996). These tests require specification of an a priori weights
matrix based on plausible assumptions about the extent of potential spatial linkages. The results
reported are for economic distance, measured as a negative exponential function of geographical
distance between countries i and j based on latitude and longitude (dij) and on the development proxy
(y) used in each study.7 Elements of the spatial weights matrix are defined as Wij = yiyjexp(−βdij) with
β = 0.25 (unless otherwise indicated) and are row-standardized, so that each row’s weights sum to one
(Fingleton and Gallo 2008).

The parameters in B1, B2, α, and hence β1 and β2, are (usually implicitly) assumed to be invariant
to i, as in assumption (4e). Parameter constancy is explored by recursive graphical analysis of
coefficient estimates for the variables in the RF and of break-point Chow tests at different points
in the sample (Hendry and Nielsen 2007, pp. 195–97).8 The normality, heteroskedasticity, RESET, and
spatial dependence tests are invariant to the ordering of the data, as are the full-sample coefficient
estimates. However, the ordering of the data can affect the recursive plots and Chow tests, unless
assumption (4d) holds and randomly selected cross-section observations are completely independent

7 This choice is consistent with Conley and Ligon’s (2002) finding of positive spillovers of GDP per capita on neighbours’
growth performance. Qualitatively similar results are obtained if the study’s main explanatory variable, e.g., institutional
quality, is used as the economic variable in the weighting scheme. Latitude and longitude data are from CEPII’s database of
geographical variables (Mayer and Zignago 2011). The spatial weights matrices are constructed using spwmatrix and the
tests computed using anketest (Jeanty 2010), both Stata routines written by Wilner Jeanty.

8 With parameter constancy, the sequence of coefficient estimates should stabilize, with no sharp breaks, as N increases;
the ideal is to be able to see, from left to right, through the ‘tunnel’ formed by the narrowing standard error bands.
Qin et al. (2016), for example, provide a recent example of the usefulness of recursive plots as a diagnostic device. In the
recursive graphs, the Chow test statistic values are scaled by the relevant critical values from the F-distribution at the 1%
significance level; scaled test values greater than unity in the graphs (represented by the dotted line) therefore indicate
statistical significance at the 1% level.
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(Hendry 2009, p. 31). The lack of a unique natural ordering for cross-sectional data does not imply
that heterogeneity and dependence are not a concern with such data; often several natural orderings
are worth considering.9 The recursive plots for the coefficient estimates and the Chow tests reported in
Section 5 are based on the observations ordered by the size of the development proxy, income per capita,
or population density. Results are summarized in the tables by indicating parameter non-constancy
(NC) or constancy (C); where the classifications are marginal, such cases are labelled as ‘C/NC’.
If estimates of the parameters apparently vary with i, this may be indicative of outliers or model
misspecification, e.g., omitted variables, or hidden dependence in the cross-sectional observations.10

This approach involves multiple testing of different hypotheses. Multiple testing increases the
Type 1 error probability of the overall testing procedure; for example, with R tests and a significance
level of α for each test, if all the null hypotheses are valid and the degree of dependence between the
tests is unknown, the Bonferroni inequality implies the probability of rejecting one or more of the null
hypotheses is ≤ Rα (Hendry 1995, pp. 490–1). Focusing on R = 5 key diagnostic tests (Norm, Hetero,
HeteroX, RESET and Moran’s I), the upper bound, Rα equals 0.25 for α = 0.05, and 0.05 for α = 0.01.
Spanos (2010, 2017) considers and dismisses criticisms directed against misspecification testing, such
as double use of data and pre-test bias. He emphasizes the difference between misspecification testing
of different dimensions and combinations of assumptions, involving testing outside the boundaries of
the specified statistical model, compared to multiple testing of hypotheses within the boundaries of
the statistical model. The distributional assumptions and reported p-values of the misspecification
tests are based on a common null hypothesis that all the assumptions of the statistical model are valid,
so that rejections, especially rejections for more than one test for the same model, may not provide a
clear guide to the direction of required respecification (Hendry and Nielsen 2007, p. 135; Spanos 2017).
The diagnostics are therefore interpreted holistically as an overall check of statistical adequacy.11

Tests for overidentification and weak instruments are also reported although, as previously
noted, their validity is conditional on the statistical adequacy of the RFs. Sargan-p is the p-value
for Sargan’s (1958) test.12 CD-F is the F-statistic form of Cragg and Donald’s (1993) test for weak
instruments, which is compared to Stock and Yogo’s (2005) critical values based on a maximal size
of 15%; entries in bold correspond to non-significant values of CD-F, indicative of weak instruments.
Also reported are the partial R2s between the endogenous regressors and the additional instruments,
and, where relevant, Shea (1997) partial R2s, which take into account intercorrelations between the
instruments and tend to be notably smaller than standard partial R2s if instruments are weak.

9 As Hendry (2009, p. 31) emphasizes, “[s]uitable tests for the absence of dependence would seem essential before too great
weight is placed on results that [are based] on the claim of random sampling, especially when the units are large entities
like countries.”

10 Although examination of the different potential sources of parameter non-constancy in the individual models is beyond the
scope of the current paper, identification of influential observations and outliers using, for example, jackknife estimation
and associated DFBETAS (Belsley et al. 2005) could provide additional insights on the sensitivity of coefficient estimates to
individual observations.

11 As an alternative to separate tests of different assumptions, Spanos (2017) suggests combining terms representing departures
from several assumptions in a single auxiliary regression and jointly testing the potential violations.

12 Several studies report Hansen’s (1982) J statistic, which is consistent in the presence of heteroskedasticity. However, in
almost all cases, this makes no qualitative difference to the results.
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Table 1. Diagnostic tests for misspecification.

Test Reference Null Description

Norm
NormVec

Doornik and Hansen (2008) Normality Norm = z2
1 + z2

2 ∼app
χ2(2) under the null, where z1 and z2 are transformed skewness and kurtosis measures

correcting for finite-sample dependence between sample skewness and kurtosis (computed using OxMetrics 7
(Doornik and Hendry 2013a, p. 276)). NormVec is the multivariate equivalent (Doornik and Hansen 2008,
Section III) (computed using OxMetrics 7 (Doornik and Hendry 2013b, p. 227)).

Hetero
HeteroVec

White (1980) Homoskedasticity Degrees-of-freedom-adjusted F-approximation to an asymptotically distributed χ2 test statistic under the null,
calculated as NR2 from an auxiliary regression of the squared residuals on a constant, the original regressors,
and their squares (computed using OxMetrics 7 (Doornik and Hendry 2013a, p. 277)). HeteroVec is obtained
from a multivariate regression of all error variances and covariances on the original regressors and their squares
(computed using OxMetrics 7 (Doornik and Hendry 2013b, p. 227)).

HeteroX
HeteroXVec

White (1980) Homoskedasticity As for Hetero, but also including cross-products of the regressors in the auxiliary regression; reported only if
there are sufficient observations (computed using OxMetrics 7 (Doornik and Hendry 2013a, p. 277)). HeteroXVec
is the multivariate equivalent (computed using OxMetrics 7 (Doornik and Hendry 2013b, p. 227)).

RESET
RESETVec

Ramsey (1969) Correct functional
form

Includes squares and cubes of the fitted values from the original regression as additional regressors. Under the
null of zero coefficients on these additional regressors, the F-test is approximately F distributed (computed
using OxMetrics 7 (Doornik and Hendry 2013a, p. 278)). RESETVec is the multivariate equivalent (computed
using OxMetrics 7).

Moran’s I Moran (1948) Lack of spatial
autocorrelation

I = (e′We/S)/(e′e/N), where e is a vector of OLS residuals, W is a spatial weights matrix and S = ∑N
i=1 ∑N

j=1 wij.
A standardized version of I is approximately normally distributed under the null of no spatial autocorrelation
(Cliff and Ord 1973) (computed using Jeanty’s (2010) anketest routine in Stata 14.2).

