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Abstract: It is well known that efficient estimation of average treatment effects can be obtained
by the method of inverse propensity score weighting, using the estimated propensity score, even
when the true one is known. When the true propensity score is unknown but parametric, it is
conjectured from the literature that we still need nonparametric propensity score estimation to
achieve the efficiency. We formalize this argument and further identify the source of the efficiency
loss arising from parametric estimation of the propensity score. We also provide an intuition of why
this overfitting is necessary. Our finding suggests that, even when we know that the true propensity
score belongs to a parametric class, we still need to estimate the propensity score by a nonparametric
method in applications.
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1. Introduction

Estimating treatment effects of a binary treatment or a policy has been one of the most important
topics in evaluation studies. In estimating treatment effects, a subject’s selection into a treatment may
contaminate the estimate, and two approaches are popularly used in the literature to remove the bias
due to this sample selection. One is regression-based control function method (see, e.g., Rubin (1973);
Hahn (1998); and Imbens (2004)) and the other is matching method (see, e.g., Rubin and Thomas (1996);
Heckman et al. (1998); and Abadie and Imbens (2002, 2006)). When there are many covariates or
pre-treatment variables that govern this selection, the matching method may be less practical. In this
case, due to Rosenbaum and Rubin (1983, 1984), we can control for the sample selection bias using the
propensity score to reduce the dimensionality problem.

Although adjusting for sub-population differences in the propensity score removes the bias,
the resulting treatment effect estimators may not be all efficient. Hahn (1998) shows that, using
a nonparametric series estimation of the propensity score, we can achieve the efficiency bound.
Hirano et al. (2003) also develop an efficient estimation of average treatment effects using the logit
series estimation of the propensity score overcoming some practical limitations of Hahn (1998)’s series
estimator (see also Li et al. (2009)).

Based on these studies, empirical researchers are encouraged to estimate treatment effects
using the imputation method of the inverse weighting of the estimated propensity score. However,
a nonparametric method of estimating the propensity score may require a large data set, especially
when covariates or pre-treatment variables are high dimensional. For this reason, many empirical
researchers estimate the propensity score parametrically using the probit or logit specification, given the
idea that these parametric models are still good approximations to the true propensity score. Also in
the statistics literature such as Rosenbaum (1987); Rubin and Thomas (1996); and Robins et al. (1995),
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they show that using parametric estimates of the propensity score can improve the efficiency of the
treatment effect estimation.

However, from the existing literature (Hahn (1998); Hirano et al. (2003); Kang and Schafer (2007);
and Tan (2007)), we can infer that, even when the true propensity score is parametric and the parametric
estimator is consistent, we still need to estimate the propensity score nonparametrically to achieve
the full efficiency. The first contribution of this paper is to formalize this efficiency argument and
confirm that parametric estimation of the propensity score yields an inefficient estimator of the average
treatment effect if some or all of covariates are continuous.1 The second contribution of this paper,
which is more interesting, is to identify the source of this inefficiency, and formally characterize the
efficiency loss due to parametric estimation of the propensity score.

For our results, we find that a nonparametric sieve estimation of the propensity score has two
roles in the efficient estimation of average treatment effects. First, it approximates the true propensity
score, and second it approximates the conditional expectation of the derivative of the moment function
for the treatment effect with respect to the propensity score. We show that parametric estimation
of propensity score accomplishes the first role when the true propensity score is indeed parametric,
but cannot achieve the second role, if some of covariates are continuous. In other words, consistent
estimation of the propensity score alone is not enough to obtain the efficient estimation of average
treatment effects.

This finding also suggests that the performance of the treatment effect estimator in finite samples
may depend not only on how precisely the propensity score is estimated, but also how well the
conditional expectation of the derivative of the moment condition is approximated by the same sieve
basis functions or regressors used to estimate the propensity score. We note that the literature has
focused on the former, but the latter has been somewhat ignored. Moreover, because these two objects
are quite different in nature, a sieve approximation solely targeted for the propensity score does not
necessarily well approximate the conditional expectation of the derivative of the moment function in
finite samples.

The rest of the paper is organized as follows. Section 2 outlines the average treatment effect
estimation using the inverse propensity score weighting. Section 3 examines the role of the
nonparametric propensity score estimation when the true one is parametric. We also provide an
illustrative example. We conclude in Section 4. Some technical details are provided in Appendix A.

