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Abstract: This paper investigates the properties of tests for asymmetric long-run adjustment which
are often applied in empirical studies on asymmetric price transmissions. We show that substantial
size distortions are caused by preconditioning the test on finding sufficient evidence for cointegration
in a first step. The extent of oversizing the test for long-run asymmetry depends inversely on the
power of the primary cointegration test. Hence, tests for long-run asymmetry become invalid in
cases of small sample sizes or slow speed of adjustment. Further, we provide simulation evidence
that tests for long-run asymmetry are generally oversized if the threshold parameter is estimated by
conditional least squares and show that bootstrap techniques can be used to obtain the correct size.
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1. Introduction

Almost all economic processes, like production, refinement or trading, involve some kind of
transmission of input prices to output prices. For example in the fuel market, crude oil prices are
transmitted to gasoline prices paid by consumers at a retail filling station. Such a price transmission
is said to be asymmetric, if its characteristics differ between periods of increasing and decreasing
prices. It is frequently suspected that oil refining companies, due to their market power, tend to delay
decreases in crude oil prices whereas they transmit crude oil price increases immediately. In standard
economic theory such asymmetric price transmissions are considered to be a result of market failure
which should be avoided.

Various statistical methods have been developed to test if price transmissions in a given market
are asymmetric.1 All approaches based on historical times series are faced with the problem that price
series usually follow non-stationary processes. We distinguish in the literature between short-run
asymmetry referring to asymmetries in the reaction to transitory price movements and long-run
asymmetry referring to differing speeds of adjustment after equilibrium errors. The latter category of
models requires the existence of a cointegration relationship between input prices and output prices.

1 See Frey and Manera (2007) and Honarvar (2010) for an overview of econometric models.
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In the original residual-based cointegration model by Engle and Granger (1987), the only type
of cointegrating relation allowed was a static linear equation whose stationarity was assessed by a
single adjustment coefficient. As this is unable to capture asymmetries in the price transmission,
Enders and Granger (1998) and Enders and Siklos (2001) devised a concept of threshold cointegration
which allows the cointegrating relation to revert to its long-term equilibrium with two different speeds
of adjustment. Their first model specification is based on the self-exciting threshold autoregressive
(SETAR) model introduced by Tong (1978). Here, the speed on adjustment depends on whether the
deviation from the equilibrium is above or below some threshold value. Alternatively, the momentum
threshold autoregressive (MTAR) model replaces the deviation from equilibrium by its first differences,
hence allowing for different speeds of adjustment for momentum above or below a threshold value.
In both cases, the existence of a cointegration relationship can be confirmed by a residual-based test for
cointegration. However, empirical studies on asymmetric price transmissions are mainly interested in
a formal test for equality of both adjustment coefficients (Galeotti et al. 2003; Godby et al. 2000; Grasso
and Manera 2007; Mohammadi 2011; Simioni et al. 2013). A rejection of the null hypothesis would then
constitute statistical evidence for asymmetric long-run adjustment. Enders and Siklos (2001) proclaim
that ‘... the null hypothesis of symmetric adjustment (i.e., $1 = $2) can be tested using a standard
F-distribution’ as long as a cointegration relationship can be confirmed.

The above outlined approach leads to a hierarchy of two tests: the primary aim is to reject
the null hypothesis of no cointegration and only if the alternative holds true will the test for
asymmetry be conducted. This might not result in a serious problem if evidence for cointegration
were easy to obtain. However, tests for cointegration usually have very low power against the null
hypothesis of no cointegration, so that the test for asymmetry is performed in very special situations
(see, for example, Karoglou and Morley (2012); Payne and Waters (2008); Thompson (2006)). In this
paper, we demonstrate by means of simulation experiments that tests for asymmetry in SETAR
and MTAR models excessively reject their null hypothesis of symmetry in small samples and for
slow adjustment rates. The extent of oversizing the test seems to depend inversely on the power of
the primary threshold cointegration test. Furthermore, we find that the size and power properties
of standard F-tests for asymmetry vary considerably depending on whether a fixed or optimizing
threshold is used. We provide simulation evidence that bootstrapping the test statistic leads to the
correct size of the test while maintaining suitable power properties.

