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Abstract: We consider cointegration tests in the situation where the cointegration rank is deficient.
This situation is of interest in finite sample analysis and in relation to recent work on identification
robust cointegration inference. We derive asymptotic theory for tests for cointegration rank and for
hypotheses on the cointegrating vectors. The limiting distributions are tabulated. An application to
US treasury yields series is given.
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1. Introduction

Determination of the cointegration rank is an important part of analyzing the cointegrated vector
autoregressive model in the framework of Johansen (1988, 1991, 1995), Johansen and Juselius (1990),
and Juselius (2006). We consider the rank deficient case where the cointegration rank of the data
generating process is smaller than the rank used in the statistical analysis. In that case, the data
generating process has more unit roots than the number of unit roots imposed in the statistical analysis
and the usual asymptotic theory fails. We provide asymptotic theory for cointegration rank tests and
tests on cointegration vectors along with simulated tables of the asymptotic distributions.

Cointegration analysis is conducted in three steps. First, the specification of the model is checked.
Second, the rank is determined using a sequential procedure using Dickey-Fuller type distributions.
Third, the cointegrating vectors are estimated and restrictions can be tested using standard inference.
Asymptotic theory shows that estimated rank is consistent in the sense that the probability that the
estimated rank is not equal to the true rank equals the size of tests, whereas the probability that the
estimated rank is too small vanishes, see Johansen (1992, 1995) and Paruolo (2001). Hence, the rank
deficiency problem does not arise in the asymptotic analysis.

In practice, rank deficiency matters in two ways. The asymptotic theory often suffers from
considerable finite sample distortion. Further, if an investigator wants to focus on the inference on
the cointegrating relations then problems can arise if the rank is taken as known when in fact it is
deficient. These problems mirror those of instrumental variable estimation with weak instruments,
see Mavroeidis et al. (2014).

When conducting inference on the cointegrating vector under near rank deficiency the parameters
are weakly identified. At the extreme when testing on the cointegrating vector in the case of a deficient
rank the model is mis-specified. This problem arises in cointegration as well as in instrumental
variable estimation. In both cases maximum likelihood is conducted using reduced rank regression.
The weak identification problem has attracted considerable attention in the instrumental variable
literature, see for instance Mavroeidis et al. (2014). Khalaf and Urga (2014) discussed the weak
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identification problem for cointegration, that is when testing for a known cointegrating vector in the
nearly rank deficient situation. These authors investigate various methods to adjust the asymptotic
distribution in the weak identification case. This includes a bounds-based critical value suggested by
Dufour (1997). This method requires knowledge of the asymptotic theory for the rank deficient case,
which we provide here.

The practical problem of ignoring rank deficiency is illustrated using yield curve data. The expectation
hypothesis is often interpreted as follows. Interest rates at different maturities are integrated series,
but cointegrate so that spreads are stationary. Spreads are often found to be non-stationary. Thus, it is
quite possible that a pair of interest rates do not cointegrate. An investigator may proceed by assuming
cointegration when there is none, so that the rank is deficient, and conduct inference on the coefficients
on the alleged cointegrating vector using standard inference. Our theory shows that the inference is
then severely distorted. When the rank is deficient or nearly deficient it is incorrect to use standard
inference on the cointegrating vectors. Nonetheless, applying standard inference in the particular
example leads to marginal rejection of the hypothesis. Applying the bounds test of Khalaf and Urga
(2014) shifts the distribution to the right and there is not much power to reject a hypothesis. If the rank
is deficient, which is possible in the example, the alleged cointegrating vector cannot be cointegrating.

Rank deficiency also matters when the rank is determined empirically. Different asymptotic
distributions arise in the standard case and when the rank is deficient. The asymptotic distribution
tends to give a very good approximation to the finite sample distribution when the rank is far from
being deficient, see for instance Nielsen (1997, 2004) When the parameters are in the vicinity of rank
deficiency the finite sample distribution tends to be a combination of the two asymptotic distributions.
When the parameters are not too close to the rank deficient case a Bartlett correction using a fixed
parameter second-order asymptotic expansion works very well, see Johansen (2000, 2002) Bootstrap
solutions have been discussed in simulation studies by Fachin (2000); Gredenhoff and Jacobson (2001);
Swensen (2004); Cavaliere et al. (2012). When the parameters are closer to rank deficient a local-to-unity
asymptotic expansion gives an improvement, see Nielsen (2004) for the cointegration case and Nielsen
(1999, 2001) for the corresponding instrumental variable case. A starting point for the finite sample
analysis is knowledge of the fixed-parameter first-order asymptotic theory across the parameter space,
including rank deficient cases.

We discuss the asymptotic theory for models without and with deterministic terms in Sections 2
and 3, respectively. The implications for finite sample analysis and the weakly identified case are
discussed in Section 4 along with an application to US treasury zero coupon yields. Section 5 concludes.
Proofs are given in an Appendix A.

2. The Model without Deterministic Terms

We consider the Gaussian cointegrated vector autoregressive model in the case with no deterministic
terms. The asymptotic theory for tests for reduced cointegration rank and for a known cointegrating
vector is derived when the rank is deficient. Finally, we analyze the case of near rank deficiency.

2.1. Model and Hypotheses

Consider a p-dimensional time series Xt for t = 1− k, . . . , 0, 1, . . . T. The unrestricted vector
autoregressive model can be written as

∆Xt = ΠXt−1 +
k−1

∑
i=1

Γi∆Xt−i + εt for t = 1, . . . , T, (1)

where the innovations εt are independent normal Np(0, Ω)-distributed. The parameters Π, Γi, Ω are
freely varying p-dimensional square matrices so that Ω is symmetric, positive definite.
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The hypothesis of reduced cointegration rank is formulated as

Hz(r) : rank Π ≤ r, (2)

for some 0 ≤ r ≤ p. The interpretation of the hypotheses follows from the Granger-Johansen
representation presented in Section 2.2 below. The subscript z indicates that the model has a zero
deterministic component. The rank hypotheses are nested so that

Hz(0) ⊂ · · · ⊂ Hz(r) ⊂ · · · ⊂ Hz(p). (3)

The rank deficiency problem arises when testing the hypothesisHz(r) when in fact the sub-hypothesis
Hz(r− 1) is satisfied. The rank is determined to be r if the hypothesis Hz(r) cannot be rejected while the
sub-hypothesis Hz(r− 1) is rejected. As a short-hand we write H◦z(r) = Hz(r)\Hz(r− 1) for this situation.
The rank can be determined along the procedure outlined in Johansen (1992, 1995) [Section 12.1] and
Paruolo (2001). In practice, these decisions are often marginal, hence the need to study the asymptotic
theory of test statistics in the rank deficient case.

The rank hypothesis can equivalently be written as

Hz(r) : Π = αβ′, (4)

where α and β are p× r matrices. The advantage of this formulation is that α and β vary in vector
spaces. The formulation does, however, allow rank deficiency where the rank of Π is smaller than
r. We follow Johansen (1991, Equation (2.2)) and refer to β as the cointegrating vectors. We find
the terminology useful, although it is ambiguous. Indeed, for a particular data generating process
where Π has rank less than r then the identity Π = αβ′ can be satisfied while columns of β may not
be row-eigenvectors of Π in which case β′Xt cannot be stationary. Even when Π has rank r then
β′Xt is only (approximately) stationary under the I(1) condition introduced below. However, from a
statistical viewpoint, the estimator of Π under the restriction of rank r will in a finite sample have rank
r with probability one. In practice our only knowledge of the rank arises from inference. Johansen’s
terminology appears to be focused on the statistical viewpoint which we will follow even when
studying the rank deficient cases.

The hypothesis of known cointegration vectors is

Hz,β(r) : Π = αb′, (5)

for some unknown matrix α and a known matrix b, both of dimension p× r, so that b has full column
rank. The standard analysis is concerned with the situation where α has full column rank, but in the
rank deficient case, it has reduced column rank, so that the hypothesis Hz(r− 1) is satisfied. When
referring to b as the cointegrating vectors, we, once again, follow the terminology of Johansen (1991,
Equation (3.1)) even though b′Xt cannot be stationary under rank deficiency.

2.2. Granger-Johansen Representation

The Granger-Johansen representation provides an interpretation of the cointegration model that
is useful in the asymptotic analysis. We work with the result stated by Johansen (1995, Theorem 4.2).
The theorem requires the following assumption.

I(1) Condition. Suppose rank Π = s where s ≤ p. Consider the characteristic roots satisfying 0 = det{A(z)}
where A(z) = (1− z)Ip −Πz−∑k−1

i=1 Γizi(1− z). Suppose there are p− s unit roots, and that the remaining
roots are stationary roots, so satisfying |z| > 1.
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The Granger-Johansen theorem assumes that a process satisfying the model (1) so that rank Π = r
and we can write Π = αβ′while the I(1) condition holds with s = r. The process then has the representation

Xt = C
t

∑
i=1

εi + St + τ, (6)

where the impact matrix C for the random walk has rank p− r and satisfies β′C = 0 and Cα = 0,
the process St can be given a zero mean stationary initial distribution and τ depends on the initial
observations in such a way that β′τ = 0. In other words, the process Xt behaves like a random walk
with cointegrating relations β′Xt that can be given a stationary initial distribution.

