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1. Introduction

Synthetic control method, proposed and discussed by Abadie and Gardeazabal (2003) and
Abadie et al. (2010), is a very useful way of conducting comparative studies when exact matches are
unavailable. Estimation of treatment effects usually takes the form of comparing outcomes between the
treated unit and the control unit. Common sense suggests that, for the comparison to be meaningful,
the control unit needs to be similar to the treated unit in the absence of the treatment in various
dimensions. Such a requirement may not be satisfied in many observational studies. In some cases,
availability of panel data makes such comparisons reasonable, the difference-in-differences method
being a very well-known example. The difference-in-differences method requires a very specific set of
assumptions, i.e., the common trend assumption, which may not be plausible for many applications.
The synthetic control method offers a sensible generalization of the difference-in-differences.
The synthetic control is a linear combination of the potential control outcomes, where the weights are
manufactured by analyzing the pre-intervention outcomes.

For the purpose of statistical inference with synthetic control, i.e., confidence interval and
hypothesis testing, various versions of placebo tests are often adopted. The idea underlying the
placebo tests is the usual permutation tests, where the critical value of a test statistic is computed
under all possible permutations of the “treatment” assignments in the control units.

The idea of permutation test is very intuitive and attractive. Applying the synthetic control
method to every potential control unit presumably allows researchers to assess the distribution of a
test statistic under the null hypothesis of no treatment effects, and the inference is seemingly exact in
the sense that the burden of asymptotic approximation can be obviated.

The purpose of this paper is very specific. We ask whether the permutation test is a reasonable idea
in the context of the synthetic control method, and argue that the intuitive appeal of the permutation
test is misplaced. The validity of permutation tests usually requires certain symmetry assumption,
which is often violated in the context of synthetic control studies. Using Monte Carlo simulations,
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we document the size distortion of the permutation tests. We also discuss a few alternative methods
of inference.

Alberto Abadie kindly pointed out that the placebo test in synthetic control is often based on
randomization inference idea, under which the symmetry restriction is built-in, while our analysis is
predicated from the usual random sampling perspective, which leads to the violation of symmetry.
This perspective is shared with an anonymous referee, who notes that (i) the synthetic control literature
uses permutation tests in the context of design-based inference, and, as such, the permutation tests
have exact size; (ii) the present article shows that permutation tests may not have correct size under a
different mode of inference based on repeated sampling, although interpreting the permutation tests
in the previous literature as tests based on repeated sampling would be incorrect; and (iii) the present
article also proposes some alternatives that are valid in a repeated sampling setting. It would be
useful to understand the exact mechanism through which the difference between the two perspectives
manifests itself. The same referee points out that the present paper adopts a setting where T0 → ∞,
while the original litereature assumes fixed T0.

2. Placebo Test and Synthetic Control

In this section, we provide a brief discussion of the placebo test in the context of the synthetic
control method. We begin with an overview of the synthetic control, borrowing heavily from
discussions in Abadie et al. (2010) and Doudchenko and Imbens (2016). We then move on to describe
the placebo test, and point out the importance of the symmetry assumption. We argue that the
symmetry assumption is violated in general for placebo tests using linear combinations of outcomes,
such as synthetic control. We conclude this section that such violation should be expected in general
even when a normalized version of the test statistic is adopted.

We start with the overview of the synthetic control method. Consider a panel data with J + 1
cross sectional units observed over the time periods t = 1, . . . , T. Units j = 1, . . . , J are the control
units that receive the treatment in none of the time periods. The unit j = 0 receives no treatment
in periods 1, . . . , T0, and receives active treatment in time periods t = T0 + 1, . . . , T. For simplicity,
we will often assume that T = T0 + 1. The outcome variable Yj,t is such that Yj,t = Yj,t (1) if the jth
unit receives treatment in time t, and Yj,t = Yj,t (0) otherwise. Obviously,

Yj,t = Yj,t (0) , j = 1, . . . , J; t = 1, . . . , T,

Y0,t = Y0,t (0) , t = 1, . . . , T0,

Y0,t = Y0,t (1) , t = T0 + 1, . . . , T.