The performance of tests for asymmetry in residual-based cointegration models has been
investigated in prior simulation studies. Von Cramon-Taubadel and Meyer (2000) diagnose a bias
towards overrejecting the null hypothesis of symmetry. However, the authors deal with the effects
of structural breaks, which from the perspective of the test is a misspecification. Hence, their results
do not in general render the test invalid. There are also papers which point in the opposite direction
of a tendency to underreject the hypothesis of symmetry. Cook et al. (1999) investigate the power
of tests for asymmetry and find that they typically have low power which seems to increase with
the sample size. Galeotti et al. (2003) state that the tests for asymmetry are biased toward accepting
the null of symmetry in small samples without providing references or simulation evidence for their
finding. They suggest bootstrapping the F-statistic but do not describe the bootstrap algorithm in
detail or evaluate its properties. Grasso and Manera (2007) also use a bootstrap test for asymmetry.
Honarvar (2010) conducts extensive simulation experiments for several asymmetric error correction
models.2 These models measure the potentially asymmetric adjustment contributed by upstream and
downstream prices whereas the adjustment of each variable is not explicitly modelled in our simulation
experiments. Still, his results provide further evidence that test for asymmetry have low power against

2 While Honarvar (2010) allows for more types of asymmetric cointegration than the restrictive model used in this paper
and suggests a different method for estimation and testing to account for this, it appears that the suggested method retains
the implicit conditioning on evidence for cointegration. Thus, while the author aims at improving the ability to detect
asymmetry, the problem of excessive rejections of the null of symmetry, invalidating the test, might persist in this approach.
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the alternative of threshold adjustment. It is argued that this is caused by the Engle-Granger two
steps procedure which produces biased estimates of the cointegration vector if sample sizes are
small. Additionally, Norman (2008) investigates the small sample property of threshold estimators
in two-regime SETAR models. He finds that the estimator is biased in small samples because of its
imprecision and the fact that the threshold is restricted to the range of data.

In the remainder of the paper, we briefly describe the threshold cointegration model and
corresponding tests for asymmetry in Section 2, discuss our simulation experiments in Section 3
and provide an empirical illustration in Section 4 using fuel market data. Section 5 concludes and
offers some recommendations for practitioners.

2. Models and Tests

For their residual-based cointegration test, Enders and Siklos (2001) follow the Engle-Granger
two-step procedure and estimate the long-run equilibrium equation,

yt = β0 + β1 xt + zt, (1)

for integrated processes xt and yt by OLS. Under the null hypothesis of no cointegration, the error
term zt is assumed to be generated by a unit root process,

∆zt = εt +
k

∑
j=1

γj ∆zt−j, (2)

while zt is assumed to follow a stationary SETAR/MTAR model under the alternative,

∆zt = $+ It zt−1 + $− (1− It) zt−1 +
k

∑
j=1

γj ∆zt−j + εt. (3)

The Heaviside indicator variable It is specified according to the TAR model,

It :=

{
1 zt−1 ≥ τ

0 zt−1 < τ
(SETAR(τ)) or It :=

{
1 ∆zt−1 ≥ τ

0 ∆zt−1 < τ
(MTAR(τ)). (4)

Petruccelli and Woolford (1984) have shown that the stationarity of the SETAR process is ensured
if $1 < 0, $2 < 0 and (1 + $1)(1 + $2) < 1 holds, while Lee and Shin (2000) have proven that the
stationarity of MTAR processes is ensured if $1 < 0, $2 < 0, (1+ $1)(1+ $2) < 1, (1+ $1)(1+ $2)

2 < 1
and (1 + $1)

2(1 + $2) < 1 holds.
To test for cointegration, Enders and Siklos (2001) recommend to estimate the linear regression in

Equation (3) and conduct an F-test (FCI) with the null hypothesis that both coefficients are zero,

H01 : $+ = $− = 0. (5)

While an alternative straightforward test would be to evaluate the maximum t-statistic,
Enders and Siklos (2001) provide simulation evidence that the F-test has considerably more power
against the null hypothesis.