LMρλ Anselin et al. (1996) Lack of spatial
autocorrelation

LMρλ is a joint test of lack of spatial error and spatial lag dependence and is asymptotically χ2(2) distributed
under the null of absence of both spatial error and spatial lag dependence ((Anselin et al. 1996, Equation (15)))
(computed using Jeanty’s (2010) anketest routine in Stata 14.2).

Parameter Constancy Doornik and Hendry (2013b) i-invariance of
parameters

Recursive graph of estimated coefficients β̂ ji ± 2se(β̂ ji) for coefficient j for i = 1, . . . , M, with M increasing to N.
Sequences of break-point Chow tests assessing whether model based on first M observations yields good
forecasts of the remaining observations ((Doornik and Hendry 2013a, Equation (18.2))) (computed using
OxMetrics 7 (Doornik and Hendry 2013a, p. 264–5)).
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5. Results

The criteria for selecting studies for replication are influence, representativeness and ready
availability of the relevant data (from authors’ and journals’ websites; see Appendix A). The studies
examined include those by Hall and Jones (1999), Acemoglu et al. (2001), Easterly and Levine (2003),
Sachs (2003), Ashraf and Galor (2011), and Ashraf and Galor (2013). Illustrative models from other key
studies by Spolaore and Wacziarg (2009), Putterman and Weil (2010), and Easterly and Levine (2016),
reported by Spolaore and Wacziarg (2013) in their review article, are also replicated.

Table 2 provides a summary of the replicated structural equations from the selected studies, listing
the dependent and explanatory variables in the models, the classification of explanatory variables as
endogenous or exogenous, additional instruments included in the instrument set for IV estimation,
and any diagnostic tests reported. In general, point estimates obtained for structural parameters
and, where reported, parameters in first-stage regressions match those in the original studies with
a few exceptions. Standard errors (usually heteroskedasticity-robust) in some instances differed in
the second decimal place, but this has little effect on the interpretation of significance. The replicated
results differ for some of the models from Acemoglu et al. (2001), for which there are marginal
differences in point estimates and standard errors, especially for the model in their Table 5, column
(9). However, there are no substantive changes in the conclusions and the replicated models used for
testing for statistical adequacy are obtained directly from the data and Stata program files obtained
from https://economics.mit.edu/faculty/acemoglu/data/ajr2001. The results for the two models
replicated from Sachs (2003) differ slightly from the original results due to the inclusion of marginally
updated data on the malaria variable in the data file obtained.

Table 3 reports a summary of the results of the misspecification tests applied to the set of RFs
for each model, in order to provide an overview of the general pattern of test results, which are
presented in more detail in subsequent tables. Entries in the test columns show the proportion of
tests that reject the relevant null hypothesis at the 5% significance level. For each structural equation,
the number of tests varies depending on the number of RFs (for the dependent variable and each
of the endogenous explanatory variables) and the number of tests corresponding to each test type
(including tests for individual RF equations and multivariate tests, so there is a degree of overlap
between the individual-RF and multivariate tests for some assumptions). For the parameter constancy
tests, classifications judged as marginal, denoted ‘C/NC’ in subsequent tables, are conservatively treated
as consistent with non-rejection, although a clear pattern of parameter constancy is relatively rare.
To provide a somewhat arbitrary visual overview, dark-shaded (red) cells with bold entries represent
rejections in two-thirds or more of the misspecification tests of the relevant type for that set of RFs; cells
lightly shaded (orange) represent proportions of rejections in the range between one-third (inclusive)
and less than two-thirds. Despite the conservative treatment of the parameter constancy classifications,
the preponderance of rejections in the spatial dependence and parameter constancy columns is striking.

Hall and Jones (1999), in their main model explaining ln(Y/L), the natural logarithm of output
per worker, include ‘social infrastructure’ (SocInf ) as the sole explanatory variable. This contains two
equally weighted components: an index of the quality of institutions (‘government antidiversion
policies’, GADP) and Sachs and Warner’s (1995) measure of the degree of trade openness (YrsOpen).
They use absolute latitude (AbsLat), the fraction of the population speaking one of the five major
Western European languages as their first language (EurFrac), the fraction speaking English as their
first language (EngFrac) and Frankel and Romer’s (1999) (natural logarithm of) predicted trade share
(based on a trade model including exogenous gravity variables) (lnFR) as instruments for SocInf.
Results of diagnostic testing of the RFs are reported in Table 4, columns (1) and (2), for a representative
model (Hall and Jones 1999, Table II, row 3). Heteroskedasticity is evident in the residuals of the fitted
RF for ln(Y/L) and there is some evidence of parameter non-constancy, especially for the coefficient
on AbsLat. For the RF for SocInf there is evidence of non-normality of the errors, functional form
misspecification and parameter non-constancy, as can be seen in the recursive plots in Figure 1. Lack of
spatial dependence is also strongly rejected.

https://economics.mit.edu/faculty/acemoglu/data/ajr2001
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Table 2. Summary of replicated models.

Study Table/Row or Column Estimation Method (N) DependentVariable Explanatory Variables (Endogenous Variables in Bold) Additional Instruments Diagnostics