The idea underlying the synthetic control is that if there were some weights1 ω̂1, . . . , ω̂J such that

Y0,t ≈
J

∑
j=1

ω̂jYj,t (1)

during the pre-intervention periods (t = 1, . . . , T0). Then, ∑J
j=1 ω̂jYj,t can be used as a (synthetic)

control for Y0,t during the post-intervention periods (t = T0 + 1, . . . , T). Abadie et al. (2010) and
Doudchenko and Imbens (2016) discuss various methods of finding the ω̂’s so that the requirement in
Equation (1) is satisfied. We analyze the weights and the nature of approximation from the asymptotic

1 Doudchenko and Imbens (2016) also consider a slightly more general requirement Y0,t ≈ α + ∑J
j=1 wjYj,t. This is a

sensible way to enhance accuracy of synthetic control viewed as a point estimator. It also provides a link to the
difference-in-differences estimator. Because our focus is on inferential aspects of the problem, we simplify notation
and analysis by abstracting away from the intercept term.
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perspective where T0 → ∞. Note that a special case of the estimator discussed by Abadie et al. (2010,
p. 496) solves

min
ω1,...,ωJ

(
Ȳ0 −

J

∑
j=1

ωjȲj

)2

. (2)

Under our interpretation, Ȳj = T−1
0 ∑T0

t=1 Yj,t above is an estimator of E
[
Yj,t
]
.

Consider the linear factor structure2 as in Abadie et al. (2010):

Yj,t = Yj,t (0) = αj + θt + γ′jδt + εj,t, t = 1, . . . , T0. (3)

Suppose that θt, δt, and εj,t satisfy strict stationarity. Without loss of generality, we also assume
that E [δt] = 0 and E

[
εj,t
]
= 0. We would have Ȳj → αj + E [θt] in probability as T0 → ∞. Assuming

that ω∗j satisfies

α0 + E [θt] =
J

∑
j=1

ω∗j
(
αj + E [θt]

)
, (4)

we can understand that the population version of the synthetic control ∑J
j=1 ω∗jYj,t is such that the

difference Y0,T0+1 (0)−∑J
j=1 ω∗jYj,T0+1 (0) is designed to have a mean zero.

Our T0 → ∞ asymptotic interpretation is not the only possible one. Doudchenko and Imbens
(2016) provide an in-depth analysis of many possible methods. Our interpretation, however, is helpful
for two reasons. First, it makes a concrete interpretation of ω̂s as estimates of some pseudo-parameter,
say ω∗’s, along with analytic expressions of the ω∗’s, which makes it easy to understand the potential
pitfalls of permutation methods afterwards. Second, it helps us to motivate alternative methods of
inference exploiting time series variation.

We now discuss how placebo tests can be used in the context of synthetic control. For this purpose,
we first present a summary of the placebo tests/permutation tests. The tests are motivated to deal
with the case where the number of the treated is small and the number of controls is relatively large.
In order to focus on the salient feature of the tests, we will consider an extreme case and assume that
there is only one treated unit.

The basic intuition underlying the general placebo test can be gleaned by examining a standard
textbook case of randomized treatments. Suppose that there is cross sectional data with J + 1 units,
where the units j = 1, . . . , J are the control units and the unit j = 0 receives the active treatment.
A reasonable estimator of the treatment effect is the difference Y0 − Ȳ, where Y0 is the outcome of
the unit j = 0, and Ȳ = J−1 ∑J

j=1 Yj denotes the average of the outcomes of the controls. Suppose
that we are interested in testing whether the treatment had impact. Given that there is only one
treated unit, the standard t-test comparing the difference of the mean outcomes is not applicable.
On the other hand, common sense suggests that we may implement such a test by “assigning” each
control unit to fictitious treatment. More precisely, one can estimate the empirical distribution of
Yk − (J − 1)−1 ∑j 6=k Yj for k = 1, . . . , J, and use it as if it were the distribution of the treatment effect
under the null hypothesis.3

Implementation of the placebo test with synthetic control requires a bit more notation. First let
ω̂ =

(
ω̂1, . . . , ω̂J

)′ denote the estimator of ω∗ =
(
ω∗1, . . . , ω∗J

)′. Although we will use the method
of exact balancing later in our Monte Carlo simulations, we do not need to restrict ourselves to this
particular estimator. For now, we can view ω̂ as an output from a blackbox and let ω∗ denote its

2 Using the notation consistent with this paper, Equation (1) in Abadie et al. (2010) takes the form Yj,t (0) = λt + (θt − λt)
′ Zj +

γ′jδt + εj,t, so the factor structure in Equation (3) of this paper is a special case of Equation (1) in Abadie et al. (2010), where
Zj = 1, δ1t = 1 and γ1j = αj, i.e., it is a special case where the Zj does not exist and the first element of δt is time invariant.