2. Estimation of Average Treatment Effect

In this section, we review estimation of average treatment effects using the inverse propensity
score weighting in a standard setting. For this purpose, suppose we have a random sample of size n
individuals where some of them received a treatment and others did not. Let Ti denote the treatment
status with Ti = 1 if individual i receives the treatment and Ti = 0 otherwise. Using the same notation
with Rubin (1973), denote Yi(0) as the potential outcome for each individual i under control and
Yi(1) as the outcome under treatment. We observe Ti, Xi, and Yi = TiYi(1) + (1− Ti)Yi(0) where Xi
is a vector of observable covariates of the individual. Here, we have a fundamental missing data
problem since we observe only either Yi(1) or Yi(0) but not both for each individual depending on the
treatment status.

The parameter of interest is the population average treatment effect defined as

τ∗ = E[Y(1)−Y(0)].

1 As it is pointed out by one referee, in the literature, there have been several studies, related to our findings, that show using
an estimated nuisance parameter rather than the true value improves the efficiency of the parameter estimate of interest
(see, e.g., Prokhorov and Schmidt (2009); Hitomi et al. (2008); and Hristache and Patilea (2017)). Our work provides a new
insight to this problem by illustrating parametric estimation of the nuisance parameter may not achieve the full efficiency.
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If we had both Yi(1) and Yi(0) for all individuals, we can simply estimate the average treatment effect
using its sample analogue, but it is not feasible due to the missing data problem. One important way
to circumvent this missing data problem in the literature is using the imputation method based on
the propensity score, motivated by Rosenbaum and Rubin (1983, 1984). The propensity score of an
individual whose observable characteristics Xi equals x is defined by

p∗(x) = Pr(Ti = 1|Xi = x) or E[Ti|Xi = x].

According to Rosenbaum and Rubin, if (i) there exist covariates Xi such that the treatment status Ti
is ignorable given Xi and (ii) 0 < p∗(x) < 1 for all x ∈ X ≡ Supp(X), then Ti and (Yi(0), Yi(1) ) are
independent of each other given the propensity score. This implies that

τ∗ = E [E[Yi|Ti = 1, p∗(Xi)]− E[Yi|Ti = 0, p∗(Xi)]] . (1)

This allows us to estimate the treatment effect using a sample analogue of Equation (1). To be
precise, define

β̂1(x) =
Ê[TiYi|Xi = x]
Ê[Ti|Xi = x]

and β̂0(x) =
Ê[(1− Ti)Yi|Xi = x]

1− Ê[Ti|Xi = x]
,

where Ê[·|·]’s denote suitable conditional mean function estimators. Then, we can construct complete
data using the imputation such that Ŷi(1) ≡ TiYi +(1− Ti)β̂1(Xi) and Ŷi(0) ≡ Ti β̂0(Xi)+ (1− Ti)Yi(0),
and we can estimate the average treatment effect as τ̂1 = 1

n ∑n
i=1(Ŷi(1) − Ŷi(0)) or alternatively

as τ̂2 = 1
n ∑n

i=1(β̂1(Xi)− β̂0(Xi)). These nonparametric imputation methods were proposed by
Hahn (1998), and he further shows that these treatment effect estimators achieve the semiparametric
efficiency bound.2

Hirano et al. (2003) propose an alternative estimator for which the propensity score is estimated
using a logit series estimation, and the propensity score is given by p∗(x) =

exp(h0(x))
1+exp(h0(x)) for some

unknown function h0(x). In the logit series estimation, we approximate h0(x) using linear sieves

and the estimated propensity score is given by p̂L(x) = exp(ĥn(x))
1+exp(ĥn(x))

, where ĥn(x) denotes the sieve

Maximum Likelihood (ML) estimator.3 The proposed treatment effect estimator is given by τ̂3 =
1
n ∑n

i=1

(
TiYi

p̂L(Xi)
− (1−Ti)Yi

1− p̂L(Xi)

)
. This estimator also achieves the semiparametric efficiency bound, and

improves over Hahn (1998)’s estimator in two practical ways. First, we do not need to estimate the
conditional mean functions of Ê[TiYi|Xi] and Ê[(1− Ti)Yi|Xi]. Second, the estimated propensity score
lies between zero and one by construction.

Estimation of average treatment effects using the estimated propensity score with a general link
function that includes the logit or probit specification was proposed by Kim (2013). We will use
this general setting to argue that the inefficiency of the treatment effect estimate with the estimated
parametric propensity score is not specific to a particular functional form assumption like logit or
probit. To obtain a sieve ML estimator for the propensity score with a general link function, we assume

2 Hahn (1998) proposes to estimate Ê[TiYi |Xi ], Ê[(1− Ti)Yi |Xi ], and Ê[Ti |Xi ] using series estimations (e.g., Newey (1997)).
The resulting treatment effect estimators, however, are subject to some practical issues, e.g., the propensity score estimate
Ê[Ti |Xi ] may lie outside the zero and one interval.