Hall and Jones (1999) Table II, row 3 2SLS (N = 79) ln(Y/L) SocInf AbsLat, EurFrac, EngFrac, lnFR OverID
Hall and Jones (1999) Table II, row 3# 2SLS (N = 79) ln(Y/L) GADP, YrsOpen AbsLat, EurFrac, EngFrac, lnFR
Acemoglu et al. (2001) Table 4, column 2 2SLS (N = 64) lnGDPpc AvExpr, AbsLat, lnSM
Acemoglu et al. (2001) Table 4, column 8 2SLS (N = 64) lnGDPpc AvExpr, AbsLat, continent dvs lnSM
Acemoglu et al. (2001) Table 5, column 6 2SLS (N = 64) lnGDPpc AvExpr, AbsLat, FrLO lnSM
Acemoglu et al. (2001) Table 5, column 7 2SLS (N = 64) lnGDPpc AvExpr, Religion variables lnSM
Acemoglu et al. (2001) Table 5, column 8 2SLS (N = 64) lnGDPpc AvExpr, AbsLat, Religion variables lnSM
Acemoglu et al. (2001) Table 5, column 9 2SLS (N = 64) lnGDPpc AvExpr, AbsLat, FrC, FrLO, Religion variables lnSM
Easterly and Levine (2003) Table 4, row 4 2SLS (N = 72) lnGDPpc Inst, FrLO, Religion variables, EthDiv lnSM, AbsLat, Landlock OverID, First-stage F
Easterly and Levine (2003) Table 4, row 6 2SLS (N = 72) lnGDPpc Inst, FrLO, Religion variables, EthDiv, Oil lnSM, AbsLat, Landlock, Crops/minerals dvs OverID, First-stage F
Easterly and Levine (2003) Table 4, row 6## 2SLS (N = 72) lnGDPpc Inst, FrLO, Religion variables, EthDiv, Oil lnSM, AbsLat, Landlock na
Easterly and Levine (2003) Table 5, row 4 2SLS (N = 70) lnGDPpc Inst, YrsOpen, FrLO, Religion variables, EthDiv lnSM, AbsLat OverID
Sachs (2003) Table 1, column 10 2SLS (N = 69) lcgdp95 Rule, Mal94p lnSM, KGPTemp, ME
Sachs (2003) Table 1, column 12 2SLS (N = 69) lcgdp95 Rule, Malfal lnSM, KGPTemp, ME
Ashraf and Galor (2011) Table 2, column 6 2SLS (N = 96) lpd1500 lyst, ln(AbsLat), ln(LandProd), distcr, Land100km, continent dvs Plants, Animals OverID, First-stage F
Ashraf and Galor (2011) Table 3, column 6 2SLS (N = 94) lpd1000 lyst, ln(AbsLat), ln(LandProd), distcr, Land100km, continent dvs Plants, Animals OverID, First-stage F
Ashraf and Galor (2011) Table 4, column 6 2SLS (N = 83) lpd1 lyst, ln(AbsLat), ln(LandProd), distcr, Land100km, continent dvs Plants, Animals OverID, First-stage F
Spolaore and Wacziarg (2013) Table 2, column 4 2SLS (N = 98) lpd1500 lyst, AbsLat, LandTropics, Landlock, Island Plants, Animals
Ashraf and Galor (2011) Table 8, column 3 2SLS (N = 93) natech1K lyst, ln(AbsLat), ln(LandProd), distcr, Land100km, continent dvs Plants, Animals OverID, First-stage F
Ashraf and Galor (2011) Table 8, column 6 2SLS (N = 93) natech1 lyst, ln(AbsLat), ln(LandProd), distcr, Land100km, continent dvs Plants, Animals OverID, First-stage F
Ashraf and Galor (2011) Table 9, column 3 2SLS (N = 92) lpd1000 tech1K, ln(AbsLat), ln(LandProd), distcr, Land100km, continent dvs Plants, Animals OverID, First-stage F
Ashraf and Galor (2011) Table 9, column 6 2SLS (N = 83) lpd1 tech1, ln(AbsLat), ln(LandProd), distcr, Land100km, continent dvs Plants, Animals OverID, First-stage F
Spolaore and Wacziarg (2013) Table 5, column 2 OLS (N = 148) lpci05 AdjYrsAg, AbsLat, LandTropics, Landlock, Island na
Spolaore and Wacziarg (2013) Table 5, column 4 OLS (N = 135) lpci05 AdjStateHist, AbsLat, LandTropics, Landlock, Island na
Spolaore and Wacziarg (2013) Table 6, column 3 OLS (N = 147) lpci05 AdjYrsAg, EuroShare, AbsLat, LandTropics, Landlock, Island na
Spolaore and Wacziarg (2013) Table 6, column 4 OLS (N = 134) lpci05 AdjStateHist, EuroShare, AbsLat, LandTropics, Landlock, Island na
Spolaore and Wacziarg (2013) Table 6, column 5 OLS (N = 149) lpci05 EuroShare, WtGenDist, AbsLat, LandTropics, Landlock, Island na
Spolaore and Wacziarg (2013) Table 7, column 1 OLS (N = 155) lpci05 IndGenDist, AbsLat, LandTropics, Landlock, Island na
Spolaore and Wacziarg (2013) Table 7, column 2 OLS (N = 154) lpci05 WtGenDist, AbsLat, LandTropics, Landlock, Island na
Spolaore and Wacziarg (2013) Table 7, column 3 OLS (N = 149) lpci05 WtGenDist, EuroShare, AbsLat, LandTropics, Landlock, Island na
Ashraf and Galor (2013) Table 2, column 5 2SLS (N = 21) lpd1500 Div, DivSq, ln(AbsLat), lyst, ln(Arable), ln(AgSuit) mdistAddis, divhatsq
Ashraf and Galor (2013) Table 2, column 6 2SLS (N = 21) lpd1500 Div, DivSq, ln(AbsLat), lyst, ln(Arable), ln(AgSuit), continent dvs mdistAddis, divhatsq

Dependent variables: ln(Y/L) is log of output per worker in 1988; lnGDPpc is log of GDP per capita in 1995; lcgdp95 is log of GDP per capita in 1995 (Rodrik et al. 2004); lpd1500, lpd1000 and lpd1 are,
respectively, log of population density in years 1500, 1000 and 1; natech1K and natech1 are, respectively, a non-agricultural technology index in 1000 and 1; lpci05 is log of per capita income in 2005;
Endogenous explanatory variables: SocInf is a measure of ‘social infrastructure’ with two equally weighted components: GADP (government anti-diversion policies) and YrsOpen (Sachs and Warner’s
(1995) openness measure); AvExpr is average protection against expropriation risk (1985–1995); Inst is the average of six World Bank Governance Indicators; Rule is a Rule of Law index; Mal94p is the
proportion of the population at risk of malaria transmission in 1994; Malfal is the proportion at risk of falciparum malaria transmission; lyst is log of years since the Neolithic transition; tech1K and
tech1 are, respectively, a technology index in 1000 and 1; Div is genetic diversity and DivSq is its square; Exogenous explanatory variables and additional instruments: AbsLat is distance from the equator;
EurFrac is the fraction of the population speaking one of five major Western European languages as their first language; EngFrac is the fraction speaking English as their first language; lnFR is
Frankel and Romer’s (1999) (natural log of) predicted trade share; lnSM is log of European settler mortality; continent dummy variables (dvs); FrLO is a French legal origin dummy; FrC is a French
colonial dummy; Religion variables (%s Catholic, Muslim, ‘Other’); EthDiv is ethnolinguistic diversity; Oil is an oil-producer dummy; Landlock is a dummy for countries with no access to the sea;
Crops/minerals dvs is a set of dummies for whether the country has ever had bananas, coffee, copper, maize, millet, rice, rubber, silver, sugarcane, or wheat; KGPTemp is the share of the population
in temperate ecozones; ME is an index of malarial ecology based on temperature, mosquito abundance and vector specificity; ln(LandProd) is log of land productivity; distcr is the mean distance to
nearest coast or river; Land100km is percentage of land within 100 km of coast or river; LandTropics is the percentage of land area in the tropics; Island is an island dummy; Plants is the number of
domesticable species of plants prehistorically native to relevant landmass and Animals is the corresponding number of domesticable species of animals; AdjYrsAg is ancestry-adjusted years of
agriculture; AdjStateHist is ancestry-adjusted state history; EuroShare is the share of dependants of Europeans; WtGenDist is FST ancestry-adjusted weighted genetic distance to the US; IndGenDist is
FST genetic distance to the US (1500 match); ln(Arable) is log percentage of arable land; ln(AgSuit) is log land suitability for agriculture; mdistAddis is migratory distance from East Africa; divhatsq is
predicted genetic diversity squared (based on a regression of genetic diversity on migratory distance and all second-stage control variables). Detailed variable definitions are provided in the
original studies; # and ## denote amended versions of the models in the original studies (see main text); OverID denotes that an overidentification test is reported; ‘na’ denotes not applicable.
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Table 3. Summary of misspecification test results.

