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Abstract:



This paper offers a general and comprehensive definition of the day-of-the-week effect. Using symbolic dynamics, we develop a unique test based on ordinal patterns in order to detect it. This test uncovers the fact that the so-called “day-of-the-week” effect is partly an artifact of the hidden correlation structure of the data. We present simulations based on artificial time series as well. While time series generated with long memory are prone to exhibit daily seasonality, pure white noise signals exhibit no pattern preference. Since ours is a non-parametric test, it requires no assumptions about the distribution of returns, so that it could be a practical alternative to conventional econometric tests. We also made an exhaustive application of the here-proposed technique to 83 stock indexes around the world. Finally, the paper highlights the relevance of symbolic analysis in economic time series studies.
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1. Introduction


The static capital asset pricing model (CAPM), developed independently by Sharpe (1964), Lintner (1965) and Mossin (1966), has been widely used for a number of financial matters. In its standard form, the CAPM states that the expected risk to security i can be separated into two components: the risk free rate and the risk premium. The latter, in turn, can be explained as the product between the market premium and a modulating coefficient [image: ]:


[image: ]



(1)







According to Equation (1), return on security i depends only on the risk free rate, market return, and beta. Consequently, return should not be altered by any other circumstances (such as the particular day of the week or the time of the year in which the return is measured). According to Fama (1970) a market is informationally efficient if it fully reflects all available information. In fact, as LeRoy (1989) asserts, the efficient market hypothesis (EMH) is just the idea of competitive equilibrium applied to the securities market.



Although early empirical studies (e.g., Blume and Friend 1973; Fama and MacBeth 1973) support the validity of the CAPM, later research documents depart from this equilibrium model. These departures are called “anomalies”1. Among them, there is one especially puzzling feature: the day-of-the-week effect. This anomaly refers to the heterogeneous behavior of returns along the week. Testing the the day-of-the-week effect requires the joint consideration of an equilibrium model, such as Equation (1), and of the efficient market hypothesis (EMH).



Empirical research on markets’ daily seasonality can be traced back to Fields (1931, 1934). These papers have the merit of investigating the issue before a market equilibrium model was formally developed. Cross (1973) detects differences in expected S&P 500 on Fridays and Mondays. Gibbons and Hess (1981) finds lower S&P 500 returns on Mondays relative to other days. The effect is subdivided by French (1980) into a Monday effect (abnormal negative return on this day) and a Friday effect (abnormal positive result on this day). Rogalski (1984) analyzes the effect during trading and non-trading hours for the American market. This effect has been widely surveyed and, for brevity, we refer to Keim and Ziemba (2000) and Ziemba (2012) for further discussion on empirical works about this effect. Keloharju et al. (2016) find return seasonalities in commodities and stock indices arround the world.



The standard approach for detecting the day-of-the week effect is based on the following regression equation (or some variations thereof):


[image: ]



(2)




where [image: ] is the return on day t and [image: ], [image: ] are dichotomous dummy variables for each day of the week from Tuesday through Friday. The coefficient [image: ] represents the mean return on Monday, while [image: ], [image: ], is the excess return on day i, and [image: ] is an error term. This traditional approach is based on different hypothesis testing on [image: ] values (for an overview see, for instance, Bariviera and de Andrés Sánchez (2005) and references therein). Working based on Equation (2) forces several (sometimes unjustified) assumptions about parameters. For example, Zhang et al. (2017) applies a rolling sample test with a GARCH model in 28 stock indices. Precisely, our original approach, based on ordinal patterns, bypasses this shortcome.



The aim of this paper is to provide a more general definition of the day-of-the-week effect and to develop an alternative test to assess the existence of seasonal effects in daily returns. This paper contributes to the literature in several ways. First, it generalizes the definition of the day-of-the-week effect. Second, it develops an alternative non-parametric test to detect it. Third, it shows that the results of the tests are not obtained by chance, since time causality is taken into consideration. Fourth, most of the day-of-the-week findings in the literature are related with the underlying return-generating process, and not with the causes indicated previously in the literature. Consequently, from a theoretical point of view, this paper introduces a new non-parametric test that is able to detect the intrinsic characteristics of the time series, and uncovers spurious seasonality detection causes. We would like to point out that the methodology we use here is unique in that it is nonlinear, ordinal, requires no model, and provides statistical results in terms of a probability density function. Ours is a statistical methodology that, to the extent of our knowledge, no one using time series analysis has used before.



The remaining of the paper is organized as follows. Section 2 presents the notion of ordinal patterns. Section 3 redefines the day-of-the-week effect and proposes a non-parametric test. Section 4 displays results of the test on theoretical simulations of different stochastic processes. Section 5 performs an empirical application to the New York Stock Exchange. Finally, some conclusions are drawn in Section 6.




2. Ordinal Pattern Analysis


Estimations based on Equation (2) require the assumption of an underlying stochastic process for returns. For these processes, symbolic analysis becomes a suitable alternative to study the dynamics of a time series. Bandt and Pompe (2002) developed a method for estimating the probability distribution function (PDF) based on counting ordinal patterns. The comparison of neighboring values of a time series requires no model assumption. The advantage of this method is that can be applied to any time series, and takes into account time causality Bandt and Pompe (1993). If returns fulfill the efficient markethypothesis (EMH), there should be no privileged pattern. If there were to be a privileged pattern, it would be exploited by arbitrageurs and any possibility of abnormal return should be rapidly wiped out. Thus, if the time series is random, pattern frequency should be the same, provided [image: ] If patterns are not equally present in the sample, three anomalous situations might be the cause:

	(1)

	
Forbidden pattern: a pattern that does not appear within the sample.