3 See, e.g., Shen and Wong (1994) and Chen and Shen (1998) for further details on the sieve extremum estimations that include
the sieve ML estimation.
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the true function h0 belongs to a class of bounded and smooth functions such as a Hölder ball, and let
p∗(x) = F(h0(x)) for a known link function F(·).4

Then, based on a triangular sequence of orthonormal basis functions such as polynomials or
splines, we construct a tensor-product sieve spaceHn as

Hn = {h(X)|h(X) = RK(n)(X)′π for all π satisfying ‖h‖Λγ1 ≤ c1},

where ‖ · ‖Λγ1 denotes a Hölder norm, and we let K(n) → ∞ as n → ∞. The sieve ML estimator is
obtained by solving

ĥn = argmaxh∈Hn

1
n

n

∑
i=1

log
{

F(h(Xi))
Ti (1− F(h(Xi)))

1−Ti
}

(2)

or equivalently π̂K = argmaxπ,RK(X)′π∈Hn
1
n ∑n

i=1 log
{

F(RK(Xi)
′π)Ti

(
1− F(RK(Xi)

′π)
)1−Ti

}
such

that ĥn(x) = RK(x)′π̂K, and the resulting propensity score estimator becomes p̂(x) = F(ĥn(x)).
Finally, using the estimated propensity score, we estimate the average treatment effect as

τ̂ =
1
n

n

∑
i=1

(
YiTi

p̂(Xi)
− Yi(1− Ti)

1− p̂(Xi)

)
.

Define µt(x) ≡ E[Y(t)|X = x] and σ2
t (x) ≡Var[Y(t)|X = x]. For the general class of F(·), as long as

the function is continuous and monotonic in h, Kim (2013) shows that this treatment effect estimator
achieves the semiparametric efficiency bound such that

√
n(τ̂ − τ∗)

d→ N (0, V),

where τ(X) = E[Y(1)−Y(0)|X] and

V = E

[((
YT

p∗(X)
− Y(1− T)

1− p∗(X)
− τ∗

)
−
(

µ1(X)

p∗(X)
+

µ0(X)

1− p∗(X)

)
(T − p∗(X))

)2
]

(3)

= E

[
(τ(X)− τ∗)2 +

σ2
1 (X)

p∗(X)
+

σ2
0 (X)

1− p∗(X)

]
,

4 The Hölder space is a space of functions g ∈ Λγ(X ), g : X −→ R such that the first γ derivatives are bounded, and the
γ-th derivatives are Hölder continuous with the exponent γ− γ ∈ (0, 1], where γ is the largest integer smaller than γ.
The Hölder space becomes a Banach space when endowed with the Hölder norm:

||g||Λγ = sup
x
|g(x)|+ max

a1+a2+...+adx =γ
sup
x 6=x′

|∇ag(x)−∇ag(x′)|
(||x− x′||E)γ−γ < ∞,

where ∇ag(x) ≡ ∂
a1+a2+...+adx

∂x
a1
1 ...∂x

adx
dx

g(x) and || · ||E denotes the Euclidean norm. The Hölder ball Λγ
c (X ) is defined as Λγ

c (X ) ≡

{g ∈ Λγ(X ) : ||g||Λγ ≤ c < ∞}.
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which is identical to the efficiency bound derived by Hahn (1998). This efficiency result with the
general link function is obtained, similarly as in Hirano et al. (2003), following the influence function
approach by Newey (1994). To see this, define

ψ(Zi, τ, p(Xi)) =

(
YiTi

p(Xi)
− Yi(1− Ti)

1− p(Xi)
− τ

)
ψp(Zi, τ, p(Xi)) = −

(
YiTi

p(Xi)2 +
Yi(1− Ti)

(1− p(Xi))2

)
sp(Xi) = E[ψp(Zi, τ∗, p∗(Xi))|Xi], (4)

where ψp(·) denotes the derivative of the moment function for the treatment effect, ψ(·), with respect
to the propensity score p(·), and sp(·) denotes its conditional expectation at the true parameter
values. The asymptotic variance result of Equation (3) is obtained by showing that the estimator is
asymptotically linear with influence function decomposed into two terms:∣∣∣∣∣√n(τ̂ − τ∗)− 1√

n

n

∑
i=1

(
ψ(Zi, τ∗, p∗(Xi)) + sp(Xi)(T − p∗(Xi))

)∣∣∣∣∣ = op(1). (5)

The first term in Equation (5) is the influence function when we know the true propensity score p∗(·),
and the second term represents the contribution of the estimated propensity score on the asymptotic
distribution of τ̂. It follows that the asymptotic variance V in Equation (3) equal to

V = Var
[
ψ(Zi, τ∗, p∗(Xi)) + sp(Xi)(T − p∗(Xi))

]
,

which derives the result.