2.3. Test Statistics

The likelihood ratio test statistic for the reduced rank hypothesis Hz(r) against the unrestricted
model Hz(p) is found by reduced rank regression, see Johansen (1995, Section 6). It can be described
as a two-step procedure. First, the differences ∆Xt and the lagged levels Xt−1 are regressed on the
lagged differences ∆Xt−i, i = 1, . . . , k− 1 giving residuals R0,t, R1,t. Secondly, the squared sample
correlations, 1 ≥ λ̂1 ≥ · · · ≥ λ̂p ≥ 0 say, of R0,t and R1,t are found, by computing product moments
Sij = T−1 ∑T

t=1 Ri,tR′j,t and solving the eigenvalue problem 0 = det(λS11 − S10S−1
00 S01). The log

likelihood ratio test statistic for the rank hypothesis is then

LR{Hz(r) | Hz(p)} = −T
p

∑
j=r+1

log(1− λ̂j). (7)

Under the hypothesis of known cointegration vectors, the likelihood is maximised by least squares
regression. The log likelihood ratio test statistic against the unrestricted model Hz(p) is therefore
given by

LR{Hz,β(r) | Hz(p)} = −T log
det{S00 − S01S−1

11 S10}
det{S00 − S01b(b′S11b)−1b′S10}

. (8)

The log likelihood ratio statistic for the hypothesis of known cointegrating vector against the rank
hypothesis is found by combining the statistics in (7) and (8), that is

LR{Hz,β(r) | Hz(r)} = LR{Hz,β(r) | Hz(p)} − LR{Hz(r) | Hz(p)}. (9)

The relationship will be useful in the asymptotic theory. For instance, Theorems 1 and 2 give the
asymptotic distributions of LR{Hz(r) | Hz(p)} and LR{Hz,β(r) | Hz(p)}, respectively. From this we
can derive an expression for the distribution of LR{Hz,β(r) | Hz(r)}. When it comes to tabulation we
will need to simulate all three distributions. This would be the case even if the former two statistics
were independent.

2.4. Asymptotic Theory for the Rank Test

In the asymptotic analysis it is possible to relax the assumption to the innovations. While the likelihood
is derived under the assumption of independent, identically Gaussian distributed innovations less is
needed for the asymptotic theory. Johansen (1995) assumes the innovations are independent, identically
distributed with mean zero and finite variance and uses linear process results from Phillips and Solo
(1992). This could be relaxed further to, for instance, a martingale difference assumption. However,
for expositional simplicity we follow Johansen’s argument and assumptions.
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Theorem 1. Consider the rank hypothesis Hz(r) : rank Π ≤ r. Suppose H◦z (s) = Hz(s)\Hz(s− 1) holds for
some s ≤ r and that the I(1) condition holds for that s. Let Fu = Bu be a p− s-dimensional standard Brownian
motion on [0, 1]. Let 1 ≥ ρ1 ≥ · · · ≥ ρp−s ≥ 0 be the eigenvalues of the eigenvalue problem

0 = det
{

ρ
∫ 1

0
FuF′udu−

∫ 1

0
Fu(dBu)

′
∫ 1

0
(dBu)F′u

}
(10)

Then, for T → ∞,

LR{Hz(r) | Hz(p)} = −T
p

∑
j=r+1

log(1− λ̂j)
D→

p−s

∑
j=r−s+1

ρj. (11)

In the standard non-deficient situation where r = s the result reduces to the result of
Johansen (1995, Theorem 6.1). The rank deficient case was also discussed by Johansen (1995, p. 158)
and Nielsen (2004, Theorem 6.1).

Table 1 reports the asymptotic distribution of the rank test reported in Theorem 1. The simulation
were done using Ox (Doornik 2007). The simulation design follows that of Johansen (1995, Section 15).
That is, the stochastic integrals in (10) were descretized with T = 1000 and zero initial observations
with one million repetitions. The table reports simulated quantiles and moments for r− s = 0, 1, 2
and p − r = 1, 2, 3, 4. However, the case of p − r = 1 and r − s = 0 are analytic values from
Nielsen (1997) and where the quantiles were provided by Karim Abadir using his results in
Abadir (1995). Bernstein (2014) reports values for higher dimensions. The 85% quantile has not
been computed analytically in this case.

Table 1. Quantiles, mean, and variance of LR{Hz(r)|Hz(p)}, where the data generating process has
rank s = rank Π ≤ r.

r − s p − r 50% 80% 85% 90% 95% 97.5% 99% Mean Var

0 1 0.60 1.88 — 2.98 4.13 5.32 6.94 1.14 2.22
2 5.48 8.48 9.31 10.44 12.30 14.07 16.34 6.09 10.61
3 14.39 18.94 20.13 21.70 24.22 26.54 29.37 15.02 25.13
4 27.29 33.35 34.88 36.91 40.04 42.93 46.45 27.93 45.66

1 1 0.36 1.13 1.38 1.74 2.35 2.98 3.81 0.67 0.70
2 4.27 6.25 6.78 7.50 8.65 9.76 11.14 4.61 4.66
3 11.92 15.20 16.04 17.14 18.88 20.50 22.48 12.31 13.22
4 23.47 28.09 29.25 30.76 33.10 35.21 37.83 23.89 26.96

2 1 0.30 0.97 1.18 1.48 1.98 2.47 3.11 0.56 0.48
2 3.93 5.57 6.01 6.59 7.51 8.38 9.46 4.18 3.24
3 11.04 13.82 14.53 15.46 16.91 18.24 19.87 11.34 9.63
4 21.84 25.83 26.82 28.11 30.09 31.91 34.13 22.18 20.21

The first panel of Table 1 reports the distribution for the standard case where s = r. This corresponds
to Table 15.1 of Johansen (1995). The second and third panel of Table 1 report the distribution
for the rank deficient case where s = r − 1 so r − s = 1 and where s = r − 2 so r − s = 2.
The first entry in panel 2 for s = r − 1 and p − r = 1, so r − s = 1, corresponds to Table 6 of
Nielsen (2004). It is seen that as the rank becomes more deficient the distribution shifts to the left. It should
be noted that if the rank is non deficient, but the I(1) condition is not satisfied then the distribution would
tend to shift to the right, see Nielsen (2004) for a discussion. The simulations reported in Table 8 of
that paper indicates that the distribution is between these extremes if the rank is deficient and the I(1)
condition fails.

The rank test statistic in (7) has been analyzed analytically for the canonical correlation problem
in cross-sectional models in Nielsen (1999, 2001) This test also corresponds to the test for relevance in
the instrument variable problem. In that case, analytic expressions are available when p = 2, r = 1
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and s = 0, 1. When s = 1 we have a χ2-distribution with mean 1 and variance 2. When s = 0 the
mean is 0.429 and the variance is 0.575− (0.429)2 = 0.391, see Nielsen (1999). Thus, the impact of rank
deficiency is similar to what is seen in Table 1 for cointegration rank testing.

2.5. Asymptotic Theory for the Test on the Cointegrating Vectors

In the analysis of the test for known cointegrating vectors, we focus on the situation where the
data generating process has rank s = 0. In this situation the asymptotic distribution is relatively
simple to describe, because it does not depend on the value of the hypothesized cointegrating vectors b.
This is adequate for a discussion of aspects of situations considered in Khalaf and Urga (2014). If the
rank is non-zero but deficient so 0 < s < r, then the data generating process will have cointegrating
vectors β0 of dimension p× s and the asymptotic theory will depend on β0 and b. In practice, it is rare
to test for simple hypotheses when there is more than one hypothesized cointegrating vector, so we do
not pursue this complication.

The analysis of the test for known cointegrating vectors is somewhat different from the analysis
in Johansen (1995). His analysis is aimed at the situation where different restrictions are imposed
on the cointegrating vectors. The argument then involves an intriguing consistency proof for the
estimated cointegrating vectors. However, when testing the hypothesis of known cointegrating vectors
the likelihood is maximized by the least squares method and the consistency argument is not needed.
The asymptotic theory can then be described by the following result.

Theorem 2. Consider the hypothesis Hz,β(r) : Π = αb′, where α, b have dimension p × r and where α is
unknown and b is known with full column rank. Suppose Hz(0) is satisfied, so that α = 0 and s = 0, and that
the I(1) condition is satisfied with s = 0. Let Bu be a p-dimensional standard Brownian motion on [0, 1] with
components B1,u and B2,u of dimension r and p− r, respectively. Then, for T → ∞,

LR{Hz,β(r) | Hz(p)} D→ tr{
∫ 1

0
dBuB′u(

∫ 1

0
BuB′udu)−1

∫ 1

0
Bu(dBu)

′

−
∫ 1

0
dBuB′1,u(

∫ 1

0
B1,uB′1,udu)−1

∫ 1

0
B1,u(dBu)

′}. (12)

The convergence of the test statistic LR{Hz,β(r) | Hz(p)} holds jointly with the convergence for the rank
test statistic LR{Hz(r) | Hz(p)}, for s = 0, in Theorem 1. Thus, when s = 0 the formula (9) implies that the
limit distribution of the test statistic for known β within the model with rank of at most r can be found as the
difference of the two limiting variables.