3 Conley and Taber (2011), who proposed a similar test, cite Bertrand et al. (2004) when they discuss placebo tests.
Abadie et al. (2010) reference many other papers that precede Bertrand et al. (2004).
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probability limit as T0 → ∞. Second, let ω̂(−k) denote the outcome of the same blackbox except that we
use the kth unit as the outcome of the treated unit, and Yj,t with j 6= k as our control units. The placebo

test then uses the empirical distribution of Yk,T0+1 −∑j 6=k ω̂
(−k)
j Yj,T0+1 for k = 1, . . . , J as if it were the

distribution of the treatment effect under the null hypothesis of no treatment effect. If the estimated
effect Y0,T0+1−∑J

j=1 ω̂jYj,T0+1 belongs to the extreme tails of the empirical distribution, it is understood
to be the evidence that the null hypothesis is incorrect.

In order to understand the size property of the placebo test, it helps to recall that the placebo
test is a version of the permutation test, which requires for its validity what may be called the
symmetry assumption. For review of this property, we will borrow the short discussion in Canay et al.
(2017).4 Suppose that a researcher observes a vector of observations X, whose joint distribution is P.
The objective is to test whether P ∈ P0, where P0 is a collection of probability distributions such
that the distribution of X is equal to that of gX for every g in G, where G is a finite collection of
transformations. The permutation test has the exact size if, for the test statistic T (X), the critical value
is taken from the distribution of T (gX) for every g in G. In the context of the placebo test above,
one can understand X to be the vector

(
Y1, . . . , YJ

)
, and gX to be the permutation of the Ys.

We note that the symmetry is not mathematically obvious in the context of synthetic control.
In order for the permutation test to be valid, it is necessary for the distribution of Y0,T0+1 −
∑J

j=1 ω∗jYj,T0+1 and those of Yk,T0+1 −∑j 6=k ω
(−k)
∗j Yj,T0+1 for k = 1, . . . , J to be identical. Even for the

relatively simple model in Equation (3), the nature of the synthetic control is such that the symmetry
does not naturally follow. Using the restriction in Equation (4), we may write

Y0,T −
J

∑
j=1

ω∗jYj,T = ( θT − E [θT ] )

(
1−

J

∑
j=1

ω∗j

)
+

(
γ0 −

J

∑
j=1

ω∗jγj

)′
δT +

(
ε0,T −

J

∑
j=1

ω∗jεj,T

)
. (5)

Even if the first two terms on the right-hand side of Equation (5) were identically equal to zero
over the permutations, we believe that the third term is not likely to satisfy the symmetry property.
This is because we believe that under the further restriction that the ε’s have a finite variance, the term
can be symmetric only when they are normally distributed.

We show that normality is necessary if the distribution of the error term ε0,T −ω′∗εT in Equation
(5), where εT =

(
ε1,T , . . . , εJ,T

)′, is to be symmetric up to normalization.5 Suppose that ε0,T , . . . , εJ,T are
i.i.d., and their common distribution is such that the variance is finite and the characteristic function
does not disappear. If ω is a nontrivial function of αs and γs, then symmetry over the permutations
requires that the marginal distributions of εk,T −∑j 6=k ω

(−k)
j εj,T for k = 0, . . . , J should remain invariant

over all possible ω(−k)s. Without loss of generality, we can focus on the distribution of ε0,T −ω′εT , and
conclude that the symmetry requires that there exists a random variable Y such that the distribution of
ε0,T −ω′εT is the same as that of cY for some scalar c. Because the standard deviation of ε0,T −ω′εT is
proportional to

√
1 + ω′ω, we may without loss of generality take c =

√
1 + ω′ω. This implies that

the distribution of ω′εT only depends on ω′ω. In other words, for ω 6= ω̃ such that ω′ω = ω̃′ω̃, the
distribution of ω′εT is identical to that of ω̃′εT . In particular, let all components of ω̃ be zero except
for the first one. Then, the distribution of ω′εT is identical to that of ω̃′εT = ω̃1ε1,T =

√
ω̃′ω̃ε1,T .

This implies that εj,T should have a stable distribution.6 Because the only stable distribution with a
finite variance is the normal distribution, we should conclude that normality is a necessary condition
of the symmetry (up to normalization). Note that the third term in Equation (5) arises in an ideal

4 The same test was first discussed by Hoeffding (1952), which is a generalization of the randomization test proposed by
Fisher (1949).

5 We are using the fact that the symmetry implies the equality of marginal distributions, and therefore, the lack of equality of
marginal distributions is a sufficient condition for violation of symmetry.