3. Efficient Estimation When the True Propensity Score Is Parametric

As we discuss in the previous section, the efficiency of the treatment effect estimator depends
on whether the estimator has the asymptotically linear representation as Equation (5). When the
propensity score is estimated using a nonparametric sieve ML, we achieve this representation and
hence the efficiency bound. Here, we pose the question of whether we can achieve this asymptotic
linear representation if the true propensity is parametric, and is estimated under the correct parametric
specification. We confirm that, in this case, the semiparametric efficiency bound is not achieved
as can be inferred from the existing literature. This suggests that, even though we know the true
propensity score belongs to a parametric class, we still need to estimate the propensity score by a
nonparametric method.

Our intuition behind this result is that the nonparametric sieve estimation of the propensity score
plays two roles in the estimation of the treatment effect. First, it approximates the true propensity score,
and second it approximates the conditional expectation of the derivative of the moment condition
for the treatment effect with respect to the propensity score. For the purpose of illustration, without
loss of generality, suppose p∗(x) = Φ(x′π0), where Φ(·) denotes the standard normal cumulative
distribution function (CDF), so the true propensity is a probit model. We then can estimate π0 with
MLE, denoted by π̂, and obtain the parametric convergence rate such that

√
n (π̂ − π0) = Op(1) and

hence supx∈X | p̂(x)− p∗(x)| = Op(n−1/2) with p̂(x) = Φ(x′π̂).
For ease of notation without losing the main idea, we consider the special case that Y(0) = 0

with probability one. Define β0 = E[Y(1)] as the average outcome of interest, where Y(1) is missing
at random conditional on the covariates X. We estimate the average outcome as β̂ = 1

n ∑n
i=1

YiTi
p̂(Xi)

.
For this estimator, following the Equation (5), if we can obtain the asymptotic linear representation as∣∣∣∣∣√n(β̂− β0)−

1√
n

n

∑
i=1

{(
YiTi

p∗(Xi)
− β0

)
− µ1(Xi)

p∗(Xi)
(Ti − p∗(Xi))

}∣∣∣∣∣ = op(1), (6)
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then we will achieve the efficiency bound. To see whether this asymptotic linear representation is
attainable with parametric estimation of the propensity score, we decompose

√
n(β̂− β0) as

√
n(β̂− β0) =

1√
n

n

∑
i=1

(
TiYi

p̂(Xi)
− TiYi

p∗(Xi)
+

TiYi
p∗(Xi)2 ( p̂(Xi)− p∗(Xi))

)
(7)

+
1√
n

n

∑
i=1

(
− TiYi

p∗(Xi)2 ( p̂(Xi)− p∗(Xi)) +
∫
X

µ1(x)
p∗(x)

( p̂(x)− p∗(x))dF0(x)
)

(8)

−
√

n
∫
X

µ1(x)
p∗(x)

( p̂(x)− p∗(x))dF0(x)− 1√
n

n

∑
i=1

δ∗(Xi)
Ti − p∗(Xi)√

p∗(Xi)(1− p∗(Xi))
(9)

+
1√
n

n

∑
i=1

(δ∗(Xi)− δ0(Xi))
Ti − p∗(Xi)√

p∗(Xi)(1− p∗(Xi))
(10)

+
1√
n

n

∑
i=1

((
TiYi

p∗(Xi)
− β0

)
+ δ0(Xi)

(Ti − p∗(Xi))√
p∗(Xi)(1− p∗(Xi))

)
, (11)

where p∗(x) = Φ(x′π0), p̂(x) = Φ(x′π̂), F0(·) denotes the distribution function of X, W =

E[ φ(X′i π0)
2

p∗(Xi)(1−p∗(Xi))
XiXi

′] with φ(·) being the standard normal density function, and

δ∗(x) = −
∫
X

µ1(z)
p∗(z)

φ(z′π0)z′dF0(z) W−1 φ(x′π0)x√
p∗(x)(1− p∗(x))

,

δ0(x) = −µ1(x)
p∗(x)

√
p∗(x)(1− p∗(x)).

If we can show that all terms (7)–(10) are op(1), we then obtain the desirable result of Equation (6).
Following the steps in Hirano et al. (2003) or Kim (2013), it is straightforward to bound the terms (7)–(9)
as op(1). We focus on the term (10), from which we derive our main finding.

