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1. Introduction

We consider the performance of a new method for selecting the appropriate lag order p of an

autoregressive (AR) model for the residuals of a linear regression. Our focus is on the small-sample

performance as compared to competing methods, and, as such, we concentrate on the underlying

small-sample distribution theory employed, instead of considerations of consistency and performance

in an asymptotic framework.

The problem of ARMA model specification has a long history, and we omit a literature review, though

note the book by Choi (1992), dedicated to the topic. Less well documented is the use of small-sample

distributional approximations using saddlepoint techniques. Saddlepoint methodology started with the

seminal contributions from Daniels (1954,1987) and continued with those from Barndorff-Nielsen and

Cox (1979), Skovgaard (1987), Reid (1988), Daniels and Young (1991) and Kolassa (1996). It has been

showcased in the book-length treatments of Field and Ronchetti (1990), Jensen (1995), Kolassa (2006),

and Butler (2007), the latter showing the enormous variety of problems in statistical inference that are

amendable to its use.

The first uses of saddlepoint approximations for inference concerning serial correlation are

Daniels (1956) and McGregor (1960). This was followed by Phillips (1978), who also used such

methods for simultaneous systems in Holly and Phillips (1979). Saddlepoint approximations have

also been used for computing confidence intervals and unit root inference in first-order autoregressive

models; see e.g., Broda et al. (2007), which builds on the methodology in Andrews (1993); and

Broda et al. (2009). Further work on construction of confidence intervals in the near unit-root case

can be found in Elliott and Stock (2001), Andrews and Guggenberger (2014) and Phillips (2014).
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Related work can be found in Ploberger and Phillips (2003), Leeb and Pötscher (2005) and Phillips (2008).

Peter Phillips continues to work on the selection of the autoregressive order; see e.g., Han et al. (2017)

for its study in the panel data case.

In our setting herein, we restrict attention to the stationary setting and do not explicitly consider

the unit root case. Time series Y = (Y1, . . . , YT)
′ is assumed to have distribution Y ∼ N

(
Xβ, σ2Ψ−1

)
,

where X is a full rank, T × k matrix of exogenous variables and Ψ−1 is the covariance matrix

corresponding to a stationary AR(p) model with parameter vector φ = (φ1, . . . , φp). Values β, σ2,

φ and p are fixed but unknown. Below (in Section 6), we extend to an ARMA framework, such that,

in addition, the MA parameters θ = (θ1, . . . , θq) are unknown, but q is assumed known.

The two most common approaches used to determine the appropriate AR lag order are

(i) assessing the lag at which the sample partial autocorrelation “cuts off”; and (ii) use of popular

penalty-based model selection criteria such as AIC and SBC/BIC (see, e.g., Konishi and Kitagawa 2008;

Brockwell and Davis 1991, sct. 9.3; McQuarrie and Tsai 1998; Burnham and Anderson 2003).

As emphasized in Chatfield (2001, pp. 31, 91), interpreting a sample correlogram is one of the

hardest tasks in time series analysis, and their use for model determination is, at best, difficult,

and often involves considerable experience and subjective judgment. The fact that the distribution of

the sample autocorrelation function (SACF) and the sample partial ACF (SPACF) of the regression

residuals are—especially for smaller sample sizes—highly dependent on the X matrix makes matters

significantly more complicated. In comparison, the application of penalty-based model selection

criteria is virtually automatic, requiring only the choice of which criteria to use. The criticism that

their use involves model estimation and, thus, far more calculation is, with modern computing power,

no longer relevant.

A different, albeit seldom used, identification methodology involves sequential testing procedures.

One approach sequentially tests

Hm : φm = 0, Hm−1 : φm = φm−1 = 0, . . . , H1 : φm = · · · = φ1 = 0.

Testing stops when the first hypothesis is rejected (and all remaining are then also rejected). Tests of

the kth null hypothesis can be based on a scaled sum of squared values of the SPACF or numerous

variations thereof, all of which are asymptotically χ2 distributed; see Choi (1992, chp. 6) and the

references therein for a detailed discussion.

The use of sequential testing procedures in this context is not new. For example, Jenkins and Alevi (1981)

and Tiao and Box (1981) propose methods based on the asymptotic distribution of the SPACF under the

null of white noise. More generally, Pötscher (1983) considers determination of optimal values of p and

q by a sequence of Lagrange multiplier tests. In particular, for a given choice of maximal orders, P

and Q, and a chain of (p, q)-values (p0, q0) = (0, 0), (p1, q1), . . . , (pK, qK) = (P, Q), such that either

pi+1 = pi and qi+1 = qi + 1 or pi+1 = pi + 1 and qi+1 = qi, i = 0, 1, . . . K = P + Q, a sequence of

Lagrange-multiplier tests are performed for each possible chain. The optimal orders are obtained when

the test does not reject for the first time. As noted by Pötscher (1983, p. 876), “strong consistency of the

estimators is achieved if the significance levels of all the tests involved tend to zero with increasing

[sample] size. . . ”. This forward search procedure is superficially similar to the method proposed

herein, and also requires specification of a sequence of significance levels. Our method differs in two

important regards. First, near-exact small-sample distribution theory is employed by use of conditional
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saddlepoint approximations; and second, we explicitly allow for, and account for, a mean term in the

form of a regression Xβ.

Besides the inherent problems involved in sequential testing procedures, such as controlling

overall type I errors and the possible tendency to over-fit (as in backward regression procedures),

the reliance on asymptotic distributions can be detrimental when working with small samples and

unknown mean term Xβ. This latter problem could be overcome by using exact small-sample

distribution theory and a sequence of point optimal tests in conjunction with some prior knowledge of

the AR coefficients; see, e.g., King and Sriananthakumar (2015) and the references therein.

Compared to sequential hypothesis testing procedures, penalty-based model selection criteria

have the arguable advantage that there is no model preference via a null hypothesis, and that the

order in which calculations are performed is irrelevant (see, for example, Granger et al. 1995). On the

other hand, as is forcefully and elegantly argued in Zellner (2001) in a general econometric modeling

context, it is worthwhile to have an ordering of possible models in terms of complexity, with higher

probabilities assigned to simpler models. Moreover, Zellner (2001, sct. 3) illustrates the concept with

the choice of ARMA models, discouraging the use of MA components in favor of pure AR processes,

even if it entails more parameters, because “counting parameters” is not necessarily a measure of

complexity (see also Keuzenkamp and McAleer 1997, p. 554). This agrees precisely with the general

findings of Makridakis and Hibon (2000, p. 458), who state “Statistically sophisticated or complex

models do not necessarily produce more accurate forecasts than simpler ones”. With such a modeling

approach, the aforementioned disadvantages of sequential hypothesis testing procedures become

precisely its advantages. In particular, one is able to specify error rates on individual hypotheses

corresponding to models of differing complexity.

In this paper, we present a sequential hypothesis testing procedure for computing the lag length

that, in comparison to the somewhat ad hoc sequential methods mentioned above, operationalizes the

uniformly most powerful unbiased (UMPU) test of Anderson (1971, pp. 34–46, 260–76). It makes use

of a conditional saddlepoint approximation to the—otherwise completely intractable—distribution

of the mth sample autocorrelation given those of order 1, 2, . . . , m − 1. While exact calculation of

the required distribution is not possible (not even straightforward via simulation because of the

required conditioning), Section 4 provides evidence that the saddlepoint approximation is, for practical

purposes, virtually exact in this context.

The remainder of the paper is outlined as follows. Sections 2 and 3 briefly outline the

required distribution theory of the sample autocorrelation function and the UMPU test, respectively.

Section 4 illustrates the performance of the proposed method in the null case of no autocorrelation,

while Section 5 compares the performance of the new and existing order selection methods for several

autoregressive structures. Section 6 proposes an extension of the method to handle AR lag selection

in the presence of ARMA disturbances. Section 7 provides a performance comparison when the

Gaussianity assumption is violated. Section 8 provides concluding remarks.
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2. The Distribution of the Autocorrelation Function

Define the T × T matrix Al such that its (i, j)-th element is given by aij = I {|i− j| = l} /2 and

I {·} denotes the indicator function. Then, for covariance stationary, mean-zero vector ε = (ε1, . . . , εT)
′,

the ratio of quadratic forms

Rl =
ε′Alε

ε′ε
=

γ̂(l)
γ̂(0)

, γ̂(l) = T−1
T−l

∑
t=1

εtεt+l ,

is the usual estimator of the lth lag autocorrelation coefficient. The sample autocorrelation function

with m components, hereafter SACF, is then given by vector R(m) = (R1, . . . , Rm) with joint density

denoted by fR(m)
.

Recall that a function γ : Z → R is the autocovariance function of a weakly stationary time

series if and only if γ is even, i.e., γ(h) = γ(−h) for all h ∈ Z, and is positive semi-definite. See, e.g.,

Brockwell and Davis (1991, p. 27) for proof. Next recall that a symmetric matrix is positive definite if

and only if all the leading principal minors are positive; see, e.g., Abadir and Magnus (2005, p. 223).

As such, the support of R(m) is given by

=m = {r = (r1, r2, . . . , rm) : |Ri| > 0, i = 1, . . . , m} , (1)

where Ri is the band matrix given by

Ri =


1 r1 · · · ri

r1 1 · · · ri−1
...

. . .
...

ri · · · r1 1

 . (2)

Assume for the moment that there are no regression effects and let ε ∼ NT

(
0, Ω−1

)
with Ω−1 > 0,

i.e., Ω is positive definite. While no tractable expression for fR(m)
appears to exist, a saddlepoint

approximation to the density of R(m) at r = (r1, . . . , rm)′ is shown in Butler and Paolella (1998) to be

given by

f̂R(m)
(r) = (2π)−

m
2 |Ω|

1
2
∣∣ĤΩ

∣∣− 1
2
∣∣P̂Ω

∣∣− 1
2
(
tr P̂−1

Ω

)m, (3)

where

P̂Ω = P̂Ω (ŝ) = Ω + 2r′ ŝ IT − 2
m

∑
i=1

ŝiAi,

and ĤΩ = ĤΩ (ŝ) with (i, j)-th element given by

ĥij = −
1
2

∂2

∂ŝi∂ŝj
log
(
|P̂Ω (ŝ) |

)
= 2 tr

[
P̂−1

Ω (Ai − riIT) P̂−1
Ω

(
Aj − rjIT

)]
, (4)

i, j = 1, . . . , m. Saddlepoint vector ŝ = (ŝ1, . . . , ŝm)′ solves

0 = −1
2

∂

∂ŝi
log
∣∣P̂Ω (ŝ)

∣∣ = tr
[
P̂−1

Ω (Ai − riIT)
]

, i = 1, . . . , m, (5)
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and, in general, needs to be numerically obtained. In the null setting for which Ω = IT , trP̂−1
I = T,

so that the last factor in (3) is just Tm. Special cases for which explicit solutions to (5) exist are given

in Butler and Paolella (1998).

With respect to the calculation of Ω corresponding to a stationary, invertible ARMA(p, q) process,

the explicit method in McLeod (1975) could be used, though more convenient in matrix-based

computing platforms are the matrix expressions given in Mittnik (1988) and Van der Leeuw (1994).

Code for the latter, as well as for computing the CACF test, are available upon request.

The extension of (3) for use with regression residuals is not immediately possible because the

covariance matrix of ε̂ is not full rank and a canonical reduction of the residual vector is required.