	(2)

	
Rare pattern: a pattern that seldom appears.




	(3)

	
Preferred pattern: a pattern that emerges more often than expected by the uniform distribution.






In any of these cases, we are in presence of a time series with daily seasonal behavior. Consequently, the day-of-the week effect needs to be redefined.



In this line, Zanin (2008) applies the concept of forbidden patterns in order to assess market efficiency, and shows that different financial instruments could achieve different informational efficiency. According to Amigó et al. (2006), forbidden patterns can be used as a means of distinguishing chaotic and random trajectories and constitute a satisfactory alternative to more conventional techniques.



Ordinal patterns have been previously used by Zunino et al. (2010, 2011, 2012) in order to compute quantifiers like permutation entropy and permutation complexity, which, in turn, allow one to quantify the degree of informational efficiency of different markets. Rosso et al. (2012) demonstrates that forbidden patterns are a deterministic feature of nonlinear systems. Bariviera (2011), and Bariviera et al. (2012) show that the correlation structure and informational efficiency are not constant through time and could be affected by several factors such as liquidity or economic shocks.



Given a time series of daily returns2 beginning on Monday, [image: ]. With a pattern length [image: ], following the Bandt and Pompe (2002) method, [image: ] partitions of the time series could be generated. Each partition is a five-dimensional vector [image: ], which represents a whole trading week. Each return is associated with a day of the week. For simplicity, we have [image: ] standing for Monday through Friday. The method sets the elements of each vector in increasing order. Doing so, each vector of returns is converted into a symbol. For example, if in a given week [image: ], where [image: ] represents return on day [image: ], the pattern is [image: ]. There are [image: ] possible permutations. Each permutation produces a different pattern (P) and the associated frequencies can be easily computed. Each pattern has a frequency of appearance in the time series. Carpi et al. (2010) asserts that in correlated stochastic processes, pattern-frequency observations do not depend only on the time series’ length but also on the underlying correlation structure. Amigó et al. (2007, 2008) show that in uncorrelated stochastic processes, every ordinal pattern has an equal probability of appearance. Given that the ordinal pattern’s associated PDF is invariant with respect to nonlinear monotonous transformations, the method of Bandt and Pompe (2002) results suitable for experimental data (see e.g., Parlitz et al. 2012; Saco et al. 2010). A graphical meaning of the ordinal pattern can be seen in Parlitz et al. (2012).




3. Day-of-the-Week Effect: A Redefinition of the Problem


As recalled in Section 1, the conventional definition of the day-of-the-week effect refers to the abnormal negative or abnormal positive returns on Monday and Friday, respectively. Since not all the markets are open on the same days, comparisons among countries could be difficult. For example, the Israeli market is open from Sunday through Thursday (Lauterbach and Ungar (1992)) and the first day of the week in the Kuwait Stock Exchange is Saturday (Al-Loughani and Chappell 2001). Additionally, markets are not open simultaneously, due to the different time zones (Koh and Wong 2000). Consequently, spill-over effects can influence returns and could distort results if such influence is not incorporated into the model.



In order to overcome these difficulties, we develop here a more general definition of the day-of-the-week effect that exploits the potential of the symbolic analysis of time series. Instead of estimating the return on each day by means of Equation (2), we will look at the relative position of the return on each day within its week. If there is no seasonal effect, the order in which the days appear in each position (from the worst until the best return of the week), should be random. Otherwise, a seasonal pattern would be detected.



First, we need to give an specific definition of our seasonal effect. It must be emphasized that, according to our proposal, we are not interested in detecting abnormal negative or positive returns on a given day. Instead, we are looking for the features of the return on a given day within its week, from the worst return of the week to the best return, independently of its sign. Thus, a new definition of the day-of-the-week effect is required.



Definition 1.

The day-of-the-week effect occurs whenever a pattern appears much more or less frequently than expected by the uniform distribution.





From this definition a natural null hypotheses arises:



Hypothesis 1.



[image: ]



(3)




where [image: ], [image: ], stands for “absolute frequency of pattern k”.





Since we are interested in studying the day-of-the week effect, testing this hypothesis is insufficient for our purposes.



We should count the number of times in which a given day exhibits the worst return of the week, the next to worst return, and so on, until the best return of the week is detected. In other words, we should count the number of times a given day i occupies the first, second, third, fourth, or fifth position in a pattern and place the absolute frequencies in a matrix as follows:



Definition 2.

Let [image: ] be a 5 × 5 matrix. Element [image: ] is the absolute frequency of return on day i at the position j.





Displaying results in this way, we count how many times a given day is in position 0 (the worst return of the week), position 1, position 2, position 3, and position 4 (the best return of the week). As a consequence, we advance two additional hypotheses:



Hypothesis 2.



[image: ]
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This hypothesis says that a given day i could occupy any position, from the worst to the best return, within a week.



Hypothesis 3.