Since the regressors Itzt−1 and (1− It)zt−1 are orthogonal, we can write the test statistic as

FCI =
t2
1 + t2

2
2

, (6)

where t1 and t2 are the t-ratios for $̂1 and $̂2, respectively. Considering the stationarity region for
SETAR and MTAR processes, the null should only be rejected if both coefficients have the correct
(negative) sign. This means that large values of the F-statistic do not lead to a rejection of the null
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hypothesis if at least one coefficient is positive.3 Consequently, the alternative hypothesis takes the
form of

HA1 : −2 < $+, $− < 0. (7)

Critical values for rejecting the null hypothesis are much larger than those coming from the
conventional F-distribution and the power of this test is quite poor for small sample sizes and slow
speed of adjustment. Given that the test decision is in favor of cointegration, the test for asymmetry
amounts to an F-test of the null hypothesis,

H02 : $+ = $−, (8)

against the alternative
HA2 : $+ 6= $−, (9)

using standard critical values (Enders and Siklos 2001). We denote the F-statistic with Fapt and the
corresponding critical value with F∗apt. To simplify notation, we only implicitly assume that both
coefficients have a negative sign if H02 is rejected, i.e., in the event that Fapt > F∗apt. The test for linear
cointegration against threshold cointegration is therefore based on the composite hypothesis,

H0 : HA1 ∩ H02. (10)

The correct nominal size of the test for asymmetry, i.e., the probability of rejecting the null
hypothesis of linear cointegration in situations where H0 holds true is given by

P(FCI > F∗CI ∩ Fapt > F∗apt|H0) = P(FCI > F∗CI |H0) (11)

· P(Fapt > F∗apt|FCI > F∗CI , H0).

Rearranging the equation yields

P(Fapt > F∗apt|FCI > F∗CI , H0) =
α

P(FCI > F∗CI |H0)
, (12)

where α = P(FCI > F∗CI ∩ Fapt > F∗apt|H0) is the chosen nominal level of significance and P(FCI >

F∗CI |H0) is the power curve of the Enders-Siklos cointegration test under symmetric adjustment as a
function of the sample size and the speed of adjustment. We conclude that the test only maintains
the chosen level of significance if the power of the primary cointegration test is unity which we know
is not the case for small sample sizes or adjustment coefficients close to zero. If the power of the
cointegration test, for example, takes the level 0.8, the nominal size of the test for asymmetry is inflated
by the factor 1.25.

The difficulties to obtain the correct size of tests for asymmetry with cointegration pretesting
can also be illustrated from a geometrical perspective. In general, the acceptance region for a joint
hypothesis on uncorrelated coefficients $+ and $− is an ellipse, its axes parallel to the coordinate axis
with the length from end to end along one axis being d1 = 2se($̂1)QF(1− α) and its length along the
other axis being d2 = 2se($̂2)QF(1− α), where QF(·) denotes the quantile function of FCI and the
origin corresponds to the null hypothesis (here: $+ = $− = 0). In this particular model, we can assume
without loss of generality that the standard errors of $+ and $− have the same magnitude. Hence, the
ellipse becomes a circle with radius r = d1

2 = d2
2 .