Table 2 reports the asymptotic distribution of the test for known cointegrating vector in the
model where the rank is at most r. When s = r the asymptotic distribution is χ2 with r(p − r)
degrees of freedom, see Johansen (1995, Theorem 7.2.1). When s = 0 the asymptotic distribution
reported in Theorem 2 applies. The simulation design is as before. It is seen that in the rank deficient
case the distribution is shifted to the right. This matches the finite sample simulations reported by
Johansen (2000, Table 2).
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Table 2. Quantiles, mean, and variance of LR{Hz,β(r)|Hz(r)}, where the data generating process has
rank s = rank Π ≤ r.

p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var

2 1 1 0.45 1.64 2.07 2.71 3.84 5.02 6.63 1 2
0 2.62 5.44 6.22 7.30 9.05 10.75 12.96 3.31 8.71

3 2 2 1.39 3.22 3.79 4.61 5.99 7.38 9.21 2 4
0 5.80 9.42 10.40 11.71 13.82 15.77 18.27 6.42 15.53

3 1 1 1.39 3.22 3.79 4.61 5.99 7.38 9.21 2 4
0 6.79 10.58 11.57 12.89 15.02 17.00 19.49 7.33 17.52

Table 3 reports the simulated asymptotic distribution of the test for known cointegrating vector in
the model where the rank is unrestricted. The distribution is shifted to the right in the rank deficient
case. Note, that the table reports the distribution of the convolution of the statistics simulated in
Tables 1 and 2, see (9). Thus, up to a simulation error the expectations reported in Tables 1 and 2 add
up to the expectation reported in Table 3. In the full rank case r = s the statistics in Tables 1 and 2 are
independent, as proved below, so also the variances are additive.

Theorem 3. Consider the hypothesis H◦z,β(r). Suppose H◦z (r) = H◦z (r)/H◦z (r− 1) is satisfied and that the I(1)
condition holds with s = r. Then the rank test statistic LR{H◦z (r)|H◦z (p)} and the statistic LR{H◦z,β(r)|H◦z (r)}
for testing a simple hypothesis on the cointegrating vector are asymptotically independent.

The asymptotic distribution of the rank statistic LR{H◦z (r)|H◦z (p)} is given in Theorem 1, while the
statistic for the cointegrating vector LR{H◦z,β(r)|H◦z (r)} is asymptotically χ2{r(p− r)}.

Table 3. Quantiles, mean, and variance of LR{Hz,β(r)|Hz(p)}, where the data generating process has
rank s = rank Π ≤ r.

p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var

2 1 1 1.54 3.43 4.01 4.83 6.22 7.62 9.47 2.15 4.23
0 3.35 6.11 6.89 7.95 9.70 11.38 13.57 3.98 8.82

3 2 2 2.52 4.85 5.53 6.48 8.07 9.60 11.62 3.15 6.26
0 6.36 9.96 10.92 12.22 14.32 16.29 18.79 6.98 15.35

3 1 1 7.50 11.03 11.98 13.27 15.34 17.30 19.81 8.13 14.73
0 11.33 15.73 16.88 18.41 20.83 23.09 25.91 11.96 23.31

2.6. The Case of Nearly Deficient Rank

With the above results we have two extremes. First, the full rank case where standard results
apply, that is Johansen’s Dickey-Fuller type distribution for rank testing and χ2 inferences for testing
constraints on the cointegrating vectors. Second, the rank deficient case where new Dickey-Fuller
type distributions apply both for rank testing and for testing constraints on the cointegrating
vectors. In between these extremes we have the nearly rank deficient case corresponding to weak
identification in the instrumental variable literature. These nearly deficient cases can be analyzed using
local-to-unity parametrization. However, a full theory is notationally complicated as there will be many
nuisance parameters. We therefore consider a simple special case inspired by the power analysis of
Johansen (1995, Section 14) and distribution analysis of Nielsen (2004).

The main finding is that the appropriate local rate is T−1 as in power analysis for unit tests and
cointegration rank tests as opposed to T−1/2 for stationary models as in Andrews and Cheng (2012).
Consider a bivariate, first order, local-to-unity vector autoregressive model where

∆Xt =
1
T

(
b1 b2

0 0

)
Xt−1 + εt for t = 1, . . . , T, (13)
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where the innovations εt are independent normal N2(0, I2)-distributed where b1 6= 0.
We now have the following variant of the result for the rank test in Theorem 1.

Theorem 4 (Nielsen 2004, Theorem 6.2). Consider the data generating process (13). Let Bu be a bivariate
standard Brownian motion on [0, 1] and let Ju be the bivariate Ornstein-Uhlenbeck process given by

Ju =

(
b1 b2

0 0

) ∫ u

0
Jsds + Bu.

Let 1 ≤ ρ1 ≤ ρ2 ≤ 0 be the eigenvalues of the eigenvalue problem

0 = det
{

ρ
∫ 1

0
Ju J′udu−

∫ 1

0
Ju(dBu)

′
∫ 1

0
(dBu)J′u

}
Then, for T → ∞,

LR{Hz(1) | Hz(2)}
D→ ρ2.

The limit distribution is tabulated in Nielsen (2004, Table 8).

We now consider the test for known cointegrating vector, b = (b1, b2)
′. The result in Theorem 2 is

modified as follows.

Theorem 5. Consider the data generating process (13). Let Bu, Ju be defined as in Theorem 4 and let J1,u =

b′ Ju. Then

LR{Hz,β(1) | Hz(2)}
D→ tr {

∫ 1

0
dBu J′u(

∫ 1

0
Ju J′udu)−1

∫ 1

0
Ju(dBu)

′

∫ 1

0
dBu J′1,u(

∫ 1

0
J1,u J′1,udu)−1

∫ 1

0
J1,u(dBu)

′}.

3. The Model with a Constant

We now consider the model augmented with a constant. In the cointegrated model the constant
is restricted to the cointegrating space. Thus, the cointegrating vectors consist of vectors relating
the dynamic variable extended by a further coordinate for the constant. There are now two rank
conditions; one related to the dynamic part of these extended cointegrating vectors and one relating
to the deterministic part of the cointegrating vectors. The condition to the cointegration rank in the
standard theory can therefore fail in two ways.

3.1. Model and Hypotheses

The unrestricted vector autoregressive model is

∆Xt = ΠXt−1 + µ +
k−1

∑
i=1

Γi∆Xt−i + εt for t = 1, . . . , T, (14)

where the innovations εt are independent normal Np(0, Ω)-distributed. The parameters are the
p-dimensional square matrices Π, Γi, Ω and the p-vector µ. They vary freely so that Ω is symmetric,
positive definite.

For the model with a constant there are two types of cointegration rank hypotheses:

Hc`(r) : rank Π ≤ r, (15)

Hc(r) : rank (Π, µ) ≤ r. (16)
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Their interpretations follow from the Granger-Johansen representation which is reviewed in
Section 3.2 below. In short, if there are no rank deficiencies the first hypothesis Hc` gives cointegrating
relations with a constant level and common trends with a linear trend. The second hypothesis Hc has a
constant level both for the cointegrating relations and the common trends. The hypotheses are nested
so that

Hc(0) ⊂ Hc`(0) ⊂ · · · ⊂ Hc`(r− 1) ⊂ Hc(r) ⊂ Hc`(r) ⊂ · · · ⊂ Hc(p) = Hc`(p). (17)

This nesting structure is considerably more complicated than the structure (3) for the model without
deterministic terms. A practical investigation may start in three different ways. First, the model (14)
is taken as the starting point. Both types of hypotheses come into play and the rank is determined as
outlined in Johansen (1995, Section 12). Secondly, if visual inspection of the data indicates that linear
trends are not present the hypotheses Hc` may be ignored. Thirdly, if visual inspection of the data indicates
that a linear trend could be present, the model (14) should be augmented with a linear trend term and we
move outside the present framework. Nielsen and Rahbek (2000) discuss the latter two possibilities. Here,
we are concerned with the first two possibilities.

The rank hypotheses can equivalently be formulated as

Hc`(r) : Π = αβ′, (18)

Hc(r) : (Π, µ) = α(β′, β′c). (19)

The hypotheses of known cointegrating vectors are therefore

Hc`,β(r) : Π = αb′, (20)

Hc,β(r) : (Π, µ) = α(b′, b′c). (21)

for a known (p× r)-matrix b with full column rank and, in the second case, also a known (1× r)-matrix
bc so that b∗ = (b′, b′c)′ has full column rank.