Study Table/Row or
Column

RF Dependent
Variables Normality Heteroskedasticity RESET Spatial Dependence Parameter Constancy

Hall and Jones (1999) Table II, row 3 ln(Y/L), SocInf 1/3 2/6 2/3 4/4 2/2
Hall and Jones (1999) Table II, row 3# ln(Y/L), GADP, YrsOpen 1/4 2/8 2/4 5/6 3/3
Acemoglu et al. (2001) Table 4, column 2 lnGDPpc, AvExpr 1/3 0/6 1/3 4/4 1/2
Acemoglu et al. (2001) Table 4, column 8 lnGDPpc, AvExpr 1/3 2/6 1/3 3/4 1/2
Acemoglu et al. (2001) Table 5, column 6 lnGDPpc, AvExpr 2/3 0/6 0/3 4/4 1/2
Acemoglu et al. (2001) Table 5, column 7 lnGDPpc, AvExpr 1/3 1/6 2/3 4/4 1/2
Acemoglu et al. (2001) Table 5, column 8 lnGDPpc, AvExpr 1/3 2/6 1/3 4/4 1/2
Acemoglu et al. (2001) Table 5, column 9 lnGDPpc, AvExpr 0/3 1/6 0/3 4/4 1/2
Easterly and Levine (2003) Table 4, row 4 lnGDPpc, Inst 0/3 1/6 3/3 3/4 1/2
Easterly and Levine (2003) Table 4, row 6 lnGDPpc, Inst 0/3 0/6 2/3 3/4 1/2
Easterly and Levine (2003) Table 4, row 6## lnGDPpc, Inst 0/3 1/6 2/3 3/4 2/2
Easterly and Levine (2003) Table 5, row 4 lnGDPpc, Inst 0/3 0/6 1/3 2/4 1/2
Sachs (2003) Table 1, column 10 lcgdp95, Rule, Mal94p 1/4 3/8 2/4 4/6 2/3
Sachs (2003) Table 1, column 12 lcgdp95, Rule, Malfal 1/4 2/8 2/4 4/6 2/3
Ashraf and Galor (2011) Table 2, column 6 lpd1500, yst 2/3 3/6 0/3 4/4 2/2
Ashraf and Galor (2011) Table 3, column 6 lpd1000, yst 2/3 3/6 1/3 4/4 2/2
Ashraf and Galor (2011) Table 4, column 6 lpd1, yst 3/3 1/6 0/3 4/4 1/2
Spolaore and Wacziarg (2013) Table 2, column 4 lpd1500, yst 2/3 6/6 2/3 4/4 1/2
Ashraf and Galor (2011) Table 8, column 3 natech1K, yst 3/3 4/6 1/3 4/4 1/2
Ashraf and Galor (2011) Table 8, column 6 natech1, yst 2/3 2/6 0/3 4/4 0/2
Ashraf and Galor (2011) Table 9, column 3 lpd1000, tech1K 2/3 5/6 3/3 4/4 1/2
Ashraf and Galor (2011) Table 9, column 6 lpd1, tech1 1/3 4/6 0/3 4/4 2/2
Spolaore and Wacziarg (2013) Table 5, column 2 lpci05 0/1 0/2 0/1 2/2 1/1
Spolaore and Wacziarg (2013) Table 5, column 4 lpci05 0/1 0/2 0/1 2/2 0/1
Spolaore and Wacziarg (2013) Table 6, column 3 lpci05 0/1 0/2 1/1 2/2 1/1
Spolaore and Wacziarg (2013) Table 6, column 4 lpci05 0/1 0/2 0/1 1/2 0/1
Spolaore and Wacziarg (2013) Table 6, column 5 lpci05 0/1 2/2 0/1 2/2 1/1
Spolaore and Wacziarg (2013) Table 7, column 1 lpci05 0/1 0/2 0/1 2/2 1/1
Spolaore and Wacziarg (2013) Table 7, column 2 lpci05 0/1 0/2 0/1 2/2 1/1
Spolaore and Wacziarg (2013) Table 7, column 3 lpci05 0/1 2/2 0/1 2/2 1/1
Ashraf and Galor (2013) Table 2, column 5 lpd1500, Div, DivSq 0/4 1/4 1/4 0/6 0/3
Ashraf and Galor (2013) Table 2, column 6 lpd1500, Div, DivSq 2/4 0/3 1/4 2/6 0/3

See Table 2 for definitions of variables. # and ## denote amended versions of the models in the original studies (see main text). Entries in the test columns show the proportion of tests that
reject the relevant null hypothesis at the 5% significance level (including tests for individual RF equations and multivariate tests). Parameter constancy tests judged as C/NC are treated as
consistent with non-rejection. Dark-shaded (red) cells represent rejections in ≥ 2/3 of the relevant tests; cells lightly shaded (orange) represent 1/3 ≤ proportion of rejections < 2/3.
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Table 4. Testing statistical adequacy of RFs for Hall and Jones (1999).

Test

(1) (2) (3) (4)

Table II, Row 3 SocInf Components

ln(Y/L) SocInf GADP YrsOpen

Norm-p 0.285 0.046 0.782 0.001
NormVec-p 0.953 0.632
Hetero-p 0.022 0.774 0.613 0.791
HeteroVec-p 0.147 0.179
HeteroX-p 0.021 0.760 0.397 0.941
HeteroXVec-p 0.071 0.208
RESET-p 0.114 0.011 0.000 0.180
RESETVec-p 0.000 0.000
Moran’s I-p 0.000 0.001 0.000 0.009
LMρλ-p 0.002 0.017 0.003 0.080
Parameter Constancy NC NC NC NC
R2 0.614 0.328 0.535 0.167
N 79 79
Sargan-p 0.232 0.151
CD-F 9.028 0.488
Partial R2 0.328 0.535 0.167
Shea partial R2 0.328 0.084 0.026

Dependent variables: ln(Y/L) is log of output per worker in 1988; SocInf is a measure of ‘social infrastructure’,
made up of two equally weighted components: GADP (government anti-diversion policies) and YrsOpen
(Sachs and Warner’s (1995) measure of openness). Instrument set in each column (all additional instruments):
AbsLat, EurFrac, EngFrac, and lnFR (defined in the text and notes to Table 2). See Table 1 for explanation of tests;
suffix ‘p’ denotes p-value. β = 0.25 in the spatial weighting matrix.
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Figure 1. Recursive coefficient estimates and break-point Chow tests for Hall and Jones’ RF for SocInf
(Hall and Jones 1999, Table II, row 3).
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Columns (3) and (4) in Table 4 report results for the components of SocInf separately,
corresponding to a three-equation MLR including ln(Y/L), GADP and YrsOpen as dependent variables.
Entries in columns (3) and (4) for the system tests therefore refer to the three-equation system, including
the RF for ln(Y/L), for which the individual-equation test results are the same as in column (1).
Again, RESET results suggest misspecification of the RF for GADP, whereas the RF for YrsOpen has
non-normal errors and a poor fit. The recursive graphs also indicate parameter non-constancy. The
apparent weakness in the instruments in the three-variable MLR (reflected in the tabulated results by a
very low CD-F value and sizeable differences between the conventional and Shea partial R2 values)
may have motivated the use of equally weighted components for SocInf. Hall and Jones (1999, Table II)
report the results of testing equality of the coefficients on GADP and YrsOpen in the structural equation
for ln(Y/L). This restriction is not rejected; however, this result may not be reliable given the evidence
of lack of statistical adequacy of the underlying RFs.

Settler mortality, the instrument for institutional quality proposed by Acemoglu et al. (2001),
has been widely adopted by other studies. Table 5 contains diagnostic test results for the RFs for
several representative models in Acemoglu et al. (2001, Tables 4 and 5) fitted to their base sample of 64
ex-colonies. These results reveal some evidence of non-normality, heteroskedasticity, and functional
form misspecification. More importantly, there is again strong evidence of spatial dependence for
all models.

Another recurring pattern is lack of parameter constancy in the recursive plots of the estimated
coefficients, especially for the RF for lnGDPpc. This is illustrated in Figure 2a (for the RF in Table 5,
column (1), based on the model in Acemoglu et al. (2001, Table 4, column 2)). The extensive set
of significant break-point Chow test values and the drifting patterns in the intercept term and the
coefficient on the crucial additional instrument, logarithm of settler mortality (lnSM), imply parameter
non-constancy for the RF of lnGDPpc. None of the break-point Chow test values for the RF for
Acemoglu et al.’s institutional quality variable, average expropriation risk (AvExpr), is significant,
but the parameters for AvExpr are less precisely estimated. In particular, the coefficient on lnSM is
not statistically significant in either RF until countries at higher levels of development are included;
thereafter, the negative coefficients on lnSM in the RFs for both lnGDPpc (in panel a) and AvExpr (in
panel b) continue to increase in absolute value as additional higher income countries are added to
the sample.