[image: ]



(5)









This hypothesis says that a given position in the week j could be occupied by any day of the week.



All these null hypotheses could be tested using Pearson’s chi-squared test. This test is useful to verify if there is a significant difference between an expected frequency distribution and an observed frequency distribution. Following Fernández Loureiro (2011) the test statistic is:


[image: ]



(6)




where [image: ] is the observed frequency of day i at position j, and [image: ] is the expected frequency [image: ]. Q is distributed asymptotically as a [image: ] with 4 degrees of freedom.



We advance two additional hypotheses focused on the so-called “Monday effect”.



Hypothesis 4.



[image: ]
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This hypothesis tests whether patterns with Monday having the largest return are preferred patterns or not. Pattern numbers [image: ] correspond to those displayed in Table 1.


Table 1. Ordinal patterns. Each number [image: ] of a pattern represents a day of the week, beginning on Monday. The position of the numbers in a pattern represents the increasing order of returns within a week.


	[image: ]
	Pattern
	[image: ]
	Pattern
	[image: ]
	Pattern
	[image: ]
	Pattern
	[image: ]
	Pattern





	1
	01234
	25
	10234
	49
	20134
	73
	30124
	97
	40123



	2
	01243
	26
	10243
	50
	20143
	74
	30142
	98
	40132



	3
	01324
	27
	10324
	51
	20314
	75
	30214
	99
	40213



	4
	01342
	28
	10342
	52
	20341
	76
	30241
	100
	40231



	5
	01423
	29
	10423
	53
	20413
	77
	30412
	101
	40312



	6
	01432
	30
	10432
	54
	20431
	78
	30421
	102
	40321



	7
	02134
	31
	12034
	55
	21034
	79
	31024
	103
	41023



	8
	02143
	32
	12043
	56
	21043
	80
	31042
	104
	41032



	9
	02314
	33
	12304
	57
	21304
	81
	31204
	105
	41203



	10
	02341
	34
	12340
	58
	21340
	82
	31240
	106
	41230



	11
	02413
	35
	12403
	59
	21403
	83
	31402
	107
	41302



	12
	02431
	36
	12430
	60
	21430
	84
	31420
	108
	41320



	13
	03124
	37
	13024
	61
	23014
	85
	32014
	109
	42013



	14
	03142
	38
	13042
	62
	23041
	86
	32041
	110
	42031



	15
	03214
	39
	13204
	63
	23104
	87
	32104
	111
	42103



	16
	03241
	40
	13240
	64
	23140
	88
	32140
	112
	42130



	17
	03412
	41
	13402
	65
	23401
	89
	32401
	113
	42301



	18
	03421
	42
	13420
	66
	23410
	90
	32410
	114
	42310



	19
	04123
	43
	14023
	67
	24013
	91
	34012
	115
	43012



	20
	04132
	44
	14032
	68
	24031
	92
	34021
	116
	43021



	21
	04213
	45
	14203
	69
	24103
	93
	34102
	117
	43102



	22
	04231
	46
	14230
	70
	24130
	94
	34120
	118
	43120



	23
	04312
	47
	14302
	71
	24301
	95
	34201
	119
	43201



	24
	04321
	48
	14320
	72
	24310
	96
	34210
	120
	43210









Hypothesis 5.



[image: ]
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This hypothesis tests whether the patterns with Monday exhibiting the lowest weekly return and Friday the largest are preferred patterns or not.



These hypotheses are tested using the binomial test, which for large samples can be approximated by the normal distribution. The test statistic is:


[image: ]



(9)




where [image: ] is the observed frequency, [image: ], [image: ] is the expected frequency, and N is the number of “weeks”, i.e., the number of 5-day patterns in the sample.



Our definition assumes that the day-of-the-week effect could be produced by the dependence among days of the same week. However, by splitting time series into weeks, we implicitly assume the independence among weeks. Even though this later assumption may be questionable, we do it this way in order to emphasize the order of the returns within the week. We could relax this assumption by moving data daily, instead of weekly. In this way, we could compare if, e.g., Friday in week t influences Monday in week [image: ] However, it could result in a more confused analysis, and we thus leave this for further research.




4. Simulation of Fractional Brownian Motion


In this section we apply the above-outlined technique to simulated time series. We used the MATLAB[image: ]wfbm function in order to simulate fractional Brownian motion for [image: ], where [image: ] is the Hurst exponent. Then, we take first differences in the time series in order to obtain the corresponding fractional Gaussian noise (fGn). The Hurst exponent H characterizes the scaling behavior of the range of cumulative departures of a time series from its mean. The study of long-range dependence can be traced back to a seminal paper by Hurst (1951), whose original methodology was applied to detect long memory in hydrologic time series. This method was also explored by Mandelbrot and Wallis (1968) and later introduced in the study of economic time series by Mandelbrot (1972). If the series of first differences is a white noise, then its [image: ]. Alternatively, Hurst exponents greater than 0.5 reflect persistent processes and less than 0.5 define antipersistent processes.



We perform 1000 simulations consisting of 10,000 data-points for each value of [image: ]. Accordingly, we obtain 2000 “weeks”, which will be classified into one of the [image: ] possible patterns. If the underlying stochastic process is purely random and uncorrelated, the frequency of patterns should be uniform. On the contrary, if some correlation is present, some patterns could be preferred over others. All the tests are performed at a [image: ] significance level.



