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Overview of Appendices

In the following section we provide supplementary information to the studies discussed in the
main part of the manuscript,

e in Appendix A we provide the detailed overview of the time series analysed in this study and
discussed in Section 2 along with their Bloomberg identifiers;

e in Appendix C we describe the EM algorithm for the standard Gaussian PPCA and its robust
variant, robust Gaussian PPCA, as a complementary theory to Section 4;

e in Appendix D we show the proofs to the theorems related to the steps of EM algorithm and
discussed in Section 4. The section is divided into the part corresponding to the EM algorithms
for t-Student IND and t-Student IID PPCA, respectively.

e in Appendix E we illustrate the results of the synthetic data studies which we conducted to
examine the sensitivity, convergence and robustness of various PPCA frameworks. We study
the behaviour of the methodologies under various data characteristics such as dimensionality,
sample size, proportions of missingness and perturbation and types of the data corruption;

o in Appendix F we detail the supplementary results to the real data case studies.

Appendix A. Data Description

The following section provides detail discussion on financial and macroeconomic data sets used
in this study and briefly overviewed in Section 2.

A.1. Euro Libor Yield Curve

The Libor rate is the benchmark of interbank interest rates estimated by large global banks in
London. It represents an average cost of short-term loans which are charged when one bank borrows
funds from other banks for a given period of time. It is calculated by Intercontinental Exchange and
published daily by Thomson Reuters. The currently active maturities for which the Libor rates are
specified include 1 day, 1 week, 1 month, 2 months, 3 months, 6 months and 12 months. For further
details of the calculation methodology please refer to the ICE Libor official website.

Euro Libor denotes Libor rate for interbank deals denominated in Euro currency. The yield curve
used in this study is sourced from Bloomberg using the identifiers given in Table SI.
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Table S1. The availability and the Bloomberg identifiers (tickers) of Euro Libor yield curves sourced

from Bloomberg.

[ Maturity | Ticker Availability [[ Maturity [ Ticker Availability |

1w EUR001IW 01/2006 - 08/2017 7Y EUSW7V3 01/2006 - 08/2017
™M EUR001IM 01/2006 - 08/2017 8Y EUSWS8V3 01/2006 - 08/2017
M EUR002M 01/2006 - 08/2017 9Y EUSWIV3 01/2006 - 08/2017
3M EUR003M 01/2006 - 08/2017 10Y EUSW10V3 01/2006 - 08/2017
1Y EUSW1VC 01/2006 - 08/2017 15Y EUSW15V3 01/2006 - 08/2017
2Y EUSW2V3 01/2006 - 08/2017 20Y EUSW20V3 01/2006 - 08/2017
3Y EUSW3V3 01/2006 - 08/2017 25Y EUSW25V3 01/2006 - 08/2017
5Y EUSW5V3 01/2006 - 08/2017

The time series span from 01/01/2006 - 14/08/2017 for maturities 1 week (1W), 1 month (1M),
2 months (2M), 3 months (3M), 1 year (1Y), 2 years (2Y), 3 years (3Y), 5 years (5Y), 7 years (7Y), 8
years (8Y), 9 years (9Y), 10 years (10Y), 15 years (15Y), 20 years (20Y) and 25 years (25Y). We use Euro
Libor rates provided by Intercontinental Exchange up to 12 months, whereas additional 1Y and longer
maturities are represented by swap rates on Euro Libor. The panels in Figure S1 present the time
series of the Euro Libor yield curve at fixed tenors over time (left) and indicators of missing values
in the data over time (right) denoted by single crosses. The reader may notice that the rates
corresponding to the maturities less than 1 year, and provided by Intercontinental Exchange, are less
volatile than the instruments constructed using swap rates. In addition, the number of values which
are not available over time (are not observed) is much greater for smaller maturities and their
pattern is more regular. Furthermore, one can observe that the swap-related rates have the majority
of missing values before 2008 and 1Y having none.

(a) Euro Libor yield curve (b) The indicators of missing values
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Figure S1. The Euro Libor rates (%) (left panel) and the indicators of missing values (right panel) over time.
The different colours of lines in the left panel correspond to the rates with different maturities given in the
legend. In the right panel, a single cross indicates daily unavailability of an instrument. The missingness does not

correspond to weekends and holidays.

A.2. Country-Specific Sovereign Yield Curves

The full sample of country-specific sovereign yield curves consists of 94 time series of interest
rates corresponding to different maturities from the 12 countries listed in Table 1. The examined
sample spans 01/2006 - 12/2016. The sovereign yield curves are downloaded from Bloomberg using
the search query "GGR’ which lists generic rates for international government securities. The yields
are comprised of the most recently issued or closest current nominal maturity government security
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over time. One can locate the underlying benchmark bonds under Blomberg identifiers of sovereign

yield curves, given in Table S2.

Table S2. The availability and Bloomberg indentifiers (tickers) of the sovereign yield curves and inflation-

linek yield curves sourced from Bloomberg. The column Type indicate what are the benchmark instruments

of the inflation-linked yields, bond rates (1) or swap rates (2)

L Country Maturity H Ticker

Sovereign Yield Curve

Availability

Inflation-linked Yield Curve
Ticker

Availability J

3M GACGB3M Index 05/2009 - 12/2016
1Y GACGBI Index 01/2006 - 12/2016 AUSWIT1 Index 06/2007 - 12/2016
2Y GACGB2 Index 01/2006 - 12/2016 AUSWIT2 Index 06/2007 - 12/2016
5Y GACGBS Index 01/2006 - 12/2016 AUSWITS5 Index 06/2007 -12/2016
AU 7Y GACGBY Index 01/2006 - 12/2016 AUSWIT7 Index 06/2007 - 12/2016
10Y GACGBI10 Index 01/2006 - 12/2016 AUSWITI10 Index 06/2007 - 12/2016
15Y GACGBI15 Index 01/2006 - 12/2016 AUSWIT15 Index 06/2007 - 12/2016
20Y GACGB20 Index 11/2013 - 12/2016 AUSWIT20 Index 06/2007 - 12/2016
25Y AUSWIT25 Index 06/2007 - 12/2016
3M GEBRO3M Index 03/2007 - 12/2016
6M GEBRO6M Index 03/2007 - 12/2016
1Y GEBRO1Y Index 03/2007 - 12/2016
BZ 2Y GEBRO2Y Index 03/2007 - 12/2016
5Y GEBR5Y Index 01/2007 -12/2016
7Y GEBR7Y Index 01/2007 - 12/2016
10Y GEBR10Y Index 01/2007 - 12/2016
1Y GDBR1 Index 01/2006 - 12/2016 GRSWIT1 Curncy 04/2006 - 12/2016
2Y GDBR2 Index 01/2006 - 12/2016 GRSWIT2 Curncy 04/2006 - 12/2016
5Y GDBR5 Index 01/2006 - 12/2016 GRSWIT5 Curncy 04/2006 - 12/2016
GDBR5 Index 01/2006 - 12/2016 GEIL5Y Index 12/2008 - 12/2015
7Y GDBR?7 Index 01/2006 - 12/2016 GRSWIT? Curncy 04/2006 - 12/2016
DE GDBR? Index 01/2006 - 12/2016 GEIL7Y Index 12/2008 - 12/2016
10Y GDBR10 Index 01/2006 - 12/2016 GRSWIT10 Curncy 04/2006 - 12/2016
GDBR10 Index 01/2006 - 12/2016 GEIL10Y Index 06/2009 - 12/2016
15Y GDBR15 Index 05/2008 - 12/2016 GRSWIT15 Curncy 04/2006 - 12/2016
20Y GDBR20 Index 01/2006 - 12/2016 GRSWIT20 Curncy 04/2006 - 12/2016
25Y GRSWIT25 Curncy 04/2006 - 12/2016
3M GSPG3M Index 01/2006 - 12/2016
6M GSPG6M Index 01/2006 - 12/2016
1Y GSPGI12M Index 01/2006 - 12/2016 SPSWIT1 Index 01/2006 - 12/2016
2Y GSPG2YR Index 01/2006 - 12/2016 SPSWIT2 Index 01/2006 -12/2016
ES 5Y GSPG5YR Index 01/2006 - 12/2016 SPSWITS5 Index 01/2006 - 12/2016
7Y GSPG7YR Index 01/2006 - 12/2016 SPSWIT? Index 01/2006 - 12/2016
10Y GSPGI0YR Index 01/2006 - 12/2016 SPSWIT10 Index 01/2006 - 12/2016
15Y GSPGI15YR Index 01/2006 - 12/2016 SPSWIT15 Index 01/2006 - 12/2016
20Y SPSWIT20 Index 01/2006 - 12/2016
25Y SPSWIT25 Index 01/2006 - 12/2016
3M GBTF3MO Index 01/2006 - 12/2016
6M GBTF6MO Index 01/2006 - 12/2016
1Y GBTF1YR Index 01/2006 - 12/2016 FRSWI1 Index 01/2006 - 12/2016
2Y GFRN2 Index 01/2006 - 12/2016 GFRGINO2 Index 04/2009 - 06/2016
GFRN2 Index 01/2006 - 12/2016 FRSWI2 Index 01/2006 - 12/2016
5Y GFRNBS Index 01/2006 - 12/2016 GFRGINO5 Index 06/2006 - 12/2016
GFRNBS Index 01/2006 - 12/2016 FRSWI5 Index 01/2006 - 12/2016
FR 7Y GFRN7 Index 01/2006 - 12/2016 FRSWI7 Index 01/2006 - 12/2016
10Y GFRN10 Index 01/2006 - 12/2016 GFRGIN10 Index 06/2006 - 12/2016
GFRN10 Index 01/2006 - 12/2016 FRSWI10 Index 01/2006 - 12/2016
15Y GFRN15 Index 01/2006 - 12/2016 GFRGINT15 Index 04/2009 - 12/2016
GFRN15 Index 01/2006 - 12/2016 FRSWI15 Index 01/2006 - 12/2016
20Y GFRN20 Index 01/2006 - 12/2016 FRSWI20 Index 01/2006 - 12/2016
GFRN20 Index 01/2006 - 12/2016 GFRGIN20 Index 01/2008 - 06/2012
25Y FRSWI25 Index 01/2006 - 12/2016
3M GUKG3M Index 12/2008 - 12/2016
6M GUKG6M Index 08/2007 - 11/2016
1Y GUKGT Index 01/2006 - 12/2016 BPSWIT1 Index 01/2006 - 12/2016
2Y GUKG?2 Index 01/2006 - 12/2016 GUKGINO2 Index 01/2007 - 02/2010
GUKG?2 Index 01/2006 - 12/2016 BPSWIT2 Index 01/2006 - 12/2016
5Y GUKGS Index 01/2006 - 12/2016 GUKGINO5 Index 01/2006 - 12/2016
GB GUKGS Index 01/2006 - 12/2016 BPSWITS Index 01/2006 - 12/2016
7Y GUKG7 Index 01/2006 - 12/2016 BPSWIT? Index 01/2006 - 12/2016
10Y GUKGI10 Index 01/2006 - 12/2016 GUKGIN10 Index 01/2006 - 12/2016
GUKGI10 Index 01/2006 - 12/2016 BPSWIT10 Index 01/2006 - 12/2016
15Y GUKGI5 Index 01/2006 - 12/2016 BPSWIT15 Index 01/2006 - 12/2016
20Y GUKG20 Index 01/2006 - 12/2016 GUKGIN20 Index 01/2006 - 12/2016
GUKG20 Index 01/2006 - 12/2016 BPSWIT20 Index 01/2006 - 12/2016
25Y BPSWIT25 Index 01/2006 - 12/2016
3M GIGB3M Index 10/2013 - 11/2015
1Y GIGB1YR Index 01/2006 - 12/2016
2Y GIGB2YR Index 01/2006 - 12/2016
R 5Y GIGB5YR Index 01/2006 - 06/2016
7Y GIGB7YR Index 02/2006 - 12/2016
10Y GIGB10YR Index 01/2006 - 12/2016
15Y GIGB15YR Index 01/2006 - 12/2016
3M GBOTG3M Index 01/2006 - 12/2016
6M GBOTG6M Index 01/2006 - 12/2016
1Y GBOTG12M Index 01/2006 - 12/2016 GRITIL1 Index 06/2007 - 12/2016
GBOTG12M Index 01/2006 - 12/2016 ILSWI1 Index 01/2006 - 12/2016

Continue on the next page
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Table S2. The availability and the reference to the Bloomberg terminal (tickers) of the sovereign yield curves
and inflation-linked yield curves sourced from Bloomberg (cont.).

‘ Country Maturity ‘ ‘ Sovereign Yield Curve Inflation-linked Yield Curve

Ticker Availability ‘ ‘ Ticker Availability

2Y GBTP2YR Index 01/2006 - 12/2016 TLSWI2 Index 01/2006 - 12/2016
5Y GBTP5YR Index 01/2006 - 12/2016 GRITIL5 Index 06/2007 - 12/2016
GBTP5YR Index 01/2006 - 12/2016 ILSWI5 Index 01/2006 - 12/2016
7Y GBTP7YR Index 01/2006 - 12/2016 ILSWI7 Index 01/2006 - 12/2016
GBTP10YR Index 01/2006 - 12/2016 GRITIL10 Index 06/2007 - 12/2016
10Y GBTP10YR Index 01/2006 - 12/2016 TLSWI10 Index 01/2006 - 12/2016
GBTP15YR Index 02/2006 - 12/2016 GRITIL15 Index 05/2009 - 12/2016
15Y GBTP15YR Index 02/2006 - 12/2016 TLSWI15 Index 01/2006 - 12/2016
20Y GBTP20YR Index 02/2006 - 12/2016 TLSWI20 Index 01/2006 - 12/2016
25Y ILSWI25 Index 01/2006 - 12/2016
3M GJTB3MO Index 01/2006 - 12/2016
6M GJTB6MO Index 01/2006 - 12/2016
1Y GJGBI1 Index 01/2006 - 12/2016 JYSWIT1 Index 03/2007 - 12/2016
2Y GJGB2 Index 01/2006 - 12/2016 JYSWIT2 Index 03/2007 - 12/2016
5Y GJGB5 Index 01/2006 - 12/2016 JYSWITS Index 03/2007 - 12/2016
GJGBS5 Index 01/2006 - 12/2016 GJYGINO5 Index 07/2009 - 04/2014
P 7Y GJGBY7 Index 01/2006 - 12/2016 GJYGINO7 Index 07/2009 - 07/2012
GJGB7 Index 01/2006 - 12/2016 JYSWIT? Index 03/2007 - 12/2016
10Y GJGB10 Index 01/2006 - 12/2016 JYSWIT10 Index 03/2007 - 12/2016
GJGB10 Index 01/2006 - 12/2016 GJYGIN10 Index 01/2006 - 12/2016
15Y GJGB15 Index 01/2006 - 12/2016 JYSWIT15 Index 03/2007 - 12/2016
20Y GJGB20 Index 01/2006 - 12/2016 JYSWIT20 Index 03/2007 - 12/2016
25Y JYSWIT25 Index 03/2007 - 03/2015
3M GSPT3M Index 01/2006 - 12/2016
6M GSPT6M Index 01/2006 - 12/2016
1Y GSPT12M Index 01/2006 - 12/2016
2Y GSPT2YR Index 01/2006 - 12/2016
5Y GSPT5YR Index 01/2006 - 12/2016
PO 7Y GSPT7YR Index 01/2006 - 12/2016
10Y GSPT10YR Index 01/2006 - 12/2016
15Y GSPT15YR Index 02/2009 - 12/2016
1Y SASWIT1 Curncy 05/2007 - 12/2016
2Y GSAB2YR Index 01/2006 - 12/2016 SASWIT2 Curncy 05/2007 - 12/2016
5Y GSABS5YR Index 01/2006 - 12/2016 SASWIT5 Curncy 05/2007 - 12/2016
SA 7Y GSAB7YR Index 07/2007 - 12/2016 SASWIT7 Curncy 05/2007 - 12/2016
10Y GSABI0YR Index 01/2006 - 12/2016 SASWIT10 Curncy 05/2007 - 12/2016
15Y GSABI5YR Index 01/2006 - 12/2016 SASWIT15 Curncy 05/2007 - 12/2016
20Y GSAB20YR Index 01/2006 - 12/2016 SASWIT20 Curncy 05/2007 - 12/2016
25Y SASWIT25 Curncy 05/2007 - 12/2016
6M USGG6M Index 01/2006 - 12/2016
1Y USGG12M Index 06/2008 - 12/2016 USSWIT1 Index 01/2006 - 12/2016
2Y USGG2YR Index 01/2006 - 12/2016 USSWIT2 Index 01/2006 - 12/2016
5Y USGG5YR Index 01/2006 - 12/2016 USGGTO5Y Index 01/2006 - 12/2016
USGG5YR Index 01/2006 - 12/2016 USSWITS5 Index 01/2006 - 12/2016
Us 7Y USGG7YR Index 02/2009 - 12/2016 USSWIT7 Index 01/2006 - 12/2016
10Y USGG10YR Index 01/2006 - 12/2016 USGGT10Y Index 01/2006 - 12/2016
USGG10YR Index 01/2006 - 12/2016 USSWIT10 Index 01/2006 - 12/2016
15Y USSWIT15 Index 01/2006 - 12/2016
20Y USSWIT20 Index 01/2006 - 12/2016
USGGT20Y Index 01/2006 - 12/2016
25Y USSWIT25 Index 01/2006 - 12/2016

The Figure S2 illustrates the evolution of sovereign yield curves (left subfigure) and the
associate unavailability of the yield over time (right subfigure), where each panel corresponds to
country-specific statistics. The yield curves are characterized by both, irregular sets of available
maturities and unevenly spaced time series. The full information related to the availability of the
instruments and their Blomberg identifiers are given in Table S2.