To this end, let

y ∼ N
(

Xβ, Ψ−1
)

, (6)

where X is a full rank T × k matrix of exogenous variables. Denote the OLS residual vector as

ε̂ = My = Mε, where M = IT − X (X′X)−1 X′. As M is an orthogonal projection matrix, it can be

expressed as M = G′G, where G is (T − k)× T and such that GG′ = IT−k and GX = 0. Then

Rl =
ε̂′Al ε̂

ε̂′ε̂
=

y′MAlMy
y′My

=
y′G′GAlG

′Gy
y′G′Gy

=
w′Ãlw

w′w
, (7)

where w = Gy and Ãl = GAlG′ is a (T − k) × (T − k) symmetric matrix. For example, G could

consist of an orthogonal basis for the T − k eigenvectors of M corresponding to the unit eigenvalues.

By setting Ω−1 = GΨ−1G′, approximation (3) becomes valid using w ∼ N
(

0, Ω−1
)

and GAlG′ in

place of ε and Al , respectively. Note that, in the null case with y ∼ N
(
Xβ, σ2IT

)
, Ω−1 = σ2IT−k.

3. Conditional Distributions and UMPU Tests

Anderson (1971, sct. 6.3.2) has shown for the regression model with circular AR(m) errors

(so ε1 ≡ εT) and the columns of X restricted to Fourier regressors, i.e.,

yt = β1 +
(k−1)/2

∑
s=1

{
β2s cos

(
2πst

T

)
+ β2s+1 sin

(
2πst

T

)}
+ εt, (8)

that the uniformly most powerful unbiased (UMPU) test of AR(m− 1) versus AR(m) disturbances

rejects for values of rm falling sufficiently far out in either tail of the conditional density

fRm |R(m−1)

(
rm | r(m−1)

)
, (9)

where r(m−1) = (r1, . . . , rm−1)
′ denotes the observed value of the vector of random variables R(m−1).

A p-value can be computed as min {τm, 1− τm}, where

τ1 = Pr (R1 < r1) and τm = Pr
(

Rm < rm | R(m−1) = r(m−1)

)
, m > 1. (10)

Like in the well-studied m = 1 case (cf. (Durbin and Watson 1950, 1971) and the references therein),

the optimality of the test breaks down in either the non-circular model and/or with arbitrary

exogenous X, but does provide strong motivation for an approximately UMPU test in the general

setting considered here. This is particularly so for economic time series, as they typically exhibit
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seasonal (i.e., cyclical) behavior that can mimic the Fourier regressors in (8) (Dubbelman et al. 1978;

King 1985, p. 32).

Following the methodology outlined in Barndorff-Nielsen and Cox (1979), Butler and Paolella (1998)

derive a conditional double saddlepoint density to (9) computed as the ratio of two single approximations

f̂Rm |R(m−1)

(
rm | r(m−1); Ω

)
=

f̂R(m)

(
r(m−1), rm; Ω

)
f̂R(m−1)

(
r(m−1); Ω

) (11)

=

√
|Ĥm−1| |P̂m−1|
2π|Ĥm| |P̂m|

(
trP̂−1

m

)m (
trP̂−1

m−1

)1−m
,

where Ĥm−1 and P̂m−1 are the ĤΩ and P̂Ω values, respectively, associated with the

(m− 1)-dimensional saddlepoint ŝm−1 of the denominator determined by r(m−1); likewise for Ĥm and

P̂m, and explicit dependence on Ω has been suppressed.

Thus, τm in (10) for m > 1 can be computed as

τm =

∫
=′m f̂Rm |R(m−1)

(r) dr∫
=m

f̂Rm |R(m−1)
(r) dr

=

∫
=′m f̂R(m)

(
r(m−1), rm; Ω

)
drm∫

=m
f̂R(m)

(
r(m−1), rm; Ω

)
drm

, (12)

where =′m = =m ∩ (−1, rm] and =m denotes the conditional support of Rm given R(m−1) = r(m−1).

It is given by

=m = {r : −1 ≤ rmin < r < rmax ≤ 1} ,

where rmin and rmax are such that, for rm outside these values, r(m) does not correspond to the ACF

of a stationary AR(m) process. These values can be found as follows: Assume that r(m−1) lies in the

support of the distribution of R(m−1). From (2), the range of support for R(m) is determined by the

inequality constraint |Rm| > 0. Expressing the determinant in block form,

|Rm| = |Rm−1|
(

1− r′(m)R
−1
m−1r(m)

)
,

and, as |Rm−1| > 0 by assumption, rm ranges over

{rm : 1− r′(m)R
−1
m−1r(m) > 0}. (13)

Letting R−1
m−1 =

[
wij
]
, i, j = 1, . . . , m, and using the fact that Rm−1 is both symmetric and persymmetric

(i.e., symmetric in the northeast-to-southwest diagonal), the range of rm is given by

1−
m

∑
i=1

m

∑
j=1

wijrirj = 1− wmmr2
m − 2rm

m−1

∑
i=1

wimri −
m−1

∑
i=1

m−1

∑
j=1

wijrirj > 0.

This equation is quadratic in rm so that the two ordered roots can be taken as the values for rmin and

rmax respectively. For m = 2, this yields 2r2
1 − 1 < r2 < 1; for m = 3,

(r1 + r2)
2

r1 + 1
− 1 < r3 <

(r1 − r2)
2

r1 − 1
+ 1.



Econometrics 2017, 5, 43 7 of 33

While computation of (12) is straightforward, it is preferable to derive an approximation to τm

similar in spirit to the Lugannani and Rice (1980) saddlepoint approximation to the cdf of a univariate

random variable. This method begins with the cumulative integral of the conditional saddlepoint

density integrated over (−1, rm] as a portion of =m, the support of Rm given R(m−1) = r(m−1),

as specified in the first equality of

τm =
∫
=m∩(−1,rm ]

f̂Rm |R(m−1)
(r) dr =

∫ w0

−∞
h(w)φ(w)dw. (14)

A change of variable in the integration from dr to dw is needed which allows the integration to be

rewritten as in the second equality of (14). Here, φ(w) is the standard normal density, h(w) is the

remaining portion of the integrand for equality to hold in (14), and w0 is the image of rm under the

mapping r → w and given in (16) below. Temme’s approximation approximates the right-hand-side

of (14) and this leads to the expression

Pr
(

Rm ≤ rm | R(m−1) = r(m−1); Ω
)
' Φ (w0) + φ (w0)

(
1

w0
− 1

v0

)
, (15)

for ŝm 6= 0, where

w0 = sgn(ŝm)
√

log(|P̂m|/|P̂m−1|), (16)

v0 = ŝm(|Ĥm| / |Ĥm−1|)
1
2

[
tr(P̂−1

m−1) / tr(P̂−1
m )
]m−1

, (17)

and Φ and φ denote the cdf and pdf of the standard normal distribution, respectively. Details of this

derivation are given in Butler and Paolella (1998) and Butler (2007, scts. 12.5.1 and 12.5.5).

In general, it is well known that the middle integral in (14) is less accurate than the normalized

ratio in (12); see Butler (2007, eq. 2.4.6). However, quite remarkably, the Temme argument applied

to (14) most often makes (15) more accurate than the normalized ratio in (12). A full and definitive

answer to the latter tendency remains elusive. However, a partial asymptotic explanation is discussed

in Butler (2007, sct. 2.3.2). In this setting, both (15) and (12) indeed yield very similar results, differing

only in the third significant digit. It should be noted that the resulting p-values, or even the conditional

distribution itself, cannot easily be obtained via simulation, so that it is difficult to check the accuracy

of (12) and (15). In the next two sections, we show a way that lends support to the correctness

(and usefulness) of the methods.

4. Properties of the Testing Procedure Under the Null

We first wish to assess the accuracy of the conditional saddlepoint approximation to (9) when

Ψ−1 = IT in (6), i.e., there is no autocorrelation in the disturbance terms of the linear model y = Xβ+ ε.

In this case, we expect τi
iid∼ Unif (0, 1). This was empirically tested by computing τ1, τ2, τ3 and τ4 in

(10), based on (15), using observed values r1, . . . , r4, for 10, 000 replications of T-length time series,

each consisting of T independent standard normal simulated random variables, T = 15 and T = 30,

but with mean removal, i.e., taking X = 1. Histograms of the resulting τi, as shown in Figure 1, are in

agreement with the uniform assumption. Furthermore, the absolute sample correlations between each

pair of the τi were all less than 0.02 for T = 15 and less than 0.013 for T = 30.
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These results are in stark contrast to the empirical distribution of the “t-statistics” and the

associated p-values of the maximum likelihood estimates (MLEs). For 500 simulated series, the model

yt = µ + εt, εt = φ1εt−1 + φ2εt−2 + φ3εt−3 + ut, ut
iid∼ N

(
0, σ2), t = 1, . . . , T, was estimated using exact

maximum likelihood with approximate standard errors of the parameters obtained by numerically

evaluating the Hessian at the MLE. Figure 2 shows the empirical distribution of the τi = F(ti), where ti

is the ratio of the MLE of φi to its corresponding approximate standard error, i = 1, 2, 3, and F(·) refers

to the cdf of the Student’s t distribution with T − 4 degrees of freedom.1 The top two rows correspond

to T = 15 and T = 30; while somewhat better for T = 30, it is clear that the usual distributional

assumption on the MLE t-statistics does not hold. The last two rows correspond to T = 100 and

T = 200, for which the asymptotic distribution is adequate.
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Figure 1. Histograms of τ1, . . . , τ4, based on 10, 000 replications with true data being iid normal,
and taking X = 1. Top (bottom) panels are for T = 15 (T = 30).

1 The ad hoc use of the Student’s t distribution was found to be slightly better than the standard normal for the smaller
sample sizes.



Econometrics 2017, 5, 43 9 of 33

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

0 0.2 0.4 0.6 0.8 1
0

20

40

60

Figure 2. Empirical distribution of F(ti), i = 1, 2, 3 (left, middle and right panels) where ti is the ratio
of the MLE of φi to its corresponding approximate standard error and F(·) is the Student’s t cdf with
T − 4 degrees of freedom. Rows from top to bottom correspond to T = 15, T = 30, T = 100 and
T = 200, respectively.

5. Properties of the Testing Procedure Under the Alternative

5.1. Implementation and Penalty-Based Criteria

One way of implementing the p-values computed from (15) for selecting the autoregressive lag

order p is to let it be the largest value j ∈ {1, . . . , m} such that τj < c or τj > 1− c; or set it to zero if

no such extreme τj occurs. Hereafter, we refer to this as the conditional ACF test, or, in short, CACF.

The effectiveness of this strategy will clearly be quite dependent on the choices of m and c. We will see

that it is, unfortunately and like all selection criteria, also highly dependent on the actual, unknown

autoregressive coefficients.

Another possible strategy, say, the alternative CACF test, is, for a given c and m, to start with testing

an AR(1) specification and check if τ1 < c or τ1 > 1− c. If this is not the case, then one declares

the lag order to be p = 0. If instead τ1 is in the critical region, then one continues to the AR(2) case,

inspecting if τ2 < c or τ2 > 1− c. If not, p = 1 is chosen; and if so, then τ3 is computed, etc., continuing

sequentially for j = 1, . . . , m, stopping when either the null at lag j is not rejected, in which case

p = j− 1 is returned, or when j = m. Below, we will only investigate the performance of the first

strategy. We note that the two strategies will have different small sample properties that clearly depend

on the true p and the coefficients of the AR(p) model (as well as the sample size T and choices of m
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and c). In particular, assuming in both cases that m > p, the alternative CACF test could perform

better if m is chosen substantially larger than the true p.

While penalty function methods also require an upper limit m, the CACF has the extra “tuning

parameter” c that can be seen as either a blessing or a curse. A natural value might be c = 0.025,

so that, under the null of zero autocorrelation, p assumes a particular wrong value with approximate

probability 0.05; and p = 0 is chosen approximately with probability 1− 0.05m, i.e.,

Pr
{

choose p = 0 | white noise
}
= Pr

{
τj ∈ (0.025, 0.975), j = 1, . . . , m

}
= (1− 0.05)m ≈ 1− 0.05m, (18)

from the binomial expansion. This value of c will be used for two of the three comparisons below,

while the last one demonstrates that a higher value of c is advisable.