6 See Nolan (2015), or Wikipedia Contributors (2017).
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situation where the weights ω do not need to be estimated and the first two terms completely disappear.
Our analysis suggests that even if we normalize the third term by its standard deviation, the symmetry
requires normal distribution. The necessity of normality assumption is about any linear combination
so it applies a fortiori to synthetic control.

3. Monte Carlo

The discussion at the end of the previous section casts doubt on the placebo test, even for the
simple case where the first two terms in Equation (5) can be ignored. In order to understand the
roles that the first two terms may play, we adopt Monte Carlo simulations. We try to find data
generating processes (DGPs hereafter) that generate a large amount of size distortions. This is helpful
in understanding the potential problem of the placebo test from the uniformity perspective; after
all, the mathematical definition of the “size” of a test is the maximum probability of rejection under
the null, and here the null hypothesis is a composite hypothesis where the only requirement on the
DGP is that the treatment effect is zero, which allows many possibilities on the terms in Equation
(5). For this purpose, we found it most convenient to work with the first two terms in Equation
(5), although we acknowledge that there may be other important sources of size distortion that
we have not explored. Since the last paragraph of Section 2 showed that normalization does not
abate the symmetry requirement, we examine the importance of the first two terms in Equation (5)
using a more natural statistic. The version of the synthetic control that we use in the Monte Carlo
is the method of exact balancing, the population version of which minimizes ∑J

j=1 ω2
j subject to

E [Y0,t (0)] = ∑J
j=1 ωjE

[
Yj,t (0)

]
and 1 = ∑J

j=1 ωj.7

The method of exact balancing may not be an ideal version of the synthetic control, but it reflects
a certain ambiguity in the method of synthetic control. In the factor model in Equation (3), it is
impossible to find weights ω such that Y0,t = ∑J

j=1 ωjYj,t for every t = 1, . . . , T0, if T0 is large enough,
as long as εj,t is continuously distributed. In other words, the condition (2) in Abadie et al. (2010)
is incompatible with the factor model unless Var

(
εj,t
)
= 0. The assumption Var

(
εj,t
)
= 0 has at

least two implications.8 First, the weights ωj can be estimated without error with sufficiently large
T0. Second, the distribution of the permutation test would have the point mass at zero, and as such,
there is no reason to conduct any test. Both implications are questionable. In any case, under the
assumption Var

(
εj,t
)
= 0, the weights can be estimated (without error) by the method of least squares

that minimizes ∑T0
t=1

(
Y0,t −∑J

j=1 ωjYj,t

)2
. If the assumption Var

(
εj,t
)
= 0 is violated, the method of

least squares would be subject to a version of measurement error problem; the true regressor there is
αj + θt + γ′jδt in Equation (3), and the Yj,t plays the role of a regressor with measurement error εj,t.9

Note that such a problem is avoided by the method of exact balancing.
We consider the method of exact balancing in this section not because it is necessarily an ideal

version of the synthetic control, but because it is a convenient way of examining the impact of the first
two terms in Equation (5). As mentioned at the beginning of this section, our analysis at the end of the
previous section suggests that the placebo test may have a problem even when these two terms are
dismissed, and the purpose of our Monte Carlo exercise is to focus on the potential impact of these
two terms.

7 Abadie et al. (2010) also impose the positivity restriction, i.e., ωj ≥ 0 for all J.
8 It is straightforward to prove that under stationarity assumption, the only model that allows the synthetic controls to trace

the trajectory of the outcome for the treated (i.e., Y0,t = ∑J
j=1 ωjYj,t for some ω) is a linear factor model with Var(εj,t) = 0.

9 See Ferman and Pinto (2017) for related discussion on the bias of the synthetic control estimator.
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For our Monte Carlo analysis, we adopted a simplified version of the factor model in Equation (3)
such that (i) θt ∼ N (0, 1); (ii) δt is a scalar; (iii) δt ∼ N

(
0, σ2

δ

)
; (iv) εj,t ∼ N

(
0, σ2

ε

)
is i.i.d. over j and t.