The irregular availability of time of the country-specific yield curves illustrated in the right panel
of Figure S2 is manifest in two distinct types of patterns highlighted daily for a given instrument by
a single red cross (when missing). The first pattern is related to the different dates when
instruments have started to be issued, for instance, the Irish sovereign yield curve at 3M maturity
only began to be available from 10/2013. Therefore, we face constantly in time unavailability of this
instrument which is indicated on the plots as a solid straight red line (constructed from a dense set of
red crosses) which starts from the beginning of the sample. The second pattern appears when we
have a sparse set of dates for which the yields are only temporally not available. It can be the result
of a temporal lack of financial securities liquid enough to calculate the rate. This pattern is
highlighted by single, sparse groups of red crosses. For instance, one may notice short
unavailabilities of 3M, 6M and 1Y maturities from the French sovereign yield curve. Figure S4 and
Figure S5 summarises the overall proportion of
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missing values per a sovereign bond rate across different countries and maturities given the sample
size of 2 870 days (excluding holidays and weekends).
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Figure S2. The sovereign yield curves (%) of 12 countries listed in Table 1. The colors of lines correspond to
the diffrent maturities.
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Figure S3. The indicators of missing values for sovereign yields of 12 countries listed in Table 1. The red

crosses correspond to daily unavailabilities of rates at various maturities (y-axis) over time (x-axis). The

missigness does not correspond to weekends and holidays.

60%

40%

20%

0%

2.0%

1.5%

1.0%

0.5%

0.0%

6%

4%

DE

ES

AU
I . m
FR

60%

40%

20%

0%

BZ
GB

20%

15%

10%

5%

0%

20%

15%

10%

5%

0%

40%

20%

0%

80%

60%

40%

20%

0%

3%

2%

1%

0%

.

e ———— e B0

50%
40%
30%
20%
10%

30%

20%

10%

0%

30%

20%

10%

m o

us

3M 6M 1Y 2Y 5Y 7Y 10Y15Y20Y

3M 6M 1Y 2Y 5Y 7Y 10Y15Y20Y

3M 6M 1Y 2Y 5Y 7Y 10Y15Y20Y

3M 6M 1Y 2Y 5Y 7Y 10Y15Y20Y

Figure S4. The proportion (%) of missing values present in the time series of sovereign bond rates across
different maturities for a sample period 01/2006 - 12/2016 (2870 days excluding weekends and holidays). The
blank spaces on the x-axis correspond to instruments which are not available in Bloomberg. The patterns of

missingness are illustrated in Figure S3. The missingness does not correspond to weekends and holidays.
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Figure S5. The percentage of the aggregated missing entries per year (top panel) and the percentage of
missing entries per year (column-wise) and country (row-wise) of yields across maturities (x-axis) from
sovereign yields. The colours of bars in the bottom plot correspond to the proportion of the missingness.

A.3. Measures of Inflation Risk

The data under the category Inflation consists of monthly Consumer Price Indexes from 12
countries and 13 daily end-of-the-day inflation-indexed swap or bond based yield curves, from 8 major
global economies: Germany, France, Spain, Italy, United Kingdom, Japan, Australia and the United
States of America. The country-specific rates are referenced against CPI indexes.

A.3.1. Country-Specific Consumer Price Index

The nation-wide Consumer Price Index (CPI) is usually tailored to the countries” objectives and
therefore differs across different economies with regard to the products included into its construction.
In order to ensure that the CPIs among 12 economies are calculated using a methodology which
is unified as much as possible across different countries, we use the Harmonised Index of Consumer
Prices (HICP) for European Union members which reflects monthly changes. The monthly time series
of the index are calculated by Eurostat on behalf of National Statistics Institutes (NSIs) of the European
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Union member states and European Free Trade Association (EFTA) which provides the guidelines
for calculating HICP, please refer to the official website for details. The term "harmonised” highlights
the fact that all the countries in the European Union follow the same methodology. In the report
provided by the Office of National Statistics in Eidukas (2016), the author exemplifies the most frequent
differences between CPIs and HICDP, i.e showing that the majority of CPIs excludes the expenditures
of non-residents in the economic territory. The HICP and CPI are available from Organisation for
Economic Cooperation and Development (OECD) database.

Table S3. The availability and Bloomberg identifiers (tickers) of the national macroeconomic measures of
economic activity: Consumer Price Index (CPI), Gross Domestic Product (GDP), Labour Productivity (LP),
Unemployment Rates (UE) and German Bund Open Interest, 2W Euro repo rate, 5Y Markit Intraxx Index
and exchange rates between major global economies.

[ Instrument [ Country [ Ticker Availability 11 Instrument | Country | Ticker Availability

AU AUCPIYOY Index 03/2006 - 12/2016 AU WGDPAUST Index 12/2006 - 12/2016

BZ BZPIPCY Index 01/2006 - 12/2016 BZ WGDPBRAZ Index 12/2006 - 12/2016

DE ECCPDEMM Index 01/2006 - 12/2016 DE WGDPGERM Index 12/2006 - 12/2016

ES ECCPESMM Index 01/2006 - 12/2016 ES WGDPSPAI Index 12/2006 - 12/2016

FR ECCPFRMM Index 01/2006 - 12/2016 FR WGDPFRAN Index 12/2006 - 12/2016

Consumer Price Index GB ECCPUKMM Index 01/2006 - 12/2016 Gross Domestic Product GB WGDPUK Index 12/2006 - 12/2016

- IR ECCPIEMM Index 01/2006 - 12/2016 . ; IR WGDPIREL Index 12/2006 - 12/2016

1T ECCPITMM Index 01/2006 - 12/2016 1T WGDPITAL Index 12/2006 - 12/2016

JP JNCPIMOM Index 01/2006 - 12/2016 JP WGDPJAPA Index 12/2006 - 12/2016

ro ECCPPTMM Index 01/2006 - 12/2016 ro WGDPPORT Index 12/2006 - 12/2016

SA SACPIYOY Index 01/2006 - 12/2016 SA WGDPSOUT Index 12/2006 - 12/2016

Us CPI YOY Index 01/2006 - 12/2016 Us WGDPUS Index 12/2006 - 12/2016

AU OEEOAULP Index 03/2006 - 12/2016 AU EHUPAU Index 03/2006 - 12/2016

BZ OEEOBRLF Index 12/2006 - 12/2016 BZ EHUPBR Index 03/2006 - 12/2016

DE OEEODELP Index 03/2006 - 12/2016 DE EHUPDE Index 12/2005 - 12/2016

ES OEEOESLP Index 12/2006 - 12/2016 ES EHUPES Index 03/2006 - 12/2016

FR OEEOFRLP Index 03/2006 - 12/2016 FR EHUPFR Index 03/2006 - 12/2016

Labour Productivit GB OEEOGBLP Index 03/2006 - 12/2016 Unemployment Rate GB EHUPGB Index 03/2006 - 12/2016

Y IR OEEOIELP Index 03/2006 - 12/2016 ploy < IR EHUPIE Index 03/2006 - 12/2016

1T OEEOITLP Index 03/2006 - 12/2016 T EHUPIT Index 03/2006 - 12/2016

P OEEOJPLP Index 12/2005 - 12/2016 P EHUPJP Index 03/2006 - 12/2016

PO OEEOPTLP Index 03/2006 - 12/2016 PO EHUPPT Index 03/2006 - 12/2016

SA OEEOZALF Index 12/2005 - 12/2016 SA EHUPZA Index 03/2006 - 12/2016

Us OEEOUSLP Index 03/2006 - 12/2016 Us EHUPUS Index 03/2006 - 12/2016
German Bund Open Interest RX1 Comdty 01/2006 - 12/2016
3M Euro repo rate EURR003M Index 01/2006 - 12/2014
3M Euribor rate EUR003M Index 01/2006 - 12/2016
5Y Markit Itraxx ITRX EUR CDSI GEN 5Y Corp 10/2011 - 12/2016
FX AUDUSD AUDUSD Curncy 01/2006 - 12/2016
GBPUSD GBPUSD Curncy 01/2006 - 12/2016
USDJPY USDJPY Curncy 01/2006 - 12/2016
EURUSD EURUSD Curncy 01/2006 - 12/2016

The CPIs for Japan, South Africa and the United States of America, are specified on a monthly
basis, whereas the CPI of Australian is available quarterly and illustrates yearly changes. The indexes
are calculated by national statistical institutions: Australian Bureau of Statistics, Ministry of Internal
Affairs and Communications, Statistics South Africa and Bureau of Labor Statistics respectively. As
a measure of Brazilian Consumer Price Index we use monthly time series of Extended National
Consumer Price Index) which covers families living in 11 urban areas of Brazil: Belem, Fortaleza,
Recife, Salvador, Belo Horizonte, Rio de Janeiro, Sao Paulo, Curitiba, Porto Alegre, Brasilia and Goiania
and whose monthly income is between 1 and 40 times the Brazilian minimum wage. The Bloomberg
identifiers of the collected CPIs are listed in Table S3 and the evolution of indexes over time is
illustrated in the top left panel of Figure S9.

A.3.2. Country-Specific Inflation-Linked Yield Curves

The collected inflation-linked sovereign yield curves were sourced following similar steps adopted
for the sovereign yield curves via a search query of Bloomberg generic yield curves, 'GGR’. The sets
of inflation-linked yields are shorter and consists of yield curves for 9 countries as indicated in Table
1. The Bloomberg identifiers of elements of the yields which correspond to a single maturity, and
their availabilities are listed in Table S2. The collected set of inflation-linked sovereign yields can
be partitioned into two groups, the yields which are comprised of inflation-indexed government
securities, and those which are comprised of inflation-linked swap rates. The inflation-linked
instruments are referenced against a consumer price index calculated monthly by national statistics
institutes.

The most commonly used indicator of inflation expectations is derived as the difference between
a nominal conventional and inflation-linked bonds yields at similar maturity. However, with the rapid
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growth of the swap market starting from 2003, it is nowadays much easier to construct comprehensive
inflation-linked yield curve which is comprised of inflation-linked swap rates, rather than sovereign
bonds, due to their broader availability. Various studies of global market regulators such as Schulz and
Stapf (2009), investigate the quality of the prediction given by swap-based inflation-linked sovereign
yield curve. The authors of Schulz and Stapf (2009) argue that the measures of inflation expectations
extracted from inflation linked-swaps bias the indicator of inflation ex pectations. They indicate

the inflation risk p remium and liquidity p remium w hich is mitigated from the objectives of the

inflation-linked swap market participants. For instance, the corporations, which revenue is linked to

inflation, hedge against the risk of low inflation, or pension funds and insurance companies, which
hedge against the risk of high inflation and rising prices. The panels in Figure S6 show the evolution
of inflation-linked swap (the blue line) and sovereign bonds (the black line) yield curves across
different maturities (column-wise) for 8 countries. The corresponding country-specific process of
missing values indicator is illustrated in left and right panels of Figures S8, respectively, with
proportions of missing values per the whole sample listed in Figure $4.
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Figure $6. The comparison of inflation-lined yield curves (%) obtained from inflation-linked goverment
bonds (black lines) or inflation-linked swap rates (blue lines) of 8 countries and Euro- zone listed in Table
1. The column-wise order of the panels corresponds to the subsequent components of a term structure
(maturities), whereas the yields corresponding to particular countries are illustrated by the row-wise order.
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Figure S7. The proportion (%) of missing values present in the time series of inflation-linked sovereign bond
or swap rates across diffrent maturities and countries for a sample period 01/2006 - 12/2016 (2’870 days
excluding weekends and holidays). The patterns of missigness are illustrated in Figure S8. The blank spaces
on the x-axis correspond to instrumented which are not available in Bloomberg.

The reader may notices similarities between the country-specific yields from Figure S2 and
the bond-based inflation-linked sovereign yield curves as the sovereign yield curves comprised
either of conventional or inflation-linked bonds, share common dynamics which are characteristic
among chosen countries and more resemble each other than the corresponding swap rates. On
the other hand, the availability of the inflation-linked bond-based sovereign yield curves is much
more limited both in time and the number of countries, than the swap-based yield curves. The
panels in Figure S7 summarize the proportion of country-specific inflation-linked yield curves which
are missing over the sample span, 01/2006-12/2016, which includes 2’870 days.
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Figure S8. The indicators of missing values of swap-based (left) and sovereign (right) yield curves comprised
of inflation-linked rates at diffrent maturities for countries listed in Table 1. The red crosses on the left
subfigure correspond to daily unavailabilities of rates. The missigness does not correspond to weekends and

holidays.
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A.4. Country-Specific Productivity Proxies

The country-specific productivity isa ni ndicator w hichm easures economic growth,
competitiveness, and living standards within an economy. We consider productivity proxies from three
indicators: yearly Gross Domestic Product in US dollars obtained from World Bank for 12 economies,
quarterly time series of unemployment rates for 12 economies from Bloomberg and labour productivity
for all countries except Brazil and South Africa from the OECD. In order to obtain labour productivity
approximation for Brazil and South Africa, we collected quarterly numbers of GDP per labour force
from OECD. The time series of GDP, Unemployment rates and labour productivity are presented in
Figure S9 whereas the corresponding Bloomberg identifiers are listed in Table S3.

Consumer Price Index Gross Domestic Product
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Figure S9. Daily Consumer Price Indexes (top left), quarterly Gross Domestic Products (top right),
Unemployment rate in % (bottom left) and Labour Productivity (bottom right) of 12 countries listed in Table 1.
Different colours of lines refer to different countries.

A.5. Euro-Zone Liquidity & Credit Proxies and Foreign Exchange

The instruments which we use as a proxy to Euro-Zone liquidity are Open Interests of Euro-Bund
futures contracts and 2W Euro repo rate.

The Euro-Bund futures are the most popular contracts of EUREX, which is the largest exchange
for Euro-denominated derivatives and has been ranked within main derivative exchanges by volume.
The bond futures contracts are exchange-traded products with an underlying basket of deliverable
bonds. The benchmark bonds of Euro-Bund futures are long-term notional debt securities issued by
the German Federal Government at reference yield of 6% and with a term of 8.5 to 10.5 years which
earliest two delivery months are available for trading. The bonds are considered the benchmark for
long-term Euro-denominated government debts. The futures exist for 4 contracts which correspond to
the following months: March, June, September and December. In the current study we use Generic 1st
‘RX" Future contract provided by Bloomberg, that is, the time series of futures which is comprised of
front-month instruments, the contracts with the shortest duration that could be purchased. As a proxy
of Euro-zone liquidity, we use the open interest of Euro-Bund futures, the number of the outstanding
contracts that exist on a given date. The amount of open interests represents the flow of the money
to the futures market and indicates increased interests of market participants. The Figure S10a shows
the dynamic of open interest over time (black solid line) with its smoothed curve. We used median
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smoothing over a 20-day rolling window in order to remove spikes from the time series which are
downward movements of a number of outstanding contracts when the instrument is close to its expiry
date.