Figure 1 displays a sketch of the acceptance region in the Cartesian plane. The null hypothesis of
no cointegration is not rejected if one of the coefficients is positive so that we restrict the analysis to
the third quadrant of the plane. Moving to a higher level of confidence shifts the circle further away

3 See Caner and Hansen (2001) for a more detailed discussion in the context of MTAR processes with a unit root.



Econometrics 2019, 7, 12 5 of 13

from the origin. The null hypothesis of symmetric adjustment is represented by the dashed bisector
and its acceptance region is indicated by two dotted lines. The composite rejection region is located
to the left of the circle and outside of both dotted lines. We have added three points in the plane to
illustrate the properties of the composite test. Point A coincides with a coefficient combination which
should not lead to a rejection of symmetric adjustment. Point B lies within the acceptance region of
the cointegration test. Although the combination of $+ and $− is asymmetric, we cannot reject the
null hypothesis of no cointegration and the test for equality of coefficients is not conducted. If we
maintain the same ratio of $+ and $− and move to Point C, the FCI statistic would increase and the
null hypothesis of symmetric adjustment would be rejected. While it is more difficult to reject the null
hypothesis of symmetric adjustment for combinations close to the origin considering the width of the
acceptance region relative to the area of all possible combinations of $+ and $−, it is much easier to
reject far from the origin. If we compare the composite test to the unconditional test for asymmetry, the
latter does not specifically take the exclusion of the cointegration test acceptance region into account,
where the null hypothesis is hardly ever rejected although the coefficients differ. Consequently, using
critical values obtained from the standard F-distribution leads to size distortions.

BB

AA

CC

Figure 1. Acceptance regions for H01 and H02.

In order to improve the ability of the cointegration test to detect cointegration, Enders and Siklos
(2001) suggest to follow Chan (1993) and select the threshold τ by optimizing the SSE of regression (3).
In practice, this is achieved by estimating many regressions with fixed τ, where τ runs through to
all values of the cointegration residual series (SETAR) or its first difference (MTAR). Chan (1993)
has shown that this procedure results in a superconsistent estimator for the threshold value which
we denote by τ∗. Usually a 100q percentage lateral trimming is applied to avoid τ∗ becoming too
close to the extreme values and hence ensuring a sufficient number of observations in each regime.
This procedure, however, has important implications for the follow-up tests for asymmetry as the
threshold parameter is not identified under the null hypothesis. Considering a specification with no
additional lags, the F-statistic takes the form of

Fapt(τ) =
(SSE1 − SSE2(τ))

SSE2(τ)
(n− p2), (13)
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where SSE1 denotes the sum of squared errors for the symmetric model ($+ = $−), SSE2(τ) denotes
the sum of squared errors for the asymmetric model depending on the threshold parameter τ and
p2 denotes the number of parameters in the asymmetric model (here p2 = 2). Therefore, we observe
that the F-statistic is a function of the nuisance parameter τ. Since SSE1 is fixed, it holds that F(τ) ↑
for SSE2(τ) ↓. Optimizing the threshold value with respect to the SSE criterion leads to generally
oversized tests for asymmetry if we assume the incorrect standard F-distribution in those cases
Hansen (1996, 1999).

One way to obtain correctly sized tests is to bootstrap the distribution of the F-statistics.
We employ a residual bootstrap algorithm similar to the procedure described in Hansen (1996) for
SETAR processes or in Caner and Hansen (2001) for MTAR processes with a potential unit root.
The algorithm is designed as follows:

(1) Estimate the long-run equilibrium equation to obtain β̂0, β̂1 and the cointegration residuals ẑt.
Conduct the F-test for asymmetry based on the MTAR/SETAR model and save Fapt.

(2) Estimate the symmetric model

∆zt = $ zt−1 +
k

∑
j=1

γj ∆zt−jεt

to obtain $̂, γ̂1, . . . , γ̂k and save the residuals ε̂t.
(3) Draw randomly from the residuals ε̂t to obtain a bootstrap sample εb

t .
(4) Generate the bootstrap cointegration residuals series as ∆zb

t = $̂zb
t−1 + ∑k

j=1 γ̂j ∆zb
t−j + εb

t and use

(zb
1, . . . , zb

k) = (ẑ1, . . . , ẑk) as initial observations.
(5) Generate the bootstrap variable yb

t = β̂0 + β̂1xt + zb
t .