In matrix notation, our estimator ω̂ solves

min ω′ω s.t. (i) Ȳ′ω = Ȳ0, (ii) `′ω = 1, (6)

where ` is a vector of ones. Because E
[
Yj,t
]
= αj, we can see that the population counterpart ω∗ solves

min ω′ω s.t. (i) α′ω = α0, (ii) `′ω = 1,

where α =
(
α1, . . . , αJ

)′.
We now write

Y0,T −
J

∑
j=1

ω̂jYj,T = A + B + C + D,

where

A =
J

∑
j=1

(
ω∗j − ω̂j

)
αj

B = θT

(
1−

J

∑
j=1

ω∗j

)
︸ ︷︷ ︸

B(i)

+ θT

J

∑
j=1

(
ω∗j − ω̂j

)
︸ ︷︷ ︸

B(ii)

C =

(
γ0 −

J

∑
j=1

ω∗jγj

)′
δT︸ ︷︷ ︸

C(i)

+

(
J

∑
j=1

(
ω∗j − ω̂j

)
γj

)′
δT︸ ︷︷ ︸

C(ii)

D =

(
ε0,T −

J

∑
j=1

ω∗jεj,T

)
︸ ︷︷ ︸

D(i)

+

(
J

∑
j=1

(
ω∗j − ω̂j

)
εj,T

)
︸ ︷︷ ︸

D(ii)

.

Note that the term B(i) is equal to 0 by design here, although it can be in principle different from 0
depending on the DGP and the estimator chosen. We speculate that the placebo test is used in the
hope that (a) Y0,T −∑J

j=1 ω̂jYj,T is dominated by the term D(i) above; (b) the four terms A, B(ii), C(ii)
and D(ii) above, which reflect the noise of estimating ω∗ by ω̂, are ignorable; and (c) the two terms C(i)
and D(i) more or less satisfy the symmetry property.

We argued in the previous section that the term D(i) is likely to violate the symmetry property. In
order to assess the impacts of other terms, we consider the following variations in DGPs:

1. Vary the values of α’s such that (a) none of the components of ω∗ dominates; (b) only two of the
elements are non-zero.

2. Vary the values of γ’s such that the unbalanced unobservable factors C(i) (a) disappear; and
(b) are present.

3. Vary T0 such that the estimation errors in the weights are (a) prominent; and (b) negligible.

Combinations of the first two variations give us four different DGPs, shown as DGP No. 1 to
No. 4 in Table 1.
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Table 1. Data Generating Processes (DGPs) that generate size distortion.

DGP No. α’s γ’s Variations

1 α0 = (2J + 1)/3, α1 = 1, · · · , αJ = J γ0 = γ1 = · · · = γJ = 0 1(a), 2(a)
2 α0 = (2J + 1)/3, α1 = 1, · · · , αJ = J γ0 = 2, γ1 = · · · = γJ = 1 1(a), 2(b)
3 α0 = 5/3, α1 = 1, α2 = 2, α3 = · · · = αJ = 0 γ0 = γ1 = · · · = γJ = 0 1(b), 2(a)
4 α0 = 5/3, α1 = 1, α2 = 2, α3 = · · · = αJ = 0 γ0 = 2, γ1 = · · · = γJ = 1 1(b), 2(b)

We considered two versions of the placebo tests: the first one is what might be called a feasible
version of the test. Formally, for j = 0, 1, . . . , J, let Yj be a T× 1 vector of outcomes for the jth control
unit, let Y = (Y1, . . . , YJ), and let Y−j be a T× (J − 1) matrix that deletes the jth column from Y. Then,

S(Y0, Y) ≡ Y0,T −
J

∑
j=1

ω̂∗jYj,T . (7)

Similar to Equation (6), define the leave-one-out synthetic control weights ω̂−j for the jth control
unit as a solution to

min ω′ω s.t. (i) Ȳ′−jω = Ȳj, (ii) `′ω = 1, (8)

where Ȳ−j is to delete the jth element from Ȳ. We likewise define the population counterpart ω∗−j as a
solution to

min ω′ω s.t. (i) α′−jω = αj, (ii) `′ω = 1.

For j = 1, . . . , J and k 6= j, let ω̂−j,k be the element in ω̂−j that corresponds to the kth control unit.
In addition, define ω̂−j,j ≡ 0 for j = 1, . . . , J. Then, for j = 1, . . . , J, we can compute

S
(
Yj, Y−j

)
≡ Yj,T −

J

∑
k=1

ω̂−j,kYk,T . (9)

Let S(1), . . . , S(J) be the order statistics of S(Yj, Y−j)’s. We reject H0 if S(Y0, Y) > S(J(1− α
2 )) or

S(Y0, Y) < S
(

Jα
2

)
.

The second test is an infeasible version of the test, which is identical to the first test, except that
we use the true value of ω∗, i.e.,

Strue(Y0, Y) ≡ Y0,T −
J

∑
j=1

ω∗jYj,T ,

Strue(Yj, Y−j) ≡ Yj,T −
J

∑
k 6=j

ω∗−j,kYk,T ,

and we reject H0 if Strue(Y0, Y) > Strue,(J(1− α
2 )) or Strue(Y0, Y) < Strue,

(
Jα
2

)
.