In Table 2 we test the equality of patterns (Hypothesis 1). When [image: ] (ordinary Gaussian noise), we cannot reject, on average, the null hypothesis of equal appearance of patterns. Out of the 1000 simulations, only in 50 cases is the null hypothesis rejected. When we move away from [image: ], in both directions, rejection increases almost symmetrically. This clearly shows that some kind of correlation affects the distribution of ordinal patterns.



Table 2. Test of Hypothesis 1 on simulated series.



	
[image: ]

	

	

	
[image: ]

	

	






	
0.1

	
[image: ]

	
224.82856 ***

	
0.6

	
[image: ]

	
20.42699




	
#rejections

	
1000

	
#rejections

	
348




	
0.2

	
[image: ]

	
140.50932 *

	
0.7

	
[image: ]

	
86.57005




	
#rejections

	
1000

	
#rejections

	
996




	
0.3

	
[image: ]

	
67.89548

	
0.8

	
[image: ]

	
204.51209 ***




	
#rejections

	
970

	
#rejections

	
1000




	
0.4

	
[image: ]

	
18.10740

	
0.9

	
[image: ]

	
386.14031 ***




	
#rejections

	
317

	
#rejections

	
1000




	
0.5

	
[image: ]

	
0.13315

	

	

	




	
#rejections

	
50

	

	

	








*, **, ***: significant at the 10%, 5%, and 1% levels, respectively.








As commented in the previous section, this analysis is not sufficient. Therefore, we proceed to test Hypothesis 2 and present the pertinent results in Table 3. We test the hypothesis (for every [image: ] value) for each of the samples and for the average of the samples. We find that for [image: ] we cannot reject the null hypothesis. In fact, rejection occurs in only 51–59 times out of 1000 samples. In other words, when the generating stochastic process is a white noise, any day is equally prone to occupying any of the positions in the pattern. This is the same as saying that any day could exhibit the best or the worst return of the week, or any intermediate value among them. When we move away from the value 0.5, rejections increase. However, the effect is stronger for [image: ] than for [image: ]. This could mean that a positive long -range correlation (i.e., a persistent time series) is more likely to exhibit a day-of-the-week behavior than anti-persistent time series. Additionally, Monday, Wednesday, and Friday are the days most affected by the value-change of [image: ].



Table 3. Test of Hypothesis 2 on simulated series.



	
[image: ]

	

	
M

	
T

	
X

	
T

	
F






	
0.1

	
[image: ]

	
5.47646

	
1.94578

	
5.40877

	
2.06613

	
5.80607




	
#rejections

	
461

	
176

	
437

	
176

	
464




	
0.2

	
[image: ]

	
3.83407

	
1.34267

	
3.30037

	
1.33138

	
3.83153




	
#rejections

	
308

	
124

	
275

	
139

	
318




	
0.3

	
[image: ]

	
1.95798

	
0.62585

	
1.79598

	
0.59399

	
2.03637




	
#rejections

	
186

	
87

	
146

	
86

	
162




	
0.4

	
[image: ]

	
0.62419

	
0.17731

	
0.47961

	
0.22011

	
0.60417




	
#rejections

	
82

	
54

	
78

	
57

	
71




	
0.5

	
[image: ]

	
0.00666

	
0.00304

	
0.00078

	
0.00500

	
0.00159




	
#rejections

	
51

	
53

	
54

	
57

	
59




	
0.6

	
[image: ]

	
0.76829

	
0.25922

	
0.67148

	
0.25509

	
0.87231




	
#rejections

	
95

	
68

	
79

	
66

	
93




	
0.7

	
[image: ]

	
3.94460

	
1.16245

	
3.40845

	
1.22150

	
3.72159




	
#rejections

	
318

	
123

	
293

	
114

	
320




	
0.8

	
[image: ]

	
9.90281 **

	
3.44099

	
8.96147 *

	
3.61403

	
9.96604 **




	
#rejections

	
706

	
270

	
657

	
295

	
719




	
0.9

	
[image: ]

	
20.42595 ***

	
7.95607 *

	
20.65903 ***

	
7.86588 *

	
20.71557 ***




	
#rejections

	
960

	
572

	
966

	
596

	
966








*, **, ***: significant at the 10%, 5% and 1% levels, respectively.








Regarding Hypothesis 3, results are displayed in Table 4. In the case of the uncorrelated process ([image: ]), one encounters that how good or bad the return is within a trading week is independent of the day of the week. This hypothesis is only rejected only 59 times out of the 1000 simulations. When we move away, and then correlations become stronger, and patterns exhibit some degree of preference, increasing the number of rejections. As in the case of Hypothesis 3, rejections are more frequent in the case of persistent time series.



Table 4. Test of Hypothesis 3 in simulated series.