(a) Open Interests (b) 5Y Markit Itraxx Index

ooooooo

ooooooo

006 2008 2010 2012 2014 2016 2012 2014 2016

(c) 3M Euribor and 3M Eurepo (d) Exchange rates against EUR

2006 2008 2010 2oiz 2014 2016 _  zooe zoos 2010 2012 2014 2016

= Euribor 3V Ml Eurepo 3M M spread -AUDEUR =GBPEUR = IPYEUR = USDEUR

Figure $10. Top left panel (a): The raw (black) and smoothed (blue) open interests of Euro-Bund futures
contracts over times. Top right panel (b): 5Y Marikt Itraxx Index over time. The bottom left panel (c): the spread
(secondary y-axis) between 3 month Euribor and Eurorepo rates (%) over time. The bottom right panel (d): the
exchange rates against EUR for AUD, GBP and USA (left y-axis) and JPY (right y-axis)over time.

In addition, as a proxy for short-term liquidity, we use the spread between the 3 months Euribor
rate and the 3 months Eurepo rate illustrated in Figure S10c, both reported by the European
Banking Federation. The Euribor rate refers to Euro Interbank Offered Rate which determines,
similarly as Euro Libor, the cost of short-term loans on the Euro-zone interbank market. The rate is
published daily by European Bank Federation. The concept for the Euribor is similar to Euro Libor.
Euribor is an average rate at which the biggest in volume European Union banks borrow funds from
one another, whereas Euro Libor is determined by a group of banks which operate in London’s money
market. The 3 months Eurepo rate refers to a benchmark repurchase rate which is offered by one
bank to another bank for Euro-denominated deals. A repurchase agreement is a lending transaction
with collateral, where one party agrees to sell securities to another party with the agreement to
repurchase the same securities at a specific price in the future. The Bloomberg identifiers of rates are
given in Table S3 in Appendix A.

The European Markit iTraxx indices trade 3, 5, 7 and 10-year maturities and are determined on
the basis of liquidity every six months. The benchmark Markit iTraxx Europe index comprises 125
equally-weighted credit default swaps on investment grade European corporates. We chose as a credit
proxy of Euro-zone the most actively traded contract at 5Y maturity. The index is presented in Figure
$10d and its Bloomberg identifier is listed in Table S3.

The daily US Dollar (USD), Great Britain Pound (GBP) and Japanese Yen (JPN) exchange against
Euro are plotted in Figure S10d. We obtained the rates by converting daily exchange rates
AUDUSD, GBPUSD, USDJPY and EURUSD downloaded from Bloomberg to AUDEUR, GBPEUR,
USDEUR and JPYEUR. The identifiers of instruments are listed in Table S3.
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Appendix B. Supplementary Material to Section 6
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Figure S11. The yield curves of 12 countries (row-wise) from the data set D2 for selected years (column-
wise) across diffrent maturities over time. The colors of lines correspond to the tenors and are listed in the
legend.

Appendix C. The EM Algorithm for Gaussian Probabilistic Principal Component Analysis and Its
Robust Version

The Gaussian PPCA assumes that Xt and ¥t are k- and d-dimensional zero mean Gaussian randomvectors

with covariance matrices equal to I and o2l respectively, which are mutually independent

and independent over time. Given the model (1) of PPCA, Y; is also d— dimensional random vector

which follows Gaussian distribution and is independent over time, with mean g and the covariance
matrix C = WI'W + ¢2I;. Please refer to Tipping and Bishop (1999) or Toczydlowska et al. (2017) for

detailed derivations and discussion. The EM algorithm for Gaussian PPCA iterates over two steps,

where the maximizers to the function Q of Gaussian PPCA are found in closed form. The Theorem 1

and Theorem 2 provide the formulations of E-stem and M-step of EM algorithm respectively, assuming
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the presence of missing data in realisation of the observation vector Y; which is partitioned into the
subvectors corresponding to observed and missing entries, Y; = [Y?, Y}"]. Recall, that the vector of
static parameters of the algorithm is equal to ¥ = [u, W, 0%].

Theorem 1. The E-step of the EM algorithm for Gaussian PPCA given N realisations of the observation vector
Y¢ denoted by y3. = {yJ, ..., y% } is given by

QY ¥ ) By,
+ ,u*}l*T _ 2tr{W*EY:”,XtY‘;,‘Y {XIY,}} } =+ ZEY;”,Xt\Yf,‘Y [Xt] W*T”*T>
1 T
+ tr{ (0_*2W* W* —+ I[k) EY;n,Xt‘YzZ,lIJ |:XtTXt:| }}

for the corresponding moments of the conditional distribution Y}, X¢|Y], ¥

Xun [Ye.n ¥ {log (T[YLN/XLN‘T* (1N, xliN)))

*2

1
(tV{Eygn,xth,‘F [YtT Yt} } — 2By x, you [Ye] T

Y]
pm + (Y] — o) (WoWJ +02Hd0)1WoW%] '

0 0
0 Cum— W,WIC 'W,WL

EYF”IY‘,’,‘I’ [Yt]lxd =

+ Eyppyg e [Yi] Eyppyew [Y1],

EY?‘IY?,‘P [YfTYt}dxd =
Exp iyt [Xe] 1 = (Exwpw [Ye] =) WM,
Eypx, oy XXy = M+ MTWT (Bypyo g [ (X = ) (Y — ) [ WM,

-1
Ex, vy vy X Y] g = (WIW L) WT (Eygﬂyg,\y YY) = p Eypyye [ Ye] )

where M = WTW + 2.

Theorem 2. The maximizers of Q (¥ [¥™) are the solution to the following set of the problems V+Q = 0 and
are given by

o= (T~ WMTIWT) 4 pwm W

_ _ -1
= G WM (M MW G WM )

1, {¢ _ _

o2 = St {Cﬂ* —2WMWIC,, + WITW (2M7 4+ MTIWIC, WM ) }
where

1

A= LB Y]

_ 1 N T

S = 1§ & v [Ye] B v [Yel,

o0 0

~ 0 WWIL 4021, — W, WT (WoWT + 021, ) W, WY,

Cu=S8+Q-p'a—i"pt+p'p

Co =S+Q— -y + Ty,
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Cﬂ,’,* — S + Q _ V*Tﬁ _ﬁmT‘u +}l*T,u.

The estimation of the parameters W, 1, 02 follows the procedure in Algorithm 1. One can improved
the robustness of Algorithm 1 by replacing sample mean ji and covariance S by their robust estimates
obtained, for instance, by employing S-estimators. The EM algorithm for Gaussian PPCA with the
utilisation of robust estimators of location and scatter matrix is refereed as the EM algorithm for robust
Gaussian PPCA.

Algorithm 1 EM Algorithm for Gaussian Probabilistic Principal Component Analysis

1: forj=1,...,ddo
2 Compute Op ([Y”]_J) = (ft, tAT]-z)
3 Standardize data [Y" ] .= m
J oj
4: end for
5: Y" =0and Y = (Y°, Y")
6: Initialise: ¢, i = 0, W) = Wy, 020 = o2,
7: repeat
8 E-step:
9 fort=1,.r.,Ndo
) Y?
10: YW= , ! R
b engger (=) (WOW T 20n, ) W
: end for
12: Calculate: () = % N, YEO, S0 = % N Y@ TYgi)
13: M-step:
ui+) — g <]1d —WOMD —Tw T) +uOWOMO TW) T
wii+l) — C,,(z)wﬂ)W(i)M(i) -1 ((72 MO -1 4 M) 71w(i)CF<,.)w(i)M(i) 71)71
) 1 _ . L N
o2 (1) = 3 Tr {Cﬂ(m) — 2wl M@ “tw ) TC”(i),y(iH)}
%Tr {w(i+1) Tw(i+1) (02 OMO -1 L@ 1w TC‘u(i)w(l)M(l) 4) }
14: i=i+1

15: until a convergence criterion is satisfied

Appendix D. Proofs of The Theorems in Section 4

In the following section we provide the proofs to subsequent steps of EM algorithms for two
cases of t-Student PPCA discussed in Section 4. First subsection lists the essential notation used in the
proofs. Next we shows the steps of the proofs to the two theorems from Section 4.1 and later to the
theorems in Section 4.2, for t-Student IND and t-Student IID PPCA frameworks, respectively.

D.1. Notation

Let us recall the general notation. The bold capital letters denote matrices, the bold small letters
refer to vectors and small letters to scalars. The random variables are denoted by capital letters usually
with a lower index corresponding to point in time such as U;. In addition, the random vectors are
bold such i.e. Y;. If a capital letter without the lower index is used to denote random variable, it is
highlighted in the text i.e. U. The realisations of the random variables are denoted by the small letter
such as y; being a realisation of Y; and u of U.

We introduce the following notation which is used in the proofs of the theorems stated in the
study.
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dxq.ny -aproductof dx;overt=1,...,N,dxy---dxy;

1,; - m-dimentional vector which all entries are equal to 1;

L, -am x midentity matrix;

d - dimensionality of the observation vector Y;;

k - dimensionality of the latent process X;

N - number of observations over time;

C -ad x d square symmetric matrix equals to WWT + ¢21;

p - ad dimensional vector;

M -k x k square, symmetric matrix equal to W/ W + ¢I;;

do,d; - dimensionality of the observed and unobserved part of the vector Y; respectively, the
subvectors Y7 and Y}* ;

Mo, Wm - the d, and d;;, dimensional subvectors of y corresponding to observed and unobserved entries
of Y}, respectively, the subvectors Y} and Y}*;

Wo, Wy, -thed, X k and d;, % k dimensional submatrices of W which rows correspond to observed
and unobserved entries of Y;, respectively, the subvectors Y{ and Y}*;

Coo, Cium - the dy x dy and d;; X dy; square, symmetric matrices equal to Cyy = WOWOT + Uz]ldn and
Cum = WmWZZ + (TZ]Idm, respectively;

Com - the submatrices of C which rows correspond to observed entries and columns to missing entries
of the vector Y; and equals to C,; = W(,W,f1 ; recall that C,,;p = Cgm ;

D.2. Independent t-Student Case

In the following subsection we the proof of theorems stated in Section 4.1, to Theorem 1 in
Appendix D.2.1 and to Theorem 2 in Appendix D.2.2.

D.2.1. The Proof of Theorem 1

Proof. Given the N realisation of the vector with observed values, y{.,; = yj,...,y} and recalling that
the observation vector is partitioned into two subvectors, Y; = [Y¢, Y}"] with observed and unobserved
entries of Y;, the E-step from Theorem 1 is obtained by

Q(Y,¥*) = Eyn

T XN U Y Y [log TN XN Uon [ (Yl N X1, Us N) }

— m
/RN /Rka /wadm {1 og <H7TY,,X,,U,|‘I’* Vi Xt Ut )”\{mN,x1 Nl ¥ ¥ (VTN XN B N)} dyr.N dxin durN
N N
— m
= /RN /RM /RNW, (H”yt,xf,u,rf* Yt Xt, Ut ) T T 7ovn o pye w (75 %o, 1s) ¢ dy?iy dxin dunn
+ = s=1
N
— m m
= Z/ /ka /Nxd (T[Y,,X,,U,PI’* (ye, xt, us > H”Y;",xs,uswg,‘lf()’s Xs,Us) o dyTy dxin durN
t=1 /RY SRR s=1
N
2 7T *(Yt Xt th) © TTym 0 (ym Xt ut)dym dxt dut
] R, Rk JRdm Yt,Xt,LIt\‘P 7 Aty Yt ,Xt,l,lt\Y SEY\Yt 7 ALy t
t=

N
m
X /RQ’] /R(N—l)xk /R(N_dem ( H nY’s"rXs/UsYﬁl‘l’(yS'XS'uS)> dyq:n dxiN duiy }

s=1, s#t

N—1 without t element
N

=) { /R /Rk /nw log <77Yt,Xt,Ut‘P* (thxt/“t)> 70, Uy Y, ¥ (Xt e )y dxe dug
=1 +

N
X ( H /]R A{k /Rd an”,XS,uS\Yg,‘F(Y;n/Xs/MS) dyg" dxs d”S) }
s=1, s# 75+ "

=1 since a density function
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N
— m m
=) / / . / . log (ﬂ?yt,xt,u,m (Ytrxtrut))ﬂy;",xt,ut\yg,qf(yt Xty ur) dyy dxe duy

Hence we have that

N

QYY) = ) Eyyx,uvo¥ [log TOY, X U [ (Ytrxtr”t)}
=1

N *
_% t; {(d+k - %) log 27t +dlogo™? — (d +k +v* —2)Ey,yo ¥ [ log Us]
1

2
+ U*ZEY;",U,|Y$,‘Y[UL‘ Ye—p) (Ye—p') | - atr W Eyp x, uyve,w [UXT (Yo — ) ]

v* %
1 * * * 2
w TW =+ Hk) Ext’ut‘Y?,\Y I:UtXtTXt:I } + v Eut‘y(;,\{f [Ut] — ZIOg < E_' (2*) ) }
2

(0-*2
1Y v* 5
= _2;{(d+k_ 7) log2m +dlogo™ — (d +k+v* —Z)Eutng[logut]
1 . .
toah {EY;",uf\Yg,w[Ut (Y — )" (Ye — H}

2
— ov*ztr{w* (EY'Z’/Xhut‘Y(;,‘Y I:UtXtTYt:I - ]EX[,U[‘Y?,‘P [UtXt:I T’/l*) }

%

v* 7
1 T (7)
+ tr{ (U*ZW* W* + ]Ik) EXf,Ur\Yf,‘Y I:UtXZXt] } + U*EUf‘Y?,‘Y [ut] — 210g ( T (K) ) }
2
Since the distribution Y¢|U;, ¥ is Gaussian, it can be easily shown that the distribution of the vector Y;
conditioned on the subvector of the observed values and the variable Uy, is specified as follows

)

where C,, = WOWOT + UZHdU and C, = WmWZ;Z + 0'2]1dm are square, symmetric submatrices of
C = WWT 4 ¢2I; with rows (left side index) and columns (right side index) corresponding to observed
entries and missing entries, respectively. The matrices Cp;, = WOW,T;[ is a submatrix of the matrix
C which rows correspond to observed entries and columns to missing entries of the vector Y;, and
Cho = Con. Let us denote

Y}
pm + (Y = po) Coo' Com

1

rut

0 0

Y YO, U ~ N
v ( 0 Coum — CinoCol Com

0 0

Q= _
0 Cum— CmngolCom

We can specify the following moments which are useful to derive the conditional moments of the
distribution Y}*, X, U;|YY

Y;
M+ (Y? - ,uo) Co_olcom

1
Eypiyou,w Y Y] 4 = UtQ + Eymjyo v [Yi] TEY;”|Y?,‘Y [Y:].

Eyoryo,u,w [Yt] 104 =

7

Let us define DY = (Y¢ — po) Cop! (Y0 — #o)" being a squared Mahalanobias distance of the observed
data subvector Y{ with marginal distribution Y} ~ N (po,Coo). The moments of the variables U; Y9, ¥
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and log U;|Y?, ¥ are calculated similarly as their equivalents in complete data setting, using the
marginal distribution of Y, and are given by

v+d
Eu o, ] = v+ DO?’

v+d v+ DY
I&Lwﬁ[bguﬁzzw( 2O>bg< 2 t)

The moments of the joint distribution of the latent variables X;, Y}* and U; conditioned on the
subvector of observed entries Y{ are obtained using the Law of Total Expectation. Applying the chain
rule of probability to the join distribution

O Xe U Y9, ¥ = TOG Y U Y 7O Y9, U Y 7T |Y, Y

and the fact that conditional means of Y}"|Y?, U; and X;|Y¢, U; are not dependent on Uy, we obtain

Boym x, [ vo, 9 Uity = Eym 1,10, 9 [UrY:] = AN {utEY;”\Yf,Ut,‘P [Yt” =
Y}

pm + (Y] — po) Co_olcom
Y?

pm + (Y] = p1o) Coo' Com

= By pye v (U]

v+d,
v+ D}

7

By x,,upve, ¥ [UYE Y] 4 g = By o (U Ye] = By oy [utEYW?,M, [YZY@] -

=Q+Ey vy [u:] By yo,u, v (Y] TEyg"\Yf,ut}Y Y]

Z)+do T
=Q+ ey Y By (Y1),

By x, i v [UXie] 1 = By, v [ufEYTIY?,ut,‘Y [Ex iy, u, ¢ (Xi] ]]
= Eut\Y",‘Y I:UtEY?I ‘Y?,th] [Yt] ] WMil - ]Eut‘ytg,\l/ [Ut] ]EY;H‘Y?/ut‘Y [Yt] WMil
Y;
Hm + (Y(t) - P‘O) C;olcom