By inspecting δ∗(x) and δ0(x), we see that δ∗(x) is the linear projection of δ0(x) on φ(x′π0)x√
p∗(x)(1−p∗(x))

.

In other words,

δ∗(x)− δ0(x) = θ′0
φ(x′π0)x√

p∗(x)(1− p∗(x))
− δ0(x), (12)

where the projection coefficient is given by θ′0 ≡ −
∫
X

µ1(z)
p∗(z)φ(z′π0)z′dF0(z)W−1. Therefore, unless

δ0(x) is indeed linear in φ(x′π0)x√
p∗(x)(1−p∗(x))

,5 we will have infx∈X |δ∗(x)− δ0(x)| > C > 0 for some

positive constant C. It follows that

Var

[
(δ∗(Xi)− δ0(Xi))

Ti − p∗(Xi)√
p∗(Xi)(1− p∗(Xi))

]
= E[(δ∗(Xi)− δ0(Xi))

2] > C. (13)

Therefore, the term (10) remains as Op(1) and contributes to the asymptotic distribution of the treatment
effect estimator. In other words, the asymptotic linear representation of Equation (6) is not obtained
with parametric estimation of the propensity score in general, even when the true propensity score
is parametric. In the Appendix, we derive the asymptotic variance of the treatment effect estimator
with the estimated parametric propensity score, and characterize the efficiency loss due to parametric
estimation of the propensity score. In particular, we show that this efficiency loss is exactly given by
Equation (13).

5 When the true propensity score is the logit model instead, this term is replaced by
√

p∗(x)(1− p∗(x)) · x where p∗(x) =
exp(x′π0)/(1 + exp(x′π0)).
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As the key difference, in the treatment effect estimation using the nonparametric sieve estimation
of the propensity score like Equation (2), it can be shown that when δ0(x) is t-times continuously
differentiable, we have

sup
x∈X
|δ∗(x)− δ0(x)| = O(K−t/dx ), (14)

where K denotes the number of approximating sieve terms used in δ∗(x) (see Hirano et al. (2003) or
Kim (2013)). Therefore, we can bound the term (10) as op(1) for some large enough K. This is because
Equation (12) becomes

δ∗(x)− δ0(x) = θ′0
φ(RK(x)′π0)RK(x)√

p∗(x)(1− p∗(x))
− δ0(x)

when the sieve estimation like Equation (2) is used to estimate the propensity score, where RK(x)
denotes a vector of approximating basis functions, and hence the bound (14) is obtained due to some
approximation theories of sieves for a class of smooth functions such as a Hölder class (see, e.g.,
Chen (2007)). We, however, note that, because p∗(x) and δ0(x) are quite different in nature, the sieve
approximation used to estimate the propensity score does not necessarily well approximate the latter
in finite samples, which may contribute to the inefficiency of the treatment effect estimation.

Finally, by inspecting Equations (4) and (5) for the case Y(0) = 0 along with Equation (10), note
that the term δ0(x) is related to the conditional expectation of the derivative of the moment function
with respect to the propensity score. This implies that the nonparametric sieve estimation of the
propensity score plays two roles in the estimation of the treatment effect. It first approximates the
true propensity score, and second approximates the conditional expectation of the derivative of the
moment condition with respect to the propensity score. The parametric propensity score estimation
can accomplish the first role, if the true one is parametric, but cannot achieve the second when some of
covariates are continuous.

The asymptotic variance of a treatment effect estimator using parametric estimation of the
propensity score can also depend on which parametric estimator is being used in practice. In this regard,
given a parametric model of the propensity score, one can directly derive the asymptotic variance of the
treatment effect estimator using the estimated parametric propensity score by combining two moments
as a sequential estimation problem (see, e.g., Newey (1984)). The first moment is given by, e.g., the first
order condition of the population ML objective function of the propensity score estimation such as the
logit or probit ML, and the second moment is given by the moment condition to estimate the treatment
effect E[ψ(Zi, τ, p(Xi))] = 0 defined in Equation (4). We can then directly compare the asymptotic
variance of the treatment effect estimator resulting from using a specific parametric estimator of the
propensity score to the semiparametric efficiency bound, instead of deriving the inefficiency term from
the Equation (13). This joint moments approach for parametric estimation of the propensity score also
allows us to explicitly derive the efficiency loss due to a specific parametric estimator of the propensity
score, and hence compare different parametric models of the propensity score in terms of efficiency.6