	
[image: ]

	

	
Worst Return

	

	

	

	
Best Return






	
0.1

	
[image: ]

	
5.66761

	
2.40628

	
4.47306

	
2.35024

	
5.80600




	
#rejections

	
461

	
193

	
357

	
188

	
471




	
0.2

	
[image: ]

	
3.69734

	
1.58367

	
2.83837

	
1.46318

	
4.05746




	
#rejections

	
299

	
133

	
220

	
144

	
335




	
0.3

	
[image: ]

	
2.08654

	
0.68270

	
1.44706

	
0.80686

	
1.98700




	
#rejections

	
187

	
95

	
117

	
82

	
181




	
0.4

	
[image: ]

	
0.48517

	
0.21129

	
0.42396

	
0.22292

	
0.76205




	
#rejections

	
73

	
60

	
68

	
51

	
89




	
0.5

	
[image: ]

	
0.00390

	
0.00301

	
0.00335

	
0.00009

	
0.00673




	
#rejections

	
58

	
57

	
59

	
49

	
37




	
0.6

	
[image: ]

	
0.78880

	
0.34282

	
0.58457

	
0.24124

	
0.86898




	
#rejections

	
95

	
66

	
85

	
56

	
91




	
0.7

	
[image: ]

	
3.72085

	
1.27291

	
3.09096

	
1.35108

	
4.02279




	
p-value

	
0.44510

	
0.86595

	
0.54272

	
0.85265

	
0.40293




	
#rejections

	
294

	
115

	
264

	
127

	
315




	
0.8

	
[image: ]

	
10.08089 **

	
3.67766

	
8.59256 *

	
3.66076

	
9.87346 **




	
#rejections

	
700

	
306

	
631

	
296

	
700




	
0.9

	
[image: ]

	
20.63329 ***

	
8.33357 *

	
20.41387 ***

	
7.67672

	
20.56505 ***




	
#rejections

	
965

	
617

	
963

	
570

	
962








*, **, ***: significant at the 10%, 5%, and 1% levels, respectively.








Hypothesis 4 tests whether the presence of patterns with Monday as the largest return is in agreement with the uniform distribution. There are 24 patterns with Monday as the last element. Consequently, the expected frequency is 0.2. Table 5 displays the results of the simulations. In the case of a pure Gaussian noise, we cannot reject the null hypothesis, as in only 117 out of the 1000 trials we reject it. However, increasing the Hurst exponent produces an increment in the number of rejections. Additionally, we observe that larger Hurst values are associated with greater observed frequency of patterns with Monday as largest return. However, we cannot reject the null hypothesis until [image: ] or higher.


Table 5. Test of Hypothesis 4 in simulated series.


	Hurst
	[image: ]
	[image: ]
	[image: ]
	z
	# of Rejections
	# [image: ]





	0.10
	0.20
	0.18850
	0.81150
	0.97729
	306
	161



	0.20
	0.20
	0.19034
	0.80966
	0.81787
	232
	222



	0.30
	0.20
	0.19397
	0.80603
	0.50693
	172
	275



	0.40
	0.20
	0.19742
	0.80258
	0.21572
	124
	359



	0.50
	0.20
	0.20243
	0.79757
	−0.20089
	117
	507



	0.60
	0.20
	0.20842
	0.79158
	−0.68858
	107
	670



	0.70
	0.20
	0.21406
	0.78594
	−1.13915
	225
	839



	0.80
	0.20
	0.22125
	0.77875
	−1.70120 **
	380
	924



	0.90
	0.20
	0.22867
	0.77133
	−2.26805 **
	627
	983







**: significant at the 5% level.








Hypothesis 5 tests the presence of a weekly seasonality with Monday as the smallest return of the week and Friday as the largest. There are six patterns with this structure. In analogy with the preceding finding, for an uncorrelated noise, this pattern is neither a preferred nor a rare one. Nevertheless, the increase of the Hurst exponent produces a quick increase in the number of rejections: 309 out of 1000 when [image: ]. More impressive is how preferred this pattern is in most of the simulations. For [image: ], in 698 simulations, the observed frequency of these six patterns was above expectations, and for [image: ], [image: ] in 873 simulations (see Table 6).


Table 6. Test of Hypothesis 5 in simulated series.


	Hurst
	[image: ]
	[image: ]
	[image: ]
	z
	# of Rejections
	# [image: ]





	0.1
	0.05
	0.04013
	0.95987
	1.67154 **
	562
	45



	0.2
	0.05
	0.04263
	0.95737
	1.21287
	427
	91



	0.3
	0.05
	0.04531
	0.95469
	0.74944
	302
	155



	0.4
	0.05
	0.04824
	0.95176
	0.27363
	174
	290



	0.5
	0.05
	0.05197
	0.94803
	−0.29438
	78
	507



	0.6
	0.05
	0.05588
	0.94412
	−0.85028
	119
	698



	0.7
	0.05
	0.06074
	0.93926
	−1.49392 *
	309
	873



	0.8
	0.05
	0.06681
	0.93319
	−2.23719 **
	589
	983



	0.9
	0.05
	0.07376
	0.92624
	−3.01987 ***
	856
	998







*, **, ***: significant at the 10%, 5%, and 1% levels, respectively.








Symbolic analysis is powerful for detecting nontrivial hidden correlations in data. As shown by Carpi et al. (2010); Rosso et al. (2012), a correlated structure as produced by fractional Gaussian noise processes generates an uneven presence of patterns. Provided a sufficiently long time series, no pattern is forbidden. However, a strongly correlated structure produces the emergence of preferred and rare patterns.