_ v+d,

= WM*][
v+ D}

Exp v, [UXTXE] = Eupvo v [ Uiy, [Ex, v [XT X

_ _ T _
="M+ MW Eyn g vow [Us (Ye =) (Ye— ) JWMT,

T T
By x,upyew [Ue (Ye =) (Ye =) 4o q = By pye e [Ur (Ye =) (Ye—p) ]
= By x, o, (U] Ye] = 20 By x, uve v [UrYe] + By ye e [Us] ' e,

EY;ant,UHY?I‘P [utYfTXt} dxk — Euf\Y?r‘Y [utEY?l‘Y?ruh‘Y I:YtTEXt‘Yt/uhlP [Xt] H
= Ey,jyo,¥ {EY;”\YD,ut,‘P (Y] (Yi—p) HWM*l

= (]EY;",xt,ut\Yf,‘P[uthTYt] — By x, v, v [Ur Y] Tﬂ} WM
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O

D.2.2. The Proof of Theorem 2

Proof. Using the notation introduced in Theorem 2, the maximizers of the function
x 1 N v* %2 *
Q(Y,|Y") = -5 Z{ (d+k — 7) log 27 +dlog o™ — (d+k+v" = 2)Ey,yo v [ log U]
t—
1 T *
T2 Tr {Eygﬂ,ut\yg,‘f (U (Ye —p)" (Ye—p")] }

2
— *ztr{W* (EY;",X[,U[‘Y?,‘P [UtX;Yt:I — Ext,utlytu,\fr [UtXt} Tﬂ*) }

v* %
1 o Te . 2z
o (G ) 30} -2 (L)
2

with respect to the vector of the static parameters (W*, w, (7*2) which are the solutions to the set of
equations Vy«Q = 0 and are given by

anIPJ’;‘Pﬂ - _2(17* t_i { = Wy g [Ur (Yo = ") ] +2]EXt,Y;”,LItY‘;,‘}f[utxt]w*T} =0
- t_i {;:gi (Expapn Y] ~#7) - ;z:g? (Evp vy e [Ye] 1) WM‘1W*T} =0
— Zi]t—i By, ve v [Yi] ::g‘;) (Hd — WM*lW*T) + i’i (;’:l‘;?) pWM w7
s i
. ti m _

* 1 = o . _ —1yarxT =00 . —1yarxT
— M _ﬁ(y‘{:N;‘Y) (”fS(YLN"Y) (Hd WM™W )+u(Y1:N'lP)”WM W

9Q (¥, ¥7) ol
W 202 t; = 2By, vy [Ur (Yo —p7) " X4]

W By, vy [UX] xt}} _
= Z { By, yo e [Ur (Ye — ) (Y —p) JWM!
M+ MW By ye w [Ur (Yr — (Y —y)}WM”) } =0

W (e
N
; (EY"’ Uy YO, ¥ [y (Y — )" (Ys — y)]) wM!

t
(YT )

N N I~ -
-W (UZM Lim 1WTNZ (Ey,rnru,lyw[ut (Yt—y)T(Yt—y)])WM 1) -0
t=1

C;‘S (ytlij;‘F)
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* Ais o . * -1 ( 2ng-1 —IwTEts (0 . 1\ !
= W= (yl E, Y )WM ((7 M+ MW CH (y. F) WM )

e =2k (o e (B v e )

- 2Tr {W*EY;’I/Xt/u”Y?rIY [UtXtT (Yt - ’l*) } } + Tr {W*TW*EY?,X,},UHY?,T [Utxzxt} }) } = 0

= 2{0*2

—2Tr {W*M_lw By i ye e [Ur (Y — m)" (Y —p")] }

1

(0272 (Tr{EY’”UtY"‘P[ut (Yr — V*)T(Yt—ﬂ*”}

T {W*TW* (0,sz1 + MfleEyg",u,\Yf,‘F (U (Y — " (Y —p) ]WM”) }) } =0

d 1 1 Y T i
= 2 27 Tr{ Nt; (Eyyf,utwg,lf[ut Ye—p") (Ye—p )])

(_Z;j* (y§. ;2 Y*)

2V o 1 y *
—2W'M W' N X (Eytm,ufy‘;,\y (U (Ye =) (Yo —pe H)
i=1

C;ls u* (yrl’:N;\P'lP)

N

* — — 1 — *
+W ((sz Lymiw? N Y (EY;nlutY?,\,,[ut Y — )" (Y —y)]) WM 1>w T} -0
=

—_

C;f (ytlj:N;‘P>

1. f. ]
=o”=gT {Cf* (Y ¥, ") = 2WMIWICE (Y‘LN;‘I’,‘P)}

+Tr {w* (M MW (v, WM ) w*T}

where
1Y v+d,
0 S -

o 1N v+d,

His (Y1:N/T) = N tz; v+ Do EYt‘Yt/ut/ [Y ]

& 1 & o+d,

StS(y({:N;T) = N Zl ¥ DO]EYt\YU U, ¥ [Yt] EYt\YO u;, ¥ [Yt]

Cr (YY) = Sis(¥ins 1) + Q — 20" s (3. ¥) + 1(y).n: )1 1,

C (¥ Y ") = Sis(yhni ) + Q — 20 T dass (yf.n: ¥) + (ySn: )™ 1,
=~ * c * T_ _ *
Cow Vi ¥ ") = S (¥ ¥) +Q — (' + 1) firs (vl ¥) +a(y: O™ e

The reader may notice that the vector #* is a linear function W* and vice versa. Hence, we can solve
the following linear system of equations

u= % <ﬁts (]Id - WM’1W*T> + ﬂyWle*T>
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_ _ -1
W= WM (M MW wWM )

by substituting the values of W* in the top equation by its values in the bottom equation, that is

" = firs + (i — fits) WM (CLS’V*WMl (M MW WM ) )

w*
_ -1 _
ap* = figs + (g — fir]) WM™ (aZM*1 + M*lecfjWM*l) MIWTCE .

Next we substitute CLS we = Sts +Q — pTiys — pT @ + fip* T which contains the vector u*. We obtain
that

-1
ap* = fiss + (g — i) WM™ (U'ZM_l + M—lec;SWM—l) MW7 (Sts 10— yTﬁts>
_ -1
+ (it — fiss) WM ! (O'ZM_l + M_1WTC§,SWM_1) MW7 (ﬁy*Ty - y*Tﬁts)
<
-1 T
(a — (g — firs ) WM™ (UZM*1 + M*leCfWM*) M- iwT (ay — ﬁts> )y*
1
— fuss + (i — firs) WM™ (azM_l + M—le(‘:;SWM—l) MW7 (Sts +Q- yTﬁtS)
et
-1

_ -1 T
p= <u — (ip = ) WM (P M+ MTIWICEWM ) MW (i — i) )

-1
x (ﬁts + (itp — fis) WM™ ! (UZM’l + M’1WTC;SWM’1> MW7 (Sts +Q- yTﬁts)>

for
-1
—_ Ct -1 2ng—1 1w T ¢t -1
W' =Ch WM (e?M 7 - MTIWICEWM )
1. f- _ _
o2 = Tr {Cif* —2W'M'WIC .+ W (a2M—1 + M—leC;SWM—l) w*T}
O

D.3. Identical and Conditionally Independent t-Student Case

In the following subsection we first provide a range of proposition in Subsubsection D.3.1 which
are used as a stepping stones to the larger results, that is the proof of theoreams stated in Section 4.2, to
Theorem 3 in Appendix D.3.2 and to Theorem 4 in Appendix D.3.3.

D.3.1. Supporting Lemmas

Lemma 1. Let a d dimensional observation vector Yt be modelled as in Equation (1) with the assumptions given
in Equation (4). The function h : RY x Ry — R of single realisations of Y and a Gamma random variable U
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under the assumption of the Identical and Conditionally Independent t-Student case from Section 3.2 is defined
as

S
h(ye w;¥) = 7oy, x, e (V) - ox,ue (%) - @ (% fir, £)

-3 u _
M‘ ’ eXp{ - ﬁ(}’t — 1) (Hd - WM 1WT) (ye _”)T}

= 21) "5 (0} T ut

for fiy 15k = (yr —p)WM™L By = %ZM’l, Mk = WIW + 02l and ¢(x;fi;, L) being a density
function of k dimensional Gaussian random vector X with a mean vector i and a covariance matrix X.

Proof. Given the assumptions of the identically and conditionally independently distributed X; and

€ and their stochastic representations from Section 3.2, 7y, x, iy - 7Tx,|u,¥ i @ convolution of two
Gaussian densities, that is

_kyd _d dtk u T
nyt|xt,uq;(yt) . nxt‘u,\y(xt) = (2m)” 2 (02) 2u 2 exp { ~ 502 <<Yt —u— xtWT) (yt —u— XtWT> + (TZthtT) }

k+d

= (2m)7 7 (0?)”

NI
£
+
~

u'? exp { - ZZZ (xt (WTW + az]Ik)xtT —2xWT (yt - y)T + ()’t - ,u) (Yt - P‘) T) }
= (2m) "5 (%) 5" exp { - %(Xt —ﬁt>)~371 (Xt —ﬁt)T} exp { - ; (;2 (Yt —ﬂ) (Yt —P’)T —ﬂtilﬁ?) }

where fi; 1.¢ = (yr —p) WM™, L = %ZM’l and My, = WTW + 02 Let us define ¢(x;jit, L) as
a density function of a Gaussian random variable X € Rk with a vector of means fir and a covariance
matrix £. We have that

NI

=h(y, w;¥) - (P(xt/'ﬁt/i>
where function 7 : R? x R, — R is defined as

Byt %) = (2m) (%) 2 ul|m| exp{ — 5 (yi—n) (Hd —WleT) (vt —N}-

O

Lemma 2. Let a d dimensional observation vector Yy be modelled as in Equation (1) with the assumptions given
in Equation (4). The function w : R? x Ry — R of single realisations of Y; and a Gamma random variable U

under the assumption of the Identical and Conditionally Independent t-Student case from Section 3.2 is defined
as

. . d+k d o dtk
w(y, w; ¥, ¥") = /Rk log (”Yt,xf\u,‘ff* (yt,xt)>go(xt;yt,2)dxt =-— log (271) — Elog (a 2) +— log u
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u * * T * N —
— s { =) ) 2= ) - ) WM W
71 - T - — * * *
— 5o Tr{(uM 1wT(Yt_”) (yt—y)WM 11 2M 1) (W TW +02Hk)}

for fiy 15k = (ye — ) WML, Zpppe = %ZM_l, Mk = WIW + 02 and ¢ (x; fiy, £) being a distribution
function of k dimensional Gaussian random vector X with mean fi; and covariance matrix .

Proof. Given the definition of X; and €; from Equation (4) and the complete data likelihood from

Equation (5) of the Identical and Conditionally Independent t-Student case, let us define function
w: RY x Ry + R asasolution to the following integration problem

w(y, ¥, ¥") = /Rk log (ﬂyt,xt,um (yt,Xt,u)) ¢ (xt; fir, L) dxi

where fi; 15 = (ye — ) WM™, Lo = %ZM’l and My, ; = WIW + ¢2I; are specified as in Lemma
1. The function ¢(x; fi;, £) is a density function of the k-dimensional Gaussian random variable X € RF
with a vector of means ji; and a covariance matrix X. Therefore, using the Chain Rule of Probability
and the fact that Y; and X; are conditionally Gaussian, we calculate the function w as follows

w(y:, ;' ¥, ¥") = /Rk log (nyf\xf,u,w* (yt) - TOX, | U, P* (xt)) ‘P(Xt?ﬁtfi)dxt
_dgk -4 -
= /Rk log ((271) 5 ((7*2> : udz+k>q)(xt;ﬁt,2)dxt
T ~
+ /Rk log (exp { — 2;—*2 (Yt -yt — xtW*T> (}’t -yt - xtW*T) - thx;}) go(xt;ﬁt,):.)dxt
d+k

B d 0\, d+k
= —Tlog(Zn) - Elog ((7 )+Tlogu

1 T .
_ g » (0-*2 (Yt N ”* B XtW*T) (Yt _ ”* o XtW*T) + xtx;> go(xt;ﬁt,f.)dxt

_ d+k d. /ooy, dtk
=~ Fiog (2m) - S10g (¢2) + T togu +log mypy- ()
u 1 * * 2 * * 1 * * ~ ¥
=5 | (M(Yt—ﬂ )= 1) = S5 = YW 4 (S WTW +Hk)XtT)§”<Xt?P‘trZ>dxt
_d+k

_ d ") d+k . u o\ T ok
= 10g(27r)—§10g(0 )+Tlogu WTY{(Yt #) (yi ;4)}

u 1 * * * ~ ¥ 2 * * ~ oy
— 2(0_*2 /Rk Tr {xtht(W TW* + o 2Hk)}¢(xt;#t,2)dxt— ﬁ(yt_,” )W /katTgo(xt;yt,Z)de

= —d;klog (2m) — glog (0*2) + d+klogu+lognuw*(u)
u 1 * * 2 * * ~ 1 3 ~1 ~ *
—2((7*2Tr{(yt—ﬂ ) (ye — )}—(T*z(yt—ll )W ﬂtT+U*sz{(Z+P‘tTP‘t)M })
_d+k

B d 2 d+k . u o\ T ok
== log(27'c)—§10g((7 )+Tlogu WTT{(Yt w) (e ;4)}

u 1 o? I P - T —1np 2 * sng—1IywT T
- = ﬁTr IM M*4+M W (Yt—ll) (yt—y)WM M —U*Z(yt—y)WM A% (Yt—ﬂ)

B d+k d %2 d+k u s\ T *
= _Tlog(ZH)—Elog ((7 )+210gu—20*2Tr{(yt—y ) (yr—p )}

2
52 I {M_le(Yt —m) " (v — WM M — —2(yi — )" (1 —”*>W*M_1WT} e T {M M
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where M* = W*TW* 4+ 2. O

Lemma 3. Let the d dimensional observation vector Y be modelled as in Equation (1) with the assumptions
given in Equation (4) for scalar random variable Gamma U ~ T(3,%). We define function H : RN A xRy —
R, H(y1.n, w;¥) := [IN h(ye, u; ¥) being a product of functions h : R? x Ry — R defined in Lemma 1 over
N realisation of vector Y, y1.n, in time t = 1,..., N. Let u be a single realisation of U. It is true that

gy (u) - H(yrn, ;) = Cr(yn: ) - Ay (u)

where 7ty (1) is a density function of a Gamma random variable U ~ F(oc, ,B(ylzN;xy)) fora =5+ 9N and
B,Cp : RN*4 s R being defined as

v 1 N _ T
Blyin;¥) : E 302 Z Yt — (]Id - WM 1WT) (Yt - .”)
Crlyin;¥) == (27)
Proof. Let us recall the notation and the definition of the function / from Lemma 1, that is
d d—k
2

hyr, u;¥) = (2m) 2 (0?) 7 uf

1
-2 u _ T
M o { - v e
The function H : RN*? x R, — R, H(y1n, 4 Y) = Hf\il h(y:, u;'Y), is calculated as follows

N d d—k d
H(yinw¥) =[] ((Zn)z(az)zuz

Mli% exp { - %(Yt —n) (Hd - WM*lWT) (vt —ﬂ)T}>

= (27r)*?((72)*NTuT M’ exp{ — ;’Zt—i (Yt —y) (]Id —WM*1WT> (Yt —F)T}

We show in the next part that given U ~ T' (3, §), the expression 71y (1) - H(y1.n, #;'¥) is proportional
to a gamma distribution, that is

PSR (%)%
mupe(u) - Hyun, w;¥) = (27m)7 2 (07) 7 2 M‘ r(3)
2
N
X u2leT2y 2 eXP{_uz(Yt_ﬂ)(Hd_WM 1WT)(yf_P‘) }
20 =

N 4 b —u ; T
%“a L P = 7y (1)

fora =5+ dTN and B : RN*? — R, being a function defined as

N
Blyin¥) = 3+ 502 2 (v =) (Lo~ WM W) (i =)
t=1
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Recall that the relation of proportionality means that we can find Cy which is not a function of u, such
that

mype (u) - H(yrn, w;¥) = Ch - gy (u).
In our case, Cyy is a function of y1. as
7TU|‘P(”)H(Y1:N/ u; ) B AN d—k

Culyrn; ¥) = Ty (W) — )% () N2 M| ?