3.1. Reconsidering the Simple Example in Hirano et al. (2003)

Hirano et al. (2003) present a simple example with a binary covariate, illustrating that, weighting
by the inverse of the propensity score estimate, rather than the true one, we can improve the efficiency
and indeed achieve the efficiency bound. Here, we reproduce the example and provide an intuition
why in this case the efficiency bound is achieved in view of the results from the previous section.
Consider a simple problem of estimating the population average of a variable Y, β0 = E[Y], given a

6 We thank the referee for this useful suggestion.
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random sample of size n of the triple (Ti, Xi, Ti ·Yi). Therefore, Ti and Xi are observed for all units in
the sample, but Yi is only observed if Ti = 1. Denote µ(x) = E[Y|X = x] and σ2(x) = Var(Y|X = x).

Now let Ntx denote the number of observations with Ti = t and Xi = x, for t, x ∈ {0, 1}.
Further assume that the true selection probability is p(x) = π0 + x(π1 − π0).7 The estimated selection
probability is then

p̂(x) =

{
N10/(N00 + N10) if x = 0
N11/(N01 + N11) if x = 1

}
. (15)

The true weights estimator is given by β̂tw = 1
n ∑n

i=1
YiTi

p(Xi)
while the estimated weights estimator is then

β̂ew = 1
n ∑n

i=1
YiTi

p̂(Xi)
. Hirano et al. (2003) show that β̂ew is more efficient than β̂tw, and β̂ew achieves

the efficiency bound. Interestingly, one can easily see that p̂(x) in Equation (15) is a nonparametric
estimator of p(x), and is also a parametric MLE of p(x) since we can write p̂(x) = π̂0 + x(π̂1 − π̂0)

with π̂0 = N10/(N00 + N10) and π̂1 = N11/(N01 + N11).
In this example, for the corresponding terms of δ∗(x) and δ0(x) in Equation (10), we show below

that indeed
δ∗(x)− δ0(x) = 0 (16)

for all x, and hence the efficiency bound is achieved for the estimator β̂ew because the asymptotic linear
representation like Equation (6) is obtained (i.e., the term (14) is simply equal to zero in this case). To
derive the result, consider the following terms corresponding to δ∗(x) and δ0(x) in Equation (10) for
the stochastic expansion of β̂ew. Let

Ŵ =
1
n

n

∑
i=1

XiX′i
p(Xi) (1− p(Xi))

, W = E
[

XiX′i
p(Xi) (1− p(Xi))

]
, Xi ≡

(
1− Xi

Xi

)
,

δ∗(x) = −
{

∑
x

µ(x)
p(x)

(1− x, x) q(x)

}
·W−1 (1− x, x)′√

p(x) (1− p(x))
, δ0(x) = −µ(x)

p(x)

√
p(x)(1− p(x)),

where q(·) denotes the probability mass of X.
By investigating δ∗(x) and δ0(x), we can see that δ∗(x) is the linear projection of δ0(x) on

(1−x,x)√
p(x)(1−p(x))

. In other words, δ∗(x) = 1−x√
p(x)(1−p(x))

θ0 +
x√

p(x)(1−p(x))
θ1 for some constants θ0 and θ1

that are determined by the linear projection. Note that we have

δ∗(x)− δ0(x) =
(1− x)θ0 + xθ1√

p(x)(1− p(x))
+

µ(x)
p(x)

√
p(x)(1− p(x)) = 0

if θx = −µ(x)(1− p(x)) for x ∈ {0, 1}. Indeed, from the definition of δ∗(x), we find

(θ0, θ1) = −
{

∑
x

µ(x)
p(x)

(1− x, x)q(x)

}
·W−1

= −
(

µ(0)
p(0)

q(0),
µ(1)
p(1)

q(1)
) q(0)

p(0)(1−p(0)) 0

0 q(1)
p(1)(1−p(1))

−1

= −
(

µ(0)
p(0)

q(0),
µ(1)
p(1)

q(1)
) p(0)(1−p(0))

q(0) 0

0 p(1)(1−p(1))
q(1)


= − (µ(0)(1− p(0)), µ(1)(1− p(1)))

7 In the orignial example, we have π0 = π1 = 1/2.
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and therefore the efficiency result follows.
This example clearly illustrates why the condition like (16) is crucial to achieve the efficiency

bound. This suggests that, when the covariates are multinomial, we can always achieve the condition
like (16) since the parametric ML estimation becomes equivalent to the nonparametric ML estimation.
Therefore, we can achieve the efficiency bound. However, when the covariates or a subset of covariates
are continuous, using the parametric propensity score estimation cannot achieve the efficiency bound
even though the true one is parametric. This also suggests that the efficiency loss due to using the
parametric propensity score estimator is attributed to the fact that some covariates are continuous.