3.2. Granger-Johansen Representation

We give a Granger-Johansen representation for each of the two reduced rank hypotheses.
Both results follow from Theorem 4.2 and Exercise 4.5 of Johansen (1995). First, consider the hypothesis
Hc`(r). Suppose that the sub-hypothesis Hc(r) does not hold and that the I(1) condition holds with s = r.
Thus, the (p× r)-matrices α, β have full column rank but α′⊥µ 6= 0, so that the matrix Π∗ = (Π, µ) has
rank r + 1. Then, the Granger-Johansen representation is

Xt = C
t

∑
i=1

εi + St + τc + τ`t, (22)

where the impact matrix C has rank p− r and satisfies β′C = 0 and Cα = 0 while τ` = Cµ 6= 0. As a
consequence, the process has a linear trend, but the cointegrating relations β′Xt do not have a linear
trend, since β′C = 0.

Secondly, consider the hypothesis Hc(r). Suppose that the sub-hypothesis Hc`(r− 1) does not
hold and that the I(1) condition holds with s = r. Thus, the (p× r)-matrices α, β have full column
rank, and the {(p + 1)× r}-matrix β∗ = (β, β′c)

′ has full column rank. Then, the Granger-Johansen
representation (22) holds with τ` = 0, while τc has the property that β′τc = −β′c. In other words,
the process Xt behaves like a random walk where β′Xt has an invariant distribution with a non-zero
mean, while β′Xt + β′c has a zero mean invariant distribution.
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3.3. Test Statistics

The test statistics are variations of those for the model without deterministic terms. The differences
relate to the formation of the residuals R0,t and R1,t

First, consider the reduced rank hypothesis Hc`(r) and the corresponding hypothesis Hc`,β(r) of
known cointegrating vectors. The residuals R0,t and R1,t are formed by regressing the differences ∆Xt

and the lagged levels Xt−1 on an intercept and the lagged differences ∆Xt−i, i = 1, . . . , k− 1. In the
second step, compute the canonical correlations 1 ≥ λ̂1 ≥ · · · ≥ λ̂p ≥ 0 of R0,t and R1,t. The rank test
statistic LR{Hc`(r)|Hc`(p)} then has the form (7). The test statistic for known cointegrating vectors
LR{Hc`,β(r)|Hc`(p)} has the form (8), using the same residuals R0,t and R1,t, and the hypothesized
cointegrating vectors b.

Secondly, consider the reduced rank hypothesis Hc(r) and the corresponding hypothesis Hc,β(r)
of known cointegrating vectors. The residuals R0,t and R1,t are formed by regressing the differences
∆Xt and the vector formed by stacking the lagged levels and an intercept X∗t−1 = (X′t−1, 1)′ on the
lagged differences ∆Xt−i, i = 1, . . . , k− 1. In the second step, compute the canonical correlation of
these R0,t and R1,t. The rank test statistic LR{Hc(r)|Hc(p)} then has the form (7). The test statistic for
known cointegrating vectors LR{Hc,β(r)|Hc(p)} has the form (8), using the same residuals R0,t and
R1,t, and the hypothesized cointegrating vectors b∗ = (b′, b′c)′.

3.4. Asymptotic Theory for the Rank Tests

There are now four situations to consider. Indeed, the nesting structure in (17) shows that
each of the two rank hypotheses Hc`(r) and Hc(r) can be rank deficient in two ways when either of
H◦c`(s) = Hc`(s)/Hc(s) or H◦c (s) = Hc(s)/Hc`(s− 1) holds. In three cases the limiting distribution is of
the same form as in Theorem 1, albeit with a different limiting random function Fu. In the fourth case
the limiting distribution has nuisance parameters. The nuisance parameter case arises when testing
Hc(r) with a data generating process satisfying H◦c`(s) = Hc`(s)/Hc(s). This is the case that can often
be ruled out through visual inspection of the data as mentioned in Section 3.1.

We start with the test for the hypothesis Hc`(r) in the rank deficient case where
H◦c`(s) = Hc`(s)/Hc(s) holds for s < r. Johansen (1995) discusses the possibility H◦c (r). The asymptotic
theory is as follows.

Theorem 6. Consider the rank hypothesis Hc`(r) : rank Π ≤ r. Suppose H◦c`(s) = Hc`(s)\Hc(s) holds for
some s ≤ r, so that rank Π = s and rank (Π, µ) = s + 1 and that the I(1) condition is satisfied for that s.
Let Bu be a (p− s)-dimensional standard Brownian motion on [0, 1]. Define a (p− s)-dimensional vector Fu

with coordinates

Fi,u =

{
Bi,u − Bi for i = 1, . . . , p− s− 1
u− 1/2 for i = p− s

Then LR{Hc`(r) | Hc`(p)} converges as in (11) using the present F.

Table 4 reports the simulated asymptotic distribution of the rank test reported in Theorem 6.
The first panel gives the standard case where s = r and corresponds to Johansen (1995, Table 15.3).
For p− r = 1 the asymptotic distribution is actually χ2 and the numbers are the standard numerically
calculated ones rather than simulated ones. The second and the third panel report the distribution for
the rank deficient case H◦c`(s) where Hc`(s) holds, but Hc(s) fails. The distribution is shifted to the left
when r− s > 0 as in Table 1.
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Table 4. Quantiles, mean, and variance of LR{Hc`(r)|Hc`(p)}, where the data generating process
satisfies H◦c`(s) = Hc`(s)\Hc(s) with s ≤ r.

r − s p − r 50% 80% 85% 90% 95% 97.5% 99% Mean Var

0 1 0.45 1.64 2.07 2.71 3.84 5.02 6.63 1 2
2 7.61 11.09 12.04 13.30 15.35 17.27 19.74 8.24 14.29
3 18.66 23.72 25.03 26.76 29.47 31.95 34.99 19.29 31.38
4 33.52 40.07 41.71 43.86 47.22 50.21 53.94 34.15 53.86

1 1 0.38 1.33 1.66 2.13 2.93 3.72 4.74 0.79 1.08
2 6.01 8.34 8.96 9.78 11.10 12.34 13.87 6.37 6.53
3 15.49 19.14 20.08 21.30 23.21 24.99 27.14 15.88 16.73
4 28.82 33.82 35.07 36.70 39.20 41.50 44.27 29.24 31.96

2 1 0.34 1.19 1.47 1.87 2.55 3.19 4.00 0.69 0.79
2 5.43 7.34 7.84 8.51 9.57 10.56 11.81 5.70 4.46
3 14.17 17.26 18.04 19.05 20.64 22.09 23.86 14.48 12.00
4 26.62 30.92 31.98 33.38 35.52 37.46 39.79 26.95 23.82

The second case is the test for the same hypothesis Hc`(r) in the rank deficient case where
H◦c (s) = Hc(s)/Hc`(s− 1) holds for s ≤ r.

Theorem 7. Consider the rank hypothesis Hc`(r) : rank Π ≤ r. Suppose H◦c (s) = Hc(s)\Hc`(s− 1) holds
for some s ≤ r, so that rank Π = rank Π∗ = s and that the I(1) condition is satisfied for that s. Let Bu be
a (p − s)-dimensional standard Brownian motion on [0, 1]. Define a (p − s)-dimensional vector Fu as the
de-meaned Brownian motion

Fu = Bu − B = Bu −
∫ 1

0
Bvdv.

Then LR{Hc`(r) | Hc`(p)} converges as in (11) using the present F.

Table 5 reports the simulated asymptotic distribution of the rank test reported in Theorem 7.
The first panel where s = r and corresponds to Table A.2 of Johansen and Juselius (1990). It is shifted to
the right when compared to the first panel of Table 4. The second and the third panel of Table 5 report
the distribution for the rank deficient case H◦c (s) for s < r. In those case the distribution is shifted to
the left relative to the first panel as in Tables 1 and 4.

Table 5. Quantiles, mean, and variance of LR{Hc`(r)|Hc`(p)}, where the data generating process
satisfies H◦c (s) = Hc(s)\Hc`(s− 1) with s ≤ r.

r − s p − r 50% 80% 85% 90% 95% 97.5% 99% Mean Var

0 1 2.45 4.90 5.60 6.56 8.15 9.72 11.71 3.04 6.95
2 9.39 13.36 14.41 15.80 18.03 20.14 22.80 10.03 18.66
3 20.30 25.70 27.09 28.89 31.75 34.37 37.61 20.95 35.73
4 35.19 42.01 43.71 45.94 49.38 52.52 56.31 35.84 58.26

1 1 1.51 3.12 3.55 4.12 5.04 5.92 7.03 1.87 2.72
2 7.21 9.95 10.66 11.61 13.09 14.47 16.21 7.60 8.95
3 16.78 20.75 21.75 23.08 25.13 26.98 29.32 17.20 19.57
4 30.25 35.49 36.81 38.51 41.15 43.56 46.46 30.69 35.22

2 1 1.16 2.54 2.89 3.36 4.09 4.76 5.62 1.48 1.81
2 6.38 8.66 9.25 10.03 11.26 12.40 13.80 6.69 6.23
3 15.27 18.64 19.49 20.61 22.35 23.94 25.88 15.61 14.27
4 28.00 32.45 33.58 35.05 37.32 39.37 41.85 28.26 26.55

In the third case we consider the test for the hypothesis Hc(r) in the rank deficient case where
H◦c (s) = Hc(s)/Hc`(s− 1) holds for s < r.
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Theorem 8. Consider the rank hypothesis Hc(r) : rank Π ≤ r. Suppose H◦c (s) = Hc(s)\Hc`(s− 1) holds
for some s ≤ r so that rank Π = rank (Π, µ) = s and that the I(1) condition is satisfied for that s. Let Bu be a
(p− s)-dimensional standard Brownian motion on [0, 1]. Define a (p− s + 1)-dimensional vector Fu given as

Fu =

(
Bu

1

)
. (23)

Then LR{Hc(r) | Hc(p)} converges as in (11) using the present F.