O

Lemma 4. Let a d dimensional observation vector Y; be modelled as in Equation (1) with assumptions given in

Equation (4) for a scalar random variable Gamma U ~ T(3,3). We define function H : RN*4 x Ry — R,

H(yin, w;Y) == TIN h(ys, u; ¥) being a product of functions h : R x Ry — R defined in Lemma 1 over

N realisation of vector Yy, y1.N, in timet = 1,..., N. Let u be a single realisation of U. It is true that there
_N

exists a scalar Cy(¥) € R equal to Cy(¥) = (Uz)kTN ) :

_N
M (]Id—WM‘le)‘ 2 such that

N
H(yin, w;¥) = Ca(¥) - [ [ Ay, juw (vt)
=1

- - -1 -
where Ty (yt) 1= gb(yt, y,):) forX = ‘772 (]Id - WM_1WT) and gb(y, il, Z) being probability density

function of d-dimensional Gaussian random vector with mean ji and a covariance matrix X.

Proof. Given the definition of function / from Lemma 1

h(ye,u;¥) = (27m) "2 (0?) % ul

-3 u —
M| “exp { — 5 (v =) (L — WM W) (3, —ﬂ)T},

the function H : RN*? x R, — R, which equals to H(yy.n, #;'¥) := [T\, h(ys, u; ¥), is calculated as
follows

al d d—k d
iy w¥) =11 <<2n)z<az>2m

o gt ) )

- -1
Let us denote X = ale (]Id — WM’le) . Then

_ﬁ <<2n>%<02>%% M| %m%m%exp{_;(yt_,,)w(yt—y) })
B gk 4 “3 |2 oy _%ex 1 ) E Yy — )T
{1 (Yol -t ew S w7 )
¢(yint)

N d—k d *% o? -1 % 5
:11((0’2)2112 M' 7(Hd—WM’lWT) <P(Yt;ﬂ/73)>

N k -3 - -
- E ((02)2 M‘ (Hd —WM‘le)‘ ¢(yt;ﬂ,2)>
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By denoting Cy(¥) = (¢?) 2

_N _N

’ (]Id - WM_le)’ * and y,jue (yt) := ¢(yi; 4, L) we have
that the function H can be decomposed into a scalar and product of Gaussian, multivariate densities
with the same mean and covariance

Z

H(y.n,u;Y) ¥) - T v e (ve)
=1

O

Lemma 5. Let a d dimensional observation vector Y has a probability density function fty, ;v (y:) specified
in Lemma 4 and let U be specified as in Section 3.2 . Given the partition of the vector , Yy = [Y?,Y}"], the
conditional distribution of Y;|Y}"*, U, ¥ is the following
0 0
-1 _y-1 ~1
0 me VmOVOOVom

for V. =1; — WM~ W7, where Vo and V. or Vy,' and V;,} are d, x dy and dyy, x d,, square, symmetric
submatrices of V or V™1 with rows (the left side lower mdex) and columns (the right side lower index)
corresponding to observed entries and missing entries of the vector Yy, respectively. The matrices Vop = V1 or
Vo = VL T is a submatrix of the matrix V or V=1, respectively, which rows correspond to observed entries
and columns to missing entries of the vector Y.

Then we have the following solution to the integration problem

0.2

u

Y;

Y YUY ~ N -
dhi < pim + (Y2 = 10) Voo Vo

w(y}, ¥, ¥) = [

Rdm

w(ye, w; ¥, ") foympyo vy (yi') Ay}

= d+k1g(2n)—glog( )+¥logu—2ﬁz {M_lM*}

u
2 ( " {EY?’Y‘?’”"*’ [YYE] = 2Byppyp e [Ye ™+ w” T}

—2Tr { (EY?"Y?,U,‘P [YtY;] — EYT|Y?,U,‘Y I:Yt:l (’,l + ’,l*) T + ]/l* Tﬂ) W*M_le}

+Tr {MlWT (Eygﬂ\yg,u,‘f (Y Y] = 2By o e [Yel ' + P‘F‘T)WMlM*}

for the corresponding moments of the conditional distribution

YU
pm + (Y — .”0) VooV ’

o2

u

EY;” ‘YO’U’\Y [Y :|

0 0

T
EY;'I‘Yf/Ur‘Y [Yf Yt] = 0 V*l —V VooV 1
mm

+ EY""YO u N4 [Yt} EY""YO u A4 [Yt}

Proof. Let us denote @(y?, u;¥,¥*) := [pa,, w(yt, u; ¥, ¥* )ﬂY;n‘Y?,ulqz(yzn) dy}*. Using the definition
of the function w from Lemma 2, we have that

DY) = [l Y ) Ry (5F) dyy
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d+k d o\ . d+k .
= Jean (— 7 log (271) — Elog ((7 ) + > logu> ”Y{”IYf,U,‘I’(YT) dyt"

u s\ T * T * KA — ~
_27*2/]% Tr{ (ye—w") (yr—#") =2(y:—p) (yt—p")W'M 1WT}ﬂy¢f|yg,u,qf(yT) dy}'

u _ T g s

~ g /Rdm Tr{M Wiy —p) (ye —p)WM™'M }”thyg,u,w()’?l)dy;”
o? e -

Y] /Rdm Tr {M '™M }”Y;”\Y?,U,‘F(YT) dy}'
d+k 2

B d 2\, d+k
= —Tlog (2m) — Elog ((7 ) +Tlogu— 552

Tr{M_lM*}

u
~ g <Tr {Eygnyg,u,‘{f (Y Y]] = 2By o, e [Yel o T 4w p® T}

—2Tr { (EY?’\Y?,U,‘I" [YtYZ] — EY;”|Y‘Z,U,‘Y [Yt] (ﬂ + y*) T + y* T”> W*M—1WT}

+ Tr {MIWT (]Eyg"\yg,u,‘y (Y Y]] = 2Byppyo, e [Yel ' + W‘T> WMlM*}

Let us recall the fact 7ty,|i; ¥ (y¢) is a probability density function of multivariate Gaussian random
variable, that is, Y; = [Y¢, Y}"] conditioned on U is a multivariate Gaussian random vector with the
mean p and the covariance matrix .

We denote V :=I; — WM W7 such that £ = ”leV_l. The distribution of a subvector of Gaussian
random variable conditioned of the other subvector of the same random variable is widely known,
we may refer to Gupta and Nagar (1999) for further details. Hence, the distribution of Y}*|Y{, U, ¥ is
multivariate Gaussian, that is

o2

"u

Y;

Y[ YS, U Y ~ N
! < P+ (Y] = o) Voo Vo

0 0
0 Vb — Ve Voo Vo

where V,, and V,,;;;, or V;C,l and V,;,ln are d, X d, and d;; X d;,; square, symmetric submatrices of V or
V! with rows (the left side lower index) and columns (the right side lower index) corresponding
to observed entries and missing entries of the vector Y;, respectively. The matrices V,,, = V,{m or
V1 =Vv,I T is a submatrix of the matrix V or V~1, respectively, which rows correspond to observed
entries and columns to missing entries of the vector Y;. Let us denote

0| 0 ]
0 Vi = VioeVooVou |

The required moments can be easily derived given the conditional distribution of Y;|Y¢, U, ¥, that is
Y}

E m|yo Y ==
Y} IYt,u,‘Y[ ] o + (YO — o) VEglVom_

7

2
(%
Evpivue (Y1 ¥e] = TQ+ Expivp.ue (Y] Bypivg e [¥e].
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Lemma 6. Let a d dimensional observation vector Y has a probability density function 7ty (yt) specified in
Lemma 4 and let U be specified as in Section 3.2 . Given the partition of the vector , Yy = [Y{,Y}"], the marginal
distribution of Y{|U, ¥ is the following

YU, ¥ ~ N(yg, %ZV;})

where p, is a subvector of u which elements correspond to the vector with the observed entries Y, and V! is a

-1
square, symmetric submatrix of V=1 = (]Id - WM™ 1WT) which correspond to the vector with the observed
entries by rows and columns.
Let y{.); be N realisations of vector Y{. We can specify the function Cg : R%XN 5 R

doN doN

()% (@)
I'(3)

Cﬁ (y(l):N’T) =

which is constant with respect to U, such that

g (1 (H nwmyt)) = Cp(yhn ) - Ay ()

where 7ty (u) is a density of univariate Gamma random variable U ~ T (a, B(y{.y;¥)) for the scalar
n = % and a function B : R9*N — R

1
Byl.n:Y) = tog2

3 (08 ) Vi )

N\Ql

Proof. We show that 77y (u) (Hﬁl Toye U,y (y?)) o fypy(u), where 7iyy(u) is a density of
univariate Gamma random variable. The density 7yo;; y(y7) is a probability function of Y{ which
is multivariate Gaussian with the mean p, and the covariance matrix Loo = %ZVO’C}. The reader may
refer to Gupta and Nagar (1999) to find the derivation of a marginal distribution of a subvector of
multivariate Gaussian random variable. Using this fact, we have

INCILIEy
Ty (u Hﬂw\uw (v) | = uz ‘e 2

(3
N 2 1 % u T
X tl}(sz7 — Voo eXP\ T 5,2 (¢ — #o) Voo (¥! — Ho)
)2 N N
= 8 st tnam) 4 (02) e e zexp{‘zuz (35— 10) Voo (¥ mT}
r'(3) =)

Let us denote the scalar & = % and define a function 8 : R%*N — R such that

v 1
Plyini¥) =5 +55

3 (0 ) Vi )

N
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We obtain the following proportionality

Ty (u (H ”Y”|U‘Y(Yt)) u*lexp { - ”ﬁ(Y?;N}‘P)} o fiypy (1),

where 7f;y(u) is a probability density function of the a univariate random variable U ~
I(a, B(y5.n; ¥)). We can specify the function Cg : R%*N — R, which is a constant with respect
to U, such that

7Tu|*¥ (H ”YGUY(Yt)) = C,g(y‘{;N,‘I’) : ﬁu\w(”)

After some derivation, we obtain that

N 138
e (1) - (Hfg ﬁyg|u,\¥()’?)) (27)~ dTN(‘TZ)f%TN Voo| (rf(%;
0. ,‘P - ~ - 0 3
Cﬁ(Yl.N ) ”u\w(”) ﬁ(y%:(Na;)‘P)a
M v
_e e Ve @t
= T (%) Blyin:¥)

O

D.3.2. The Proof of Theorem 3

Proof. We follow the similar steps as in the proof of Theorem 1 but utilising the logliklehood from
Equation (5) and corresponding assumptions. Hence, the E-step of EM algorithm for Identical and
Conditionally Independent t-Student with missing values is calculated as

Q(‘Ij, T*) = EY;’szXI:NIU‘Y(f;N/T [log 7TY1;N,X1;N,U\‘1’* (leNr Xl:Nr U) ]

- »AI‘QJF /]RNxdm /]Rka { 1Og (nYliN’XliN’uqu* (y1:N, X1:N,u))

x TN X N,Ul‘P(Yl N/ X1:N, 1)
Tlyo Nl‘I’(Y1 N)

1
- m /]R+ e () /RNxdm /wak {log (nYl:N'XltN'UW* (1N, xl;N'u))

}dxl;N dyTN du

applying Lemma 1 and 2

X TTY N X UL Y (Y1:N)7TX1:N\U,‘P (Xl:N)} dxi:N yiin du

1 / / N N
= T u hiys, w; ¥) ( log 7ty (1) + Y w(ye, w; ¥, Y") ) dyl'y du
o et Je, T fo g LTG50 (log e (1) + Y ol )) dyiiy
1 N
= - 7T u log T «\U m
”Y{NI‘Y(Y?:N) /]R+ uyy (1) /wadm (11 YUY Ys) 8 upy (WY1in

N

+/RNxdm Cu(¥)- (H Yol (¥s ><2w yr, ;¥ ¥ )) dY?N} du

s=1
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where Cy () and ty,|;; ¥ (y:) are specified in Lemma 4 such that

N

Hh ys, ;' V) = H Y5 |U,¥ (ys)

s=1 s=1

Z

Given the partition of the observation vector Y; into the vector of observed and missing entries in time
t, Y{ and Y}", respectively, that is Y; = [Y¢, Y}"] and applying Chain rule of probability, we obtain the
following equality

oy, (Ye) = oy yo,uw (Y1) - 7oyojuy (1)

we have that

QY. ¥") = LT)@ /]R+ Ty (1) /wadm {(108 Ty (1) +tiw()’t/ M/"Y/‘I’*))

an:N\‘P(th)

N
<1 ey jye v (Y;n)ﬁygu,‘f()’f)} dyT:y du
t=1

Cu(¥)
TTyo N|‘Y(Y1 N)

N N
= /R Ty (1) (Hﬁyﬂu,\y(}’?)) log 7ty (1 /Nxdm H myye iy (Vi) dyTiy du
.

t=1 t=1

=1

-
=<
I}
€
<

N

%\
z

X

&

~
™=z
g
<
8
g
€

=
=

=~ m m
7Tth|Y?,u,‘1f(Yt ) dylin d”}
t=1 t

l
A

Cu(Y)
ﬂyg:NW(Y‘f;N)

+ [, ()

N
< T1 / . ﬁY;"|Yg,u,w(yL”)dy§“}du}

d
s=1,s#t R

{ /Rd,,, wlys, ;¥ ¥") oy yo u v (1) Ayt

the t element

=1 since a density

= CH(TZ{ /R+ Ty (u <ﬁ oju,y (Y7 )log”u%(u) du

Ty ¥ (Y1~N) =1

N :
+/ oy (u (HT[Y”HJ‘Y yi ) Y. { /Rdm (ye, ;YY) 7oy yo 1w (Y1) dyitﬂ} d”}

t=1

Applying Lemma 5 and 6, we obtain the following simplified form of the function Q

CH (‘P) Cﬁ (yll):N’ T)

(Y, 9%) =
o ) Trye 1 (¥in)

/l‘{+ ffu‘\y(u) (log nu‘\y* + Z yt,‘Y T )d

where @(y; ¥,¥*) is derived in Lemma 5 and the density function 7ty (u) is given in Lemma 6.
O
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D.3.3. The Proof of Theorem 4

Proof. The maximizers of Q with respect to the vector of static parameters ¥* = [W*, u*,0*2] be
calculates as

2 * a ~ ~ ~ N ~ *
Ve Q(Y,¥") = 5o+ C(ytlj:N/\P){ /R Ttupe (1) log 7y (u)du + /R tupe (1) 2 ‘,W(Y?f”}T/T )d”}
T + =1

N

<~ 0 d
:C(YLNIT){/R Ty (1 )B‘I’* log 71y¢+ (u du+/ nu‘qf

= 0 as includes only v*

u;‘-I’,‘I’*)du}

t:

=C(yin ¥) /]R+ tupy (4 Z a‘{,* o(y;, w;¥,¥") du

Cu(P)Cp(yin Y)

g r ) We applied Leibniz integral rule to swap the order of differentiating

for C(yf.n, ¥) =

and integrating as the function f(¥*,u) = 7y (u) ( log 7ty g+ (1) + YN w(y, u;‘I’,‘I’*)) is a linear
function of u. It is integrable with respect to u and differentiable at ¥* and its gradient V- f is

bounded bzy a function of u. Next we calculate the gradient of YN | @(y?, u; ¥, ¥*) with respect to
[W*, u*,0*7], that is

d N ~ (0 *
=Y alytwY, YY) =
=]

N
u _ _

u
0—*2

Z Expiyg e Y] (Ta = WM™ W) — 4+ pwM w7

( Z Eypivo,ue [Yi] (Id - WM*1W*T) —p+ ,uWle*T>

il
N T o (1 - WM’lw*T) — o+ pWM W T
0—*2 1:N7 *7r d

) N
W Z D(yf, u; ¥, ¥") =

Mz

{ <]Eym|yu u l{/ [Yth ] EY;”‘Y?,U,‘F I:Yt} (’l + ‘u*>T + ‘u* T’/l>WM71

u _
“tw! (Eymyg,u,‘lf [YY]] = 2Bypryo e [Yel T+ F‘P‘T) wM !
— WW*M }
N [u & (o2 T T | «T 1
=2l N t; ;Q + Eyorpyo w [Ye] Eympye v [Ye] = Eyopyo e [Ye] (e +p%) " +p" Tp WM