Easterly and Levine (2003) fit several different models incorporating the effects of institutional
quality, crop and mineral endowments, and policy outcomes. They regress the logarithm of GDP
per capita in 1995 (lnGDPpc) on institutional quality (Inst, calculated as the average of six World
Bank Governance Indicators) and control variables (including French legal origin, religion dummies,
and ethnolinguistic fractionalization). The instrument set for Inst includes various subsets of settler
mortality, latitude, landlocked, and crop/mineral endowment dummies. Diagnostic test results for
representative models, reported in Table 6, reveal evidence of heteroskedasticity and functional form
misspecification in the RFs, and spatial independence is strongly rejected (especially for lnGDPpc).
The model in Easterly and Levine’s (2003) Table 5, row 4 performs best on the misspecification tests.
However, for this model, the recursive plots suggest that coefficient estimates for individual variables
are either not statistically significant through the full set of recursive samples or are not constant. For
example, Figure 3 shows the recursive plots for the coefficient on lnSM in the equation for lnGDPpc
in panel (a) (demonstrating non-constancy) and in the equation for Inst in panel (b) (demonstrating
non-significance). In the RF for Inst, the coefficient on YrsOpen is highly statistically significant; Easterly
and Levine treat YrsOpen as exogenous, whereas in several other studies (e.g., Rodrik et al. 2004), it is
assumed to be endogenous and is itself instrumented.
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Figure 2. Recursive coefficient estimates and break-point Chow tests for Acemoglu et al.’s (2001,
Table 4, column 2) RFs. (a) RF for lnGDPpc; (b) RF for AvExpr.
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Figure 3. Recursive estimates for selected coefficients and break-point Chow tests for Easterly and
Levine’s (2003, Table 5, row 4) RFs. (a) RF for lnGDPpc; (b) RF for Inst.
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Table 5. Testing statistical adequacy of RFs for Acemoglu et al. (2001).

Test

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

T4C2 T4C8 T5C6 T5C7 T5C8 T5C9

lnGDPpc AvExpr lnGDPpc AvExpr lnGDPpc AvExpr lnGDPpc AvExpr lnGDPpc AvExpr lnGDPpc AvExpr

Norm-p 0.070 0.975 0.064 0.999 0.046 0.879 0.177 0.769 0.149 0.887 0.358 0.998
NormVec-p 0.050 0.037 0.014 0.026 0.030 0.074
Hetero-p 0.253 0.513 0.017 0.831 0.377 0.642 0.312 0.814 0.083 0.800 0.187 0.823
HeteroVec-p 0.585 0.146 0.765 0.453 0.220 0.279
HeteroX-p 0.272 0.654 0.030 0.859 0.345 0.733 0.079 0.333 0.035 0.727 0.066 0.698
HeteroXVec-p 0.641 0.209 0.740 0.035 0.022 0.010
RESET-p 0.407 0.006 0.061 0.014 0.198 0.068 0.042 0.044 0.093 0.026 0.064 0.063
RESETVec-p 0.196 0.068 0.369 0.100 0.163 0.103
Moran’s I-p 0.003 0.002 0.006 0.002 0.006 0.009 0.004 0.001 0.004 0.001 0.002 0.002
LMρλ-p 0.023 0.005 0.083 0.021 0.035 0.008 0.019 0.005 0.029 0.005 0.020 0.008
Parameter Constancy NC C/NC NC C/NC NC C/NC NC C/NC NC C/NC NC C/NC
R2 0.500 0.296 0.584 0.328 0.505 0.345 0.562 0.321 0.588 0.354 0.591 0.369
N 64 64 64 64 64 64
CD-F 13.093 3.456 9.886 19.841 8.613 5.277
Partial R2 0.177 0.056 0.142 0.252 0.129 0.086

Dependent variables: lnGDPpc is log of GDP per capita in 1995; AvExpr is average protection against expropriation risk (1985–1995). TxCy denotes the model in Acemoglu et al. (2001),
Table x, Column y. Instrument sets: Exogenous regressors: AbsLat (in T4C2, T4C8, T5C6, T5C8, T5C9), continent dummies for Asia, Africa and ‘Other’ (in T4C8), FrLO (in T5C6, T5C9), FrC
(in T5C9), religion variables (in T5C7, T5C8, T5C9); Additional instrument: lnSM (all models, which are exactly identified). Variables are defined in the notes to Table 2. See Table 1 for
explanation of diagnostic tests; suffix ‘p’ denotes p-value. β = 0.25 in the spatial weighting matrix.
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Table 6. Testing statistical adequacy of RFs for Easterly and Levine (2003).

Test

(1) (2) (3) (4) (5) (6) (7) (8)

T4R4 T4R6 T4R6# T5R4

lnGDPpc Inst lnGDPpc Inst lnGDPpc Inst lnGDPpc Inst

Norm-p 0.268 0.842 0.908 0.157 0.374 0.931 0.349 0.958
NormVec-p 0.119 0.903 0.173 0.425
Hetero-p 0.123 0.494 0.938 0.970 0.088 0.657 0.485 0.872
HeteroVec-p 0.537 0.971 0.614 0.832
HeteroX-p 0.006 0.301 0.489 0.884 0.001 0.235 0.944 0.638
HeteroXVec-p 0.252 0.947 0.158 0.784
RESET-p 0.010 0.016 0.001 0.284 0.005 0.059 0.071 0.133
RESETVec-p 0.008 0.004 0.016 0.015
Moran’s I-p 0.000 0.017 0.015 0.124 0.001 0.012 0.004 0.201
LMρλ-p 0.011 0.150 0.005 0.006 0.012 0.121 0.026 0.393
Parameter Constancy NC C NC C/NC NC NC NC C/NC
R2 0.615 0.573 0.787 0.729 0.632 0.593 0.686 0.674
N 72 72 72 70
Sargan-p 0.066 0.429 0.145 0.097
CD-F 11.743 5.155 10.898 12.131
Partial R2 0.359 0.563 0.345 0.285

Dependent variables: lnGDPpc is log of GDP per capita in 1995; Inst is the average of six World Bank Governance
Indicators. TxRy denotes the model in Easterly and Levine (2003), Table x, Row y. # corresponds to the model in
T4R6 but excluding non-oil crops/minerals dummies in the IV set (not reported in Easterly and Levine (2003)).
Instrument set in each column: Exogenous regressors: FrLO, religion dummies (Catholic, Muslim, other) and EthDiv
(all models), Oil (in T4R6, T4R6#), YrsOpen (T5R4); Additional instruments: lnSM and AbsLat (all models), Landlock
(in T4R4, T4R6, T4R6#), set of 10 crops/minerals dummies (in T4R6). Variables are defined in the notes to Table 2.
See Table 1 for explanation of diagnostic tests; suffix ‘p’ denotes p-value. β = 0.2 in the spatial weighting matrix.

Table 7. Testing statistical adequacy of RFs for Sachs (2003).