Table 6 reports the simulated asymptotic distribution of the rank test reported in Theorem 8.
The first panel gives the standard case where s = r and corresponds to Johansen (1995, Table 15.2).
The second and the third panel report the distribution for the rank deficient case H◦c (s) for s < r.
Once again, the distribution shifts to the left in the rank deficient case.

Table 6. Quantiles, mean, and variance of LR{Hc(r)|Hc(p)}, where the data generating process satisfies
H◦c (s) = Hc(s)\Hc`(s− 1) with s ≤ r.

r − s p − r 50% 80% 85% 90% 95% 97.5% 99% Mean Var

0 1 3.44 5.86 6.56 7.52 9.13 10.69 12.74 4.04 6.89
2 11.40 15.43 16.49 17.91 20.18 22.33 25.03 12.02 19.50
3 23.31 28.86 30.28 32.15 35.06 37.74 41.04 23.95 38.13
4 39.20 46.23 47.99 50.28 53.82 57.05 61.01 39.84 62.48

1 1 2.74 4.27 4.70 5.27 6.21 7.10 8.25 3.05 2.75
2 9.47 12.30 13.04 14.01 15.54 16.96 18.74 9.84 9.81
3 20.04 24.19 25.25 26.63 28.76 30.71 33.13 20.45 21.78
4 34.51 40.03 41.40 43.17 45.93 48.43 51.41 34.95 39.09

2 1 2.62 3.89 4.22 4.68 5.41 6.10 6.96 2.84 1.87
2 8.86 11.26 11.87 12.67 13.93 15.10 16.54 9.14 7.06
3 18.77 22.37 23.27 24.43 26.23 27.88 29.91 19.09 16.34
4 32.40 37.23 38.43 39.98 42.35 44.52 47.08 32.76 30.09

The final case is the test for the hypothesis Hc(r) in the rank deficient case where H◦c`(s) =

Hc`(s− 1)/Hc(s− 1) for s < r. In this case the limiting distribution has nuisance parameters. We do
not give the result here, since it is complicated to state and it does not seem particularly useful in
practice. Indeed in practical work, this type of data generating process can often be ruled through
visual data inspection as discussed in Section 3.1. Furthermore, it would be hard to deal with the
nuisance parameters in applications.

It is worth noting that the proof in this final case would be somewhat different from the proof
of Theorems 1, 6–8. They are all proved by modifying the argument of Johansen (1995, Sections 10
and 11). However, in the final case, a cointegration vector with random coefficients arise. Therefore,
the analysis is best carried out in terms of the dual eigenvalue problem 0 = det(λS00 − S01S−1

11 S10) as
opposed to the standard eigenvalue problem 0 = det(λS11 − S10S−1

00 S01).

3.5. Asymptotic Theory for the Test on the Cointegrating Vectors

We now consider the tests on the cointegrating vectors in the rank deficient case when a constant
is present in the model. There is now a wide range of possible limit distributions. Only a few of these
will be discussed.

The unrestricted model is Hc(r) where the constant is restricted to the cointegrating space. Thus,
in the full rank case the Granger-Johansen representation (22) has a zero linear slope τ` = 0 and level
satisfying β′τc = −βc.

Consider now the hypothesis of a known cointegrating vector, (21). It is now important whether
the hypothesized level for the cointegrating vector, bc is zero or not. If bc 6= 0 then a nuisance parameter
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depending on b, bc would appear in the limit distributions in the rank deficient case. If bc = 0 then the
limit distributions are simpler. Fortunately, the zero level case is the most natural hypothesis in most
applications. The asymptotic theory for the test statistic is described in the following theorems.

Theorem 9. Consider the hypothesis Hc,β(r) : (Π, µ) = αb∗′ where b∗ = (b′, b′c)′. Here, α, b have dimension
p × r while b′c is an r-vector, where α is unknown and b∗ is known and b has full column rank. Suppose
Hz(0) is satisfied so that Π = 0, µ = 0, and s = 0 and that the I(1) condition is satisfied. Let B be a
p-dimensional standard Brownian motion on [0, 1], where the first r components are denoted B1. Define the
(p− s + 1)-dimensional process Fu = (B′u, 1) as in (23). Then it holds, for T → ∞, that

LR{Hz,β(r) | Hz(p)} D→ tr{
∫ 1

0
dBuF′u(

∫ 1

0
FuF′udu)−1

∫ 1

0
Fu(dBu)

′

−
∫ 1

0
dBuB′1,u(

∫ 1

0
B1,uB′1,udu)−1

∫ 1

0
B1,u(dBu)

′}. (24)

The convergence of the test statistic LR{Hc,β(r) | Hc(p)} holds jointly with the convergence for the rank
test statistic LR{Hc(r) | Hc(p)}, for s = 0, in Theorem 8. Thus, when s = 0 a formula of the type (9) implies
that the limit distribution of the test statistic for known β within the model with rank of at most r satisfies can be
found as the difference of the two limiting variables.

Table 7 reports the asymptotic distribution of the test for known cointegrating vector in the model
where the rank is at most r. When s = r, the asymptotic distribution is χ2 with r(p + 1− r) degrees of
freedom, see Johansen and Juselius (1990, p. 193–194), Johansen et al. (2000, Lemma A.5). When s = 0
the distribution is simulated according to Theorem 9. It is shifted to the right relative to the case s = r.

Table 8 reports the simulated asymptotic distribution of the test for known cointegrating vector in
the model where the rank is unrestricted. The distribution is shifted to the right in the rank deficient
case. As in the zero level case, the expectations reported in Tables 6 and 7 add up to the expectation
reported in Table 8. In the full rank case s = r the statistics in Tables 6 and 7 are independent, as proved
below, so the variances are additive.

Theorem 10. Consider the hypothesis H◦c,β(r). Suppose H◦c (r) = H◦c (r)/H◦c`(r − 1) is satisfied and that
the I(1) condition holds with s = r. Then the rank test statistic LR{H◦c (r)|H◦c (p)} and the statistic
LR{H◦c,β(r)|H◦c (r)} for testing a simple hypothesis on the cointegrating vector are asymptotically independent.
The asymptotic distribution of the rank statistic LR{H◦c (r)|H◦c (p)} is given in Theorem 1, while the statistic for
the cointegrating vector LR{H◦c,β(r)|H◦c (r)} is asymptotically χ2{r(p + 1− r)}.

Table 7. Quantiles, mean, and variance of LR{Hc,β(r)|Hc(r)}, where the data generating process
satisfies H◦c,β(s).

p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var

2 1 1 1.39 3.22 3.79 4.61 5.99 7.38 9.21 2 4
0 6.34 9.84 10.78 12.02 14.05 15.96 18.41 6.87 15.09

3 2 2 3.36 5.99 6.75 7.78 9.49 11.14 13.28 4 8
0 12.45 17.48 18.79 20.53 23.26 25.76 28.91 13.12 30.71

3 1 1 2.37 4.64 5.32 6.25 7.82 9.35 11.35 3 6
0 10.60 14.82 15.92 17.36 19.66 21.79 24.48 11.07 22.93
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Table 8. Quantiles, mean, and variance of LR{Hc,β(r)|Hc(p)}, where the data generating process
satisfies H◦c,β(s).

p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var

2 1 1 5.44 8.50 9.34 10.50 12.38 14.17 16.50 6.07 10.98
0 9.32 13.37 14.44 15.88 18.18 20.31 22.98 9.94 19.72

3 2 2 7.44 11.02 11.99 13.29 15.37 17.37 19.88 8.09 15.09
0 15.37 20.48 21.80 23.54 26.26 28.78 31.88 15.99 32.22

3 1 1 14.46 19.08 20.28 21.88 24.39 26.74 29.64 15.10 25.77
0 20.35 25.89 27.31 29.15 32.04 34.72 38.02 20.96 38.07

4. Applications of Results

We discuss how our results apply to the finite sample theory and to identification robust inference.
An application to US treasury yields is given.