_ u & [ o? _
-W'M 1WTN Y. {uQ + Eymjyo,u,y [ Y] TEYpl|Yg,u,‘¥ (Y] = 2Eypryo e [Ye] 1"+ W‘T}WM !
=1
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_ UZW*M_l)
N[(,1¥ TwT 2 I 12 1
==Y oMW WM W )Y QWM ' — WM™
v N = § N /=
Q
1 N T T * *T -1
tu ) {Eyylyg,u,‘y Ye] Eynpye uw [Ye] — Eypyeuw [Ye] (p+p") +p V} WM
=1

CIMI* (y‘l’:N;‘i’,‘Y*)

T 1 -
—uW'M'W’ N Y {EY;"|Y§,U,‘Y [Yt] TEY;"|Y§,U,‘F [Yt] = 2Eymyo 1w [ Y] Tu+ F‘Tﬂ} WM 1>

t=1
Culyf ¥ ¥
N e a = -
= o= ((029 - uCe (Y ¥, ) JWM ! — W (M—le (7PQ +uCy (¥ ¥, ¥7) ) WM ! +02M—1)>
9 3 7 (yY * dN 1 S 2 —Tya7* TyAT*
aa*zt:ZlW(Ytrul‘P,"P )—_W‘i‘m; (o TI‘{M W*'W }

+u ( Tr {Eymyg,u,‘f (Y]] = 2Bypriyo e [Ye] o T+ T}
—2Tr { (EY;”|Y$,U,‘Y [YtYlT] — ]EY;"\Y‘Z,U,‘Y [Yt] (y + y*)T + ”*T”> W*M1WT}
+Tr {M_le (Eymyt;,u,‘y (Y]] = 2By yo e [Ye] " + VFT)WM_l‘/V*TW* }) )
dN N _ _ _
- _W + W <02Tr {M 1W* TW*} + Tr {(TZQ + MCV* (y({:N;‘Y,‘P*)}

—2Tr { (02(2 +uCy, e (y‘{:N;‘I’,‘I’*)>W*M_1WT}

+Tr {leT (2Q+uCu (s ¥, %) ) WM W T W })

for the following notation

N
Y Evpiyeue [Ye],

ﬁ
I
A

N
Sy ¥) = L5 R Y,]'E Y
(yin ¥) Z Y;"\Y?,U,‘P[ t] YZ"\Y?,U,‘P[ t]

1N o 0
0 Vi — VigVooVou |/
— * C — * * T *

Coup (Vi B Y) =Syl ¥) — (Y O ) (u+ 1)+ T,
Cu(yin ¥, ¥%) =S(yin ¥) — a(ylns ¥, ¥ )’ + 1,

Cour (Y] B, ) =S(yis ¥) — Ay B, ) T4+ Ty
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Hence, the maximizers of Q with respect to the vector of static parameters ¥* = [W*, u*,c*?] are
calculated by solving the set of equation Vy+Q = 0 what results in the following

Q(¥,¥") il

T = C(Y?;N/ / 7TU|‘I’

w(yl, w; ¥, ¥") du =0

N

/R 7ty (1) (,z(yg:N;‘if,‘P*) (Id - WM’lw*T) _— —i—yWMlW*T) du =0
+

= | Alyin YY) (Id - WM‘1W*T) - +VWM—1W*T> /]R u ey (1) du = 0
JIR+

— alyln ¥ Y7 )(Id - WM™ 1W*T) —w + WM W =0

=

= Al ¥ ) (1 - WMIWT) 4 pwm TweT

Q~t ,”d(‘Y/T*) ~ ' *
S”BT =C(yl.n ¥ /R 7TU|1P Z aW* wo(yf, ;YY" )du=0

— / ﬁU|W(M)<02Q+uCM,;,* (yizN;‘I’,‘f’*))WMfldu
- / Tupy (u ( MW’ (a Q+uCy(yl ;¥ ¥" )>WM—1 +(72M_1) du =0

<:> 0’2Q + [R u ﬁu|\Y(u) du CP"V* (y‘l’:N;\Y,T*))WM_l
+

Ay E)

W (M—le (Q+ /R u ey (o) due €y ¥, ¥7) JWM! + OZM_1> -
+

A(y). YY)

= (02@ + A(yln, ¥ ¥) Cpupe (y‘{:N;‘P/‘P*))WM‘l

— W (leT ((72Q + A(y)n, ¥, ) Cy (y({:N;‘I’,‘Y*)>WM’1 + ale) =0
W= (PQ+ A, ¥ )G (¥ ¥, ¥7) J WM

X <M1wT (02Q + A(y§.n, ¥, )y (y‘l’:N;‘ifﬁIJ*))WM*1 - 02M1> )

d
d0*2

OY,¥*) - 3
% = C(Y‘f:N/T)/R Ty e (U

+

w(yl, ;' ¥, ¥")du =0

N
(1) )
=1

. AN N
— /ﬂh ”U‘Y(”){ T og2 T 2(02)2 (

—2Tr { (UZQ +uCy, e (yi’:N;‘P,‘P*))W*M_le}

(
o*Tr {Mflw* TW*} +Tr {(72(2 + uCp (y9.n: ‘Y,‘Y*)}

+Tr {leT (aZQ + uCh(yi.n; ‘I’,‘I’*))WM’lw*TW* }) } du =0
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— -4 + L (2T d{M W Twe
0-*2 (0-*2)2

+T {0+ [y ) du Gy 1,7
+
A(y‘{:N,‘F,‘Y*)

—2Tr { (UZQ + /R u Ay g (u) du Cy e (yﬁ:N;‘Y,‘P*))W*leT}
+

Ay T Y")

T {leT (azQ + /R u fypy (1) duCy (Y?:N?T"Y*))Wle*TW*D -
+

Ay T Y")

1 _ _
== ( 2Tr {M*lw* Tw*} +Tr {JZQ + A(yn ¥, ) Cpe (y‘{:N;‘Y/‘F*)}

—2Tr { (O'ZQ + A(Yn, ¥ ) Couper (¥5ns ‘P,‘I’*))W*M_le}

+Tr {leT (0’2Q + A(Y)n, Y CL (Y ‘I’,‘{’*))Wle*TW*}

Given Lemma 6, ﬁu\‘F(”) is the density function of univariate Gamma random variable, U ~

F(a,ﬁ(y‘{:N;‘I’,‘Y*)) and therefore we used the fact flR+ ftyupe (u) du = 1. Its expectation can be
easily derived, that is

n
AV, YY" :/ u Tt u)duy = —————
(YLN ) R, U\‘I’( ) ﬁ(y({:N;T’T*)

Therefore, the solution to the set of equations given by Vy+(Q = 0 are the following

i = Ay %) (1= WMTTWT) - wM W

14

: 2C C . * 1
W= (P ey o o 1Y) 9
-1
— _ I _ i B -
X <M 1WT(‘72Q+WC%(Y%N;‘FI‘P ))WM 1+(72M 1>
1:N’ ~/
o 15 “Iyark Tyars 9 x o .
o —H o TI'{M W 'W }-l—Tr o Q‘f‘WCF*(yLN,‘Y,‘F)
0 a C * * —
_ZTT{(U’ZQ+ WC%H*(Y‘{N/T/‘P ))W M 1wT}

, - w - . -
+Tr{M 1WT(02Q+—,{,IWC,T(y‘{:N;‘P,‘P )) WM 1W*TW*}

ﬁ (y({:N ’
The reader may notice that the vector y* is a linear function W* and vice versa. Hence, we can solve
the following linear system of equations

W= AN ) (L~ WMTTWT) W tweT

o _

W= (20+ — C (v, ) ) WM
( Blyf: ¥, ¥7) REE ))



Econometrics 2018, 6, x 35 of 51

o
Blyin: ¥, ¥7)

I(y‘{:N;‘F,‘Y*)*l

-1
X (M_le (02Q + C, (y‘{:N;‘P,‘I’*))WM_l + UZM_1>

by substituting the values of W* to the top equation by its values in the bottom equation, that is
po= AL YY) 4 (- Al YY) WM

T
2@ a e (O * “17(y0 . *)—1
X ((a Q+ ﬁ(y‘{:N;‘I’,‘I’*)C”'” VY ¥ ))WM (N A S )

!

pr= Ay YY) o (- Ay YY) WM Ty Y ) MW
+

a — (0 * —1yarT 0 *\—1 -1 0 *
—(y — A LY) )M W (v 1, Y WM™C, i (yi E, T
B(yoi F, F) (P‘ Ayl )) (Y1:n ) et (Y1N )

Next we substitute C,, - (y5.; ', ¥*) = S(y).00 ¥) — (1 + %) Tﬁ(y‘l’:N;‘I’,‘Y*) + p* Ty which contains
the vector u*. We obtain that

pt=ay YY) 0t (= Ayl 8 Y)) WM T (vl F, ) T IMTIWTQ

& _ * — *\ — — c _ *
+W(ﬂ—ﬂ()"{:w/“f/‘f ))WM ™ I(y].; ¥, %) 7'M 1WT<S(Y‘{;N2‘I’) — 1Ay Y Y ))
1:N” -/
x _ * — %\ — — * «T - *
+W(F—F(Y?;N2‘P/‘Y WM I (y)n; Y, )~ 'M 1WT<F T — Tyl ¥, Y ))
1:N” -/
—
. «

T
F = By, ey (AR ) WMy ) MW (n =AW Y)) 0

= Ayl E ) + 0% (n — Ayl Y)) WM (y)n 8 'MW Q

[ _ * — *\ — — c — *
+ gy (AT Y WM ) I W (S5 ) — A YY)
LN7 =7
<~
[ . * — *\ — — — * T *
(1— By ) (P~ A ) WML (¥, ) 7M. W (5= iy ¥, YY) )P‘
1:N’ 7

= Ayl V) + 0% (= Ay E V) WIM T (v, ) T TMTTWQ

x ) . 3 o ) _ *
By 5 T A ) WMy, W) I W (S ¥) — 1 Ay )
1:N” =7
for
: 2Q & C . * -1
W= (PQ+ g ey Cuae (i 1Y) ) WM

o

1
—  C,(Vo; YY) ) WML +(72M_1>
ﬁ(y({:N?T/T*) i (YN ))

x (M—le (a2Q +
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= o
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Appendix E. Synthetic Data Case Studies

In the next section we demonstrate the performance of the feature extraction frameworks
introduced in Section 4, the two t-Student PPCA frameworks, as well as the standard Gaussian
Probabilistic Principal Component Analysis methodology introduced by Tipping and Bishop (1999)
and its robust alternative which adapts the robust estimation of mean vectors and covariance matrices
with algorithm provided Appendix C. The synthetic data case studies address the following questions:

Q1: How sensitive are the investigated methodologies to the initialisation step of the algorithms?
Does the dimensionality of the data, the number of observations, a ration of missing values and

proportion of outliers have an impact on the stability of the algorithms?
Q2: How successful are the newly derived methodologies in estimating the components of model (1)

under different proportions of missing values and other perturbation to the data sample? Does
the type of the perturbation (row-wise or element-wise) have an impact on the performance of
the methodologies?

Hence, the first subsection of Appendix E discuss the stability of investigated the EM algorithms and
their ability to estimate the parameters of the model (1) when the assumptions of the PPCA model
agree with the distribution of the underlying data. Hence, we test Gaussian PPCA and robust Gaussian
PPCA algorithms given the samples from a multivariate Gaussian distribution, and we examine the
t-Student frameworks given the data which follows multivariate t-Student distributions discussed
in Section 3. We study the performance of the algorithms for the different dimensionality of a single
observation and the sample size as well as various proportions of missing values in the data set without
corrupting the data sample with any additional noise.

Next, we focus on the efficiency of the algorithms in estimating the parameters of model (1) given
the sample data which is corrupted. We generate the data from a multivariate Gaussian distribution
which then is perturbed row-wise (the whole observation is perturbed) or element-wise (only single
elements of an observation vector are perturbed) by multivariate Laplace distribution with zero mean
and the covariance matrix of Gaussian data. We study the performance of the algorithm under different
dimensionality of the data, the number of observations, proportion of missing values and proportions
of the corrupted sample.

We test the algorithms given 100 simulations and consider various input parameters: sample size
N = 200, 500; the dimensionality of a single observation d = 5, 10, 20; the proportion of missing
values missing = 0%, 20%, 50% and proportion of the perturbed sample perturbed = 20%, 50%. We
examine the robust Gaussian PPCA framework for breakdown points bp = 0.1,0.2,0.3,0.4,0.45. We
choose the grid of degrees of freedom for t-Student PPCA frameworks to be flexible and reflect both

heavy tail assumptions and less robust frameworks, thatis dof = { {1, el 10}, 15,20, 30,50, 75, 100}.

In addition, we examine the effect of the robust initialisation on the performance of the algorithms
with corresponding input variable robustInit = TRUE, FALSE.

E.1. Testing PPCA Algorithms For Non-Perturbed Sample

We examine the recovery of the following static parameters: the mean vector y;,; and the k = 3
first eigenvectors of the covariance matrix Cy, g = WTW + 021, for d x k real matrix W. Additionally,
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we remove some portion of data equal to the parameter missing in order to test how the proposed
estimation framework handles presence of incomplete observations.

We simulate 100 estimations of the true parameters for each of the investigated PPCA frameworks
and various assumptions on the dimensionality of the data, sample size, the proportion of missingness.
We set the sample set to be fixed per dimensionality in order to examine the sensitivity of the algorithms
to the initialisation step. Therefore, each of the plots in this sections shows the median of results with
corresponding 97.5% empirical quantiles. For t-Student PPCA cases, we keep the parameter of degrees
of freedom fixed to its true value v = 4.

N=200 N=200 N=200 N=500 N=500 N=500
d=5 d=10 d=20 d=5 d=10 d=20

. 1 I 1

L] N
0 p— PR (] p— Lo I D
O-M__ w0l _ oo |mem_
Onél_,_ mol_ -Er_l__ .LJ:I_,__ mer_ -Er_l__

M Gaussian " rGaussian M tStudent IND M tStudent 1D D::gg&:%m:% _lI:_ARIDSEE
Figure S12. The median of the loglikelihood functions of EM algorithm for: Gaussian PPCA (red),
robust Gaussian PPCA (grey), t-Student IND PPCA (green) and t-Student IID PPCA (blue) for (column-wise)
different dimensionality of the observation (d) and sample size (N) and (row-wise) proportion of missing values
in sample set (missing). The bars with solid black borders correspond to the results of the algorithms which
have not been initialized with the robust step. The vertical solid black lines highlight the 2.5% and 97.5%
empirical quantiles of the obtained results.
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N=200 N=200 N=200 N=500 N=500 N=500
d=5 d=10 d=20 d=5 d=10 d=20

%0 :BUISSIN

9402 :BUISSIN

m :

960G :BUISSIA

M Gaussian "' rtGaussian M tStudent IND M tStudent IID  Orobustinit: FALSE
robustinit: TRUE

Figure S13. The logarithm of the squared Frobenius norm of the diffrence between the three first eigen vectors
of the true matrix C = WIW + ¢?I;and its estimatorsC = WTW 4 621, given by by EM algorithm for: Gaussian
PPCA (red), Robust Gaussian PPCA (grey), t-Student IND PPCA (green) and t-Student IID PPCA (blue) for
(column-wise) diffrent dimentionality of a sigle observation (d) and the sample size (N) and (row-wise) the
proportion of the missing values in the sample set (missing). The bars with solid black borders correspond to the
resuts fo the algorithms which have robust initialisation. The vertical solid black lines highlights the 2.5% and
97.5% quantiles of the results.

N=200 N=200 N=200 N=500 N=500 N=500
d=5 d=10 d=20 d=10 d=20
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Py
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M Gaussian ™ rGaussian M tStudent IND MtStudent ID  Orobustinit: FALSE
robustlnit: TRUE
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%02 :BUISSIN
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Figure S14. The logarithm of the squared Frobenius norm of the difference between the true value of the vector
of means p and its estimator given by by EM algorithm for: Gaussian PPCA (red), Robust Gaussian PPCA
(grey), t-Student IND PPCA (green) and t-Student IID PPCA (blue) for (column-wise) different
dimensionality of a single observation (d) and the sample size (N) and (row-wise) the proportion of the missing
values in the sample set (missing). The bars with solid black borders correspond to the results fo the
algorithms which have robust initialisation. The vertical solid black lines highlight the 2.5% and 97.5%
quantiles of the results.