Our artificial time series are larger than the usual data sets used in economics. Consequently, the presence of preferred patterns such as the ones evaluated in Hypothesis 5 casts doubts on the validity of previous findings of day-of-the-week. In particular, we claim that, in view of our results, the day-of-the-week effect is mainly produced by a complex correlation structure of the pertinent data.




5. Empirical Application


We used daily data of the NYSE Composite Price Index from 3 January 1966 to 8 December 2017, with a total of 13,550 observations. All data used in this paper was retrieved from Datastream. We split the sample into four non-overlapping periods of equal length (3050 data points), and a final period of 1350 datapoints, in order to verify the temporal evolution of the seasonal effect. We compute daily log returns in order to apply our test.



Regarding Hypothesis 1 (see Table 7), we find, in the whole sample, no forbidden patterns. Under these circumstances, we should discard chaotic behavior in the time series (Rosso et al. 2012). The least frequent pattern, with an absolute frequency equal to 7, is 42013 (i.e., [image: ]). The most frequent patterns, with an absolute frequency equal to 34, are 03421 and 04312 (i.e., [image: ] and [image: ], respectively). As stated in Section 2, if data was generated at random, i.e., if no seasonal effect exists, patterns should uniformly appear, configurating the histogram of a uniform distribution. However, as seen in Figure 1, ours is a far from uniform distribution.


Figure 1. Histogram of pattern frequency for the whole period.



[image: Econometrics 06 00003 g001]





Table 7. Absolute frequency of each pattern. Whole period: 3 January 1966–8 December 2017. Each number [image: ] of a pattern represents a day of the week, beginning on Monday. The position of the numbers in a pattern represents the increasing order of returns within a week.


	Pattern
	Abs. Freq.
	Pattern
	Abs. Freq.
	Pattern
	Abs. Freq.
	Pattern
	Abs. Freq.





	42013
	7
	14320
	16
	42031
	20
	21403
	24



	23041
	10
	20314
	16
	42301
	20
	32140
	24



	24013
	10
	23140
	16
	43012
	20
	42310
	24



	02413
	11
	31204
	16
	43210
	20
	02431
	25



	13240
	11
	04213
	17
	10324
	21
	04123
	25



	13402
	11
	20413
	17
	12043
	21
	01423
	26



	23104
	11
	40312
	17
	13042
	21
	03412
	26



	30124
	11
	41230
	17
	14032
	21
	20134
	26



	40123
	11
	20431
	18
	34201
	21
	34012
	26



	40132
	11
	23410
	18
	02134
	22
	34210
	26



	41203
	11
	40231
	18
	03124
	22
	01342
	27



	43102
	11
	02143
	19
	10432
	22
	12403
	27



	20143
	12
	02341
	19
	21340
	22
	31420
	27



	24310
	12
	03142
	19
	21430
	22
	34021
	27



	42103
	12
	10342
	19
	24301
	22
	43201
	27



	20341
	13
	12340
	19
	32014
	22
	02314
	28



	23014
	13
	23401
	19
	34102
	22
	10423
	28



	13024
	14
	24031
	19
	41302
	22
	21304
	28



	14203
	14
	30421
	19
	01243
	23
	01234
	29



	24103
	14
	32041
	19
	03241
	23
	34120
	29



	24130
	14
	41032
	19
	10234
	23
	10243
	30



	31024
	14
	42130
	19
	12034
	23
	14023
	30



	41320
	14
	43120
	19
	14302
	23
	01432
	31



	30142
	15
	01324
	20
	21034
	23
	04132
	31



	30214
	15
	12430
	20
	32104
	23
	04231
	31



	30412
	15
	31042
	20
	03214
	24
	30241
	31



	40213
	15
	31402
	20
	04321
	24
	31240
	31



	41023
	15
	32401
	20
	13204
	24
	43021
	31



	12304
	16
	32410
	20
	14230
	24
	03421
	34



	13420
	16
	40321
	20
	21043
	24
	04312
	34









Table 8 exhibits frequencies and tests for Hypotheses 2 and 3. Following the horizontal lines of the table, we test whether a given day indifferently occupies any position in the returns of the week. Along the vertical sense of the table, we test whether a given position within a week is indifferently occupied by any day.



Table 8. Absolute frequency of each day in each position. Whole period: 3 January 1966–8 December 2017. Columns 2 to 6 reflect the frequency a given day in terms of the worst return of its week, the next to worst return, etc. until the best return of its week. Q is the [image: ] statistic defined in Equation (6). Hurst = 0.5471.



	

	
Worst Return

	

	
Best Return

	
Q






	
Monday

	
637

	
503

	
537

	
501

	
532

	
22.78967 ***




	
Tuesday

	
557

	
572

	
475

	
509

	
597

	
17.94834 ***




	
Wednesday

	
479

	
540

	
564

	
564

	
563

	
9.92989 **




	
Thursday

	
570

	
505

	
564

	
581

	
490

	
12.66052 **




	
Friday

	
467

	
590

	
570

	
555

	
528

	
16.74908 ***




	
Total

	
2710

	
2710

	
2710

	
2710

	
2710

	




	
Q

	
36.21402 ***

	
11.25092 **

	
11.56089 **

	
9.12177 *

	
11.92989 **

	








*, **, ***: significant at the 10%, 5%, and 1% levels, respectively.