3.2. Generalization to Estimating the Weighted Average Treatment Effect

We generalize the efficiency comparison between treatment effect estimators using nonparametric
or parametric estimation of the propensity score to the weighted average treatment effect, τ∗wate,
defined as

τ∗wate ≡
∫

E[Y(1)−Y(0)|X = x]g(x)dF0(x)∫
g(x)dF0(x)

for a known weight function g(x). We estimate τ∗wate using the moment condition

ψ(Zi, τwate, p(Xi), g(Xi)) = g(Xi)

(
YiTi

p(Xi)
− Yi(1− Ti)

1− p(Xi)
− τwate

)
(17)

that yields the estimator as

τ̂wate =
n

∑
i=1

g(Xi)[
YiTi

p̂(Xi)
− Yi(1− Ti)

1− p̂(Xi)
]/

n

∑
i=1

g(Xi) (18)

given an estimator of the propensity score p̂(x).
Because the function g(x) is known and only appears as a weight in the moment function (17),

following the same line of argument for the average treatment effect, one can obtain the asymptotic
linear representation of τ̂wate using the nonparametric propensity score estimator (2) in Equation (18) as∣∣∣∣∣√n(τ̂wate − τ∗wate)−

1
E[g(X)]

1√
n

n

∑
i=1

(
ψ(Zi, τ∗wate, p∗(Xi), g(Xi)) + sp(Xi)(T − p∗(Xi))

)∣∣∣∣∣ = op(1)

where ψp(Zi, τ, p(Xi), g(Xi)) = −g(Xi)
(

YiTi
p(Xi)2 +

Yi(1−Ti)
(1−p(Xi))2

)
and sp(Xi) = E[ψp(·)|Xi]. Therefore,

the semiparametric efficiency bound is achieved for the weighted average treatment effect estimator
τ̂wate using the nonparametric propensity score estimator (see Hirano et al. (2003)). On the other
hand, for the parametric propensity score estimator, we can derive the inefficiency term similar to
Equation (13), the inefficiency term derived for the average treatment effect, as

1
(E[g(Xi)])2 E[g(Xi)

2(δ∗(Xi)− δ0(Xi))
2]

and therefore a similar inefficiency result holds for τ̂wate using the parametric propensity
score estimator.

Note that, under the unconfoundedness assumption (Rosenbaum and Rubin (1983, 1984)), with the
weight function g(x) being equal to the true propensity score p∗(x), the weighted average treatment
effect becomes the average treatment effect for the treated,

τ∗treated ≡ E[Y(1)−Y(0)|T = 1].
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Based on this equivalence, τ∗treated can be estimated using the moment condition

ψ(Zi, τtreated, p(Xi), p(Xi)) = p(Xi)

(
YiTi

p(Xi)
− Yi(1− Ti)

1− p(Xi)
− τtreated

)
by replacing g(x) with p(x). However, an efficiency comparison between treatment effect estimators
for τ∗treated using the nonparametric or parametric propensity score estimator is more complicated
because, in this case, the propensity score has two roles in the moment function. One is the inverse
weighting to control for the self-selection and the other is the weighting function in place of g(x). To
see this, let p̂(x) and p̂∗(x) denote the nonparametric and the correctly specified parametric estimator
of the propensity score, respectively. Then, we can consider three alternative estimators for the average
treatment effect for the treated. One is using the parametric propensity score p̂∗(x) everywhere
and solving

0 =
n

∑
i=1

p̂∗(Xi) ·
(

YiTi
p̂∗(Xi)

− Yi(1− Ti)

1− p̂∗(Xi)
− τtreated

)
, (19)

the second one is using the nonparametric propensity score p̂(x) everywhere and solving

0 =
n

∑
i=1

p̂(Xi) ·
(

YiTi
p̂(Xi)

− Yi(1− Ti)

1− p̂(Xi)
− τtreated

)
, (20)

and the last one is using the parametric propensity score p̂∗(x) in place of g(x) while using the
nonparametric propensity score p̂(x) for the inverse weighting and solving

0 =
n

∑
i=1

p̂∗(Xi) ·
(

YiTi
p̂(Xi)

− Yi(1− Ti)

1− p̂(Xi)
− τtreated

)
. (21)

From the efficiency argument of Hahn (1998) and Hirano et al. (2003) when the true propensity score is
known, one can conjecture that the treatment effect estimator that solves Equation (21) will be more
efficient than other estimators that solve Equations (19) and (20), respectively. However, in terms of
efficiency, the two estimators solving Equations (19) and (20) (or other variations) cannot be uniformly
ranked in general, and studying these alternative estimators is beyond the scope of this paper.