(6) Estimate the long-run equilibrium equation for yb
t and xt and re-estimate the MTAR/SETAR

model to compute the bootstrap F-statistic, Fb
apt.

(7) Repeat (2) to (6) sufficiently often to obtain the empirical distribution of Fb
apt. Compute the p-value

for Fapt based on the bootstrap distribution.

The performance of bootstrapped tests for asymmetry is evaluated in the following section.

3. Simulations

In order to investigate the empirical size of test for asymmetry in fixed threshold and optimizing
threshold models, we simulate a large number of symmetrically cointegrated time series xt and
yt and report the probability that the test, performed at the 5%-level, falsely detects asymmetry.
The data-generating process is given by

yt = β0 + β1 xt + zt,

∆xt = ξt, (14)

∆zt = $ zt−1 + εt, ξt, εt ∼ N(0, σ2),

where β0 = 0, β1 = 1 and σ2 = 1. Note that we thereby completely conform to the modelling
framework of Enders and Siklos (2001): No misspecification of the long-run equilibrium equation
and having normally distributed iid error terms which are in particular not serially correlated as the
number of lags ∆zt−j is known in advance.4

We first estimate an MTAR model with a known threshold of τ = 0 and display the rejection
rates as a function of the statistic FCI obtained from the primary cointegration test. The results are

4 Our results also hold for univariate MTAR/SETAR models where the test for asymmetry depends on a primary unit root
test. Simulation results can be obtained from the author upon request.
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plotted in the upper panel of Figure 2. The rejection rates are calculated from 20,000 replications using
a sample size of T = 100. We observe that the test is severely oversized for $ = −0.1 and the extent
of oversizing increases with the value of the estimated F-statistic of the primary cointegration test
(solid line in Figure 2). This means that in those empirical applications with small samples where a
cointegration relationship is confirmed, we automatically tend to report asymmetric adjustment rates.
It is not surprising that a test which is performed conditional on the outcome of a primary test does
not match its nominal level of significance. The striking point here is that the mismatch is always in
favor of falsely detecting asymmetry and that this discrepancy seems to be inversely related to the
p-value of the cointegration test. In contrast, we do not report any size distortions which depend on
the primary cointegration test for moderate adjustment coefficients ($ < −0.5) where the power of the
cointegration test is close to unity. In those cases, the empirical size is slightly below the nominal size
of 5%. Further simulations, which are not reported, show that the size distortions vanish if the sample
size increases, providing further evidence that these size distortions are inversely related to the power
of the primary cointegration test. As expected from our theoretical derivations, we do not find any
size distortions if the power of the cointegration test reaches unity.
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Figure 2. Left panel: $ = −0.5, right panel: $ = −0.1. Horizontal dotted line: Nominal level of
significance (5% level). Vertical dotted line: Critical value of the cointegration test (5% level). Solid line:
Empirical size of the test for asymmetry.
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Repeating our simulations for optimizing threshold values using a 15% lateral trimming yields
very different results which are displayed in the lower panel of Figure 2. Although we still notice
oversizing from requiring evidence for cointegration, we find that the test for asymmetry in the MTAR
model with optimizing threshold values is already substantially oversized for moderate adjustment
coefficients. Since the threshold is not identified when adjustment is symmetric, the conditional least
squares procedure seems to falsely select threshold values which artificially generate asymmetric
adjustment estimates and result in a substantial difference in the sum of squared errors between the
symmetric and asymmetric specification (see Equation (13)). Moreover, as reported in Table 1, the
extent of oversizing increases with the sample size and cannot be sufficiently controlled by extensive
lateral trimming.

Table 1. Empirical size of tests for asymmetry using estimated threshold values.