For each DGP, we try T0 ∈ {40, 80, 400, 800}, J ∈ {20, 40, 80} and σ2
ε = 0.1. For all designs, we set

the level of the tests to be α = 10%, and the number of Monte Carlo runs to be 1000.
The results are summarized in Table 2.10 We see size distortions in Table 2, especially DGP No. 2

and No. 4. The size distortion there cannot be attributed to the noise of estimating ω. First, the problem
persists even as T0 approaches unrealistically large values. Second, the size distortion is similar over
the feasible and infeasible versions of the test. We suspect that the problem is a fundamental problem

10 We set θt ∼ N (0, 1) in Table 2. We also considered the case where θt = 0. Although the results for this case are not reported
here in the paper, they were qualitatively similar to the θt ∼ N (0, 1) case. They are available upon request. (When the
adding-up constraint was imposed, the two cases gave the same results. Without the adding-up constraint, these two
specifications give slightly different results.)
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that may have something to do with the violation of symmetry. (An anonymous referee pointed out
that DGPs No. 2 and No. 4 cannot produce synthetic controls that approximate the trajectory of the
outcome for the treated, and that synthetic controls should not be applied in those settings.)

Table 2. Null rejection rates of permutation tests.

DGP J σ2
δ

Estimated Weights True Weights

T0 = 40 T0 = 80 T0 = 400 T0 = 800 T0 = 40 T0 = 80 T0 = 400 T0 = 800

1

0.1 0.076 0.067 0.082 0.090 0.074 0.070 0.079 0.091
J = 20 1 0.076 0.067 0.082 0.090 0.074 0.070 0.079 0.091

10 0.076 0.067 0.082 0.090 0.074 0.070 0.079 0.091

0.1 0.079 0.080 0.080 0.093 0.079 0.090 0.084 0.096
J = 40 1 0.079 0.080 0.080 0.093 0.079 0.090 0.084 0.096

10 0.079 0.080 0.080 0.093 0.079 0.090 0.084 0.096

0.1 0.100 0.087 0.113 0.083 0.094 0.087 0.114 0.085
J = 80 1 0.100 0.087 0.113 0.083 0.094 0.087 0.114 0.085

10 0.100 0.087 0.113 0.083 0.094 0.087 0.114 0.085

2

0.1 0.193 0.178 0.175 0.190 0.174 0.176 0.174 0.190
J = 20 1 0.568 0.530 0.559 0.529 0.557 0.518 0.561 0.531

10 0.838 0.843 0.837 0.837 0.839 0.828 0.838 0.838

0.1 0.193 0.219 0.198 0.208 0.200 0.213 0.193 0.207
J = 40 1 0.561 0.623 0.586 0.589 0.556 0.593 0.588 0.583

10 0.809 0.853 0.863 0.844 0.832 0.858 0.854 0.846

0.1 0.238 0.253 0.245 0.230 0.239 0.245 0.241 0.233
J = 80 1 0.617 0.623 0.631 0.619 0.610 0.629 0.624 0.622

10 0.865 0.870 0.870 0.866 0.861 0.894 0.867 0.868

3

0.1 0.115 0.123 0.110 0.125 0.114 0.113 0.109 0.123
J = 20 1 0.115 0.123 0.110 0.125 0.114 0.113 0.109 0.123

10 0.115 0.123 0.110 0.125 0.114 0.113 0.109 0.123

0.1 0.152 0.151 0.149 0.153 0.153 0.154 0.146 0.154
J = 40 1 0.152 0.151 0.149 0.153 0.153 0.154 0.146 0.154

10 0.152 0.151 0.149 0.153 0.153 0.154 0.146 0.154

0.1 0.180 0.168 0.173 0.153 0.178 0.164 0.166 0.153
J = 80 1 0.180 0.168 0.173 0.153 0.178 0.164 0.166 0.153

10 0.180 0.168 0.173 0.153 0.178 0.164 0.166 0.153

4

0.1 0.201 0.219 0.193 0.214 0.207 0.213 0.195 0.209
J = 20 1 0.536 0.518 0.525 0.522 0.533 0.520 0.525 0.520

10 0.837 0.827 0.817 0.814 0.841 0.809 0.824 0.812

0.1 0.238 0.253 0.249 0.253 0.241 0.268 0.239 0.249
J = 40 1 0.549 0.597 0.583 0.579 0.552 0.576 0.583 0.582

10 0.809 0.842 0.856 0.852 0.828 0.843 0.859 0.848

0.1 0.287 0.293 0.300 0.275 0.279 0.301 0.297 0.278
J = 80 1 0.610 0.623 0.655 0.629 0.608 0.625 0.653 0.634

10 0.861 0.871 0.874 0.860 0.866 0.880 0.865 0.866

Our Monte Carlo analysis indicates that the placebo test does have the size distortion problem.
The results in Table 2 suggest that the size problem is potentially bigger in DGPs No. 2 and No. 4.
