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Abstract: The contribution of this paper is to investigate a particular form of lack of invariance
of causality statements to changes in the conditioning information sets. Consider a discrete-time
three-dimensional stochastic process z = (x, y1, y2)

′. We want to study causality relationships
between the variables in y = (y1, y2)

′ and x. Suppose that in a bivariate framework, we find that
y1 Granger causes x and y2 Granger causes x, but these relationships vanish when the analysis is
conducted in a trivariate framework. Thus, the causal links, established in a bivariate setting, seem
to be spurious. Is this conclusion always correct? In this note, we show that the causal links, in the
bivariate framework, might well not be ‘genuinely’ spurious: they could be reflecting causality
from the vector y to x. Paradoxically, in this case, it is the non-causality in trivariate system that
is misleading.
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1. Introduction

Following a suggestion of Wiener (1956), Granger (1969) introduced a concept of causality in a
time series framework. Granger’s definition concerns the predictability of a given stochastic process.
Namely, if a process y contains information in the past terms that helps in the prediction of the process
x, and if this information is contained in no other process used in the predictor, then y is said to cause
x. This notion of Granger causality is used here. It is well-known that Granger non-causality, in a
bivariate system, may be due to an omitted variable (see Lutkepohl (1982)). In this paper, we consider
the opposite situation, which is apparent non-causality due to an included variable.

Consider a discrete-time three-dimensional stochastic process z = (x, y1, y2)
′, and consider

causality relationships between the variables in y = (y1, y2)
′ and x. Suppose that in a bivariate

framework, we find that y1 Granger causes x and y2 Granger causes x, but these relationships vanish
when the analysis is conducted in a trivariate framework. Thus, the causal links, established in a
bivariate setting, seem to be spurious. Is this conclusion always correct? In this note, we show that
the causal links, in a bivariate framework, might not be ‘genuinely’ spurious: they could be reflecting
causality from the vector y to x. Paradoxically, in this case, it is the non-causality in the trivariate
system that is misleading. A finding of non-causality can thus lead to the potentially false inference of
non-causation where causation is present—i.e., to a spurious conclusion of non-causality.

The rest of the paper is organized as follows. Section 2 introduces the definitions of causality
used throughout the paper. Section 3 presents some theoretical results. A prescriptive implication is
reported in Section 4. Finally, Section 5 presents the conclusions.
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2. Notation and Definitions

Let L2 = L2(Ω,A, P) be the Hilbert space of the real square-integrable random variables, defined
on common probability space (Ω,A, P) and let E be the expectation operator in this space. We define
the inner product to be 〈u, v〉 = E(uv) for all u, v ∈ L2 and the norm to be ‖u‖2 = 〈u, u〉 for all u ∈ L2.
A non-empty subset M of L2 is called a (linear) manifold if for all u, v ∈ M and all scalars α1, α2, we
have α1u + α2u ∈ M. M is called a subspace, if it is a closed manifold, that is, it contains the limit
of every Cauchy sequence in M. The smallest subspace of L2 that contains M, denoted by span(M),
is called subspace spanned by M. For any two subspaces M and N of L2, we will denote M ∨ N the
subspace spanned by the elements of M and N, which is M ∨ N = span(M ∪ N). Now, we consider a
non-decreasing sequence I of subspaces I(t) of L2,

I = {I(t); t ∈ Z, t > ω} and t < t′ ⇒ I(t) ⊆ I(t′) ∀t > ω,

where ω ∈ Z ∪ {−∞}. I(t) is called the ‘reference information set’. Let x be a scalar process in L2.
We suppose that the information sequence I is conformable with x, which is

x(ω, t] ⊆ I(t) ∀t > ω,

where x(ω, t] is the subspace spanned by x(τ), ω < τ ≤ t. Let V be a subspace of L2, and, for any
positive integer h, we denote P [x(t + 1)|V] the orthogonal projection of x(t + 1) on V. Now, we
consider a 2× 1 vector process y in L2, which is

y = {y(t); t ∈ Z, t > ω} , y(t) = (y1(t), y2(t))
′ , yi(t) ∈ L2 (i = 1, 2).

We will also consider the following subspaces of L2: y(ω, t] the subspace spanned by the
components yi(τ), i = 1, 2 of y(τ), ω < τ ≤ t; yj(ω, t] the subspace spanned by

{
yj(τ); ω < τ ≤ t

}
;

y(j)(ω, t] the subspace spanned by {yi(τ); ω < τ ≤ t, i = 1, 2, i 6= j} .
Now, we can give the following definitions of non-causality.

Definition 1. y does not cause x given I (denoted y 6→x|I) if

P(x(t + 1)|I(t)) = P(x(t + 1)|I(t) ∨ y(ω, t]) ∀t > ω.