The CACF will be compared to the use of the following popular penalty-based measures, such that

the lag order is chosen based upon the value of j for which they are minimized:

AIC = ln σ̂2 +
2z
T

, AICC = ln σ̂2 +
T + z

T − z− 2
, SBC = ln σ̂2 +

z ln T
T

,

FPE = σ̂2 T + z
T − z

, HQ = ln σ̂2 + 2
z ln ln T

T
,

where σ̂2 denotes the MLE of the innovation variance and z = j + k denotes the number of estimated

parameters (not including σ2, but including k, the number of regressors). Observe that both our CACF

method, and the use of penalty criteria, assume the model regressor matrix is correctly specified,

and condition on it, but both methods do not assume that the regression coefficients are known, and

instead need to be estimated, along with the autoregressive parameters. Original references and

ample discussion of these selection criteria can be found in the survey books of Choi (1992, chp. 3),

McQuarrie and Tsai (1998) and Konishi and Kitagawa (2008), as well as Lütkepohl (2005) for the vector

autoregressive case.

5.2. Comparison with AR(1) Models

For each method, the optimal AR lag orders among the choices p = 0 through p = 4 were

determined for each of 100 simulated mean-zero AR(1) series of length T = 30 and AR parameter φ,

using φ = 0, 0.1, 0.3, . . . , 0.9,2 as well as the two regression models, constant (X = 1) and constant-trend

(X = [1 t]), where t = (1, 2, . . . , T)′. For the CACF method, values c = 0.025 and m = 4 were used.

Figures 3 and 4 show the results for the two regression cases. In both cases, the CACF method

dominates in the null model, while for small absolute values of φ, the CACF underselects more than the

penalty-based criteria. For φ ≥ 0.5, the CACF dominates, though SBC is not far off in the X = 1 case.

For the constant-trend model, the CACF is clearly preferred. The relative improvement of the CACF

performance in the constant-trend model shows the benefit of explicitly taking the regressors into

account when computing tail probabilities in (15) via (3).

A potential concern with the CACF method is what happens if m is much larger than the true p.

To investigate this, we stay with the AR(1) example, but consider only the case with φ = 0.5, and use

2 Negative values of φ were also considered; the results essentially paralleled their positive counterparts.
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three choices of m, namely 2, 6 and 10. We first do this with a larger sample size of T = 60 and

no X matrix, which should convey an advantage to the penalty-based measures relative to CACF.

For the former, we use only the AICC and BIC. Figure 5 shows the results, based on 1, 000 replications.

With m = 2, all three methods are very accurate, with CACF and BIC being about equal with respect

to the probability of choosing the correct p of one, and slightly beating AICC. With m = 6, the BIC

dominates. The nature of the CACF methodology is such that, when m is much larger than p,

the probability of overfitting (choosing p too high) will increase, according to the choice of c. With

m = 10, this is apparent. In this case, the BIC is superior, also substantially stronger than the more

liberal AICC.
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Figure 3. Performance of the various methods in the AR(1) case using X = 1, T = 30, m = 4, and c = 0.025.
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We now conduct a similar exercise, but using conditions for which the CACF method was

designed, namely a smaller sample size of T = 30 and a more substantial regressor matrix of

an intercept and time trend regression, i.e., X = [1, t]. Figure 6 shows the results. For m = 2, the CACF

clearly outperforms the penalty-based criteria, while for m = 6, which is substantially larger than the

true p = 1, the CACF chooses the correct p with the highest probability of the three selection methods,

though the AICC is very close. For the very large m = 10 (which, for T = 30, might be deemed

inappropriate), CACF and BIC perform about the same with respect to the probability of choosing

the correct p of one, while AICC dominates. Thus, in this somewhat extreme case (with T = 30 and

m = 10), the CACF still performs competitively, due to its nearly exact small sample distribution

theory and the presence of an X matrix.
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Figure 4. Similar to Figure 3, but based on X = [1, t].
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Figure 5. Histograms corresponding to the chosen value of AR lag length p, based on the CACF, AICC and BIC, using three values of tuning parameter m (2, 6 and 10,
from left to right), and 1000 replications. True model is Gaussian AR(1) with parameter φ = 0.5, sample size T = 60, and known mean (no X matrix). The CACF
method uses c = 0.025.
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Figure 6. Similar to Figure 5, but for sample size T = 30 and X = [1, t].
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5.3. Comparison with AR(2) Models

The effectiveness of the simple lag order determination strategy is now investigated for the
AR(2) model, but by applying it to cases for which the penalty-based criteria will have a comparative
advantage, namely with more observations (T = 60) and either no regressors or just a constant.
We also include the constant-trend case (X = [1, t]) used above in the AR(1) simulation. Based on
1000 replications, six different AR(2) parameter constellations are considered. As before, the CACF
method uses c = 0.025 and the highest lag order computed is m = 4.

The simulation results of the CACF test are summarized in Table 1. Some of these results are also
given in the collection of more detailed tables in Appendix A. In particular, they are shown in the top
left sections of Tables A1 (corresponds to no X matrix) and A2 (X = 1). There, the magnitude of the
roots of the AR(2) polynomial are also shown, labeled as ξ1 and ξ2, the latter being omitted to indicate
complex conjugate roots (in which case ξ1 = ξ2).

The first model corresponds to the null case p = 0, in which the error rate for false selection
of p should be (given the use of c = 0.025) about 5% for each false candidate. This is indeed the
case, as the error rate with m = 4 should be roughly 0.80, as seen in the boldface entries. For the
remaining non-null models, quite different lag selection characteristics were observed, with the choice
of p = 2 ranging between 40% and 91% among the five AR(2) models in the known mean case; 33%
and 91% in the constant but unknown (X = 1) case; and 31% and 90% in the constant-trend (X = [1, t])
case. Observe how, as expected from the small-sample theory, as the X matrix increases in complexity,
there is relatively little effect on the performance of the method, for a given AR(2) parametrization.
However, the choice of the latter does have a very strong impact on its performance. For example,
the 5th model is such that the CACF method chooses p = 1 more often than the correct p = 2.

Table 1. Simulation results of the CACF method for sample size T = 60: Percentages of the
1000 replications that chose AR lag length 0, 1, 2, 3, or 4, for six AR(2) models, with AR parameters
a1 and a2 as indicated. The models, under the column denoted M, are labeled as 1.0, etc., with
the zero after the decimal point indicating a true MA(1) coefficient of θ = 0. (Tables A1 and A2
show the results for nonzero θ1.) The panel denoted “No X” indicates the known mean case, while
“X = 1” and “X = [1, t]” refers to the cases with unknown but constant mean, and constant and time
trend, respectively. Bold faced numbers indicate the percentage of times the true AR lag order was
correctly chosen.

M AR Param No X X = 1 X = [1, t]
AR Lag Order (%) AR Lag Order (%) AR Lag Order (%)

a1 a2 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1.0 0 0 81.5 4.5 4.3 5.2 4.5 80.3 3.9 5.0 6.0 4.8 82.0 3.1 5.3 4.9 4.7
2.0 1.2 −0.8 0.0 0.0 91.4 5.0 3.6 0.0 0.0 91.0 5.3 3.7 0.0 0.1 89.5 5.8 4.6
3.0 0.7 −0.3 0.1 35.2 56.0 4.2 4.5 0.0 35.9 54.4 4.8 4.9 0.1 37.7 54.0 3.9 4.3
4.0 0.4 −0.3 10.7 27.0 53.5 3.7 5.1 10.0 28.3 53.1 4.8 3.8 11.6 26.4 54.3 3.8 3.9
5.0 1.4 −0.45 0.0 52.5 40.2 2.6 4.7 0.0 59.9 33.0 2.9 4.2 0.0 57.6 31.3 5.6 5.5
6.0 −0.3 0.55 0.1 5.3 69.1 11.7 13.8 0.3 6.5 66.7 12.5 14.0 0.0 8.1 66.1 10.8 15.0

The comparative results using the penalty-based methods are shown in Tables A3 through A7
under the heading “For AR(p) Models”. We will discuss only the X = 1 case in detail. For the null
model (i.e., p = 0), denoted 1.0x, where the “x” indicates that an X matrix was used, the CACF
outperforms all other criteria by a wide margin, with 80.3% of the runs resulting in p = 0, compared
with the 2nd best, SBC, with 66.2%. For model 2.0x, all the model selection criteria performed well,
with the CACF and SBC resulting in 91.0% and 91.6%, respectively. Similarly, all criteria performed
relatively poorly for models 3.0x and 4.0x, but particularly the CACF, which was worst (with p = 2
occurring 54.4% and 53.1% of the time, respectively), while AICC and HQ were the best and resulted
in virtually the same p = 2 values for the two models (70% and 65%). Similar results hold for models
5.0x and 6.0x, for which the CACF again performs relatively poorly.
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The unfortunate and, perhaps unexpected, fact that the performance of the new method and
the penalty-based criteria highly depend on the true model parameters is not new; see, for example,
Rahman and King (1999) and the references therein.

5.4. Higher Order AR(p) Processes

Clearly, as p increases, it becomes difficult to cover the whole parameter space in a simulation
study. We (rather arbitrarily) consider AR(4) models with parameters φ1 = 0.4, φ2 = −0.3, φ3 = 0.2
and φ4 takes on the 6 values −0.1 through −0.6, for which the maximum moduli of the roots of the
AR polynomial are 0.616, 0.679, 0.747, 0.812, 0.864 and 0.908, respectively. This is done for two sample
sizes, T = 30 and T = 60 and, in an attempt to use a more complicated design matrix that is typical
in econometric applications, an X matrix corresponding to an intercept-trend model with structural
break, i.e., for T = 30,

X′ =


1 1 1 · · · 1 · · · 1

1 2 3 · · · 16 · · · 30

0 0 0 · · · 1 · · · 1

0 0 0 · · · 1 · · · 15

 .

As mentioned in the beginning of Section 5, the choices of c and m are not obvious, and ideally
would be purely data driven. The optimal value of m in conjunction with penalty-based criteria is
still an open issue; see, for example, the references in Choi (1992, p. 72) to work by E. J. Hannan and
colleagues. The derivation of a theoretically based optimal choice of m for the CACF is particularly
difficult because the usual appeal to asymptotic arguments is virtually irrelevant in this small-sample
setting. At this point, we have little basis for their choices, except to say (precisely as others have) that
m should grow with the sample size.

It is not clear if the optimal value of c should vary with sample size. What we can say is
that its choice depends on the purpose of the analysis. For example, consider the findings of
Fomby and Guilkey (1978), who demonstrated that, when measuring the performance of β̂ based
on mean squared error, the optimal size of the Durbin-Watson test when used in conjunction with a
pretest estimator for the AR(1) term should be much higher than the usual 5%, with 50% being their
overall recommendation. This will, of course, increase the risk of model over-fitting, but that can be
somewhat controlled in this context by a corresponding reduction in m. (Recall that the probability of
not rejecting the null hypothesis of no autocorrelation is 100(1− 2cm)% under white noise.)

For the trials in the AR(4) case, we take m = 7 to provide some room for over-fitting (but which
admittedly might be considered somewhat high for only T = 30 observations). With this m, use of
c = 0.125 proved to be a good choice for all the runs with T = 30. For this sample size, the top panels
of Figures 7 and 8 show the outcomes for all criteria for each of the six values of φ4. For all the criteria,
the probability of choosing p = 4 increases as φ4 increases in magnitude.