DGPs No. 2 and No. 4 differ from No. 1 and No. 3 in that the γ’s are nonzero and the aggregate shock
δt plays a role as a consequence. Therefore, it is of interest to investigate further sources of asymmetry.
For this purpose, we revisit the decomposition in Equation (5) of Y0,T0+1 (0) − ∑J

j=1 ω∗jYj,T0+1 (0),

assuming that the first and second terms in the factor model in Equation (3) are not present:11

11 This can be done by assuming that α0 = ∑J
j=1 ωjαj and θt = 0.
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Y0,T0+1 (0)−
J

∑
j=1

ω∗jYj,T0+1 (0) =

(
γ0 −

J

∑
j=1

ω∗jγj

)′
δT0+1 +

(
ε0,T0+1 −

J

∑
j=1

ω∗jεj,T0+1

)
.

This implies that the variance of Y0,T0+1 (0)−∑J
j=1 ω∗jYj,T0+1 (0) can be written as

(
γ0 −

J

∑
j=1

ω∗jγj

)′
Σ(δt)

(
γ0 −

J

∑
j=1

ω∗jγj

)
+ var(εj,t)

(
1 +

J

∑
j=1

ω2
∗j

)

under the assumptions of the DGPs, where Σ(δt) is the covariance matrix of the vector δt. Likewise,
the variances of the permutation statistics are(

γj −∑
k 6=j

ω∗−j,kγk

)′
Σ(δt)

(
γj −∑

k 6=j
ω∗−j,kγk

)
+ var(εj,t)

(
1 + ∑

k 6=j
ω2
∗−j,k

)
.

Depending on the relative magnitudes of γ’s, we can easily construct examples that violate the
symmetry, such as DGPs No. 2 and No. 4. As of now, it is not clear to us whether there is another
venue (other than the variation in the size of γ), which leads to a violation of the symmetry.

4. Possible Alternatives to Placebo Tests

If we take the time series asymptotics (T0 → ∞) seriously, the problem can be avoided by using
the same idea as in Andrews (2003). The hypothesis of no treatment effects can be understood to be
a hypothesis of stationarity of the time series Wt ≡ Y0,t −∑J

j=1 ω∗jYj,t. In particular, the researcher is
interested in whether the distribution of WT0+1, . . . , WT is the same as that of W1, . . . , WT0 , for which
Andrews (2003)’s test is well-suited. In the simple case that we consider where T = T0 + 1,
one rejects the null if WT0+1 belongs to the extreme tails of the empirical distribution of W1, . . . , WT0 .
We conducted Monte Carlo simulations for all the DGPs considered in the previous section,
and verified that Andrews (2003)’s test suffered no size distortion.12 Andrews (2003)’s test is geared
for application in time series, and as such, robust to certain heteroscedasticity. If the variances of
εj,t in Equation (3) were different across js, most of the available methods exploiting cross sectional
variation may need to be used with caution, as noted by Ferman and Pinto (2017). Andrews (2003)’s
end-of-sample instability test being a test of stationarity of Y0,t − ∑J

j=1 ω∗jYj,t, its validity does not
depend on whether the εj,t’s have identical variances or not. The usefulness of Andrews (2003)’s test
in this context was recognized earlier by Ferman and Pinto (2017).

Andrews (2003)’s test utilizes time series variation seriously. When T0 is relatively small, perhaps
the researcher would like to have a procedure that is based on cross sectional variation. If the
factor structure is taken seriously and if the number of factors is a priori known, we can produce
such a procedure by combining the ideas in Conley and Taber (2011) and Holtz-Eakin et al. (1988).
For simplicity, assume that the model is given by

Yj,t =Yj,t (0) = γjδt + x′j,tβ + εj,t t = 1, 2; j = 1, . . . , J,

Y0,t (0) = γ0δt + x′0,tβ + ε0,t,

12 The results are available upon request.
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where we normalize δ1 = 1. Let Y0,1 = Y0,1 (0) and Y0,2 = Y0,2 (1) = Y0,2 (0) + η. This is a case where
T0 = 1, and T = 2. We then have

Yj,2

δ2
−Yj,1 =

( xj,2

δ2
− xj,1

)′
β +

εj,2

δ2
− εj,1 t = 1, 2; j = 1, . . . , J.