Regarding the whole period, we observe that we cannot accept the null hypothesis of equal distribution of returns across the week. In fact, if we observe Table 8, Monday acquires the lowest return of the week more frequently than any other week-day.



In order to justify the fact that intrinsic temporal correlations play a significant role in the ordinal patterns, we have also estimated the frequency of the patterns for the shuffled return data. “Shuffled” realizations of the original data are obtained by permuting them in random order, and eliminating, consequently, all non-trivial temporal correlations. From Table 9, we observe that patterns are distributed in a more or less uniform fashion and, consequently, we cannot reject the null hypotheses. Therefore, the results of our test are not due to chance.



Table 9. Absolute frequency of each day in each position with shuffled data for the whole period. Columns 2 to 6 reflect the frequency a given day in terms of the worst return of its week, the next to worst return, etc. until the best return of its week. Q is the [image: ] statistic defined in Equation (6).



	

	
Worst Return

	

	
Best Return

	
Q






	
Mo

	
506

	
469

	
501

	
484

	
480

	
1.91393




	
Tu

	
488

	
508

	
472

	
498

	
474

	
1.95082




	
We

	
513

	
475

	
491

	
471

	
490

	
2.24590




	
Th

	
479

	
491

	
509

	
482

	
479

	
1.32787




	
Fr

	
454

	
497

	
467

	
505

	
517

	
5.75410




	
Total

	
2440

	
2440

	
2440

	
2440

	
2440

	




	
Q

	
4.47951

	
2.09016

	
2.69672

	
1.49590

	
2.43033

	










If we analyze the evolution of the daily seasonal behavior through time, it is clear that the day-of-the-week effect disappears in daily returns of the NYSE Composite index. Results are reflected in Table 10, Table 11, Table 12, Table 13 and Table 14. Considering the last subperiod, only Tuesday’s effect remains. Tuesday is the most frequent day in the worst position and Friday tends to occupy the best return within each week. However, we cannot reject that the worst return of the week can be occupied by any other week- day. According to this analysis we observe, in agreement with the literature, a disappearing weekly effect in daily returns in the US market. This disappearing effect is related to the hidden underlying dynamics of data, rather than markets participant behavior, as was classically envisaged in the literature. We would like to emphasize that our test unveils the hidden correlation structure of daily returns. As in the case of the artificial generated series, the pattern behavior in real time series is strongly affected by the long memory of data.



Table 10. Absolute frequency of each day in each position. Subperiod 1: 3 January 1966–9 September 1977. Columns 2 to 6 reflect the frequency a given day in terms of the worst return of its week, the next to worst return, etc. until the best return of its week. Q is the [image: ] statistic defined in Equation (6). Hurst = 0.5633.



	

	
Worst Return

	

	
Best Return

	
Q






	
Mo

	
182

	
121

	
105

	
97

	
105

	
39.37705 ***




	
Tu

	
108

	
145

	
107

	
124

	
126

	
7.95082 *




	
We

	
108

	
99

	
120

	
142

	
141

	
12.21311 **




	
Th

	
116

	
119

	
138

	
132

	
105

	
5.65574




	
Fr

	
96

	
126

	
140

	
115

	
133

	
9.72131 **




	
Total

	
610

	
610

	
610

	
610

	
610

	




	
Q

	
38.55738 ***

	
8.88525 *

	
9.00000 *

	
9.65574 **

	
8.81967 *

	








*, **, ***: significant at the 10%, 5%, and 1% levels, respectively.








Table 11. Absolute frequency of each day in each position. Subperiod 2: 12 September 1977–19 May 1989. Columns 2 to 6 reflect the frequency a given day is the worst return of its week, the next to worst return, etc. until the best return of its week. Q is the [image: ] statistic defined in Equation (6). Hurst = 0.5168.



	

	
Worst Return

	

	
Best Return

	
Q






	
Mo

	
165

	
111

	
110

	
107

	
117

	
19.37705 ***




	
Tu

	
138

	
117

	
111

	
104

	
140

	
8.60656 *




	
We

	
100

	
125

	
129

	
131

	
125

	
5.18033




	
Th

	
112

	
119

	
129

	
148

	
102

	
10.11475 **




	
Fr

	
95

	
138

	
131

	
120

	
126

	
8.90164 *




	
Total

	
610

	
610

	
610

	
610

	
610

	




	
Q

	
28.01639 ***

	
3.44262

	
3.63934

	
10.73770 **

	
6.34426

	








*, **, ***: significant at the 10%, 5%, and 1% levels, respectively.








Table 12. Absolute frequency of each day in each position. Subperiod 3: 22 May 1989–26 January 2001. Columns 2 to 6 reflect the frequency a given day in terms of the worst return of the week, the next to worst return, etc. until the best return of its week. Q is the [image: ] statistic defined in Equation (6). Hurst = 0.4453.