4.1. Finite Sample Theory

The finite sample distribution of cointegration rank tests have been studied in various ways. When
there are no nuisance parameters, the asymptotic distributions generally give good approximations.
An example is the test for a unit root in a first order autoregression, where the finite sample distribution
and the asymptotic distribution are nearly indistinguishable for T = 8 observations, see Nielsen (1997).
A Bartlett correction improves the asymptotic distribution further. Once there are nuisance parameters
the situation is different. Under the rank hypothesis the asymptotic distribution differs if there are
additional unit roots. This arises either with rank deficiency like here where the distributions tend to be
shifted to the left and when there are double roots as in I(2) systems where the distributions are shifted
to the right. Nielsen (2004) analyzed this through simulation and suggested to apply local-to-unity
approximation that would average between the different asymptotic distributions. A similar idea
was implemented analytically for canonical correlation models in Nielsen (1999). In a follow-up
paper, Nielsen (2001) analyzed the effects of plugging parameter estimates into such corrections.
Johansen (2002) suggested a Bartlett correction for such models. This works quite well when the
nuisance parameters are such that they are far from giving additional unit roots. The issue is that the
Bartlett correction asymptotes to infinity when there are additional unit roots. More recently, bootstrap
methods have been explored by Swensen (2004) and by Cavaliere et al. (2012).

Johansen (2000) derives a Bartlett-type correction for the tests on the cointegrating relations.
In Table 2 he considers the finite sample properties of a test comparing the test statistic
LR{Hz,β(1)|LR{Hz(1)} with the asymptotic χ2-approximation. Null rejection frequencies are
simulated for dimensions p = 2, 5, a variety of parameter values, and a finite sample size T. In all the
reported simulations the data generating process has rank of unity. The table shows that null rejection
frequency can be very much larger for a nominal 5% test when the rank is nearly deficient.

Theorem 2 sheds some light on the behaviour of the test as the rank approaches deficiency.
The Theorem shows that the test statistic converges for all deficient ranks. Table 2 indicates that the
distribution shifts to the right in the rank deficient case. Thus, we should expect that null rejection
frequency increases as the rank approaches deficiency, but it should be bounded away from unity.

4.2. Identification Robust Inference

Khalaf and Urga (2014) were concerned with tests on cointegation vectors in situations where
the cointegration rank is nearly deficient. Their results can be developed a little further using the
present results.
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The notation in Khalaf and Urga (2014) differs slightly from the present notation. The hypothesis
of known cointegration vectors is stated as β0 = (Ir, b′0)

′ for some known b0, corresponding to the
present hypotheses Hz,β(r) and Hc`,β(r). The test statistics are

LR(b0) = LR{Hm,β(r)|Hm(p)}, (25)

LRC(b0) = LR{Hm,β(r)|Hm(r)}, (26)

for m = z, c`. Moreover they consider the hypothesis Hm,Π(r), say, of a known impact matrix Π of
rank r. This is tested through the statistic

LR∗ = LR{Hm,Π(r)|Hm(p)}. (27)

When the rank is not deficient the test statistic LRC(b0) is asymptotically χ2
r(p−r), see Johansen

(1995, Section 7). The test statistic LR(b0) has a Dickey-Fuller type distribution as derived in
Theorem 2 for the case without deterministic terms, contradicting the χ2 asymptotics suggested by
Khalaf and Urga (2014, Section 4). Table 2 indicates that this distribution is close to, but different from,
a χ2

p(p−r)-distribution when p = 2, 3 and p− r = 1. When p = 3 and r = 1, the limiting distribution

is further from a χ2
p(p−r)-distribution. Likewise, the statistic LR∗ converges to a Dickey-Fuller-type

distribution. This can be proved through a modification of the proof of Theorem 2.
Khalaf and Urga’s Theorem 1 is concerned with bounding the distribution of the likelihood ratio

statistic for the hypothesis Π = ab′, where a, b are known p× r-matrices so that b has rank r, against
the alternative where Π is unrestricted. The idea of their Theorem is to come up with a bound to the
critical value when a, b may have deficient rank s ≤ r. Unfortunately, their theorem evolves around
the incorrect χ2 distribution although unit root testing is implicitly involved. We therefore reformulate
the result in terms of the limiting distributions derived herein.

We consider the test statistic LR(b0) = LR{Hz,β(1)|Hz(1)} when the rank of Π is nearly deficient.
Suppose the rank is nearly deficient in the sense that Π ≈ T−1M for some matrix M along the lines
of the theory in Section 2.6. Then, intuitively, the limiting distribution will be a combination of those
arising when the true rank is 0 and when it is 1. The asymptotic theory developed here gives the
relevant bounds. In the case of the zero level model the Theorems 1 and 2 imply the following
pointwise result.

Theorem 11. Let θ denote the parameters of the model (1). Consider the parameter space Θz where the
hypothesis Hz,β(1) : Π = αb′ holds. Here α, b are both of dimension p× 1. Here α is unknown, while b is
known and has full column rank. Suppose the data generating process satisfies the I(1) condition with s ≤ 1.
Let qz,s be the asymptotic (1− ψ) quantile of LR{Hz,β(1)|Hz(1)} when the data generating process satisfies
H◦z,β(s) for s = 0, 1. Let qz,∗ = maxs=0,1 qz,s. Then it holds for all θ ∈ Θz that

lim
T→∞

P[LR{Hz,β(1)|Hz(1)} ≥ qz,∗] ≤ ψ. (28)

The simulated values in Table 2 show that for ψ = 5% then

qz,∗ = max(qz,0, qz,1) =

{
max(9.05, 3.84) = 9.05 for p = 2,
max(13.82, 5.99) = 13.82 for p = 3.

(29)

The interpretation is as follows. Suppose the hypothesis Hz(1) has not been rejected, but it is
unclear whether the rank could be nearly deficient. Then the hypothesis of a known β0 is rejected if
the statistic LR{Hz,β(1)|Hz(1)} is larger than qz,∗.
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The bound for qz,∗ seems very extreme. Khalaf and Urga therefore suggest to use the alternative
statistic LR{Hz,β(1)|Hz(p)}. Theorem 11 could be modified to cover this statistic. The simulations in
Table 3 indicate that we would then use bounds

q̃z,∗ = max(q̃z,0, q̃z,1) =

{
max(9.70, 6.22) = 9.70 for p = 2,
max(20.83, 15.34) = 20.83 for p = 3.

(30)

We can establish a similar result for the constant level model using Theorems 8 and 9. However,
it is necessary to exclude the possibility of a linear trends in the rank deficient model as this would
give a very complicated result.

Theorem 12. Let θ denote the parameters of the model (14). Consider the parameter space Θc where the
hypothesis Hc,β(1) : (Π, µ) = α(b′, b′c) holds. Here α, b are both of dimension p × 1, while bc is a scalar.
Further b, bc are known and b 6= 0. Suppose the data generating process satisfies the I(1) condition with s = 0
or s = 1. Let qc,s be the asymptotic (1− ψ) quantile of LR{Hc,β(1)|Hc(1)} when the data generating process
satisfies H◦c,β(s) for s = 0, 1. Let qc,∗ = maxs=0,1 qc,s. Then it holds for all θ ∈ Θ1 that

lim
T→∞

P[LR{Hc,β(1)|Hc(1)} ≥ qc,∗] ≤ ψ. (31)

The simulated values in Table 7 show that for ψ = 5% then

qc,∗ = max(qz,0, qz,1) =

{
max(14.05, 5.99) = 14.05 for p = 2,
max(19.66, 7.82) = 19.66 for p = 3.

(32)

If the alternative is taken as Hc(p) instead of Hc(1) the bounds are modified as

q̃c,∗ = max(q̃c,0, q̃c,1) =

{
max(18.18, 12.38) = 18.18 for p = 2,
max(32.04, 24.39) = 32.04 for p = 3.

(33)

The bounds (32), (33) for the constant level model appear further apart than the corresponding
bounds (29), (30) for the zero level model. So in the constant level case there is perhaps less reason to
use the test against the unrestricted model.

4.3. Empirical Illustration

The identification robust inference can be illustrated using a series of monthly US treasury
zero-coupon yields over the period 1987:8 to 2000:12. The data are taken from Giese (2008) and runs
from the start of Alan Greenspan’s chairmanship of the Fed and finishes before the burst of the dotcom
bubble. Giese considers 5 maturities (1, 3, 18, 48, 120 months), but here we only consider 2 maturities
(12, 24 months). The empirical analysis uses OxMetrics, see Doornik and Hendry (2013).

Figure 1 shows the data in levels and differences along with the spread. The spread does not appear
to have much of a mean reverting behaviour. It is not crossing the long-run average for periods of up
to 4 years. This point towards a random walk behaviour which contradicts the expectations hypothesis
in line with Giese’s analysis. She finds two common trends among five maturities. The two common
trends can be interpreted as short-run and long-run forces driving the yield curve. The cointegrating
relations match an extended expectations hypothesis where spreads are not cointegrated but two
spreads cointegrate. This is sometimes called butterfly spreads and gives a more flexible match to
the yield curve. This is in line with earlier empirical work. Hall et al. (1992), among others, found
only one common trend when looking at short-term maturities, while Shea (1992); Zhang (1993) and
Carstensen (2003) found more than one common trend when including longer maturities.
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Figure 1. Zero coupon yields in (a) levels; (b) differences; and (c) spread.

A vector autoregression of the form (14) with an intercept, k = 4 lags as well as a dummy variable
for 1987:10 was fitted to the data. This has the form

∆Xt = ΠXt−1 + µ +
3

∑
i=1

Γi∆Xt−i + Φ1(t=1987:10) + εt for t = 1, . . . , T,

where Xt is the bivariate vector of the 12 and 24 month zero-coupon yields and periods t = 1 and
t = T correspond to 1987:8 and 2000:12 giving T = 161.