Test

(1) (2) (3) (4)

T1C10 T1C12

lcgdp95 Rule Mal94p Malfal

Norm-p 0.147 0.420 0.303 0.072
NormVec-p 0.002 0.001
Hetero-p 0.654 0.727 0.000 0.000
HeteroVec-p 0.018 0.162
HeteroX-p 0.757 0.651 0.000 0.000
HeteroXVec-p 0.093 0.356
RESET-p 0.274 0.148 0.003 0.000
RESETVec-p 0.018 0.000
Moran’s I-p 0.001 0.817 0.004 0.000
LMρλ-p 0.001 0.487 0.027 0.001
Parameter Constancy NC C NC NC
R2 0.603 0.541 0.581 0.637
N 69 69

Rule Mal94p Rule Malfal
Partial R2 0.541 0.581 0.541 0.637
Shea partial R2 0.253 0.272 0.367 0.432
Sargan-p 0.404 0.560
CD-F 6.371 11.592

Dependent variables: lcgdp95 is log of GDP per capita in 1995 (Rodrik et al. 2004); Rule is a Rule of Law index;
Mal94p is the proportion of the population at risk of malaria transmission in 1994; Malfal is the proportion at risk of
falciparum malaria transmission. TxCy denotes the model in Sachs (2003), Table x, Column y. Model T1C12 is for
the three-equation MLR for lcgdp95, Rule, and Malfal. Instrument set in each column (all additional instruments):
lnSM, KGPTemp, and ME. Variables are defined in the notes to Table 2. See Table 1 for explanation of diagnostic
tests; suffix ‘p’ denotes p-value. β = 0.2 in the spatial weights matrix.
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Diagnostic tests for the RFs of two representative models from Sachs (2003), which add an index
of malarial ecology (ME)—based on temperature, mosquito abundance, and vector specificity—as an
instrument to address the endogeneity of malarial risk, are reported in Table 7. These raise concerns
about non-normality, heteroskedasticity, and functional form, especially for the RFs for the malarial
risk variables, Mal94p (the proportion of the population at risk of malaria transmission in 1994) and
Malfal (the proportion at risk of malaria transmission involving the fatal species Plasmodium falciparum).
Spatial independence is strongly rejected in the RFs for the logarithm of GDP per capita and the
malarial risk variables. The recursive estimates, represented by selected plots in Figure 4, also indicate
sometimes severe cases of parameter non-constancy. The lack of statistical adequacy of the RFs is
consistent with Sachs’ (2003, pp. 3–4) concern that “the model . . . is worryingly oversimplified in any
case” and that it is “very doubtful that a process as complex as economic development can possibly be
explained by two or three variables alone”.

To test the Malthusian theory that improvements in technology in the preindustrial era increased
population density but not living standards, Ashraf and Galor (2011) fit a number of models explaining
the logarithm of population density (lpd) for different years (1, 1000, and 1500). The explanatory
variables include the logarithm of the number of years since the Neolithic transition (lyst). Although
they point out that reverse causality from population density to lyst is not a problem, OLS estimates
of lyst’s coefficient may suffer from omitted variables bias. To address endogeneity, they use the
numbers of prehistoric domesticable species of wild plants and animals, from Olsson and Hibbs (2005),
to instrument lyst, arguing that their only effect on later population density is via their effect on
the timing of the Neolithic transition.13 As well as population density in different years, they also
explore the effects of lyst on subsequent technological sophistication, represented by a non-agricultural
technology index in years 1000 and 1 (natech1K and natech1, respectively).

Diagnostic tests corresponding to Ashraf and Galor’s IV regressions are reported in Table 8.
Spatial independence of the residuals is strongly rejected for all the fitted models. There is also
evidence of non-normality, heteroskedasticity, functional form misspecification, and parameter
non-constancy. Similar results apply to the RFs for models of population density in which the effect of
contemporaneous technology is examined (columns (12)–(15)). Significant diagnostic statistics are also
apparent (columns (7) and (8)) for IV estimates of the illustrative version of Ashraf and Galor’s model
that Spolaore and Wacziarg (2013) report in their review paper.14

Other recent studies that focus on historical or intergenerational factors (Chanda and Putterman
2007; Spolaore and Wacziarg 2009; Putterman and Weil 2010; Easterly and Levine 2016) are also less
concerned with reverse causation and place more emphasis on reporting OLS estimates of Equation
(1).15 If E(Xiεi) = 0, then direct examination of statistical adequacy of the single-equation OLS estimates
would be appropriate. Table 9 reports diagnostic test results for a selection of illustrative models
explaining the logarithm of per capita income in 2005 (lpci05), reported in Spolaore and Wacziarg (2013).
Following Putterman and Weil (2010) and Easterly and Levine (2016), these include ancestry-adjusted
years of agriculture (AdjYrsAg) and ancestry-adjusted state history models (AdjStateHist) (in columns
(1) and (2)) and the share of descendants of Europeans (EuroShare) (in columns (3)–(5)). Following

13 Ashraf and Galor (2011, p. 2016) express the view that “variations in land productivity and other geographical characteristics
are inarguably exogenous to the cross-country variation in population density” (emphasis added). This is surprising given the
emphasis on potential omitted variables as a source of endogeneity for lyst; omitted variables may also be correlated with
the geographical controls, which would potentially bias OLS estimates for all the coefficients.

14 The version of the model fitted by Spolaore and Wacziarg (2013) includes different geographical control variables (absolute
latitude, percentage of land area in the tropics, a landlocked dummy and an island dummy). These are therefore included
with the additional instruments, Plants (the number of prehistoric wild grasses) and Animals (the number of prehistoric
domesticable large mammals), in the instrument set appearing in each RF.

15 Correlation of explanatory variables with omitted variables is, however, still a source of endogeneity, which is considered to
varying degrees. Spolaore and Wacziarg (2009) use genetic distance as of 1500 to instrument for current genetic distance in
their bilateral income difference regressions. Putterman and Weil (2010) emphasize the importance of including appropriate
controls to reduce the possibility of omitted variables bias.
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Spolaore and Wacziarg (2009), the models in columns (6)–(8) include genetic distance, as a proxy for a
wide range of intergenerationally transmitted characteristics. There is consistent evidence of spatial
dependence and apparent parameter non-constancy (although the latter is less dramatic than in some
of the earlier studies considered).
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Figure 4. Recursive estimates for selected coefficients and break-point Chow tests for Sachs’ (2003,
Table 1, column 10) RFs. (a) RF for lcgdp95; (b) RF for Malfal.
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Table 8. Testing statistical adequacy of RFs for Ashraf and Galor (2011).

Test

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Ashraf and Galor (2011) Ashraf and Galor (2011) Ashraf and Galor (2011) Spolaore and Wacziarg (2013) Ashraf and Galor (2011) Ashraf and Galor (2011) Ashraf and Galor (2011)

T2C6 T3C6 T4C6 T2C4 T8C3 T8C6 T9C3 T9C6

lpd1500 lyst lpd1000 lyst lpd1 lyst lpd1500 lyst natech1K lyst natech1 lpd1000 tech1K lpd1 tech1

Norm-p 0.360 0.010 0.121 0.015 0.029 0.002 0.461 0.001 0.004 0.004 0.073 0.061 0.003 0.023 0.643
NormVec-p 0.027 0.010 0.001 0.006 0.001 0.006 0.001 0.075
Hetero-p 0.323 0.096 0.283 0.085 0.039 0.425 0.001 0.001 0.000 0.150 0.049 0.329 0.002 0.050 0.001
HeteroVec-p 0.011 0.002 0.069 0.000 0.000 0.113 0.000 0.001
HeteroX-p 0.031 0.082 0.034 0.083 0.064 0.346 0.000 0.002 0.021 0.067 0.149 0.038 0.045 0.113 0.011
HeteroXVec-p 0.001 0.001 0.185 0.000 0.001 0.041 0.000 0.000
RESET-p 0.055 0.308 0.010 0.460 0.282 0.678 0.035 0.251 0.016 0.454 0.242 0.013 0.008 0.194 0.059
RESETVec-p 0.152 0.059 0.077 0.020 0.200 0.140 0.010 0.065
Moran’s I-p 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.003 0.000 0.000 0.000 0.001 0.000 0.001 0.002
LMρλ-p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.012
Parameter Constancy NC NC NC NC NC C/NC NC C/NC NC C/NC C/NC NC C NC NC
R2 0.686 0.685 0.650 0.698 0.617 0.712 0.474 0.721 0.720 0.674 0.555 0.624 0.711 0.614 0.511
N 96 94 83 98 93 93 92 83
Sargan-p 0.358 0.159 0.587 0.216 0.343 0.254 0.938 0.250
CD-F 16.299 16.067 12.458 69.911 14.484 14.484 8.595 7.105
Partial R2 0.275 0.277 0.255 0.606 0.259 0.259 0.173 0.163