To assist the interpretation of these plots, we computed the simple measures L1 = ∑ | p̂i − 4| and
L2 = ∑( p̂i − 4)2 for each criteria. In all six cases, the CACF was the best according to both L1 and
L2. The lower panels of Figures 7 and 8 show just the CACF and the criteria that was second best
according to L2. For φ4 = −0.1, . . . ,−0.4, the FPE was the second best, while for φ4 = −0.5 and −0.6,
HQ and AICC were second best, respectively.

This is also brought out in Table 2, which shows the L2 measures for the two extreme cases
φ4 = −0.1 and −0.6. Observe how, in the former, the SBC and AICC perform significantly worse than
the other criteria, while for φ4 = −0.6, they are 2nd and 3rd best. This example clearly demonstrates
the utility of the new CACF method, and also emphasizes how the performance of the various
penalty-based criteria are highly dependent on the true autoregressive model parameters.
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Figure 7. For AR(4) process with T = 30 and φ4 = −0.1 (left), −0.2 (middle) and −0.3 (right). Top panels show all criteria, with SPA = CACF. Bottom panels show
just the CACF and the 1st or 2nd best penalty-based criteria: If the CACF was best, it is given first in the legend, otherwise second.
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Figure 8. Same as Figure 7 but for φ4 = −0.4 (left), −0.5 (middle) and −0.6 (right).
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Table 2. Summary measures for the two extreme AR(4) models. The measure L2 = ∑( p̂i − 4)2 and L2

scaled by its minimum observed value, for the two model cases φ4 = −0.1 and −0.6.

φ4 = −0.1 CACF FPE AIC HQ SBC AICC

L2 458 600 607 638 895 918
L2/458 1.000 1.311 1.325 1.393 1.954 2.005

φ4 = −0.6 CACF AICC SBC HQ FPE AIC

L2 324 415 460 461 487 512
L2/324 1.000 1.280 1.420 1.423 1.503 1.580

The results for the T = 60 case were not as unambiguous. For each of the six models, a value of c
could be found that rendered the CACF method either the best or a close second best. These ranged
from c = 0.125 for φ4 = −0.1 to c = 0.01 for φ4 = −0.6. When using a constant value of c between
these two extremes such as c = 0.05, the AIC and FPE performed better for φ4 = −0.1, while SBC and
AICC were better for φ4 = −0.6.

5.5. Parsimonious Model Selection

The frequentist order selection methods such as the the sequential one proposed herein
and—even more so—the penalty-based methods, have the initial appeal of being objective. However,
the infusion of “prior information”, most often in the forms of non-quantitative beliefs and opinions,
is ubiquitous when building models with real data; the well-known quote from Edward Leamer
(“There are two things you are better off not watching in the making: sausages and econometric
estimates”) immediately comes to mind. Indeed, the empirical case studies by Pankratz (1983) make
clear the desire for parsimonious models and attempt to “downplay” the significance of spikes
in the correlograms or p-values of estimates at higher order lags that are not deemed “sensible”.
Moreover, any experienced modeler has a sense, explicit or not, of the maximally acceptable number
of model parameters allowed with respect to the available sample size, and is (usually) well aware of
the dangers of overfitting.3

Letting the level of a test decrease with increasing sample size is common and good
practice in many testing situations; for discussion see Lehmann (1958), Sanathanan (1974),
and Lehmann (1986, p. 70). When the level of the test is fixed and the sample size is allowed to
increase, the power can increase to unacceptably high values, forcing the type I and type II errors
to be out of balance. Indeed, such balance is important in the model selection context, because the
consequences of the two error types are not especially different as they would be in the more traditional
testing problem. Furthermore, there may be a desire to have the relative values of the two error types
reflect the desire for parsimony. In the context of our sequential test procedure, such preferences would
suggest using smaller levels when testing for larger lag m, and increasingly larger levels as the lag
order tested becomes smaller. Thus, at each stage of the testing, balance may be achieved between the
two types of errors to reflect the desired parsimony.

This frequentist “trap” could be avoided by conducting an explicit Bayesian analysis instead. While
genuine Bayesian methods have been pursued (see, for example, Zellner 1971; Schervish and Tsay 1988;
Chib 1993; Le et al. 1996; Brooks et al. 2003; and the references therein), their popularity is quite limited.
The CACF method proposed herein provides a straightforward method of incorporating the preference
for low order models, while still being as “objective” as any frequentist hypothesis testing procedure
can, for which the size of the test needs to be chosen by the analyst. This is achieved by letting the
tuning parameter c be a vector with different values for different lags. For example, with the AR(4)

3 The ill effects of data dredging and autoregressive model over-fitting are well discussed in Chatfield (2001, chp. 8) and the
references therein.



Econometrics 2017, 5, 43 18 of 33

case considered previously, the optimal choice would be c = [0.5, 0.5, 0.5, 0.5, 0, 0, 0]. While certainly
such flexibility could be abused to arrive at virtually any desired model, it makes sense to let the
elements of c decrease in a certain manner if there is a preference for low-order parsimonious models.
Notice also that, if seasonal effects are expected, then the c vector could also be chosen to reflect this.

To illustrate, we applied the simple linear sequence

c = [0.175, 0.15, 0.125, 0.10, 0.075, 0.05, 0.025] (19)

to the T = 60 case. This resulted in the CACF method being the best for all values of φ4 except the last,
φ4 = −0.6, in which case it was slightly outperformed by the SBC. As was expected, when using (19)
for the time series with T = 30, the CACF remained superior in all cases but by an even larger margin.

6. Mixed ARMA Models

Virtually undisputed in time series modeling is the sizeable increase in difficulty for identifying the
orders in the mixed, i.e., ARMA, case. It is interesting to note that, in the multivariate time series case,
the theoretical and applied literature is dominated by strict AR models (vector autoregressions),
whether for prediction purposes or for causality testing. Under the assumption that the true
data generating process does not actually belong to the ARMA class, it can be argued that,
for forecasting purposes, purely autoregressive structures will often be adequate, if not preferred;
see also Zellner (2001) and the references therein. Along these lines, it is also noteworthy that the
thorough book on regression and time series model selection by McQuarrie and Tsai (1998) only
considers order selection for autoregressive models in both the univariate and multivariate case.
Their only use for an MA(1) model is to demonstrate AR lag selection in misspecified models.

Nevertheless, it is of interest to know how the CACF method performs in the presence of mixed
models. While the use of penalty-based criteria for mixed model selection is straightforward, it is
not readily apparent how the CACF method can be extended to allow for moving average structures.
This section presents a way of proceeding.

6.1. Known Moving Average Structure

The middle left and lower left panels of Tables A1 and A2 show the CACF results when using the
same AR structure as previously, but with a known moving average structure, i.e., (15) is calculated
taking Ψ−1 corresponding to an MA(1) model. As with all model results in Tables A1 and A2,
the sample size is T = 60. This restrictive assumption allows a clearer comparison of methods without
the burden of MA order selection or estimation; this will be relaxed in the next section, so that the
added effect of MA parameter estimation can be better seen.

Models 1.5 through 6.5 take the MA parameter θ to be 0.5, while models 1.9 through 6.9 use
θ = 0.9. For the null models 1.5 and 1.9, only a slight degradation of performance is seen. For the other
models, on average, the probability of selecting p > 2 increases markedly as θ increases, drastically so
for model 6.

The results can be compared to the entries in Tables A3 through A7 labeled “For ARMA(p,1)
Models”, for which the penalty-based criteria were computed for the five models ARMA(i,1),
i = 0, . . . , 4. (Notice that the comparison is not entirely fair because the CACF method has the benefit
of knowing the MA polynomial, not just its length.) Consider the θ = 0.5 cases first. For the null
model 1.5x, the CACF performed as expected under the null hypothesis, with 78.8% choices of p = 0
and about 5% for each of the other choices. It was outperformed however by the SBC, with 86%
p = 0 choices and an ever diminishing probability as p increases, which agrees with the SBC’s known
properties of low model order preference. The p = 0 choices for the other criteria were between
54.2% (AIC and FPE) and 70.6% (HQ). For model 2.5x, in terms of number of p = 2 choices, CACF,
AIC and FPE were virtually tied with about 63%, while SBC, HQ and AICC gave 87%, 77.4% and
71.6%, respectively. The CACF for models 3.5x and 4.5x performed—somewhat unexpectedly in
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light of previous results—relatively well: For model 3.5x, CACF resulted in 61.2% choices of p = 2,
while the SBC was the worst, with 37.4%. The others were all about 43%. Similarly for model 4.5x:
CACF (56.8%), AIC (38.2%), SBC (25.8%), AICC (37.8%), HQ (33.8%) and FPE (38.2%). Model 5.5x
resulted in (approximately) CACF, AIC and FPE (50%), and SBC, AICC and HQ (60.0%). For model
6.5x, the CACF was disasterous, with only 25.8% for p = 2, while the other criteria ranged from 71.2%
(SBC) to 59.2% (AIC).

As before, the performance of all the criteria is highly dependent on the true model parameters.
However, what becomes apparent from this study is the great disparity in performance: For a particular
model, the CACF may rank best and SBC the worst, while for different parameter constellation,
precisely the opposite may be the case. That the SBC is often among the best performers agrees with
the findings of Koreisha and Yoshimoto (1991) and the references therein.

The results for the θ = 0.9 cases do not differ remarkably from the θ = 0.5 cases, except that for
models 3.9x and 4.9x, all the penalty-based criteria were much closer to (and occasionally slightly
better) than the CACF.

6.2. Iterative Scheme for ARMA(p, q) Models with q Known

Assume, somewhat more realistically than before, that the regression error terms follow a
stationary ARMA(p,q) process with q known, but the actual MA parameters θ = (θ1, . . . , θq) and
p are not known. A possible method for eliciting p using the sequential test (15) is as follows:
Iterate the two following steps starting with p1 = 0: (i) Estimate an ARMA(pi, q) model to obtain θ̂;
(ii) Compute τ1, . . . , τm with Ψ−1 corresponding to the MA(q) model with parameters θ̂, from which
pi+1 is determined. Iteration stops when pi+1 = pi (or i exceeds some preset value, I), and pi+1 is set
as before for a given value of c. The choice of m and c will clearly be critical to the performance of this
method; simulation, as detailed next, will be necessary to determine its usefulness.

The right panels of Tables A1 and A2 show the results when applied to the same 500 simulated
time series of length T = 60 as previously used, but with the aforementioned iterative scheme applied
with m = 4 and c = 0.025 (also as before), I = 5 and q = 1. Unexpectedly, for the null model 1,
p = 0 was actually chosen more frequently than under the known θ cases, for each choice of θ.
Not surprisingly, for the θ = 0 cases, the iterative schemes resulted in poorer performance compared
to their known θ counterparts, with model under-selection (i.e., p < 2) occurring more frequently,
drastically so for models 3 and 4. For θ = 0.5, models 3 and 4 again suffer from under-selection, though
less so than with θ = 0, while the remaining models exhibit an overall mild improvement in lag order
selection. In the θ = 0.9 case, performance is about the same whether θ is known or not for all 6 models,
though for model 6, high over-selection in the θ known case is reversed to high under-selection for θ

not known.
The number of iterations required until convergence and the probability of not converging

(given in the column labeled 6+) also depends highly on the true model parameters; models for which
the true AR polynomial roots were smallest exhibited the fastest convergence. Nevertheless, in most
cases, one or two iterations were enough, and the probability of non-convergence appears quite low.
(The few cases that did not converge were discarded from the analysis.) While certainly undesirable,
if the iterative scheme does not converge, it does not mean that the results are not useful. Most often,
the iterations bounced back and forth between two choices, from which a decision could be made
based on “the subjective desire for parsimony” and/or inspection of the actual p-values, which could
be very close to the cutoff values, themselves having been arbitrarily chosen.