Table 9 reports specification test statistics with p-values in square brackets. The tests do not
provide evidence against the initial model. They are the autocorrelation test of Godfrey (1978)
the cumulant based normality test, see Doornik and Hansen (2008), and the ARCH test of Engle
(1982). For the validity of applying the autoreregressive and normality tests for non-stationarity
autoregressions, see Engler and Nielsen (2009), Kilian and Demiroglu (2000), and Nielsen (2006).

The dummy variable matches the policy intervention after the stock market crash on 19 October
1987. Empirically, the dummy variable can be justified in two ways. First, the plot of yield differences
in Figure 1b indicate a sharp drop in yields at that point. Secondly, the robustified least squares
algorithm analyzed in Johansen and Nielsen (2016) could be employed for each of the two equations
in the model. The algorithm uses a cut-off for outliers in the residuals that is controlled in terms of the
gauge, which is the frequency of falsely detected outliers that can be tolerated. The gauge is chosen
small in line with recommendations of Hendry and Doornik (2014, Section 7.6), see also Johansen and
Nielsen (2016). Thus, we choose a cut-off of 3.02 corresponding to a gauge of 0.25%. When running the
autoregressive distributed lag models without outliers, only 1987:10 has an absolute residual exceeding
the cut-off. Next, when re-running the model including a dummy for 1987:10, no further residuals
exceed the cut-off. This is a fixed point for the algorithm. The detection of outliers may have some
impact on specification tests, estimation, and inference. Johansen and Nielsen (2009, 2016) analyze the
impact on estimation when the data generating process has no outliers. They find that outlier detection
only gives a modest efficiency loss compared to standard least squares when the cut-off is as large
as chosen here. Berenguer-Rico and Nielsen (2017) find a considerable impact on the normality test
employed above. At present, there is no theory for these algorithms for data generating processes with
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outliers, albeit some results are available for cointegration analysis with known break date, including
the broken trend analysis of Johansen et al. (2000) and the structural change model of Hansen (2003).

Table 9. Specification tests for the unrestricted vector autoregression.

Test b12,t b24,t Test System

χ2
normality (2) 3.8

[0.15]
4.1
[0.13]

χ2
normality (4) 4.3

[0.36]
Far,1−7 (7, 144) 1.7

[0.11]
1.0
[0.45]

Far,1−7 (28, 272) 1.2
[0.24]

Farch,1−7 (7, 147) 1.8
[0.09]

1.0
[0.41]

Table 10 reports cointegration rank tests. The fifth column shows conventional p-values based
on Tables 4 and 6 for s = r corresponding to Johansen (1995, Tables 15.2, 15.3). The sixth column
shows p-values based on Tables 5 and 6 assuming data have been generating by a model satisfying
Hc(0) = Hz(0). In both cases the p-values are approximated by fitting a Gamma distribution to the
reported mean and variance, see Nielsen (1997); Doornik (1998) for details. As expected, the latter
p-values tend to be higher than the former. Overall this provide overwhelming evidence in favour of a
pure random walk model in line with Giese (2008).

Table 10. Cointegration rank tests.

Hypothesis r Likelihood LR p-Value
s = r Hc(0)

Hc`(2) = Hc(2) 2 134.63
Hc`(1) 1 133.71 1.8 0.18 0.39
Hc(1) 1 133.71 1.8 0.80 0.75
Hc`(0) 0 129.70 9.8 0.30 0.46
Hc(0) 0 129.21 10.8 0.57 0.57

If we have a strong belief in the expectation hypothesis we would, perhaps, ignore the rank tests
and seek to test the expectations hypothesis directly. If we maintain the model Hc(1), we could have to
contemplate that the cointegration vectors could be nearly unidentified. A mild form of the expectation
hypothesis is that the spread is zero mean stationary. Thus, we test the restriction b∗ = (1,−1, 0).
The likelihood ratio statistic is 4.0. Assuming the data generating process satisfies either H◦c (0) or H◦c (1),
but not by H◦c`(0), we can apply the Khalaf-Urga (2014)-type bound test established in Theorem 12.
The 95% bound in (32) is 14.05 so the hypothesis cannot be rejected based on this test. This contrasts
with the above rank tests which gave strong evidence against the expectations hypothesis. The results
reconcile if the bounds test does not have much power in the weakly identified case. Indeed, this
seems to be the case when looking at Table 3, ρ = 0.99-panels in Khalaf and Urga (2014), corresponding
to near rank deficiency or weak identification. Thus, assuming the rank is one when in fact the
data generating process appears to be nearly rank deficient seems to reduce power for tests on the
cointegrating vector. That is, when the alleged cointegrating vector is not cointegrating it would be
useful to be able to falsify the economic hypothesis. The above mentioned simulations indicate that
this is not the case.

5. Conclusions

We have derived asymptotic theory for cointegration rank tests and tests on cointegrating vectors
in the rank deficient case. The asymptotic distributions have been simulated and tabulated. The results
shed some light on the finite sample theory for cointegration analysis. They can be used to improve
the theory on identification robust inference developed by Khalaf and Urga (2014). This was applied
to two US treasury yield series.
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It appears that large distortions arise when applying standard cointegration inference in the
situation where the rank is deficient or nearly deficient. The rank hypothesis gives an inequality for the
rank, that is rank Π ≤ r. This includes cases where the rank is r and where it is less than r. Thus, the
parameter space for the model where rank Π ≤ r therefore has a lower dimensional subset where the
rank is deficient. Inferential procedures for rank determination are consistent but do leave a positive
probability of deciding for a deficient rank in finite samples. In practice, it is therefore possible to end
up in a situation of rank deficiency or near deficiency. When proceeding to testing restrictions on the
cointegrating vectors, the model is therefore mis-specified or nearly mis-specified.

The asymptotic analysis of the test distributions gives the following results. When testing
for cointegration rank, the distribution shifts to the left when the rank is deficient. When testing
for restrictions on the cointegrating vector, the distribution shifts to the right when the rank is
deficient. When the rank is nearly deficient the distribution will tend to shift in similar directions. As a
consequence, a test for cointegration restrictions using conventional critical has a size control problem
previously observed by Johansen (2000). One can instead apply identification robust tests as suggested
by Khalaf and Urga (2014), but our impression is that while these tests are better behaved in terms of
size, they have modest power to reject incorrect restrictions.

Our recommendation is to test for rank before testing restrictions on cointegrating vectors in line
with Johansen’s framework. If the conclusion from the rank determination is ambiguous it is best to
proceed with caution and possibly explore different choices for rank. This is a common theme in the
applied work of Juselius.
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Appendix A. Proofs

Processes are considered on the space of right continuous processes with left limits, D[0, 1].
A discrete time process Xt for t = 1, . . . , T is embedded in D[0, 1] through Xinteger(Tu) for 0 ≤ u ≤ 1.
For processes Yt, Zt for t = 1, . . . , T the residuals from regressing Yt on Zt are denoted (Yt | Zt) =

Yt −∑T
s=1 YsZ′s(∑

T
s=1 ZsZ′s)−1Zt.

Proof of Theorem 1. This follows the outline of the proof in Johansen (1995, §10, 11). Let Π = α0β′0
for p× s-matrices α0, β0 with full column rank. Let Γ = Ip − ∑k−1

i=1 Γi. Under the I(1) condition the
Granger-Johansen representation (6) holds with rank s and Johansen’s Lemma 10.1 stands with r
replaced by s. His Lemmas 10.2, 10.3 hold with BT = β0⊥(β′0⊥β0⊥)

−1 so that, on D[0, 1],

T−1/2B′TXinteger(Tu) = B′TCT−1/2
integer(Tu)

∑
t=1

εt + oP(1). (A1)

For later use we will note that the Brownian motion B can be chosen as follows. For any orthogonal
square matrix M̃ so M̃′M̃ = Ip−s choose the (p− s)-dimensional standard Brownian motion B so that

T−1/2M̃′(α′0⊥Ωα0⊥)
−1/2α′0⊥Γβ0⊥(β′0⊥β0⊥)

−1β′0⊥X[Tu]
D→ Bu (A2)

on D[0, 1].
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Proof of Theorem 2. Introduce the notation Ω̂U = S00 − S01S−1
11 S10 for the unrestricted variance

estimator and Ω̂R = S00− S01b(b′S11b)−1b′S10 for the restricted variance estimator. Then the likelihood
ratio test statistic satisfies

LR{Hz,β(r) | Hz(p)} = −T log
det(Ω̂U)

det(Ω̂R)
= T log det{Ip + Ω̂−1

U (Ω̂R − Ω̂U)}.

If it is shown that Ω̂U is consistent and T(Ω̂R − Ω̂U) converges in distribution then

LR{Hz,β(r) | Hz(p)} = tr{Ω−1T(Ω̂R − Ω̂U)}+ oP(1), (A3)

following Johansen (1995, p. 224). The consistency of the unrestricted variance estimator Ω̂U follows
from Johansen (1995, Lemma 10.3) used with r = s = 0 and BT = Ip.