Figure S12 illustrates the final loglikelihood functions of the EM algorithms for different
variants of PPCA framework. The bars show the median loglikelihood of the corresponding EM
algorithms over 100 simulations per case study whereas the vertical solid lines denote 2.5% and
97.5% empirical quantiles of the results. The non-zero interquartile range informs us about the
sensitivity of the algorithms to the initialisation step. Recall that we test the algorithms on the datasets
which correspond to the PPCA assumptions, hence the magnitude of resulting loglikelihood
across different PPCA framework does not inform us which algorithm fits the data most accurately.
We can notice that the
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algorithms are the most affected by changes to the initialisation when the dimensionality of the data
is the lowest regardless of the sample size, especially when the proportion of missing values is the
highest. The wide interquartile intervals of robust Gaussian PPCA (grey bars) for d = 5 and non zero
missingness shows that this methodology is the most sensitive to the initialisation. It is the intuitive
outcome since the multivariate frameworks of the robust covariance estimation are very sensitive to
their own initialisation what increases the overall sensitivity of the robust Gaussian PPCA framework.
On the other hand, the methodology provides solutions with much higher likelihood that the standard
Gaussian PPCA for lower dimensionality cases with a presence of missing values

The t-Student PPCA algorithms are less affected by the initialisation step for most of the cases
but for the higher dimensionality of the sample data and highest portion of missing values we notice
greater sensitivity of t-Student IND PPCA when we do not proceed with robust initialisation. For
the other cases related to the two t-Student PPCA frameworks, the robust initialisation neither does
decrease nor increase the sensitivity of the algorithm. In addition, robustly initialized t-Student
PPCA tends to find solutions in local maximums of likelihoods which have higher values than their
equivalents provided by non-robustly initialised algorithms, especially for t-Student IND PPCA.

The convergence of the algorithms to different local maxima of the corresponding loglikelihood
function of the EM algorithms results in different estimations of the model’s (1) static parameters and
therefore the eigenvectors of the covariance matrix differ. The Figure S13 illustrates the discrepancies
between the matrix with three most meaningful eigenvectors of the true covariance matrix and its
estimation across different cases and methodologies. We use the squared Frobenius norm of the
difference between matrices as a measure of the distance.

As expected, the sensitivity of the estimation algorithms to the initialisation step influences
the variability of the estimators. The plots in Figure S13 shows the median of the norms with
the corresponding 97.2% empirical quantiles. The standard EM algorithm for Gaussian PPCA
outperforms its robust equivalent, especially for the incomplete data cases. Even though the
robust Gaussian algorithms converged to the higher likelihood of the data, its quality of the recovery
of the matrix with eigenvectors is worse than the standard Gaussian PPCA. Recall that the Gaussian
PPCA is the least affected methodology by the change of the input parameters: dimensionality,
sample sizes and the proportion of missing values.

One may notice the improvement of estimation of the eigenvectors obtained by t-Student
frameworks with the increase of the sample size, especially for t-Student IND PPCA. Both
methodologies provide the most accurate estimate of the eigenvectors for higher dimensions of
the data. The median of the results between the frameworks initialised robustly or not exhibit small
despondencies, but the robust initialisation increases their interquartile range, and consequently the
certainty.

Figure S14 illustrates the estimation of the mean vector p. Similarly to the matrix with
eigenvectors, we use the squared Frobenius norm of the difference between the true value of the
vector of means u and its estimate to asses the distance between the vectors. The plots show the
median of the logarithms of the norms with corresponding 97.5.% empirical confidence intervals. The
accuracy of the estimation of u is less volatile in different cases than for the corresponding
matrices with eigenvectors. We observe a small decrease of the confidence of the results provided
by the algorithms with the robust initialisation, with the exception of the t-Student IND PPCA for
the highest proportion of missing values and dimensionality. The algorithms tend to provide poor
accuracy of the estimation of y what explains the low loglikelihood values of the corresponding EM
algorithms shown in Figure S12. We can try to improve the results by restraining the convergence
criterion.
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Figure S15. The median of the loglikelihood function of the EM algorithm for t-Student IND PPCA across
the grid of degrees of freedom (x-axis) over different dimensionality of the observations (d) and the sample size
(N)(column-wise) and the proportion of the missing values in the sample set (row-wise). The vertical solid black
lines highlight the 2.5% and 97.5% empirical quantiles of the results. The blue colour of the points corresponds
to the degree of freedom parameter which is optimal in terms of MLE model selection criterion. The true value
of the parameter is equal to 4.
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Figure $16. The median of the loglikelihood function of the EM algorithm for t-Student IID PPCA across
the grid of degrees of freedom (x-axis) over different dimensionality of the observations (d) and the sample size
(N)(column-wise) and the proportion of the missing values in the sample set (row-wise). The vertical solid black
lines highlight the 2.5% and 97.5% empirical quantiles of the results. The blue colour of the points corresponds
to the degree of freedom parameter which is optimal in terms of MLE model selection criterion. The true value
of the parameter is equal to 4.
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Figure S17. The median logarithm of the likelihood function of EM algorithm for robust Gaussian PPCA across
the grid of degrees of freedom (x-axis) over different dimensionality of the observation (d) and sample size (N)
and (row-wise) proportion of missing values in sample set (missing). The blue colour of bars corresponds to the
degree of freedom parameter per case which results in the maximal median value of the corresponding
loglikelihood. The bars with red borders correspond to the results fo the algorithms which have robust
initialisation. The vertical solid black lines highlights the 2.5% and 97.5% empirical quantiles of the results.

We want to verify what is the impact of different assumption on heavy tails of a sample data on
the loglikelihood of the t-Student PPCA and robust Gaussian PPCA EM algorithms. Figure S15
and Figure S16 present the median logarithm of the likelihood function per dimensionality, sample
size and proportion of missingness across different values of degrees of freedom for t-Student IND
and t-Student IID PPCA algorithms whereas Figure S17 illustrates the results for robust Gaussian
PPCA across various breakdown points. The maximum median of logarithms is highlighted by blue
colour. The row-wise order of the panels corresponds to the different proportions of missing values
and the type of the initialisation step

One may notice that the algorithms remind sensitive to the initialisation step regardless of
the parameters of degrees of freedom or a breakdown point, especially with the increase of the
dimensionality and the ratio of missing value. In addition, the t-Student PPCA algorithms rarely
provide the highest values of the loglikelihood functions for their true parameter of degrees of freedom.
The corresponding likelihood functions are very flat across considered values of degrees of freedom
and therefore the estimation of the parameters is sensitive to numerical error. Consequently, we
recommend against the estimation of these parameters via Maximum Loglikelihood Estimation in EM
algorithm as it is proceeded with the rest of the linear static parameters of the model (1). Therefore, we
use the parameter of degrees of freedom as a model selection criterion and specify its value on a grid.

With regards to the determining the value of the breakdown points in robust Gaussian PPCA,
the choice is related to model selection methodology as it is not a component of the model (1)
or assumptions on Gaussian PPCA. Figure S17 shows that the optimal breakdown points are
not significantly affected by the initialisation methodology. However, we observe that the selection of
the values is affected by the dimensionality of the data and the proportion of missing values.

The breakdown point denotes the allowed maximal proportion of a sample corrupted with
outlying data which can be handled before by a covariance estimator before giving an incorrect
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result. The plots in Figure S17 further confirm that the robust Gaussian PPCA methodology is more
sensitive to initialisation step with an increase of missing values, especially for lower breakdown points.
The profile loglikelihood of the corresponding EM algorithms is not flat and provides us with clear
information which value of the parameter to select, however, the interquartile range of the results
tends to be wide especially for the higher proportion of missing values and small dimensionality.

E.2. Testing Robustness of PPCA Algorithms For the Perturbed Sample

In order to investigate the efficiency of the PPCA frameworks in a presence of perturbation to the
sample data, we generate the observation data which follows multivariate Gaussian distribution and
then corrupt some portion of the sample corresponding to the parameter perturbed with the realisation
of zero mean multivariate Laplace random vector with covariance matrix C and the dimensionality
which is consistent with the observation vector.

We perturb the observation set in two ways: (1) row-wise when we draw the whole observations
and perturb it with the corresponding realisation of the Laplace random vector; or (2) we draw single
elements from the sample set which we perturb with corresponding elements from a realisation of
the Laplace random vector. The studies aim to identify which methodology is the most robust in the
presence of two different perturbation patterns. We examine the methodology under different input
parameters: length of the sample, the dimensionality of an observation, the proportion of missing
values and the proportion of the corrupted sample.

The studies show that in the presence of the element-wise perturbation, the best methodology
which estimates the mean vector u is t-Student IND regardless of the input parameters. The panels
in Figure S18 show the accuracy of the estimations of the three most meaningful eigenvectors of
the covariance matrix C for two patterns of the perturbation: row-wise in the top panel and element-
wise in the bottom panel. They illustrate the logarithm of the median of discrepancies between the
estimation and the true value of the parameter across different cases and methodologies. We use
the squared Frobenius norm of the difference between matrices as a measure of the distance. We
remark that the Gaussian PPCA is comparably accurate in the estimation of the matrix with
eigenvectors that the robust frameworks when the dimensionality of the data is higher. The robust
Gaussian PPCA provides the poorest recovery. The t-Student IND PPCA obtains the best results
for the lower dimensionality of the data when the sample is perturbed element-wise or for
higher dimensionality when the sample is perturbed row-wise. Also, the high proportion of
missing values decrease the performance of the algorithms. With regards to the t-Student IID
PPCA, the methodology is most efficient in high dimensional and obtains the best performance
among examined frameworks when the data is corrupted element-wise.

The estimation of the vector of means, u is more consistent across the methodologies and
perturbations patters. The panels in Figure display the accuracy of the estimations for row-wise
and element-wise perturbation of the sample set, in the top and bottom panel, respectively. We notice,
that similarly to the non-perturbed case, the t-Student IND PPCA tends to provide the poor estimation
of the parameter when the dimensionality of the data and the proportion of missing values are high.
In addition, we observe that in a presence of the row-wise perturbation and high dimensionality of
data, the t-Student IID PPCA is the most accurate methodology.
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Figure S18. The logarithm of the squared Forbenious norm of the diffrence between the three first eigen vectors
of the true matrix C = WI'W + ¢2I; and its estimate C =WTW+ 21, given by the following EM algorithms:
Gaussian PPCA (red), Robust Gaussian PPCA (grey), t-Student IND PPCA (green) and t-Student IID PPCA (blue)
for (column-wise) diffrent dimentionality of a sigle observation (d) and the sample size (N) and (row-wise) the
proportion of the sample which is perturbed with the Laplace noise and the proportion of the missing values in
the sample set. The bars with solid black borders correspond to the resuts fo the algorithms which have robust
initialisation. The vertical solid black lines highlights the 2.5% and 97.5% quantiles of the results. The top and
bottom panels correspond to the row-wise and element-wise perturbation patterns, respectively.
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Figure S19. The logarithm of the squared Forbenious norm of the diffrence between the true vector of means
u and its estimator given by the following EM algorithms: Gaussian PPCA (red), Robust Gaussian PPCA
(grey), t-Student IND PPCA (green) and t-Student IID PPCA (blue) for (column-wise) diffrent
dimentionality of a sigle observation (d) and the sample size (N) and (row-wise) the proportion of the sample
which is perturbed with the Laplace noise and the proportion of the missing values in the sample set. The
bars with solid black borders correspond to the results of the algorithms which have robust initialisation. The
vertical solid black lines highlight the 2.5% and 97.5% quantiles of the results. The top and bottom panels
correspond to the row-wise and element-wise perturbation patterns, respectively.
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The selected breakdown points for robust Gaussian PPCA are illustrated in Figure S20 for row-
wise and element-wise pattern of perturbation in left and right panel, respectively. The
proportion of perturbed sample is indicated in the x-axis of the plots. The blue color of bars
corresponds to the selected parameters when the algorithm is initialized in a robust way. The
optimal values are mostly consistent within the perturbation patterns. We notice that the
discrepancies between the values of parameters provided by the robust or non-robust initialisation
increase when the proportion of missing values is higher and dimensionality of data is low, especially
in the element-wise case. What is more, we observe that the increase of the selected breakdown
points follows the increase of the missingness. It is not a surprising outcome since the missing values
are projected using the conditional means. The robust covariance estimation algorithms detects more
variability and outgoingness in the smoothed data set with filled missing entries and hence
requires higher breakdown point which specifies the percentage of sample which is drawn to
calculate the sample estimators of a covariance matrix.

With regards to the other robust PPCA methodologies, Figure S21 and Figure S22
shows corresponding optimal degrees of freedom selected for t-Student IND PPCA and t-Student IID
PPCA, respectively. The selected values of the parameter are less consistent across different
patterns of perturbation as well as dimensionality of the data, the sample size and proportion of
missing values than the selected breakdown points. It is a consequence of the flat profile of
loglikelihood of the corresponding EM algorithms and therefore their numerical sensitivity. There
is small consistency of the results with the proportion of the perturbation, especially for higher
dimensionality of the data. However, we remark that t-Student IID PPCA selects higher values of
degrees of freedom for element-wise perturbation when the proportion of missing values is low
whereas lower degrees of freedom when the missingness is the highest. The selected of degrees of
freedom are in more agreement for the row-wise perturbation pattern.
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Figure $20. The optimal breakdown points for robust Gaussian PPCA (y-axis) across diffrent proportions
of perturbed samples with the Laplace noiso (x-axis) over diffrent dimentionality of the observation (d) and
sample size (N) and (row-wise) the proportion of the missing values in the sample set. The blue color of bars
corresponds to the algorithms with the robust initialisation. The left and right planels correspond to the results
for row-wise and element-wise perturbations, respectively.
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Figure S21. The optimal degrees of freedom for t-Student IND PPCA (y-axis) across diffrent proportions
of perturbed samples with the Laplace noiso (x-axis) over diffrent dimentionality of the observation (d) and
sample size (N) and (row-wise) the proportion of the missing values in the sample set. The blue color of bars
corresponds to the algorithms with the robust initialisation. The left and right planels correspond to the results
for row-wise and element-wise perturbations, respectively
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Figure S22. The optimal degrees of freedom for t-Student IID PPCA (y-axis) across diffrent proportions
of perturbed samples with the Laplace noiso (x-axis) over diffrent dimentionality of the observation (d) and
sample size (N) and (row-wise) the proportion of the missing values in the sample set. The blue color of bars
corresponds to the algorithms with the robust initialisation. The left and right planels correspond to the results
for row-wise and element-wise perturbations, respectively.

Appendix F. Model Fit Statistics

In the following section we provide the supplementary materials to the result of in-sample and
out-of-sample analysis from Section 7.
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Table S4. The list of yearly features from the data sets D2-D3 which are chosen as exogenious variables in
the calibration of the Extended Nelson-Siegel model introduced in Section 5. The choice of the features
follows the procedures described in the Step 3, Section 7.1. The analysis of the pairwise correlation between
the yearly features is discussed in Section 6.4. The first column refers to the abbrivations of the data sets
outlined in the introduction to the Section 6. The second column of the table list all employed PPCA
methodologies: the two Student PPCA discussed in Section 3 and Gaussian PPCA bierfly overview in
Appendix C. The symbols ‘v’ indicates that the corresponding feature (data set, PPCA methodology and year)

was used in the study.