MTAR T SETAR T

q 100 200 400 q 100 200 400

0.25 0.162 0.185 0.200 0.25 0.022 0.022 0.027
0.20 0.192 0.218 0.236 0.20 0.042 0.044 0.052
0.15 0.227 0.257 0.277 0.15 0.073 0.081 0.090
0.10 0.260 0.303 0.327 0.10 0.121 0.135 0.148
0.05 0.312 0.361 0.401 0.05 0.196 0.223 0.240

Note: The nominal level of significance is 5%. The lateral trimming parameter q denotes the percentage of
observations which are deleted from the upper and lower end of the set of possible threshold values.

We now turn to the SETAR models. The results with known threshold τ = 0, displayed in the
upper panel of Figure 3, are surprisingly different from the fixed threshold MTAR results. The empirical
size is close to zero across a wide range of adjustment coefficients which makes it difficult to assess the
dependence on the primary cointegration test. However, taking the generally low power of the test
for asymmetry in SETAR models into account, we still observe the effect of the power curve inflation
factor. This result can also be related to prior studies reporting an underrejection of the null hypothesis
(see, for example, Cook et al. (1999) and Galeotti et al. (2003)). Conversely, the test for asymmetry in
SETAR models using optimizing threshold values, displayed in the lower panel of Figure 3, shows a
behavior similar to the MTAR model. In this case, it is possible, however not recommended, to control
the size of the test by moving to a stronger lateral trimming (see Table 1).

Finally, we analyze the empirical size and power of the proposed bootstrap tests for different
combinations of $+ and $−. A Monte Carlo simulation experiment concerned with bootstrap
procedures has to fulfil B, R → ∞, where R is the number of replications and B is the number of
bootstrap draws. Assuming that the number of bootstrap replications is fixed, every added Monte
Carlo iteration contributes multiplicatively to the overall computational cost. To avoid this inefficiency,
we refer to the ‘Warp-speed’ bootstrap described in Giacomini et al. (2013). The authors provide a
formal proof that it is sufficient to draw only one bootstrap replication in each Monte Carlo replication
and to evaluate the statistic of interest against the resulting bootstrap distribution of size R. The results
for fixed and optimizing threshold values are displayed in Tables 2 and 3. We observe that the bootstrap
F-tests maintain approximately the correct size and show suitable power properties for fixed threshold
values and optimizing threshold values using a 15% lateral trimming. However, we still find size
distortions originating from the hierarchical testing principle (not reported).
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SETAR (τ optimized by SSE criterion)
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Figure 3. Left panel: $ = −0.5, right panel: $ = −0.1. Horizontal dotted line: Nominal level of
significance (5% level). Vertical dotted line: Critical value of the cointegration test (5% level). Solid line:
Empirical size of the test for asymmetry.

Table 2. Size and power of bootstrap tests for asymmetry.

$ = −0.5 MTAR SETAR

T 100 200 400 100 200 400

α = 10% 0.103 0.101 0.102 0.109 0.105 0.100
5% 0.053 0.053 0.052 0.058 0.052 0.053
1% 0.010 0.011 0.010 0.012 0.009 0.012

$+ = −0.75, $− = −0.5, τ = 0

T 100 200 400 100 200 400

α = 10% 0.254 0.403 0.638 0.226 0.370 0.619
5% 0.162 0.288 0.513 0.143 0.254 0.502
1% 0.059 0.129 0.284 0.045 0.095 0.259

$+ = −0.75, $− = −0.25, τ = 0

T 100 200 400 100 200 400

α = 10% 0.553 0.821 0.977 0.456 0.752 0.962
5% 0.424 0.725 0.954 0.339 0.640 0.929
1% 0.215 0.503 0.860 0.151 0.394 0.810

Note: We use 20, 000 replications of the DGP for each combination of $+ and $− and apply the ‘Warp-speed’
bootstrap algorithm described in Giacomini et al. (2013). The nominal significance level is denoted by α.
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Table 3. Size and power of bootstrap tests for asymmetry (SSE optimization).