Dependent variables: lpd1500, lpd1000, and lpd1 are, respectively, the log of population density in years 1500, 1000, and 1; lyst is the log of years since the Neolithic transition; natech1K and
natech1 are, respectively, a non-agricultural technology index in 1000 and 1; tech1K and tech1 are, respectively, a technology index in 1000 and 1. Instrument set in each column: Exogenous
regressors: ln(LandProd), ln(AbsLat), distcr, Land100km, continent dummies for Africa, Europe, and Asia (except for columns (7) and (8), see footnote 14); Additional instruments: Plants,
Animals. TxCy denotes the model in Table x, Column y of the relevant study. Variables are defined in the notes to Table 2. See Table 1 for explanation of diagnostic tests; suffix ‘p’ denotes
p-value. β = 0.175 in the spatial weights matrix (except β = 0.15 for columns (5), (6), (14), and (15)).
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Table 9. Testing statistical adequacy of illustrative models from Spolaore and Wacziarg (2013).

Test

(1) (2) (3) (4) (5) (6) (7) (8)

T5C2 T5C4 T6C3 T6C4 T6C5 T7C1 T7C2 T7C3

lpci05 lpci05 lpci05 lpci05 lpci05 lpci05 lpci05 lpci05

Norm-p 0.917 0.499 0.438 0.322 0.072 0.148 0.269 0.072
Hetero-p 0.249 0.431 0.115 0.214 0.034 0.097 0.097 0.034
HeteroX-p 0.130 0.237 0.128 0.150 0.042 0.146 0.058 0.042
RESET-p 0.636 0.739 0.025 0.531 0.220 0.590 0.365 0.220
Moran’s I-p 0.000 0.028 0.000 0.028 0.000 0.001 0.000 0.000
LMρλ-p 0.000 0.006 0.000 0.098 0.000 0.001 0.001 0.000
Parameter Constancy NC C/NC NC C/NC NC NC NC NC
R2 0.523 0.588 0.580 0.656 0.545 0.499 0.496 0.545
N 148 135 147 134 149 155 154 149

Dependent variable in all models is the log of per capita income in 2005 (lpci05). All OLS regressions include
a common set of control variables: AbsLat, LandTropics, Landlock, Island. Additional exogenous regressors for
each column are: (1) AdjYrsAg; (2) AdjStateHist; (3) EuroShare, AdjYrsAg; (4) EuroShare, AdjStateHist; (5) EuroShare,
WtGenDist; (6) IndGenDist; (7) WtGenDist; (8) WtGenDist, EuroShare. TxCy denotes the model in Spolaore and
Wacziarg (2013), Table x, Column y. Variables are defined in the notes to Table 2. See Table 1 for explanation of
diagnostic tests; suffix ‘p’ denotes p-value. β = 0.25 in the spatial weights matrix.

Ashraf and Galor (2013) regress the logarithm of population density in 1500 (lpd1500 in Table 10),
as a proxy for historical productivity, on observed genetic diversity, controlling for the logarithm of
the timing of the Neolithic transition (lyst), the logarithm of the percentage of arable land (ln(Arable)),
the logarithm of absolute latitude (ln(AbsLat)), the logarithm of land suitability for agriculture
(ln(AgSuit)), and continent fixed effects. Initial results are for a limited sample of 21 countries for
which the required data can be compiled. Ashraf and Galor instrument observed genetic diversity
using migratory distance from East Africa (mdistAddis). To test the hump-shaped effect of genetic
diversity on productivity, they also include genetic diversity squared in their model; following
Wooldridge (2010, p. 267), they use the squared value of predicted genetic diversity (divhatsq), from a
preliminary regression of diversity on migration distance and controls, as an additional instrument.

Table 10. Testing statistical adequacy of RFs for Ashraf and Galor (2013).

Test

(1) (2) (3) (4) (5) (6)

T2C5 T2C6

lpd1500 Div DivSq lpd1500 Div DivSq

Norm-p 0.545 0.947 0.930 0.876 0.019 0.007
NormVec-p 0.909 0.224
Hetero-p 0.847 0.044 0.071 0.136 0.521 0.669
HeteroVec-p 0.286 NF
RESET-p 0.415 0.816 0.750 0.591 0.060 0.284
RESETVec-p 0.003 0.013
Moran’s I-p 0.156 0.680 0.719 0.213 0.485 0.499
LMρλ-p 0.130 0.207 0.235 0.080 0.031 0.028
Parameter Constancy C C C C C C
R2 0.900 0.988 0.986 0.900 0.993 0.993
N 21 21
CD-F 19.283 18.861
Partial R2 0.986 0.983 0.896 0.883
Shea partial R2 0.740 0.738 0.815 0.804

Dependent variables: lpd1500 is the log of population density in 1500; Div is (observed) genetic diversity and DivSq
is its square. TxCy denotes the model in Ashraf and Galor (2013), Table x, Column y. Instrument sets: Exogenous
regressors: lyst, ln(Arable), ln(AbsLat), ln(AgSuit) (in all models); continent dummies (Africa, Europe, Americas) in
T2C6; Additional instruments (in all models): mdistAddis, divhatsq. Variables are defined in the text and notes to
Table 2. See Table 1 for explanation of diagnostic tests; suffix ‘p’ denotes p-value. NF = not feasible due to small
sample size. β = 0.1 in spatial weighting matrix.

Diagnostic tests corresponding to estimates in Ashraf and Galor’s (2013) Table 2, columns (5)
and (6) are reported in Table 10. The diagnostics reveal relatively few problems; apart from marginal



Econometrics 2017, 5, 38 26 of 33

heteroskedasticity in the RF for genetic diversity, the only other potential problem is the multivariate
RESET result, which is significant despite the individual equations passing this test. Adding continental
dummies (in their Table 2, column (6)) appears to cause problems with the assumption of normal
errors. The RFs (for both models) display less evidence of parameter non-constancy than any of the
other studies examined, and this is the only study considered for which there is little evidence of
spatial dependence of the residuals. Although the small sample leads to relatively wide confidence
bands, most coefficients are statistically significant over the full range of recursive samples (e.g., see
the plots for the RF for diversity in Figure 5).

However, the replicated models from Ashraf and Galor’s (2013) study are the exception. In general,
diagnostic testing of the RFs in these representative studies of the fundamental determinants of
development provides evidence of varying degrees of failure of the underlying assumptions upon
which conventional inference is based, which is suggestive of model misspecification. Even if we
discount evidence of non-normality and concerns over heteroskedasticity as a possible indicator of
misspecification, and are prepared to rely on corrections to standard errors as a default (even though
sample sizes are not large in these studies), parameter non-constancy and spatial dependence
in the residuals are almost ubiquitous, while several models also show evidence of functional
form misspecification.