4. Conclusions

One can obtain efficient estimation of average treatment effects by the method of inverse
propensity score weighting based on the estimated propensity score, rather than the true one,
even when the true one is known. From the literature, we can infer that, even when the true propensity
score is a parametric function, we still need to estimate the propensity score nonparametrically to
achieve the efficiency. We formalize this argument and further identify the source of the efficiency
loss due to parametric estimation of the propensity score. We also provide an intuition as to why this
overfitting is necessary. The idea is that the nonparametric estimation of the propensity score plays
two roles in the treatment effect estimation. It first replaces the true propensity score, and second it
approximates the conditional expectation of the derivative of the moment condition for the treatment
effect with respect to the propensity score. The parametric propensity score estimation can achieve
the first but cannot achieve the second when some of covariates are continuous. This also suggests
that the finite sample performance of the treatment effect estimator, using the imputation method
based on the estimated propensity score, may depend not only on how precisely the propensity
score is estimated, but also how well the conditional expectation of the derivative of the moment
condition is approximated by the same approximating sieves or regressors that are used to estimate
the propensity score.
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Appendix A. Efficiency Loss Due to Parametric Estimation of the Propensity Score

For ease of notation, we assume Y(0) = 0 with probability one, and define β0 = E[Y(1)] as the
average outcome of interest. In the main text, we have established the following:8

√
n(β̂− β0)

=
1√
n

n

∑
i=1


(

TiYi
p∗(Xi)

− β0

)
+ δ0(Xi)

(Ti−p∗(Xi))√
p∗(Xi)(1−p∗(Xi))

+(δ∗(Xi)− δ0(Xi))
Ti−p∗(Xi)√

p∗(Xi)(1−p∗(Xi))

+ op(1),

where δ∗(x) = −
∫
X

µ1(z)
p∗(z)φ(z′π0)z′dF0(z) W−1 φ(x′π0)x√

p∗(x)(1−p∗(x))
and δ0(x) = − µ1(x)

p∗(x)

√
p∗(x)(1− p∗(x)).

Define

ψ(y, t, x, β, p(·)) =
t · y
p(x)

− β, α0(t, x) = −µ1(x)
p∗(x)

(t− p∗(x)), and

c∗(t, x) = (δ∗(x)− δ0(x))
t− p∗(x)√

p∗(x)(1− p∗(x))
.

The first term ψ(·) is the moment function that would be obtained when we do not estimate the
propensity score p∗(·). The second and the third term, α0(t, x) and c∗(t, x), are the contribution of
estimating p∗(·) using the parametric ML estimator to the asymptotic distribution of β̂. If we estimated
the propensity score using a nonparametric ML estimation, even when the true propensity score is
parametric, we would not have the third term since we can replace δ∗(x) with δ0(x) without affecting
the asymptotic distribution.

The asymptotic variance of β̂ is equal to the variance of the sum of ψ(Y, T, X, β0, p∗(·)), α0(T, X),
and c∗(T, X). We obtain for each component that potentially determines the asymptotic variance:

E[ψ(Y, T, X, β0, p∗(·))2] = E
[

µ1(X)2

p∗(X)

]
+ E

[
σ2

1 (X)

p∗(X)

]
− β2

0

E
[
α0(T, X)2

]
= E

[
µ1(X)2

p∗(X)

]
− E

[
µ1(X)2

]
E
[
c∗(T, X)2

]
= E

[
(δ∗(X)− δ0(X))2

]
E[ψ(Y, T, X, β0, p∗(·))α0(T, X)] = −E

[
µ1(X)2

p∗(X)

]
+ E

[
µ1(X)2

]
E[{ψ(Y, T, X, β0, p∗(·)) + α0(T, X)}c∗(T, X)] = 0.

Combining these results, we obtain

√
n(β̂− β0)

d→ N(0, E
[
(µ1(X)− β0)

2 + σ2
1 (X)/p∗(X)

]
+ E

[
(δ∗(X)− δ0(X))2

]
),

where the first term in the asymptotic variance is identical to the efficiency bound derived
by Hirano et al. (2003). Therefore, the efficiency loss due to parametric estimation of the propensity
score is given by E

[
(δ∗(X)− δ0(X))2

]
.

8 This is because the terms (7)–(9) are op(1) and only the terms (10) and (11) remain in the stochastic expansion.
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