$ = −0.5 MTAR SETAR

T 100 200 400 100 200 400

α = 10% 0.082 0.091 0.090 0.109 0.101 0.101
5% 0.038 0.047 0.042 0.055 0.051 0.052
1% 0.007 0.010 0.008 0.010 0.010 0.011

$+ = −0.75, $− = −0.5, τ = 0

T 100 200 400 100 200 400

α = 10% 0.232 0.446 0.748 0.198 0.300 0.500
5% 0.144 0.327 0.640 0.119 0.197 0.375
1% 0.042 0.145 0.410 0.034 0.067 0.183

$+ = −0.75, $− = −0.25, τ = 0

T 100 200 400 100 200 400

α = 10% 0.595 0.896 0.996 0.440 0.730 0.954
5% 0.466 0.833 0.992 0.322 0.607 0.914
1% 0.241 0.643 0.961 0.133 0.361 0.780

Note: We use 20, 000 replications of the DGP for each combination of $+ and $− and apply the ‘Warp-speed’
bootstrap algorithm described in Giacomini et al. (2013). The threshold values are determined from the
conditional least squares procedure (Chan 1993). The nominal significance level is denoted by α.

4. Application: (A)symmetric Fuel Price Transmissions

In the following, we investigate the potentially asymmetric price transmission from crude oil
prices to retail gasoline prices in the US, Canada, France, Great Britain, Germany and Italy. We apply the
threshold cointegration model to the data and test for asymmetry using conventional and bootstrapped
critical values. Our weekly data cover the period from January 2010 until September 2017. WTI is
the lead crude oil benchmark price for the North American market and Brent takes that role for the
European market. Both crude oil price series and gasoline prices excluding tax and duty are obtained
from Thomson Reuters Datastream. The Canadian prices are obtained from the Kent Group database.
Using 405 observations and assuming moderate speed of adjustment, the power of the residual-based
cointegration test is approximately unity, hence the first effect described in this paper (inflating the
level of significance by conditioning on the primary cointegration test) should not play a role.

The results for MTAR and SETAR specifications are reported in Table 4. All crude oil and
retail gasoline price pairs are cointegrated. We compare the results for the conventional test for
long-run asymmetry against the results for the bootstrap test described in Section 2. In general,
the p-value for conventional F-tests are higher than the ones obtained from bootstrapping for the
fixed threshold models and lower for the models using optimizing threshold values. This is not
surprising, considering that our simulation experiments have shown that conventional tests for
long-run asymmetry are undersized for fixed thresholds and oversized for optimizing threshold
values. If we use bootstrap-corrected p-values, we only find evidence for asymmetric adjustment at
the 5% significance level in case of the Great Britain retail gasoline market (MTAR model with optimal
threshold value). For the US retail gasoline market and SETAR specification, we would reject the null
hypothesis of symmetric adjustment for conventional F-tests but would not do so using our bootstrap
algorithm. The same holds for Canada, France and Italy if we employ an MTAR model with optimal
threshold values.
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Table 4. Fuel price transmission.

Panel (a): MTAR (τ = 0)

$+ $− FCI Fapt p-Value

US −0.069 −0.075 8.450 *** 0.022 0.882 (0.428)
CAN −0.052 −0.105 8.453 *** 1.822 0.178 (0.162)
FRA −0.191 −0.205 23.880 *** 0.059 0.808 (0.793)
GBR −0.197 −0.112 18.360 *** 2.599 0.108 (0.092)
GER −0.120 −0.165 13.730 *** 0.691 0.406 (0.363)
ITA −0.234 −0.167 23.300 *** 1.277 0.259 (0.242)

Panel (b): SETAR (τ = 0)