All the empirical studies of the fundamental determinants of development adopt a broadly similar
approach, i.e., fitting simple, essentially static, highly parsimonious models with explanatory variables
that are potentially endogenous, due to reverse causation and/or omitted variables. Despite the
ingenuity displayed in identifying plausible natural experiments delivering quasi-random variation in
the fundamental determinants, the highly parsimonious nature of the models makes it problematic to
achieve statistically adequate RFs. The open-ended nature of growth theories (Brock and Durlauf 2001)
also applies, if to a lesser degree, to the list of potential fundamental determinants (including different
dimensions of institutional quality, as well as historical, geographical, and biological factors), so it is
difficult to ensure that all relevant variables are included in the model. This is likely to be reflected in
lack of statistical adequacy. As these variables are not usually orthogonal, omitted variables bias is a
potentially serious problem.
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Figure 5. Recursive coefficient estimates and break-point Chow tests for Ashraf and Galor’s (2013,
Table 2, column 5) RF for Diversity (Div).
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Spatial dependence appears to be an almost universal feature of the residuals from the fitted
models. Given the cross-country nature of the data, evidence of hidden dependencies is perhaps not
surprising, but it casts doubt on the underlying assumption of random sampling.16 This is cause
for concern given that omitted variables bias and inconsistency are amplified in the presence of
spatial dependence. For example, LeSage and Pace (2009, Section 3.3) present Monte Carlo results
demonstrating the possibility of serious bias when OLS is used in situations where omitted variables are
combined with spatial dependence in regressors and/or errors; they also note that spatial dependence
in the dependent variable further increases bias. Spatial dependence is a feature of the statistical
models that has been almost entirely neglected in this literature. The only exception in the studies
examined is a robustness analysis in the online appendix for Ashraf and Galor’s (2013) study in which
the standard errors are corrected for spatial autocorrelation in the error terms (their Appendix A
Tables D2 and D3); they also report that their results are robust to the use of estimators that allow for a
first-order spatial autoregressive model with first-order spatial autoregressive errors (their Appendix A
Table D18). Ironically, the models from their study are the only ones for which there is little evidence of
spatial autocorrelation in the residuals. None of the other studies attempt to model spatial dependence
explicitly in the structural equation.

The apparent lack of parameter constancy in these studies is related to concerns expressed
by Deaton (2010) that equations in the growth and development literature are really not structural
equations in which the parameters are constant. Instead, Deaton argues that variation in the parameters
across cross-sectional units is likely and is affected by the choice of instruments. If parameter
heterogeneity across countries is relevant, the focus shifts to estimating a local average treatment effect,
which requires stronger assumptions (e.g., Angrist and Pischke 2009, pp. 152–58). Rejection of the null
of parameter constancy does not necessarily imply acceptance of the alternative of varying parameters
(in an otherwise appropriately specified model), because apparent parameter non-constancy is
often a symptom of a misspecified model (Hendry 1995). However, parameter heterogeneity
across different countries at different stages of development is consistent with evidence from panel
time-series estimation of production relationships in different countries (Eberhardt and Teal 2017); this
interpretation suggests that the effects of the fundamental determinants are likely to vary at different
stages of development.

6. Conclusions

Empirical analysis in the growing literature on the fundamental determinants of cross-country
comparative development relies heavily on 2SLS estimation of structural parameters in highly
parsimonious models. In addressing potential endogeneity problems, several studies have proposed
a series of ingenious instruments. Economic theory (regardless of its degree of formalism)
underpins model specification, including the choice of relevant explanatory variables and exclusion
restrictions. Instrumentation strategies in this literature are therefore not atheoretical. Rather,
following Spanos’s (2007) arguments, a greater concern is the lack of attention paid to the statistical
adequacy of the underlying statistical model, as summarized in the system’s reduced-form equations.
Whereas most applications of IV/2SLS estimation treat the fitting of the first-stage regression as
purely a prediction exercise, Spanos emphasizes that the full set of RFs, specified in terms of the

16 In the fundamental determinants literature, the country is the usual unit of geographical aggregation, as is the case for all
the studies considered here. An interesting question, left for future investigation, is whether spatially correlated residuals
are also present in sub-national empirical studies, such as Michalopoulos’s (2012) exploration of the determinants of
ethnolinguistic diversity at different levels of spatial aggregation, including ‘virtual countries’ and adjacent regions. Noting
that cross-country studies are based on relatively small sample sizes, a referee poses the question of whether statistical
assumptions are more likely to be violated with small samples. Sub-national studies would also provide a larger number of
observations, which may shed light on this question, but, in general, misspecification is just as likely with models fitted to
large as to small samples and its adverse effects (e.g., due to heterogeneity) may be even more damaging in large samples
(Spanos 2017).
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observable variables, provides an embedding framework for the structural equations, and reflects
instrument exogeneity assumptions in the parameterizations for the structural parameters in the
context of the MLR/RF. Failure of the statistical assumptions underlying the RFs implies failure of the
corresponding structural-equation assumptions. Lack of statistical adequacy, i.e., invalid underlying
probabilistic assumptions for the data being analysed, can lead to inconsistent estimators and/or
unreliable inference, due to actual Types I and II error probabilities deviating from their nominal
values. Spanos’ approach emphasizes that a statistical framework subject to a comprehensive set
of explicit, non-rejected assumptions is better placed to provide valid inference in comparison to
asymptotic properties that depend on a weaker set of implicit and untested (or untestable) assumptions.
Particularly given the sample sizes common in the literature on the fundamental determinants of
development, the former is a more appealing strategy.

Both a sound theoretical justification for exclusion restrictions and statistical adequacy of
the RFs are desirable features of a credible instrumentation strategy. However, when subject
to diagnostic testing for misspecification of their RFs, influential representative studies of the
fundamental determinants of development exhibit varying degrees of evidence of lack of statistical
adequacy. The most concerning departures from the underlying statistical assumptions involve lack of
parameter constancy across countries and spatial dependence, which appear to be almost ubiquitous.
These features, surprisingly not previously identified, potentially undermine inferences drawn about
the structural parameters and hence the effects of particular fundamental determinants. In addition,
lack of statistical adequacy across a wide range of different variants of the models suggests that the
typical sensitivity analysis reported in this literature may not be sufficient to ensure robustness and
reliability of inference.

Empirically identifying the fundamental determinants of long-run development is an ambitious
research agenda, made doubly difficult by the long spans of time over which the relevant processes
operate and by the lack of long runs of time-series data. One possible interpretation of the lack of
statistical adequacy for these parsimonious models fitted to cross-sectional data is that these models are
just too simple. Important factors (multiple fundamental determinants and their different dimensions,
interactions, dynamics, and nonlinearities) may be missing.17 The more plausible instruments
relying on quasi-random variation from natural experiments may well be based on sound theoretical
arguments, but while theory and natural experiments can point to ‘candidate’ instruments, their
statistical appropriateness needs to be tested for the data in question. In this context, the statistical
adequacy of the empirical models may be undermined by the overly simplistic nature of these models.
In particular, evidence of parameter non-constancy, whether symptomatic of misspecification and/or
reflecting heterogeneity in responses across countries, and hidden spatial dependence in cross-section
data, require more attention than they have previously received.

Overall, there appear to be sufficient concerns about the statistical adequacy of the IV regressions
fitted in most existing fundamental determinants studies to cast doubt on the ability of such
parsimonious models to identify the fundamental determinants of development, notwithstanding the
ingenious nature of many of the instruments used. On a more positive note, further investigation of
the reasons for apparent parameter non-constancy and cross-section dependence offers avenues for
potential additional insights.
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determinant, such as institutional quality, on contemporary levels of development. Their approach, using system GMM,
suggests that conventional IV estimation overestimates the effect of institutions on development.
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Appendix A. Data Sources

Hall and Jones (1999): https://web.stanford.edu/~chadj/HallJones400.asc
Acemoglu et al. (2001): https://economics.mit.edu/faculty/acemoglu/data/ajr2001
Easterly and Levine (2003): http://faculty.haas.berkeley.edu/ross_levine/papers.htm
Sachs (2003): obtained on request from Jeffrey Sachs (December 2003)
Ashraf and Galor (2011): https://www.aeaweb.org/articles?id=10.1257/aer.101.5.2003
Spolaore and Wacziarg (2013): obtained on request from Romain Wacziarg (October 2013)
Ashraf and Galor (2013): https://www.aeaweb.org/articles?id=10.1257/aer.103.1.1
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