To more fairly compare the CACF results with the penalty-based criteria, the latter were evaluated
using the 10 models AR(i), ARMA(i,1), i = 0, . . . , 4, the results of which are in Tables A3 through
A7 under the heading “Among both Sets”. To keep the analysis short, Table 3 presents only the
percentage of correct p choices for two criteria (CACF and the 1st or 2nd best). The CACF was best
6 times, SBC and AICC were each best 5 times, while HQ and FPE were best one time each. It must
be emphasized that these numbers are a very rough reduction of the performance data. For example,
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Table 3 shows that cases 2.0x and 2.5x were extremely close, while 6.0x, 3.5x, 4.5x, 5.5x, 1.9x were
reasonably close. A fair summary appears to be that

• In most cases, either the CACF, SBC and AICC will be the best,
• Each of these can perform (sometimes considerably) better than the other two for certain parameter

constellations,
• Each can perform relatively poorly for certain parameter constellations.

Table 3. Performance Summary. Selected information from Table A2 and Tables A3 through A7.
For each model (with X = 1), the percentage of correct p choices (0 for models 1.0x, 1.5x, 1.9x and 2 for
the rest), are shown for the CACF and the penalty-based criteria that was either 1st or 2nd best. Form is
criteria:percentage, where criteria 0 is the CACF, 1 is AIC, 2 is SBC, 3 is AICC, 4 is HQ and 5 is FPE.
The criteria with the larger percentage is given first.

Model 1.0x 2.0x 3.0x 4.0x 5.0x 6.0x

0:87 2:79 0:88 2:87 3:47 0:14 3:40 0:16 2:65 0:53 0:79 2:74

Model 1.5x 2.5x 3.5x 4.5x 5.5x 6.5x

0:91 2:77 4:65 0:64 0:49 2:43 3:36 0:32 0:61 2:57 2:59 0:36

Model 1.9x 2.9x 3.9x 4.9x 5.9x 6.9x

2:86 0:83 2:87 0:59 3:53 0:42 3:52 0:33 2:74 0:60 5:22 0:06

7. Performance in the Non–Gaussian Setting

All our findings above are based on the assumptions that the true model is known to be a linear
regression with correctly specified X matrix; error terms are from a Gaussian AR(p) process; tuning
parameter m is chosen such that m ≥ p; and parameters p, a1, . . . , ap, β, and σ2 are fixed but unknown.
We now modify this by assuming, similarly, that the true data generating process is y = Xβ + ε,

with εt = φεt−1 + Ut a stationary AR(1) process, but now such that Ut
iid∼ tν (0, σ), t = 1, . . . , T, i.e.,

Student’s t with ν degrees of freedom, location zero, and scale σ > 0.
Figures 9 and 10 depict the results for the CACF, AICC, and SBC methods, having used a grid of

φ-values, true p = 1, a sample size of T = 50, m = 5, c = 0.025, and four different values of degrees of
freedom parameter ν; and for all methods falsely assuming Gaussianity. Figure 9 is for the known mean
case, while Figure 10 assumes the constant and time-trend model X = [1, t].

We see that none of the methods are substantially affected by use of even very heavy-tailed
innovation sequences, notably the CACF, which explicitly uses the normality assumption in the
small-sample distribution theory. However, note from the top left panel of Figure 9 (which corresponds
to ν = 1, or Cauchy innovations) that, for p = φ = 0, instead of 0.774 = (1− 0.05)m ≈ 1− 0.05m = 0.75
from (18), the null of p = 0 is chosen about 86% of the time, while from the third and fourth rows
(for ν = 5 and ν = 200), it is about 78%. This was to be expected: In the non-Gaussian case, (18)
is no longer tenable, as (i) the τj are no longer independent; and (ii) their marginal distributions
under the null will no longer be precisely (at least up to the accuracy allowed for by the saddlepoint
approximation) Unif (0, 1). In particular, the latter violation is such that the empirically obtained
quantiles of τj under the null no longer match their theoretical ones, and, as seen, the probability that
τj falls outside the range, say, (0.025, 0.975), is smaller than 0.05. This results in the probability of
choosing p = 0 when it is true being larger than the nominal of 0.774.
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Figure 9. Performance of the three indicated AR order selection methods as a function of autoregressive
parameter φ, for sample size T = 50, known mean (denoted by X = [ ]) and m = 5, when the true
AR order is p = 1 and (falsely) assuming Gaussianity. The true innovation sequence consists of i.i.d.
Student’s t(ν) realizations, with df = ν indicated in the titles (from top to bottom, ν = 1, ν = 2, ν = 5,
and ν = 200). Left (right) panels indicate the percentage of the 1000 replications that resulted in
choosing p = 0 (p = 1).
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Figure 10. Same as Figure 9 but having used X = [1, t].

Similarly, the choice of p = 1 when p = φ = 0 should occur about 5% of the time for the
CACF method, but, from the right panels of Figure 9, it is lower than this, decreasing as ν decreases.
However, for ν = 5, it is already very close to the nominal of 5%. Interestingly, with respect to choosing
p = 0, the behavior of the CACF for all choices of ν is virtually identical to the AICC near φ = 0,
while as |φ| grows, the behavior of the CACF coincides with that of the SBC. (Note that this behavior
is precisely what we do not want: Ideally, for φ = 0, the method would always choose p = 0, while for
φ 6= 0, the method would never choose p = 0.)
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Figure 10 is similar to Figure 9, but having used X = [1, t]. Observe how, for all values of ν, unlike
the known mean case, the performance of the AICC and SBC is no longer symmetric about φ = 0,
but the CACF is still virtually symmetric. Fascinatingly, we see from the left panels of Figure 10 that
the CACF probability of choosing p = 0 virtually coincides with that of the AICC for φ ≥ 0, while for
φ < −0.2, it virtually coincides with that of the SBC.

8. Conclusions

We have operationalized the UMPU test for sequential lag order selection in regression models
with autoregressive disturbances. This is made possible by using a saddlepoint approximation to the
joint density of the sample autocorrelation function based on ordinary least squares residuals from
arbitrary exogenous regressors and with an arbitrary (covariance stationary) variance-covariance
matrix. Simulation results verify that, compared to the popular penalty-based model selection
methods, the new method fairs very well precisely in situations that are both difficult and common in
practice: when faced with small samples and an unknown mean term. With respect to the mean term,
the superiority of the new method increases as the complexity of the exogenous regressor matrix X
increases; this is because the saddlepoint approximation explicitly incorporates the X matrix, differing
from the approximation developed in Durbin (1980), which only takes account of its size, or the
standard asymptotic results for the sample ACF and sample partial ACF, which completely ignore the
regressor matrix.

The simulation study also verifies a known (but—we believe—not well-known) fact that the
small sample performances of penalty-based criteria such as SBC and (corrected) AIC are highly
dependent on the actual autoregressive model parameters. The same result was found to hold true
for the new CACF method as well. Autoregressive parameter constellations were found for which
CACF was greatly superior to all other methods considered, but also for which CACF ranked among
the worst performers. Based on the use of a wide variety of parameter sets, we conclude that the new
CACF method, the SBC and the corrected AIC, in that order, are the preferred methods, although,
as mentioned, their comparative performance is highly dependent on the true model parameters.

An aspect of the new CACF method that greatly enhances its ability and is not applicable with
penalty-based model selection methods is the use of different sizes for the sequential tests. This allows
an objective way of incorporating prior notions of preferring low order, parsimoniously parameterized
models. This was demonstrated using a linear regression model with AR(4) disturbance terms;
the results highly favor the use of the new method in conjunction with a simple, arbitrarily chosen,
linear sequence of size values. More research should be conducted into finding optimal, sample-size
driven choices of this sequence.

Finally, the method was extended to select the autoregressive order when faced with ARMA
disturbances. This was found to perform satisfactorily, both numerically as well as in terms of
order selection.

Matlab programs to compute the CACF test and some of the examples in the paper are available
from the second author.
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Appendix A. Full Tables

Table A1. Simulation results of the CACF method for model with known mean. (The case with regressor matrix X = 1 is shown in Table A2 below.) The sample size
is T = 60. Shown here are the percentages of the 500 replications that chose AR lag length 0, 1, 2, 3, or 4, for six ARMA(2,1) models with AR parameters a1 and
a2 and MA parameter θ. The first column, “Model”, specifies which of the six AR(2) parameter constellations and, after the decimal point, the value of the MA
coefficient (e.g., 1.5 refers to AR model number 1, and the value of the MA coefficient is 0.5; similar for 1.9). Values ξ1 and ξ2 are the magnitude of the roots of the AR
polynomial; ξ2 missing indicates complex conjugate roots, in which case ξ1 = ξ2. Columns labeled “Using θ̂ = θ” assume that the MA polynomial is known; θ = 0
thus corresponds to AR lag selection with no MA structure. Columns labeled “Iterative Scheme” correspond to AR lag selection when θ is not known; see Section 6 for
details. Bold faced numbers indicate the percentage of times the true AR lag order was chosen.

AR(2) Structure
θ

Using θ̂ = θ Iterative Scheme
AR Lag Order (%) AR Lag Order (%) Required Iterations (%)

a1 a2 ξ1 ξ2 0 1 2 3 4 0 1 2 3 4 1 2 3 4 5 6+

1.0 0 0 0 · 0 81.5 4.5 4.3 5.2 4.5 86.6 0.4 5.3 3.4 4.2 85.4 11.6 1.2 0.4 0.0 1.4
2.0 1.2 −0.8 0.8944 · 0 0.0 0.0 91.4 5.0 3.6 0.6 0.0 87.0 6.1 6.4 0.5 76.7 18.7 0.5 0.0 3.5
3.0 0.7 −0.3 0.5477 · 0 0.1 35.2 56.0 4.2 4.5 71.2 6.8 15.5 3.6 3.0 68.0 19.4 7.7 0.2 0.2 4.5
4.0 0.4 −0.3 0.5477 · 0 10.7 27.0 53.5 3.7 5.1 71.4 2.7 19.6 2.9 3.3 68.5 23.0 4.0 0.2 0.2 4.0
5.0 1.4 −0.45 0.9000 0.5000 0 0.0 52.5 40.2 2.6 4.7 0.0 30.8 53.8 12.8 2.6 0.0 67.7 25.6 2.4 0.0 4.9
6.0 −0.3 0.55 −0.9066 0.6066 0 0.1 5.3 69.1 11.7 13.8 0.0 0.6 80.6 6.5 12.4 0.0 87.6 2.7 1.6 0.0 8.1

1.5 0 0 0 · 0.5 78.2 4.6 7.2 5.0 5.0 90.6 2.5 3.3 1.2 2.4 89.5 7.3 2.0 0.0 0.0 1.2
2.5 1.2 −0.8 0.8944 · 0.5 14.4 0.0 55.0 22.4 8.2 0.3 0.0 69.3 22.6 7.8 0.3 81.0 15.7 0.0 0.0 3.0
3.5 0.7 −0.3 0.5477 · 0.5 1.4 5.6 63.4 19.2 10.4 17.7 8.5 52.0 14.2 7.5 17.5 59.9 20.8 1.0 0.0 0.8
4.5 0.4 −0.3 0.5477 · 0.5 12.6 3.6 59.6 14.6 9.6 50.7 1.2 36.8 5.9 5.5 50.3 39.7 8.8 0.4 0.0 0.8
5.5 1.4 −0.45 0.9000 0.5000 0.5 0.0 15.1 68.9 9.0 7.0 0.0 20.8 73.3 4.1 1.7 0.0 82.8 15.6 0.0 0.0 1.6
6.5 −0.3 0.55 −0.9066 0.6066 0.5 0.0 0.0 24.7 54.7 20.6 3.3 0.0 33.9 41.3 21.4 2.9 70.8 11.8 1.8 0.0 12.7

1.9 0 0 0 · 0.9 76.1 5.6 7.2 5.6 5.4 80.3 4.3 7.1 3.9 4.5 79.5 18.7 0.8 0.0 0.0 1.0
2.9 1.2 −0.8 0.8944 · 0.9 0.23 0.0 61.5 24.9 13.3 0.3 0.0 58.8 27.0 14.0 0.3 90.9 7.1 0.0 0.0 1.7
3.9 0.7 −0.3 0.5477 · 0.9 4.8 8.2 51.8 19.9 15.3 5.6 6.8 45.4 23.7 18.5 5.5 83.4 8.7 0.0 0.0 2.4
4.9 0.4 −0.3 0.5477 · 0.9 24.6 1.8 44.0 15.8 13.8 26.1 1.8 37.4 16.8 17.8 25.9 65.5 7.6 0.0 0.0 1.0
5.9 1.4 −0.45 0.9000 0.5000 0.9 0.0 14.1 67.7 12.0 6.3 0.0 13.9 66.2 11.9 7.9 0.0 92.9 4.6 0.7 0.0 2.0
6.9 −0.3 0.55 −0.9066 0.6066 0.9 5.6 1.2 14.1 29.7 49.3 51.1 35.1 4.8 4.5 4.5 48.3 35.0 9.6 1.5 0.0 5.6
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Table A2. Same as Table A1 but for the linear model with X = 1. Model numbers are now followed by an “x” to indicate the use of the regressor matrix to model the
unknown mean.