Consider T(Ω̂R − Ω̂U). Note first that the data generating process has cointegration rank s = 0.
Thus α0, β0 are empty matrices so that their complements can be chosen as the identity matrix. The I(1)
condition then implies that Γ = Ip −∑k−1

i=1 Γi is invertible. The asymptotic convergence in (A2) then
reduces to

T−1/2M̃′Ω−1/2ΓXinteger(Tu) = T−1/2M̃′Ω−1/2
integer(Tu)

∑
t=1

εt + oP(1)
D→ Bu, (A4)

where B is a standard Brownian motion of dimension p and for any orthonormal M̃ so that M̃′M̃ = Ip.
In particular, we will choose M̃ so

M̃ =

[
{b′Γ−1Ω(Γ′)−1b}−1/2b′Γ−1Ω1/2

(b′⊥Γ′Ω−1Γb⊥)−1/2b′⊥Γ′Ω−1/2

]
. (A5)

Let B1,u, B2,u be the first r and the last p− r coordinates of Bu, respectively. Then we get

{b′Γ−1Ω(Γ′)−1b}−1/2b′Xinteger(Tu)
D→ B1,u.

The variance estimators are Ω̂R = Sεε − Sε1b(b′S11b)−1b′S1ε and Ω̂U = Sεε − Sε1S−1
11 S1ε.

In particular, the difference of the variance estimators is

T(Ω̂R − Ω̂U) = T{Sε1M(M′S11M)−1M′S1ε − Sε1bm(m′b′S11bm)−1mb′S1ε}, (A6)

for any invertible matrices M, m and in particular for M′ = M̃′Ω−1/2Γ and m = {b′Γ−1Ω(Γ′)−1b}−1/2.
In light of the identity M̃′M̃ = Ip, the random walk convergence in (A4), the rules for the trace and
the notation v = mb write

tr{Ω−1T(Ω̂R − Ω̂U)} = tr{M̃′Ω−1/2T(Ω̂R − Ω̂U)Ω−1/2M̃}
= tr [M̃′Ω−1/2T{Sε1M(M′S11M)−1M′S1ε − Sε1v(v′S11v)−1v′S1ε}Ω−1/2M̃ ].

Then the product moment convergence results in Johansen (1995, Lemma 10.3) imply

tr{Ω−1T(Ω̂R − Ω̂U)}
D→ tr{

∫ 1

0
dBuB′u(

∫ 1

0
BuB′udu)−1

∫ 1

0
Bu(dBu)

′

−
∫ 1

0
dBuB′1,u(

∫ 1

0
B1,uB′1,udu)−1

∫ 1

0
B1,u(dBu)

′}.
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This is also the limit of the likelihood ratio test statistic due to (A3). The convergence holds jointly
with the convergence of the likelihood ratio test statistic for rank in Theorem 1 since the orthogonal
matrix M̃ in (A2) can be chosen freely.

Proof of Theorem 3. We need a number of results from Johansen (1995). Let B, V be independent
standard Brownian motions. His Theorem 11.1 shows

LR{Hz(r)|Hz(p)} D→ tr {
∫ 1

0
dBuB′u(

∫ 1

0
BuB′udu)−1

∫ 1

0
BudB′u}, (A7)

while his Lemma 13.8 shows

LR{Hz,β(r)|Hz(r)}
D→ tr {

∫ 1

0
dVuB′u(

∫ 1

0
BuB′udu)−1

∫ 1

0
BudV′u}. (A8)

Johansen does not explicitly argue that the convergence results hold jointly. This can be done by
going into the proofs of the results, find the asymptotic expansions of the test statistic, and express them
in terms of random walks that converge to the processes B, V when normalized by T1/2. The asymptotic
distribution in (A8) is mixed Gaussian since B, V are independent. Thus, by conditioning on B we see
that LR{Hz,β(r)|Hz(r)} is asymptotically χ2 and hence independent of B. In turn the two test statistics
are asymptotically independent.

Proof of Theorem 5. We follow Stockmarr and Jacobsen (1994) or Johansen (1995, Theorem 14.1,
Lemma 14.3) and find that T−1/2Xinteger(Tu) converges to Ju as a process on D[0, 1] while

(S00, S1ε, S11/T) converges in distribution to (I2,
∫ 1

0 JudB′u,
∫ 1

0 Ju J′udu).
Now, proceed as in the proof of Theorem 2. It has to be argued that Ω̂U converges in probability

to I2 and that T(Ω̂R − Ω̂U) has the limit distribution postulated in the Theorem. The convergence of
the Ω̂U follows from the listed properties of the product moment matrices. For T(Ω̂R − Ω̂U) we have
as in Equation (A6) that

T(Ω̂R − Ω̂U) = T{Sε1(S11)
−1S1ε − Sε1b(b′S11b)−1b′S1ε}.

Again, we can apply the listed properties of the product moment matrices.

Proof of Theorem 6. Similar to the proof of Theorem 1, the relevant Granger-Johansen representation
is (22) with rank s. Use Johansen’s Lemmas 10.2, 10.3 with BT = {γ(γ′γ)−1, T−1/2τ`(τ

′
`τ`)

−1}, where
τ` = Cµ, while γ ∈ span(β0⊥) so that γ′τ` = 0 and the expansion (A1) is replaced by

T−1/2B′TXinteger(Tu) =

{
(γ′γ)−1γ′CT−1/2 ∑

integer(Tu)
t=1 εt

u

}
+ oP(1) (A9)

on D[0, 1]. Thus, ∆Xt has a non-zero level, but this is eliminated by regression on the intercept.

Proof of Theorem 7. Similar to the proof of Theorem 1. Use the Granger-Johansen representation (22)
with rank s and τ` = Cµ = 0, and Johansen’s Lemmas 10.2, 10.3 with BT = β0⊥(β′0⊥β0⊥)

−1 so that
T−1/2B′TXinteger(Tu) has expansion (A1).

Proof of Theorem 8. Similar to the proof of Theorem 1. Use the Granger-Johansen representation (22)
with rank s, and τ`. Use Johansen’s Lemmas 10.2, 10.3 with Xt, BT and the expansion (A1)
replaced by, respectively, X∗t = (X′t, 1)′, the block diagonal matrix B∗T = diag (BT , T1/2) where
BT = β0⊥(β′0⊥β0⊥)

−1, and

T−1/2B∗′T X∗integer(Tu) =

(
B′TCT−1/2 ∑

integer(Tu)
t=1 εt

1

)
+ oP(1) (A10)

on D[0, 1].
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Proof of Theorem 9. The proof of Theorem 2 is modified noting that R1,t is the (p+ 1)-vector (Xt−1, 1)′

corrected for lagged differences instead of Xt−1 corrected for lagged differences. Choose M̃ as in (A5).
Replace (A4) by (

T−1/2M̃′Ω−1/2Γ 0
0 1

)(
Xinteger(Tu)

1

)
D→ Fu. (A11)

The difference of variance estimators in (A6) is now

T(Ω̂R − Ω̂U) = T{Sε1M(M′S11M)−1M′S1ε − Sε1b∗(b∗′S11b∗)−1b∗′S1ε}, (A12)

where the invertible (p + 1)-dimensional matrix M now is chosen as

M =


b′Γ−1Ω(Γ′)−1b 0 0

0 b′⊥Γ′Ω−1Γb⊥ 0
0 0 1


−1/2 b′ b′c

b′⊥Γ′Ω−1Γ 0
0 1

 (A13)

Viewed as a (3× 2)-block matrix, the two upper left equals the previous M. Since the random
walk dominates a constant it holds that(

T−1/2 Ip 0
0 1

)
M

(
Xinteger(Tu)

1

)
D→ Fu. (A14)

Moreover, the first r coordinates of MR1,t are proportional to b∗′R1,t. Thus the argument can be
completed as in the proof of Theorem 2.

Proof of Theorem 10. The proof of Theorem 3 has to be modified to allow for a constant term
in the cointegrating vector. The arguments leading to asymptotic results for the test statistics are
sketched in Johansen and Juselius (1990) and, with more details, in Johansen et al. (2000, Theorem 3.1,
Lemma A.5).

Proof of Theorem 11. Write

LR{Hz,β(1)|Hz(1)} = LR{Hz(1)|Hz(p)} − LR{Hz,β(1)|Hz(p)}. (A15)

When s = 0 Theorems 1 and 2 give expansions for the right hand expressions of (A15) and in turn
for the desired test statistic on the left hand of (A15). This implies an asymptotic distribution with
asymptotic (1− ψ) quantile qz,0, say. When s = 1 Theorem 3 in a similar way gives an asymptotic
(1− ψ) quantile qz,1. Thus, with qz,∗ = maxs=0,1 qz,s we get limT→∞ P[LR{Hz,β(1)|Hz(1)} ≥ qz,∗] ≤ ψ,
both with s = 0 and when s = 1.

Proof of Theorem 12. Similar to the proof of Theorem 11, applying Theorems 8–10 instead
Theorems 1–3.
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