$+ $− FCI Fapt p-Value

US −0.081 −0.058 8.949 *** 0.455 0.500 (0.252)
CAN −0.090 −0.062 7.794 ** 0.519 0.472 (0.220)
FRA −0.190 −0.208 23.910 *** 0.097 0.756 (0.612)
GBR −0.170 −0.133 17.220 *** 0.486 0.486 (0.278)
GER −0.125 −0.159 13.580 *** 0.385 0.535 (0.285)
ITA −0.195 −0.211 22.650 *** 0.070 0.792 (0.663)

Panel (c): MTAR (τ ∗)

$+ $− FCI Fapt p-Value

US −0.113 −0.057 9.587 *** 1.847 0.175 (0.735)
CAN −0.047 −0.144 10.160 *** 5.333 0.021 (0.172)
FRA −0.318 −0.171 25.370 *** 4.361 0.037 (0.195)
GBR −0.326 −0.111 22.840 *** 11.750 0.001 (0.013)
GER −0.106 −0.191 14.180 *** 2.460 0.118 (0.532)
ITA −0.338 −0.163 25.220 *** 6.405 0.012 (0.097)

Panel (d): SETAR (τ ∗)

$+ $− FCI Fapt p-Value

US −0.106 −0.037 10.750 *** 4.074 0.044 (0.092)
CAN −0.111 −0.052 8.596 ** 2.311 0.129 (0.247)
FRA −0.176 −0.240 23.610 *** 1.209 0.272 (0.540)
GBR −0.178 −0.123 17.060 *** 1.070 0.302 (0.588)
GER −0.109 −0.194 14.120 *** 2.355 0.126 (0.230)
ITA −0.187 −0.228 21.930 *** 0.462 0.497 (0.862)

Note: One additional lagged difference was included in the threshold regressions to accommodate the
dynamic structure of the cointegration residuals. The lag order was chosen based on the BIC and additional
residual diagnostics. FCI denotes the F-statistic for the null hypothesis $+ = $− = 0. Critical values are
tabulated in Enders and Siklos (2001). Fapt denotes the F-statistic for the null hypothesis $+ = $−. The last
column reports the p-value for the test for asymmetry using a standard F-distribution while the p-value from
the bootstrap test is given in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

5. Summary and Concluding Remarks

It was shown in this paper that the test for long-run asymmetry in residual-based threshold
cointegration models is confounded towards indicating asymmetry by preconditioning the test on
finding sufficient evidence for cointegration. The extent of oversizing the test depends inversely on
the power of the primary cointegration test. For purposes of demonstration, we selected scenarios
with substantial size distortions, which are characterized by a small sample size and relatively small
adjustment coefficients. Additionally, our simulation experiments show that tests for asymmetry based
on standard F-distributions are generally oversized if the threshold value is estimated by conditional
least squares.

Our results help to understand why contradictory statements on the performance of tests for
asymmetry persist in the literature. On one hand, these tests are reported to have a tendency to
underreject the hypothesis of symmetry which is related to the fact that they are undersized for
fixed thresholds and moderate to large samples. On the other hand, we can explain why studies on
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asymmetric pricing appear to be more likely to find evidence for asymmetry if they employ error
correction models which require evidence for a cointegration relationship (see Perdiguero-Garcia (2013)
for a meta-analysis on asymmetric price transmission in gasoline markets) and/or use optimizing
threshold values.

Similar size distortions might not be specific to the Enders-Siklos procedure alone, but might
also be latent in other methods where cointegration tests and tests for asymmetry are conducted
on the same parameter space. Particularly, tests for asymmetry in the context of smooth transition
autoregressive (STAR) models (Teräsvirta 1994; Van Dijk et al. 2002) or buffered autoregressive models
(Li et al. 2015; Zhu et al. 2017) might be affected in the same way if they were applied to cointegration
residuals. We recommend that practitioners use bootstrap tests for asymmetry similar to the one
outlined in this paper instead of conventional F-tests. Further, we recommend to choose a conservative
level of significance when conducting tests for asymmetry in momentum threshold cointegration
models using fixed thresholds and small samples.
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