	

	
Worst Return

	

	
Best Return

	
Q






	
Mo

	
109

	
105

	
133

	
126

	
137

	
6.72131




	
Tu

	
136

	
124

	
103

	
119

	
128

	
4.96721




	
We

	
89

	
141

	
147

	
125

	
108

	
18.68852 ***




	
Th

	
154

	
117

	
108

	
123

	
108

	
11.81967 **




	
Fr

	
122

	
123

	
119

	
117

	
129

	
0.68852




	
Total

	
610

	
610

	
610

	
610

	
610

	




	
Q

	
20.31148 ***

	
5.57377

	
10.75410 **

	
0.49180

	
5.75410

	








**, ***: significant at the 5%, and 1% levels, respectively.








Table 13. Absolute frequency of each day in each position. Subperiod 4: 29 January 2001–5 October 2012. Columns 2 to 6 reflect the frequency a given day in terms of the worst return of the week, the next to worst return, etc. until the best return of its week. Q is the [image: ] statistic defined in Equation (6). Hurst = 0.4983



	

	
Worst Return

	

	
Best Return

	
Q






	
Mo

	
134

	
106

	
121

	
128

	
121

	
3.59016




	
Tu

	
112

	
139

	
117

	
106

	
136

	
7.09836




	
We

	
126

	
115

	
125

	
115

	
129

	
1.40984




	
Th

	
131

	
105

	
121

	
125

	
128

	
3.40984




	
Fr

	
107

	
145

	
126

	
136

	
96

	
13.45902 ***




	
Total

	
610

	
610

	
610

	
610

	
610

	




	
Q

	
4.63934

	
11.57377 **

	
0.42623

	
4.47541

	
7.85246 *

	








*, **, ***: significant at the 10%, 5%, and 1% levels, respectively.







Table 14. Absolute frequency of each day in each position. Subperiod 5: 8 October 2012–8 December 2017. Columns 2 to 6 reflect the frequency a given day in terms of the worst return of the week, the next to worst return, etc. until the best return of its week. Q is the [image: ] statistic defined in Equation (6). Hurst = 0.4914.











	
	Worst Return
	
	
	
	Best Return
	Q





	Mo
	47
	60
	68
	43
	52
	7.51852



	Tu.
	63
	47
	37
	56
	67
	10.96296 **



	We
	56
	60
	43
	51
	60
	3.81481



	Th
	57
	45
	68
	53
	47
	6.22222



	Fr
	47
	58
	54
	67
	44
	6.18519



	Total
	270
	270
	270
	270
	270
	



	Q
	3.55556
	4.03704
	14.85185 ***
	5.62963
	6.62963
	







**, ***: significant at the 5%, and 1% levels, respectively.








An important difference between real and simulated data is that, whereas in the controlled experiment the Hurst exponent is, by definition, constant across all the time series, in the case of real data, the Hurst exponent tends to vary across time (see e.g., Bariviera et al. 2012; Cajueiro and Tabak 2004a, 2004b). This situation makes a direct comparison between both results difficult. Moreover, we can observe that the power of the test is more sensitive for [image: ] in detecting the Monday effect (see Table 6 ). In fact, for [image: ], the test rejects 856 out of the 1000 simulated series. Another factor that influences results is the time series length. As recalled by Rosso et al. (2012), short time series could result in the incorrect detection of forbidden patterns.



In the Supplementary Material file we present the simulation and test of hypotheses for shorter time series. Additionally, we perform an exhaustive analysis of 83 stock indices with different Hurst levels. We can observe that greater Hurst levels are associated with more significant presence of preferred patterns.



It is clear that theoretical and empirical analyses exhibit some differences. We have to acknowledge that real stock markets dynamics do not follow a pure fGn . In fact, long-range dependence is not only seen in financial time series, but also in volatility, as shown recently by Bariviera (2017). Precisely, more advanced models such as the fractional normal tempered stable process presented by Kim (2012, 2015), allow for long-range dependence in both volatility and noise, and asymmetric dependence structure for the joint distribution. There are many economic variables that influence behaviors known as “stylized facts” of financial time series: volatility clustering, fat tails, asymmetric dependence, etc. For example, Kim (2016) found that long-range dependence increased more in volatile markets during the Lehman Brothers collapse.



We try to emphasize in this paper that, even using a simple model such as a fGn, some part of the seasonal effect is simply due to the correlation structure of data, and not only due to economic reasons. This finding could be used as a starting point in further research in order to apply prewhitening to time series prior to its analysis in order to obtain more reliable results.




6. Conclusions


We propose a more general definition of the day-of-the-week effect. We use symbolic time series analysis in order to develop a test to detect it. According to Definition 1, this effect takes place when a pattern is much more or much less frequent than expected from the uniform distribution. The nature of the seasonal effect is reflected in a frequency matrix (Definition 2), and a [image: ] test is performed. The new definition allows for a more general and comprehensive study on return seasonality. We would like to highlight that the methodology we use here is unique in that it is nonlinear, ordinal, and requires no a priori model. Additionally, it provides statistical results in terms of a probability density function. To the extent of our knowledge, time series analysis has not been used in a similar methodology before.



Both theoretical and empirical applications show that this method could be useful to discriminate between rare and preferred patterns of a time series. We show that the so-called day-of-the-week effect is influenced not only by traders’ behavior or economic variables. It could be also be induced by the stochastic generating process of data. The findings in this paper could be taken into account in future research, aiming at the separation between the economics causes and the long-range correlation causes of this financial phenomenon.
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1According to Kuhn (1968), an anomaly is a fact that puts into question an established paradigm.



	
2Let us assume that the time series is characterized by a continuous distribution.
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