Set

PPCA

2006

2007

2008

2009

2010

2012

2013

2014

2015

2016

D2

Gaussian
t-Student IND
t-Student ITID

AN

ANANRN

<

AN

AN

AN

AN

AN

AN

AN

D3

Gaussian
t-Student IND
t-Student IID

<

AN

<

AN

<

AN

D3b

Gaussian
t-Student IND
t-Student ITD

AN

A

D3s

Gaussian
t-Student IND
t-Student IND
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Table S5. The comparison of the optimal models selected using two employed strategies - by minimum AIC
(minAIC) and the lowerst complexity (diagAll) for the Euro Libor yield with 1Y swap rate. The first 22 correspond
to the description of the yearly (the first column) in-sample and o ut-of-sample fit re sults for th e Extended
Nelson-Siegel model and the latter to the standard Nelson-Siegel model. The second column, Crit., indicates
which selection strategy has been used to decide the assumptions about the static parameters of the models. The
columns 3-6 provide the information about the chosen assumptions: Case - gives information which matrices are
assumed to be diagonal according to the cases in Section 5.4; Q- provides information which type of covariance
matrix for the observation error term is chosen, heterogeneous (hete) or homogeneous (homo); R- provides
information which type of covariance matrix for the state equation error term is chosen, heterogeneous (hete),
homogeneous (homo) or homogeneous per group (homoP); log A - provides the value of the shape parameters
of the Nelson-Siegel model. The columns 7-10 present the yearly in-sample model fit s tatistic: AIC - Akaike
Information Criterion of the models, BIC - Bayesian Information Criterion of the models, MSE - the logarithm
of the mean square errors of the in-sample predictions y;; | obtained by the Kalman Filter, L - the logarithm
of the Kalman Filter likelihood. The columns 11-12 show the forecasting performance of the models measured
by the mean square error of prediction (MSEP) being an averaged squared residuals between the out-of-sample
prediction provided by the Kalman Filter, y;; ; and observed values: 1D - the logarithm of 1 day MSEP, 1W - the
logarithm of 1 week MSEP, 1M - the logarithm of 1 week MSEP. The last two columns refer to the information
about the optimal factors chosen for Extended Nelson-Siegel model: PPCA - the PPCA methodology used to
obtain the factors from data sets, 1- Gaussian, 2- t-Student IND, 3 - t-Student IID; Model - the acronyms of the
examined Extended Nelson-Siegel models listed in Section 7.1

Year Crit. Static Params In-sample Out-of-sample Factors
< )
Case Q R log A AIC BIC MSE L 1D 1w ™M gy o3z
&
2006 diagAll 1 hete hete -1.42 -16200.80 -16197.25 -4.36 8101.40 -6.20 -4.96 -3.59 2 M2
minAIC 2 hete hete -2.31 -17898.52 -17894.97 -5.10 8950.26 -6.35 -4.77 -2.74 1 M2
2007 diagAll 1 hete hete -0.96 -14227.19 -14223.63 -3.99 7114.59 -4.92 -3.42 -1.94 1 M2
minAIC* 4 homo hete -0.40 -8220.76 -8217.20 -6.12 4111.38 -4.39 -3.27 -1.75 3 M2
2006 diagAll T hete hete -0.48 -10153.47 -10149.90 -3.81 5077.73 -5.46 -356 -2.05 3 M3
c) minAIC 1 hete hete -0.48 -10153.47 -10149.90 -3.81 5077.73 -5.46 -3.56 -2.05 3 M3
2 2009 diagAll 1 hete hete -0.48 -14214.22 -14210.65 -5.77 7108.11 -5.66 -3.16 -1.53 2 M2
E minAIC* 1 homo hete -0.40 -11494.12 -11490.55 -5.73 5748.06 -5.19 247 -0.66 2 M2
) 2010 diagAll 1 hete hete -0.64 -14898.48 -14894.92 -5.81 7450.24 -6.02 -4.51 -2.68 2 M2
ﬁ minAIC* 1 homo homoP -2.31 -11994.02 -11990.45 -5.84 5998.01 -5.04 -4.08 -2.52 2 M2
= 2011 diagAll 1 hete hete -0.56 -13025.47 -13021.91 -5.07 6513.74 -6.02 -3.98 -1.70 1 M3
.—% minAIC 1 homo homo -0.48 -10689.50 -10685.94 -5.61 5345.75 -5.95 -5.18 -4.16 1 M2
2 2012 diagAll 1 hete hete -0.74 -15068.73 -15065.16 -5.76 7535.36 -7.26 -5.82 -4.17 2 M2
o minAIC 1 homo hete -0.64 -11603.07 -11599.51 -6.31 5802.54 -6.96 -5.79 -4.23 1 M2
-eié 2012 diagAll T hete hete -0.72 -16255.27 -16251.71 -6.72 8128.64 719 -5.88 374 3 M2
g " minAIC 1 hete hete -0.74 -16255.27 -16251.71 -6.72 8128.64 -7.19 -5.88 -3.74 3 M2
& 2014 diag Al 1 hete hete -0.96 -17049.46 -17045.90 -6.47 8525.73 -7.01 -5.21 -3.01 2 M2
minAIC 2 hete homoP -0.84 -18140.85 -18137.29 -6.41 9071.43 -7.16 -5.48 -3.32 2 M2
2015 diagAll 1 hete hete -0.96 -17853.02 -17849.45 -6.67 8927.51 -7.69 -6.29 -4.38 1 M2
minAIC 4 hete hete -0.96 -20499.40 -20495.83 -6.71 10250.70 -7.26 -5.15 -2.97 1 M2
2016 diagAll 1 hete hete -1.09 -17814.46 -17810.90 -7.15 8908.23 1 M2
minAIC 1 homo hete -1.09 -15528.66 -15525.09 -6.41 7765.33 1 M2
200¢  diagAll 1 hete hete -1.42 -12327.83 -12324.27 -4.07 6164.91 -4.01 -3.85 -3.26
minAIC 1 hete hete -1.42 -12327.83 -12324.27 -4.07 6164.91 -4.01 -3.85 -3.26
2007  diagAll 1 hete hete -0.96 -12511.59 -12508.03 -3.23 6256.79 -2.24 -2.36 -1.75
minAIC* 2 hete homo -0.96 -12709.18 -12705.63 -3.37 6355.59 -2.18 -2.33 -1.87
2008  diagAll 1 hete hete -0.48 -7160.47 -7156.90 -2.64 3581.24 -4.43 -3.89 -2.65
minAIC 1 hete hete -0.48 -7160.47 -7156.90 -2.64 3581.24 -4.43 -3.89 -2.65
2009  diagAll 1 hete hete -0.48 -11357.15 -11353.59 -4.47 5679.58 -3.80 -2.76 -1.38
E 2009 minAIC* 2 hete hete -0.56 -11664.50 -11660.93 -4.49 5833.25 -4.60 -3.14 -1.51
S 2010  diagAll 1 hete hete -0.64 -12052.63 -12049.06 -4.31 6027.31 -4.18 -3.62 -2.34
_E minAIC* 2 hete hete -231 -12145.68 -12142.11 -4.95 6073.84 -3.22 -2.95 -1.91
gm 2011 diagAll* 1 hete hete -0.56 -10380.08 -10376.52 -4.26 5191.04 -3.49 -3.18 17
> minAIC* 2 hete hete -0.56 -10754.53 -10750.97 -4.29 5378.26 -3.46 -3.23 -2.39
3 2012 diagAll 1 hete homo -0.74 -9508.23 -9504.67 -4.21 4755.12 -4.03 -3.97 -3.03
,5 minAIC 3 hete homo -0.74 -9518.42 -9514.86 -4.35 4760.21 -4.47 -3.86 -1.42
2 2013 diagAll 1 hete homo -0.96 -10788.14 -10784.57 -5.13 5395.07 -5.34 -4.87 -3.10
minAIC 2 hete hete -0.96 -11464.71 -11461.15 -5.37 5733.36 -5.44 -4.85 -2.82
2014  diagAll 1 hete hete -0.96 -11274.46 -11270.90 -5.40 5638.23 -5.83 -493 -2.92
minAIC 3 hete hete -0.96 -11378.09 -11374.53 -5.37 5690.04 -5.73 -4.88 -3.33
2015  diagAll 1 hete homo -0.96 -13368.97 -13365.40 -5.85 6685.48 -5.46 -5.09 -3.98
minAIC 4 hete homo -0.96 -14395.09 -14391.52 -6.06 7198.54 -5.65 -3.95 -1.54
2016  diagAll 1 hete hete -1.09 -12214.66 -12211.10 -5.54 6108.33
minAIC 2 hete homo -1.09 -12990.60 -12987.04 -5.85 6496.30
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Table S6. The comparison of the optimal models selected using two employed strategies - by minimum AIC
(minAIC) and the lowerst complexity (diagAll) for the Euro Libor yield with 1Y ICE rate. The first 22 correspond
to the description of the yearly (the first column) in-sample and o ut-of-sample fit re sults for th e Extended
Nelson-Siegel model and the latter to the standard Nelson-Siegel model. The second column, Crit., indicates
which selection strategy has been used to decide the assumptions about the static parameters of the models. The
columns 3-6 provide the information about the chosen assumptions: Case - gives information which matrices are
assumed to be diagonal according to the cases in Section 5.4; Q- provides information which type of covariance
matrix for the observation error term is chosen, heterogeneous (hete) or homogeneous (homo); R- provides
information which type of covariance matrix for the state equation error term is chosen, heterogeneous (hete),
homogeneous (homo) or homogeneous per group (homoP); log A - provides the value of the shape parameters
of the Nelson-Siegel model. The columns 7-10 present the yearly in-sample model fit s tatistic: AIC - Akaike
Information Criterion of the models, BIC - Bayesian Information Criterion of the models, MSE - the logarithm
of the mean square errors of the in-sample predictions y;; | obtained by the Kalman Filter, L - the logarithm
of the Kalman Filter likelihood. The columns 11-12 show the forecasting performance of the models measured
by the mean square error of prediction (MSEP) being an averaged squared residuals between the out-of-sample
prediction provided by the Kalman Filter, y;; ; and observed values: 1D - the logarithm of 1 day MSEP, 1W - the
logarithm of 1 week MSEP, 1M - the logarithm of 1 week MSEP. The last two columns refer to the information
about the optimal factors chosen for Extended Nelson-Siegel model: PPCA - the PPCA methodology used to
obtain the factors from data sets, 1- Gaussian, 2- t-Student IND, 3 - t-Student IID; Model - the acronyms of the
examined Extended Nelson-Siegel models listed in Section 7.1.

Year Crit. Static Params In-sample Out-of-sample Factors
< cl
Case Q R log A AIC BIC MSE L 1D 1w ™ g 2
|
2006  diagAll 1 hete hete -1.42 -15794.25 -15790.70 -4.30 7898.12 -6.35 -4.93 -3.41 2 M2
minAIC 1 hete hete -1.42 -15794.25 -15790.70 -4.30 7898.12 -6.35 -4.93 -3.41 2 M2
2007  diagAll 1 hete hete -0.76 -14609.24 -14605.70 -3.67 7305.62 -4.90 -3.33 -2.01 1 M2
minAIC 2 hete homoP -0.83 -14127.90 -14124.35 -4.43 7064.95 -5.00 -3.49 -2.08 2 M2
2008 diagAll* 1 hete hete -0.52 -9680.15 -9676.59 -3.98 4841.08 -5.70 -3.96 -2.57 3 M3
o minAIC 2 hete hete -0.52 -13679.93 -13676.37 -3.93 6840.96 -5.41 -3.47 -1.59 3 M3
3 2009  diagAll 1 hete hete -0.52 -13527.22 -13523.65 -5.64 6764.61 -5.60 -3.07 -145 2 M2
E minAIC 4 hete hete -0.52 -16645.06 -16641.49 -4.81 8323.53 -5.32 -3.17 -1.87 3 M3
Y 2010  diagAll 1 hete hete 218 -15298.46 -15294.90 -6.20 7650.23 -5.52 -3.69 E2Rp) 2 M2
% minAIC 4 hete hete -2.51 -18306.79 -18303.23 -6.33 9154.40 -5.70 -4.65 -2.88 2 M2
& 2011  diagAll 1 hete hete -0.52 -13003.63 -13000.07 -5.19 6502.81 -6.16 -4.23 -1.99 1 M3
2 minAIC 2 hete hete -0.52 -16224.58 -16221.02 -4.99 8113.29 -5.93 -4.01 -1.79 1 M3
%‘ 2012 diagAll 1 hete hete -0.52 -15544.17 -15540.61 -6.23 7773.09 -7.31 -5.79 -4.13 2 M2
< minAIC 1 hete hete -0.52 -15544.17 -15540.61 -6.23 7773.09 -7.31 -5.79 -4.13 2 M2
ﬁ 2013 diagAll 1 hete hete -0.83 -15706.06 -15702.49 -6.55 7854.03 -7.18 -5.74 -3.73 3 M2
] minAIC 2 hete hete -0.83 -18964.99 -18961.43 -6.36 9483.50 -7.39 -5.61 -3.38 1 M3
& 2014  diagAll 1 hete hete -0.91 -16922.96 -16919.39 -6.42 8462.48 -7.05 525 -3.17 2 M2
minAIC 2 hete hete -0.91 -19222.55 -19218.98 -6.60 9612.27 e -6.14 -4.43 1 M3
2015  diagAll 1 hete hete -0.99 -17770.05 -17766.48 -6.63 8886.02 -7.77 -6.31 -4.49 1 M2
minAIC 2 hete hete -0.99 -20003.81 -20000.24 -6.63 10002.90 -7.75 -6.29 -4.47 2 M2
2016  diagAll 1 hete hete -0.99 -17189.57 -17186.00 -6.98 8595.78 1 M2
minAIC 2 hete homoPerGroup -0.99 -18389.86 -18386.30 -6.93 9195.93 1 M2
2006 diagAll 1 hete hete -1.42 -11843.46 -11839.91 -3.99 5922.73 -3.93 -3.78 -2.94
minAIC 1 hete hete -1.42 -11843.46 -11839.91 -3.99 5922.73 -3.93 -3.78 -2.94
2007  diagAll 1 hete homo -0.83 -12007.74 -12004.19 -3.25 6004.87 -2.07 -2.20 -1.82
minAIC 2 hete homo -0.83 -12426.62 -12423.07 -3.29 6214.31 -1.91 -2.06 -1.86
2008 diagAll* 1 hete hete -0.52 -6660.50 -6656.94 -3.03 3331.25 -4.10 -3.74 -2.81
minAIC 2 hete hete -0.52 -6967.12 -6963.56 -3.09 3484.56 -4.03 -3.27 -1.59
2009  diagAll 1 hete hete -0.52 -10367.44 -10363.88 -4.27 5184.72 -3.77 -2.77 -1.26
g minAIC 2 hete hete -0.52 -10536.63 -10533.06 -4.28 5269.31 -3.70 275 -1.33
e 2010  diagAll 1 hete hete 218 -10842.19 -10838.62 -3.66 5422.09 -2.29 -2.29 -1.78
E minAIC 4 hete hete -2.51 -11453.43 -11449.87 -3.83 5727.72 -2.44 -2.37 -1.87
ge 2011  diagAll 1 hete hete -0.52 -8712.66 -8709.10 -3.40 4357.33 -2.90 -2.90 L2028
& minAIC 2 hete hete -0.52 -9677.18 -9673.62 -3.39 4839.59 -2.88 -2.88 249
& 2012 diagAll 1 hete hete -0.52 -8734.87 -8731.31 -2.90 4368.44 -3.86 -3.69 -3.03
,2 minAIC 1 hete hete -0.52 -8734.87 -8731.31 -2.90 4368.44 -3.86 -3.69 -3.03
2 2013 diagAll 1 hete hete -0.83 -11474.72 -11471.15 -4.69 5738.36 -4.30 -4.24 -2.97
minAIC 1 hete hete -0.83 -11474.72 -11471.15 -4.69 5738.36 -4.30 -4.24 -2.97
2014  diagAll 1 hete hete -0.91 -10448.68 -10445.12 -4.43 5225.34 -4.86 -4.42 -292
minAIC 2 hete hete -0.91 -10487.17 -10483.60 -4.49 5244.58 -4.91 -4.48 -3.05
2015  diagAll 1 hete homo -0.99 -12733.24 -12729.67 -4.94 6367.62 -4.37 -4.28 -3.61
minAIC 2 hete homo -0.99 -13518.68 -13515.11 -5.08 6760.34 -4.53 -4.43 -3.63
2016  diagAll 1 hete hete -0.99 -10298.73 -10295.16 -4.69 5150.36
minAIC 4 hete homo -0.99 -11304.45 -11300.89 -4.71 5653.23




Econometrics 2018, 6, x 50 of 51

Nelson-Siegel model Nelson-Siegel model Extended Nelson-Siegel model Extended Nelson-Siegel model

1Y ICE rate 1Y swap rate 1Y ICE rate 1Y swap rate

75

5.0

WT

25

0.0

5.0

WE

25

0.0

o N & o
AT

tidididiin
il
tHididddddian
FUPELEFEFINTE

AT

AE

AS

A8

A6

AOT

AST

AOZ

ASC

PN WA O O

2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

=1Y ICE rate = 1Y swap rate

Figure S$23. The Euro Libor yield curve (black line) with the one step ahead out-of-sample prediction given
by the conditional mean yr, 174, with corresponding 97.5% confidance intervals over examined period.
The column-wise order of panels correspond to diffrent classes of models, the Nelson-Siegel or Extended Nelso-
Siegel model, calibration on two data sets with diffrent 1Y rate (colors of lines and shading). The row-wise
order corresponds to the evoluition of rates at diffrent maturities over time.
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