Definition 2. (Bivariate non-causality) yj does not cause x given I (denoted yj 6→x|I) if

P(x(t + 1)|I(t)) = P(x(t + 1)|I(t) ∨ yj(ω, t]) ∀t > ω.

Definition 3. (Trivariate non-causality) yj does not cause x given I(j)(t) = I(t) ∨ y(j)(ω, t] (denoted
yj 6→x|I(j)) if

P(x(t + 1)|I(j)(t)) = P(x(t + 1)|I(t) ∨ y(ω, t]) ∀t > ω.

3. Results

In this section, we show that if there is a causal link from the vector y to x (y→x|I) and
there is non-causality in trivariate system (y1 6→x|I(1) and y2 6→x|I(2)), then we necessarily find
causality in the bivariate framework (y1→x|I and y2→x|I). In order to do this, first, we present
the following propositions.

Proposition 1. If yi 6→x|I(i) and yj 6→x|I with i 6= j, then y 6→x|I.
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Proof. Without loss of generality, we assume that y1 6→x|I(1) and y2 6→x|I. This implies

P(x(t + 1)|I(1)(t)) = P(x(t + 1)|I(1)(t) ∨ y1(ω, t]) ∀t > ω

and
P(x(t + 1)|I(t)) = P(x(t + 1)|I(t) ∨ y2(ω, t]) ∀t > ω.

Now, we note that
I(1)(t) = I(t) ∨ y2(ω, t])

and
I(1)(t) ∨ y1(ω, t] = I(t) ∨ y(ω, t]).

It follows that
P(x(t + 1)|I(t)) = P(x(t + 1)|I(t) ∨ y(ω, t]) ∀t > ω,

that is, y 6→ x|I.

Proposition 2. If y→x|I, y1 6→x|I(1) and y2 6→x|I(2), then y1→x|I and y2→x|I.

Proof. If y→x|I, by Proposition 1, we have y1→x|I(1) or y2→x|I and y2→x|I(2) or y1→x|I. Since,
by hypothesis, we have that y1 6→x|I(1) and y2 6→x|I(2), it follows that y1→x|I and y2→x|I.

Proposition 2 tells us that if there is a causal link from the vector y to x and if the components y1

and y2 are ‘redundant’ variables, i.e., y1 provides the same useful information as y2, for forecasting x,
then necessarily y1→x|I and y2→x|I. The causal links, in the bivariate system, must not be interpreted
as spurious: in this case, they reflect the causal link from the vector y to x.

4. A Prescriptive Implication

It is well known that the omission of relevant variables may induce spurious apparent Granger
causality among the remaining variables. In order to address this problem, the common practice
suggests to enlarge the set of variables. However, our result makes it clear that this practice may be
dangerously misleading under certain conditions. Thus, a wider information set is not necessarily
always an unalloyed blessing in the context of binary causal relations: a problem of apparent
non-causality due to redundant included variables could be present. For example, let us consider
a situation where we find that y1 Granger causes x and y2 Granger causes x, in a bivariate setting.
Furthermore, suppose that these causal links vanish when we consider the trivariate system (x, y1, y2).
Against this backdrop, before concluding that the finding of causality is spurious, the results derived
here indicate that one should investigate the possibility of a causal relationship between the vector
(y1, y2) and x. Only if one finds that (y1, y2) does not cause x can one conclude that the causal links
found in the bivariate setting are genuinely spurious.

5. Conclusions

Generally, the causal structure of a multivariate stochastic process does not allow conclusions
concerning the causal structure of its sub process. Causal statements made in a trivariate setting
will not necessarily retain their validity in a bivariate framework. A bivariate analysis can exclude
relevant variables and lead to spurious correlation, and thereby to erroneous conclusions. However,
Proposition 2 says to us that the causal links in the bivariate setting (y1 → x|I and y2 → x|I) could not
be spurious: they could reflect the causality from the vector (y1, y2)’ to x (y→ x|I). In this framework,
it is the non-causality in the trivariate system (y1 6→ x|I(1) and y2 6→ x|I(2)) that is spurious. This
happens because none of the components of (y1, y2)’ contain unique information about x that is not
available in the other. Therefore, each variable can act as a proxy for the other one, and eliminating
one of them from the system does not reduce the quality of forecasts.
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The determination of an appropriate information set leads to one common source of difficulty in
a Granger non-causality study. When a bivariate system is used, the causal links could be spurious.
On the other hand, when the analysis is conducted in a trivariate system, the findings of non-causality
could be misleading because a problem of non-causality due to redundant included variables could
be present.
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