AR(2) Structure
θ

Using θ̂ = θ Iterative Scheme
AR Lag Order (%) AR Lag Order (%) Required Iterations (%)

a1 a2 ξ1 ξ2 0 1 2 3 4 0 1 2 3 4 1 2 3 4 5 6+

1.0x 0 0 0 · 0 80.3 3.9 5.0 6.0 4.8 87.2 0.8 4.3 2.9 4.9 86.0 10.8 1.8 0.0 0.0 1.4
2.0x 1.2 −0.8 0.8944 · 0 0.0 0.0 91.0 5.3 3.7 0.5 0.0 87.5 5.7 6.3 0.5 81.4 14.6 1.3 0.0 2.1
3.0x 0.7 −0.3 0.5477 · 0 0.0 35.9 54.4 4.8 4.9 69.1 10.7 14.3 1.9 4.0 66.5 20.2 9.1 0.4 0.0 3.8
4.0x 0.4 −0.3 0.5477 · 0 10.0 28.3 53.1 4.8 3.8 76.2 2.7 16.3 1.7 3.1 73.2 19.1 3.6 0.2 0.0 3.8
5.0x 1.4 −0.45 0.9000 0.5000 0 0.0 59.9 33.0 2.9 4.2 0.0 38.2 52.9 8.8 0.0 0.0 60.5 26.3 2.6 0.0 10.5
6.0x −0.3 0.55 −0.9066 0.6066 0 0.3 6.5 66.7 12.5 14.0 0.0 0.0 79.0 7.6 13.4 0.0 87.9 1.7 1.2 0.0 9.3

1.5x 0 0 0 · 0.5 78.8 4.8 7.0 4.6 4.8 90.8 2.0 2.9 2.0 2.3 90.0 6.9 2.2 0.0 0.0 1.0
2.5x 1.2 −0.8 0.8944 · 0.5 0.0 0.0 62.3 28.4 9.3 0.3 0.0 64.2 27.8 7.7 0.3 80.4 16.6 0.0 0.0 2.7
3.5x 0.7 −0.3 0.5477 · 0.5 1.0 7.4 61.2 22.3 8.0 15.7 12.2 48.7 17.0 6.4 15.6 59.4 23.4 1.0 0.0 0.8
4.5x 0.4 −0.3 0.5477 · 0.5 12.4 4.6 56.8 18.8 7.4 54.4 1.8 31.7 7.7 4.4 54.2 36.3 8.6 0.0 0.0 0.4
5.5x 1.4 −0.45 0.9000 0.5000 0.5 0.0 23.7 49.5 9.7 17.2 0.0 33.3 61.1 1.9 3.7 0.0 87.3 9.1 1.8 0.0 1.8
6.5x −0.3 0.55 −0.9066 0.6066 0.5 0.0 0.0 25.8 50.3 23.9 2.9 0.0 36.2 34.6 26.2 2.5 69.9 14.0 1.2 0.0 14.4

1.9x 0 0 0 · 0.9 79.8 4.0 7.2 4.0 5.0 83.0 3.4 6.9 3.0 3.6 82.7 15.5 1.4 0.0 0.0 0.4
2.9x 1.2 −0.8 0.8944 · 0.9 0.0 0.2 59.6 27.9 12.2 0.0 0.0 59.2 28.7 12.0 0.0 91.4 5.8 0.0 0.0 2.8
3.9x 0.7 −0.3 0.5477 · 0.9 4.3 10.1 46.9 26.0 12.8 5.0 9.4 42.4 27.6 15.7 4.9 83.4 9.6 0.0 0.0 2.0
4.9x 0.4 −0.3 0.5477 · 0.9 28.1 2.6 39.1 19.4 10.8 28.7 2.6 33.0 21.1 14.6 28.2 63.6 6.6 0.0 0.0 1.6
5.9x 1.4 −0.45 0.9000 0.5000 0.9 0.0 19.4 57.3 13.6 9.7 0.0 23.9 59.7 11.9 4.5 0.0 87.0 10.1 0.0 0.0 2.9
6.9x −0.3 0.55 −0.9066 0.6066 0.9 3.9 1.9 13.5 24.7 56.0 48.3 35.7 6.0 3.6 6.3 46.1 38.9 9.2 0.9 0.2 4.6



Econometrics 2017, 5, 43 26 of 33

Table A3. Simulation results of the AIC method for model with known mean (left panel) and unknown but constant mean (right panel). Percentage of the 500
replications that chose AR lag length 0, 1, 2, 3, or 4, based on the AIC model selection criteria, for the same six ARMA(2,1) models with parameters shown in
Tables A1 and A2. Columns “For AR(p) Models” ignore the MA structure present in models 1.5 to 6.5 and 1.9 to 6.9 and selects among AR(0) through AR(4);
columns “For ARMA(p,1) Models” enforces the MA structure, and compares ARMA(0,1) through ARMA(4,1); and columns “Among both Sets” uses all 10 models
for comparison.

Model
No X Matrix X = 1

For AR(p) Models For ARMA(p,1) Models Among Both Sets For AR(p) Models For ARMA(p,1) Models Among Both Sets

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1.0 52.2 33.8 5.2 5.4 3.4 65.8 12.0 10.0 7.2 5.0 66.0 18.6 5.0 5.6 4.8 56.2 29.4 6.2 5.2 3.0 51.0 16.8 16.0 9.2 7.0 63.4 18.6 7.4 6.0 4.6
2.0 0.0 0.0 77.0 12.8 10.2 0.2 0.0 71.0 14.8 14.0 0.2 0.0 72.0 13.4 14.4 0.0 0.0 76.2 12.6 11.2 0.2 0.0 57.2 24.4 18.2 0.0 0.0 62.4 22.2 15.4
3.0 1.2 13.2 66.6 12.8 6.2 34.4 19.8 27.6 9.4 8.8 25.2 12.0 46.0 9.2 7.6 2.2 12.0 66.8 12.0 7.0 28.4 12.6 30.6 16.6 11.8 22.4 7.6 43.6 15.4 11.0
4.0 10.8 8.6 62.6 11.0 7.0 44.6 7.0 31.0 10.8 6.6 36.4 8.6 39.4 9.0 6.6 12.8 6.6 61.4 11.0 8.2 32.6 7.2 33.6 16.8 9.8 30.2 6.8 39.0 15.4 8.6
5.0 0.0 4.4 69.8 17.0 8.8 0.0 37.2 40.8 10.6 11.4 0.0 22.8 54.2 14.4 8.6 0.0 2.6 71.8 15.8 9.8 0.0 28.0 37.0 20.8 14.2 0.0 15.6 50.0 23.0 11.4
6.0 0.0 0.2 73.8 15.8 10.2 0.0 13.8 55.0 17.2 14.0 0.0 5.8 65.6 15.6 13.0 0.0 0.6 70.4 17.8 11.2 0.0 18.2 40.8 21.8 19.2 0.0 9.4 51.2 21.0 18.4

1.5 9.6 26.0 38.2 17.0 9.2 62.6 15.8 10.4 4.6 6.6 56.4 15.4 16.0 6.2 6.0 11.4 21.6 41.2 14.2 11.6 54.2 11.4 16.4 7.0 11.0 50.0 10.2 21.6 6.8 11.4
2.5 0.0 0.0 4.4 44.8 50.8 0.4 0.6 67.8 16.2 15.0 0.4 0.6 56.8 22.8 19.4 0.0 0.0 5.2 39.0 55.8 0.4 0.2 62.8 14.8 21.8 0.4 0.2 52.2 18.8 28.4
3.5 0.0 0.0 24.0 46.8 29.2 2.6 28.2 43.6 13.6 12.0 2.4 25.0 36.4 21.6 14.6 0.0 0.0 25.2 39.2 35.6 4.4 21.0 42.4 11.4 20.8 4.2 19.4 34.4 17.4 24.6
4.5 0.2 0.6 26.6 41.8 30.8 31.2 9.0 38.8 10.0 11.0 28.8 5.8 32.8 19.6 13.0 0.2 0.6 29.8 35.0 34.4 26.0 6.2 38.2 10.0 19.6 23.6 4.4 33.4 16.0 22.6
5.5 0.0 0.2 11.2 46.4 42.2 0.0 10.0 59.0 16.8 14.2 0.0 9.0 51.0 21.8 18.2 0.0 0.2 13.2 37.6 49.0 0.0 7.2 53.0 13.4 26.4 0.0 7.0 45.0 16.6 31.4
6.5 4.2 1.0 26.8 40.8 27.2 0.4 2.4 65.8 18.2 13.2 4.0 1.8 52.6 25.8 15.8 6.0 1.6 23.4 46.2 22.8 0.4 2.2 59.2 23.6 14.6 5.8 1.6 47.0 30.6 15.0

1.9 0.2 1.2 14.2 30.4 54.0 59.4 19.4 11.2 5.4 4.6 59.4 18.6 11.2 5.8 5.0 0.4 1.0 15.8 24.4 58.4 61.4 16.4 10.0 5.8 6.4 61.4 15.8 10.0 5.8 7.0
2.9 0.0 0.0 0.0 9.8 90.2 0.0 0.6 70.2 18.0 11.2 0.0 0.6 69.8 18.2 11.4 0.0 0.0 0.2 7.2 92.6 0.0 0.4 69.0 16.8 13.8 0.0 0.4 68.6 16.8 14.2
3.9 0.0 0.0 1.4 17.6 81.0 3.8 23.8 50.2 15.4 6.8 3.8 23.8 50.0 15.2 7.2 0.0 0.0 2.0 13.2 84.8 5.2 22.6 49.6 13.8 8.8 5.2 22.6 49.6 13.8 8.8
4.9 0.0 0.0 1.8 20.6 77.6 15.4 15.0 49.0 14.2 6.4 15.4 14.8 48.8 14.4 6.6 0.0 0.0 2.0 16.4 81.6 15.4 13.0 50.2 11.8 9.6 15.4 12.8 50.2 12.0 9.6
5.9 0.0 0.0 0.2 16.4 83.4 0.0 7.2 65.2 18.4 9.2 0.0 7.0 64.6 19.2 9.2 0.0 0.6 0.6 12.0 86.8 0.0 9.8 61.4 17.2 11.6 0.0 9.8 61.2 17.4 11.6
6.9 2.2 71.2 12.4 9.2 5.0 11.4 54.2 16.4 9.2 8.8 7.2 60.6 15.6 10.2 6.4 4.0 67.2 14.2 8.4 6.2 17.2 40.8 20.2 13.4 8.4 11.2 47.0 22.4 11.8 7.6
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Table A4. Simulation results of the SBC method for model with known (left panel) and unknown but constant mean (right panel). See Table A3 for comments.