Under strict exogeneity assumption on x’s, we can consistently estimate (β, δ2) as J → ∞ by using the
control group. Now, assume that

(
εj,1, εj,2

)
j = 0, 1, 2, . . . are i.i.d., which would imply

εj,2

δ2
− εj,1 =

Yj,2 − x′j,2β

δ2
−
(

Yj,1 − x′j,1β
)

are i.i.d. A simple modification of Conley and Taber (2011)’s argument establishes that the distribution
of

εj,2
δ2
− εj,1 can be consistently estimated by the empirical distribution of

Yj,2 − x′j,2 β̂

δ̂2
−
(

Yj,1 − x′j,1 β̂
)

j = 1, . . . , J,

where
(

β̂, δ̂2

)
denotes Holtz-Eakin et al. (1988)’s estimator. Therefore, in order to test that η = η,

it suffices to consider a test that rejects whenever

Y0,2 − η − x′0,2 β̂

δ̂2
−
(

Y0,1 − x′0,1 β̂
)

is in the extreme tails of such empirical distribution. Ahn et al. (2013), for example, discussed how
Holtz-Eakin et al. (1988)’s method can be generalized when there are multiple factors. The idea of
combining Holtz-Eakin et al. (1988) with Conley and Taber (2011), although straightforward, does not
seem to have been considered elsewhere.

We have considered two alternative methods of inference, one based on T0 → ∞ asymptotics,
and the other based on J → ∞ asymptotics. In addition to these two methods, we can also entertain
the possibility that if both T0 and J are large, it may be possible to use the panel technique as in
Bai (2009) as well.13 See, e.g., Gobillon and Magnac (2016). The latter two procedures are based on the
presumption that the researcher takes the linear factor structure seriously, so it may be more powerful
than the Andrews (2003)’s test. On the other hand, if a researcher views the linear factor model as just
a toy model14 to illustrate the potential problem of difference-in-differences methods, then she would
probably be hesitant to discard the synthetic control method, which may be able to accommodate
potentially complicated statistical structures that may go beyond the linear factor model.

The three methods that we discussed here as possible alternatives are all theoretically valid under
some asymptotics. Asymptotic validity does not necessarily imply that any given method performs

13 If one were to assume that Y0,t (1) = Y0,t (0) + β, the factor model in Equation (3) becomes

Yj,t = αj + θt + γ′jδt + εj,t, t = 1, . . . , T0,

Yj,T0+1 = αj + θT0+1 + γ′jδT0+1 + εj,T0+1, j = 1, . . . , J,

Y0,T0+1 = β + α0 + θT0+1 + γ′0δT0+1 + ε0,T0+1.

Using the pre-treatment data, one can consistently estimate
(

αj, γ′j

)
(j = 0, 1, . . . , J) and (θt, δ′t) as long as J, T0 → ∞. Using

the control outcome for the period t = T0 + 1 along with
(

αj, γ′j

)
consistently estimated, one can consistently estimate(

θT0+1, δ′T0+1

)
, which is possible if J → ∞. Combining (α0, γ′0) as well as

(
θT0+1, δ′T0+1

)
, one can make an inference of β.

14 Indeed, Abadie et al. (2010) (Section 2.2) consider some other model (in addition to the factor model) for motivation of the
synthetic control.
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reasonably for a given finite sample. A serious Monte Carlo comparison of the relative performance
of the three alternatives, which is beyond the scope of the current paper, is required to determine a
method to be recommended to practitioners.

5. Conclusions

We considered the performance of the permutation test (placebo test) in the context of the
synthetic control method. The symmetry assumption, one of the crucial conditions for the validity of
the permutation test, may be violated in synthetic control studies. Using Monte Carlo simulations,
we show that the size of the permutation tests can be distorted. The results suggest that even with
simple DGPs and rather restrictive distributional assumptions of the error term, as long as aggregate
shocks are present, the permutation test in its current form is likely to fail and cannot serve as a proper
tool for inference with the synthetic control method. Several possible alternatives were discussed.
That being said, we should be careful and repeat an anonymous referee’s cautious remark that,
while our analysis is from a repeated sampling perspective, the synthetic control literature uses
permutation tests in the context of design-based inference, and as such, the permutation tests have
exact size.
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