Model
No X Matrix X = 1

For AR(p) Models For ARMA(p,1) Models Among Both Sets For AR(p) Models For ARMA(p,1) Models Among Both Sets

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1.0 62.6 34.0 2.8 0.6 0.0 91.6 5.4 1.8 1.0 0.2 80.4 16.4 2.4 0.8 0.0 66.2 31.2 2.4 0.2 0.0 81.4 11.4 4.4 1.8 1.0 78.8 16.4 3.6 0.8 0.4
2.0 0.0 0.0 93.2 4.6 2.2 0.8 0.8 88.6 6.4 3.4 0.6 0.0 91.6 5.2 2.6 0.0 0.0 92.0 5.6 2.4 0.6 0.4 78.6 16.2 4.2 0.4 0.2 87.2 9.8 2.4
3.0 2.0 34.2 58.8 3.8 1.2 66.4 15.2 16.4 1.8 0.2 47.8 15.8 34.2 1.8 0.4 3.4 28.4 63.2 3.6 1.4 63.0 10.8 20.0 4.8 1.4 44.8 12.2 38.0 3.4 1.6
4.0 15.4 22.6 57.8 2.6 1.6 79.0 4.0 15.2 1.4 0.4 64.8 5.4 27.8 1.4 0.6 17.8 18.6 60.0 2.0 1.6 68.0 4.2 22.2 4.6 1.0 58.2 4.6 33.0 3.6 0.6
5.0 0.0 7.8 83.4 6.8 2.0 0.0 63.6 32.8 2.2 1.4 0.0 30.0 63.6 5.0 1.4 0.0 6.4 85.0 6.4 2.2 0.0 55.6 32.8 9.8 1.8 0.0 24.0 65.4 8.4 2.2
6.0 0.0 1.4 90.6 6.6 1.4 0.0 28.4 61.0 7.4 3.2 0.0 8.6 83.4 6.2 1.8 0.2 4.0 88.6 6.0 1.2 0.0 37.4 43.8 13.0 5.8 0.2 15.0 73.6 8.2 3.0

1.5 11.8 51.0 31.0 4.8 1.4 91.0 8.0 0.8 0.2 0.0 79.6 14.6 4.8 0.8 0.2 14.8 46.4 33.6 3.2 2.0 86.0 6.0 5.4 1.8 0.8 76.8 10.4 9.6 2.0 1.2
2.5 0.0 0.0 16.4 59.0 24.6 0.6 0.6 89.6 6.6 2.6 0.6 0.6 76.2 17.4 5.2 0.0 0.0 20.0 50.4 29.6 0.4 0.2 87.0 6.8 5.6 0.4 0.2 75.6 15.6 8.2
3.5 0.0 0.2 50.6 37.6 11.6 10.6 48.8 35.0 3.6 2.0 9.0 40.4 36.8 11.0 2.8 0.0 0.0 55.8 30.4 13.8 13.8 40.8 37.4 3.8 4.2 12.8 31.0 42.6 8.8 4.8
4.5 0.2 1.0 57.6 33.0 8.2 64.4 7.4 24.2 2.6 1.4 57.6 5.0 27.6 7.0 2.8 0.4 0.8 62.4 26.0 10.4 62.6 5.8 25.8 2.6 3.2 55.4 3.8 31.6 5.2 4.0
5.5 0.0 0.6 32.6 50.0 16.8 0.0 29.8 63.2 4.4 2.6 0.0 24.6 54.2 18.0 3.2 0.0 0.2 39.2 40.4 20.2 0.0 23.6 63.4 4.2 8.8 0.0 21.0 57.2 12.6 9.2
6.5 6.6 3.0 49.0 33.8 7.6 4.0 7.4 78.8 8.4 1.4 6.6 4.2 68.2 18.6 2.4 9.8 3.2 42.6 39.2 5.2 5.4 8.2 71.2 12.4 2.8 9.4 5.2 58.8 24.6 2.0

1.9 0.4 10.0 35.8 28.8 25.0 84.4 11.6 3.2 0.6 0.2 84.6 11.4 3.0 0.6 0.4 0.8 8.8 38.4 23.2 28.8 85.8 10.8 2.2 0.8 0.4 86.0 10.6 1.8 1.0 0.6
2.9 0.0 0.0 1.0 27.0 72.0 0.2 1.2 85.2 9.8 3.6 0.2 1.2 84.8 10.4 3.4 0.0 0.0 1.4 20.6 78.0 0.0 1.0 87.6 8.4 3.0 0.0 1.0 87.0 8.8 3.2
3.9 0.0 0.0 9.2 35.6 55.2 5.2 43.2 45.6 5.2 0.8 5.2 43.2 45.2 5.2 1.2 0.0 0.0 9.8 28.6 61.6 5.8 41.4 48.4 3.4 1.0 5.8 41.4 48.2 3.4 1.2
4.9 0.0 0.0 10.6 38.8 50.6 31.8 22.4 41.4 3.0 1.4 31.4 22.2 41.0 3.6 1.8 0.0 0.0 12.4 31.0 56.6 32.8 18.0 44.8 3.0 1.4 32.4 17.8 44.4 3.6 1.8
5.9 0.0 0.0 2.4 32.2 65.4 0.0 11.8 79.0 8.0 1.2 0.0 11.6 77.6 9.0 1.8 0.0 0.8 2.8 24.2 72.2 0.0 15.4 74.8 8.2 1.6 0.0 15.4 74.0 8.4 2.2
6.9 2.8 89.8 5.4 1.4 0.6 30.4 60.0 6.6 1.6 1.4 10.6 81.6 5.6 1.2 1.0 6.2 85.6 5.8 1.6 0.8 37.2 43.4 12.0 5.0 2.4 17.6 69.0 8.8 3.2 1.4
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Table A5. Simulation results of the AICC method for model with known (left panel) and unknown but constant mean (right panel). See Table A3 for comments.

Model
No X Matrix X = 1

For AR(p) Models For ARMA(p,1) Models Among Both Sets For AR(p) Models For ARMA(p,1) Models Among Both Sets

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1.0 53.8 34.4 5.4 4.8 1.6 71.6 12.0 8.4 5.8 2.2 69.0 18.8 5.0 5.4 1.8 58.6 30.8 5.6 3.8 1.2 58.2 16.2 14.2 7.2 4.2 66.8 18.6 7.0 5.4 2.2
2.0 0.0 0.0 80.6 11.2 8.2 0.4 0.0 76.0 13.2 10.4 0.2 0.0 77.4 12.6 9.8 0.0 0.0 81.8 10.0 8.2 0.6 0.0 64.0 23.4 12.0 0.4 0.0 68.6 19.4 11.6
3.0 1.2 15.8 67.6 10.6 4.8 40.6 20.0 26.8 7.4 5.2 28.8 13.4 46.6 6.2 5.0 2.2 14.2 70.0 9.2 4.4 35.4 13.8 29.8 12.6 8.4 25.6 8.8 46.8 11.4 7.4
4.0 11.0 9.4 64.6 10.2 4.8 52.0 6.2 29.0 7.8 5.0 40.4 7.6 39.2 7.6 5.2 13.2 7.8 65.2 8.6 5.2 42.2 6.2 34.0 11.8 5.8 35.2 6.0 40.4 12.6 5.8
5.0 0.0 4.6 74.8 13.8 6.8 0.0 41.8 40.8 9.2 8.2 0.0 24.8 57.8 10.6 6.8 0.0 3.4 77.0 13.2 6.4 0.0 33.2 39.4 18.2 9.2 0.0 17.8 55.4 19.2 7.6
6.0 0.0 0.2 78.2 13.0 8.6 0.0 16.4 58.8 14.8 10.0 0.0 6.0 70.4 12.8 10.8 0.0 0.8 76.0 14.4 8.8 0.0 21.2 43.0 21.0 14.8 0.0 10.6 57.4 17.8 14.2

1.5 9.8 31.4 39.2 13.4 6.2 69.2 15.8 9.0 2.6 3.4 60.8 16.0 14.2 5.2 3.8 11.8 27.0 43.4 10.6 7.2 61.2 12.0 14.2 5.6 7.0 57.0 11.0 18.6 6.0 7.4
2.5 0.0 0.0 6.0 48.4 45.6 0.4 0.6 74.8 14.4 9.8 0.4 0.6 62.4 22.0 14.6 0.0 0.0 6.6 42.6 50.8 0.4 0.2 71.6 13.0 14.8 0.4 0.2 58.0 19.2 22.2
3.5 0.0 0.0 28.0 48.0 24.0 3.4 33.0 45.0 10.6 8.0 3.2 28.4 37.8 19.2 11.4 0.0 0.0 32.8 41.0 26.2 5.6 26.8 44.4 9.0 14.2 4.8 23.6 37.4 16.6 17.6
4.5 0.2 0.6 31.8 42.0 25.4 37.2 10.0 37.4 7.2 8.2 32.6 6.2 34.0 17.8 9.4 0.2 0.6 36.2 35.6 27.4 32.8 7.4 37.8 7.4 14.6 29.6 4.8 35.8 13.2 16.6
5.5 0.0 0.2 13.8 49.2 36.8 0.0 13.0 61.2 15.2 10.6 0.0 11.8 52.0 21.6 14.6 0.0 0.2 18.2 40.8 40.8 0.0 9.6 60.0 10.8 19.6 0.0 9.2 50.8 16.2 23.8
6.5 4.2 1.4 31.0 42.2 21.2 0.6 4.2 70.2 16.2 8.8 4.0 2.2 57.2 25.2 11.4 6.6 2.2 27.6 46.6 17.0 0.8 3.4 65.2 21.6 9.0 6.4 2.8 51.0 29.2 10.6

1.9 0.2 1.8 16.8 33.2 48.0 65.0 19.0 9.4 4.0 2.6 65.0 18.0 9.4 4.6 3.0 0.4 1.2 19.4 27.2 51.8 69.0 16.6 8.4 2.8 3.2 68.8 16.4 8.2 2.8 3.8
2.9 0.0 0.0 0.0 12.6 87.4 0.0 0.6 73.0 17.8 8.6 0.0 0.6 72.8 18.0 8.6 0.0 0.0 0.2 10.6 89.2 0.0 0.6 75.0 15.8 8.6 0.0 0.6 74.8 15.8 8.8
3.9 0.0 0.0 2.0 21.0 77.0 4.0 27.8 52.2 12.4 3.6 4.0 27.8 52.2 12.2 3.8 0.0 0.0 2.6 16.6 80.8 5.2 26.2 52.6 11.2 4.8 5.2 26.2 52.6 11.2 4.8
4.9 0.0 0.0 2.6 24.0 73.4 15.6 16.0 51.6 12.0 4.8 15.6 16.0 51.2 12.0 5.2 0.0 0.0 2.8 19.8 77.4 17.4 15.2 52.0 10.2 5.2 17.4 15.2 52.0 10.2 5.2
5.9 0.0 0.0 0.8 20.0 79.2 0.0 7.4 69.2 16.4 7.0 0.0 7.2 68.4 17.2 7.2 0.0 0.6 0.6 14.8 84.0 0.0 10.8 66.8 15.4 7.0 0.0 10.8 66.2 15.6 7.4
6.9 2.2 74.0 11.8 8.0 4.0 13.6 57.0 16.0 7.4 6.0 7.6 65.8 14.8 7.8 4.0 4.4 73.0 11.2 7.4 4.0 21.0 43.6 18.2 11.2 6.0 12.8 52.8 18.4 10.6 5.4
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Table A6. Simulation results of the HQ method for model with known (left panel) and unknown but constant mean (right panel). See Table A3 for comments.

Model
No X Matrix X = 1

For AR(p) Models For ARMA(p,1) Models Among Both Sets For AR(p) Models For ARMA(p,1) Models Among Both Sets

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1.0 58.0 34.6 4.0 2.8 0.6 80.4 9.0 5.6 3.4 1.6 74.0 18.2 4.0 3.2 0.6 61.8 30.6 4.4 2.8 0.4 65.6 15.0 10.4 5.6 3.4 71.0 18.8 5.2 3.8 1.2
2.0 0.0 0.0 84.4 9.6 6.0 0.6 0.4 80.0 11.2 7.8 0.2 0.0 83.2 10.2 6.4 0.0 0.0 84.6 8.8 6.6 0.6 0.2 68.2 21.4 9.6 0.4 0.0 73.2 17.0 9.4
3.0 1.4 20.2 68.0 7.8 2.6 50.8 18.2 23.2 5.0 2.8 36.4 14.2 44.0 3.8 1.6 2.6 17.0 70.2 7.0 3.2 45.4 12.0 27.4 10.2 5.0 33.2 8.8 45.8 9.0 3.2
4.0 12.6 13.2 64.8 6.0 3.4 62.0 5.2 24.2 5.2 3.4 48.2 6.4 38.2 4.2 3.0 15.0 10.0 65.0 5.8 4.2 51.6 5.0 30.0 9.2 4.2 43.0 4.8 40.0 8.4 3.8
5.0 0.0 5.6 79.0 10.4 5.0 0.0 49.0 38.4 6.6 6.0 0.0 26.4 60.0 8.4 5.2 0.0 4.2 80.6 10.4 4.8 0.0 38.2 38.4 16.2 7.2 0.0 19.8 58.4 16.4 5.4
6.0 0.0 0.4 82.2 11.0 6.4 0.0 19.6 60.2 12.6 7.6 0.0 6.8 75.0 11.2 7.0 0.0 1.4 80.4 11.8 6.4 0.0 25.0 44.2 19.0 11.8 0.0 11.4 63.4 15.0 10.2

1.5 10.0 40.4 35.6 9.8 4.2 78.6 12.6 6.4 1.0 1.4 70.0 16.0 9.2 2.8 2.0 13.0 35.2 39.6 7.2 5.0 70.6 10.2 10.8 4.0 4.4 64.4 12.0 15.8 3.2 4.6
2.5 0.0 0.0 7.8 52.0 40.2 0.6 0.6 79.0 12.0 7.8 0.6 0.6 67.2 20.0 11.6 0.0 0.0 9.4 45.6 45.0 0.4 0.2 77.4 10.6 11.4 0.4 0.2 64.6 17.4 17.4
3.5 0.0 0.0 34.4 45.4 20.2 4.2 39.0 41.8 9.2 5.8 3.8 32.8 38.8 16.6 8.0 0.0 0.0 38.2 39.2 22.6 7.0 30.6 43.2 7.8 11.4 6.6 25.0 40.2 14.8 13.4
4.5 0.2 0.6 41.2 39.8 18.2 46.6 9.4 33.6 5.0 5.4 40.8 6.4 33.8 13.4 5.6 0.2 0.6 44.6 32.8 21.8 42.6 7.0 33.8 5.6 11.0 37.6 5.0 34.4 11.2 11.8
5.5 0.0 0.4 18.8 50.2 30.6 0.0 18.4 62.4 11.2 8.0 0.0 16.4 53.0 21.0 9.6 0.0 0.2 22.6 41.8 35.4 0.0 14.0 59.4 9.0 17.6 0.0 12.8 50.8 15.6 20.8
6.5 5.2 2.2 36.2 40.0 16.4 1.2 5.0 75.0 13.0 5.8 5.0 3.4 60.8 23.2 7.6 7.2 2.4 32.2 44.2 14.0 2.0 5.0 67.0 18.2 7.8 7.2 3.4 53.8 27.2 8.4

1.9 0.2 3.8 20.0 33.6 42.4 73.8 16.0 6.8 1.8 1.6 73.8 16.0 6.4 2.0 1.8 0.6 3.0 22.8 27.6 46.0 74.8 14.4 7.0 1.8 2.0 74.4 14.2 7.2 1.8 2.4
2.9 0.0 0.0 0.2 16.8 83.0 0.0 0.8 77.6 15.2 6.4 0.0 0.8 77.2 15.6 6.4 0.0 0.0 0.2 13.2 86.6 0.0 0.6 78.2 13.6 7.6 0.0 0.6 78.0 13.6 7.8
3.9 0.0 0.0 3.8 25.0 71.2 4.6 32.2 50.2 10.2 2.8 4.6 32.2 50.2 10.0 3.0 0.0 0.0 3.8 19.4 76.8 5.4 30.0 52.2 8.2 4.2 5.4 30.0 52.2 8.2 4.2
4.9 0.0 0.0 4.2 28.0 67.8 19.4 19.0 50.0 8.0 3.6 19.4 18.8 49.6 8.2 4.0 0.0 0.0 4.8 22.6 72.6 20.0 16.2 51.6 8.2 4.0 20.0 16.2 51.2 8.4 4.2
5.9 0.0 0.0 0.8 22.6 76.6 0.0 8.6 72.0 14.2 5.2 0.0 8.2 71.4 14.8 5.6 0.0 0.8 0.8 17.4 81.0 0.0 11.4 68.0 15.2 5.4 0.0 11.4 67.0 15.4 6.2
6.9 2.6 80.0 8.8 6.0 2.6 18.8 60.0 12.2 5.6 3.4 9.0 72.0 9.8 6.2 3.0 5.2 78.2 8.2 5.8 2.6 25.0 43.4 16.6 10.6 4.4 14.6 58.0 14.4 9.0 4.0
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Table A7. Simulation results of the FPE method for model with known (left panel) and unknown but constant mean (right panel). See Table A3 for comments.

Model
No X Matrix X = 1

For AR(p) Models For ARMA(p,1) Models Among both Sets For AR(p) Models For ARMA(p,1) Models Among both Sets

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1.0 52.2 33.8 5.2 5.4 3.4 66.2 12.2 9.8 7.2 4.6 66.0 18.8 5.0 5.6 4.6 56.2 29.4 6.2 5.2 3.0 51.0 16.8 16.0 9.2 7.0 63.4 18.6 7.4 6.0 4.6
2.0 0.0 0.0 77.0 12.8 10.2 0.2 0.0 71.0 14.8 14.0 0.2 0.0 72.0 13.4 14.4 0.0 0.0 76.2 12.6 11.2 0.2 0.0 57.4 24.4 18.0 0.0 0.0 62.4 22.2 15.4
3.0 1.2 13.2 66.6 12.8 6.2 34.4 19.8 27.8 9.4 8.6 25.2 12.0 46.2 9.2 7.4 2.2 12.0 67.0 12.2 6.6 28.6 12.6 30.6 16.4 11.8 22.4 7.6 44.0 15.2 10.8
4.0 10.8 8.6 62.6 11.0 7.0 44.6 7.0 31.0 10.8 6.6 36.4 8.6 39.4 9.0 6.6 12.8 6.6 61.4 11.0 8.2 32.8 7.2 33.6 16.6 9.8 30.2 6.8 39.0 15.4 8.6
5.0 0.0 4.4 69.8 17.0 8.8 0.0 37.2 40.8 10.6 11.4 0.0 22.8 54.2 14.4 8.6 0.0 2.6 72.0 15.8 9.6 0.0 28.2 37.2 20.8 13.8 0.0 15.8 50.4 22.8 11.0
6.0 0.0 0.2 73.8 15.8 10.2 0.0 13.8 55.2 17.0 14.0 0.0 5.8 65.8 15.6 12.8 0.0 0.6 70.4 17.8 11.2 0.0 18.2 40.8 22.0 19.0 0.0 9.4 51.2 21.0 18.4

1.5 9.6 26.0 38.2 17.0 9.2 62.6 15.8 10.4 4.6 6.6 56.4 15.4 16.0 6.2 6.0 11.4 21.6 41.4 14.2 11.4 54.4 11.4 16.6 7.0 10.6 50.0 10.2 21.8 6.8 11.2
2.5 0.0 0.0 4.4 45.0 50.6 0.4 0.6 67.8 16.2 15.0 0.4 0.6 57.0 22.8 19.2 0.0 0.0 5.2 39.0 55.8 0.4 0.2 63.2 15.0 21.2 0.4 0.2 52.4 18.8 28.2
3.5 0.0 0.0 24.2 46.8 29.0 2.6 28.4 43.6 13.8 11.6 2.4 25.2 36.4 21.6 14.4 0.0 0.0 25.2 39.6 35.2 4.4 21.0 42.6 11.4 20.6 4.2 19.4 34.6 17.6 24.2
4.5 0.2 0.6 26.8 41.8 30.6 31.2 9.0 38.8 10.0 11.0 28.8 5.8 32.8 19.6 13.0 0.2 0.6 30.0 34.8 34.4 26.2 6.2 38.2 10.0 19.4 23.6 4.4 33.4 16.0 22.6
5.5 0.0 0.2 11.2 46.6 42.0 0.0 10.0 59.4 16.6 14.0 0.0 9.0 51.2 21.6 18.2 0.0 0.2 13.4 37.8 48.6 0.0 7.2 53.2 13.2 26.4 0.0 7.0 45.4 16.4 31.2
6.5 4.2 1.0 26.8 40.8 27.2 0.4 2.4 66.0 18.0 13.2 4.0 1.8 52.6 25.8 15.8 6.0 1.6 23.4 46.2 22.8 0.4 2.2 59.4 23.6 14.4 5.8 1.6 47.2 30.6 14.8

1.9 0.2 1.2 14.2 30.6 53.8 59.4 19.4 11.2 5.4 4.6 59.4 18.6 11.2 5.8 5.0 0.4 1.0 15.8 24.6 58.2 61.4 16.4 10.0 5.8 6.4 61.4 15.8 10.0 5.8 7.0
2.9 0.0 0.0 0.0 9.8 90.2 0.0 0.6 70.6 17.8 11.0 0.0 0.6 70.2 18.0 11.2 0.0 0.0 0.2 7.2 92.6 0.0 0.4 69.2 16.8 13.6 0.0 0.4 68.8 16.8 14.0
3.9 0.0 0.0 1.4 17.6 81.0 3.8 23.8 50.2 15.4 6.8 3.8 23.8 50.0 15.2 7.2 0.0 0.0 2.0 13.2 84.8 5.2 22.6 49.8 13.6 8.8 5.2 22.6 49.8 13.6 8.8
4.9 0.0 0.0 1.8 20.8 77.4 15.4 15.0 49.0 14.2 6.4 15.4 14.8 48.8 14.4 6.6 0.0 0.0 2.0 16.4 81.6 15.4 13.2 50.4 11.6 9.4 15.4 13.0 50.4 11.8 9.4
5.9 0.0 0.0 0.2 16.4 83.4 0.0 7.2 65.4 18.4 9.0 0.0 7.0 64.8 19.2 9.0 0.0 0.6 0.6 12.2 86.6 0.0 9.8 61.4 17.4 11.4 0.0 9.8 61.2 17.6 11.4
6.9 2.2 71.2 12.4 9.2 5.0 11.4 54.6 16.2 9.2 8.6 7.2 60.6 15.6 10.2 6.4 4.0 67.4 14.2 8.4 6.0 17.2 40.8 20.2 13.4 8.4 11.2 47.2 22.4 11.6 7.6
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