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Abstract: This paper gives a computer-intensive approach to multi-step-ahead prediction of
volatility in financial returns series under an ARCH/GARCH model and also under a model-free
setting, namely employing the NoVaS transformation. Our model-based approach only assumes
i.i.d innovations without requiring knowledge/assumption of the error distribution and is
computationally straightforward. The model-free approach is formally quite similar, albeit a GARCH
model is not assumed. We conducted a number of simulations to show that the proposed approach
works well for both point prediction (under L1 and/or L2 measures) and prediction intervals that were
constructed using bootstrapping. The performance of GARCH models and the model-free approach
for multi-step ahead prediction was also compared under different data generating processes.

Keywords: bootstrap; L1 and L2 measures; GARCH(1,1); NoVaS transformation; multi-step
prediction; Monte Carlo simulation

1. Introduction

Multi-step-ahead prediction in a time series amounts to predicting a sequence of future values
using only the values observed over a finite time interval. Examples of time series for which
multi-step-ahead prediction is useful include crop yields, stock prices, traffic volume, and electrical
power consumption. In the paper at hand, we focus on multi-step-ahead prediction of squared financial
returns, which is related to the so-called volatility, i.e., the conditional expectation of the squared
returns. A typical approach to solve this problem, known as multi-stage or iterated prediction, is to
construct a single model from the past observed time series data and then apply the model step by
step to predict its future values. The iterated method uses the predicted value of the current time
step to determine its value in the next time step. However, empirical evidence points to the fact that
multi-stage prediction is susceptible to the error accumulation problem, i.e., errors committed in the
past are propagated into future predictions.

The benchmark model for financial returns has been the GARCH(1,1); see Bollerslev et al. (1992)
and the references therein. Notably, the work in Andersen et al. (2006), page 811, stated that, beyond
the one-step-ahead case, there is no analytical form of the predictive density for multi-step-ahead
predictions of volatility in GARCH models. However, the analytical form of the multi-step ahead
predictive probability density function of a GARCH(1,1) process under Gaussian or Student t
innovations has been recently derived in the working paper of Abadir et al. (2018).

The work of Abadir et al. (2018) was an important breakthrough, but it hinged on knowing
the error distribution that drove the GARCH(1,1) model. By contrast, the paper at hand proposes
an alternative computer-intensive approach to multi-step-ahead prediction of the squared returns
in ARCH/GARCH and related models that does not require knowledge of the error distribution.
Furthermore, an analogous methodology can be employed in a model-free setting using the
normalizing and variance-stabilizing transformation (NoVaS) approach; for more details on NoVaS,
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see Politis (2003, 2007, 2015). Notably, our method is not of the multi-stage/iterated type, and therefore
eliminates the errors accumulation issue.

The remainder of the paper is organized as follows. Section 2 presents the proposed method
for the optimal multi-step-ahead point predictions for ARCH/GARCH processes, as well as in a
model-free setting using the NoVaS transformation. Section 3 addresses the associated methods for the
construction of multi-step-ahead prediction intervals using bootstrapping. Section 4 illustrates the
numerical performance of the proposed methods by means of simulated examples; some concluding
remarks are provided in Section 5.

2. Optimal Multi-Step-Ahead Point Prediction

Consider data X1, . . . , Xn from a zero mean and (strictly) stationary financial returns time series
{Xt}. Our goal is to predict the future squared returns X2

n+h for any h ≥ 2; the case h = 1 was treated
in Politis (2007, 2015).

Let Fn be a short-hand for the observed information set, i.e., Fn = {Xt, 1 ≤ t ≤ n}. In the L2

sense, the optimal predictor of X2
n+h based on Fn is the conditional mean and given by:

X̂2
n+h = E(X2

n+h|Fn). (1)

Similarly, the optimal L1 predictor is the conditional median:

X̂2
n+h = Median(X2

n+h|Fn). (2)

In the following parts of this section, we study the multi-step-ahead prediction in the nonlinear
financial models ARCH/GARCH and in the NoVaS setting, which is an application of the model-free
approach to financial returns data.

2.1. L2 Optimal Prediction for ARCH(p) and GARCH(1,1) Models

Suppose the data follow the ARCH(p) process of Engle (1982) defined by the recursion:

Xt = σtεt, and σ2
t = α + a1X2

t−1 + ... + apX2
t−p (3)

where α ≥ 0, aj ≥ 0 for all j = 1, . . . , p, and {εt} ∼ i.i.d. N(0, 1).
First, consider the simplest case h = 2. Based on ARCH(P) Model in (3), we can express Xn+1 and

Xn+2 in the following way:

Xn+1 = εn+1

√
σ2

n+1, and σ2
n+1 = α + a1X2

n + ... + apX2
n−p+1,

Xn+2 = εn+2

√
σ2

n+2, and σ2
n+2 = α + a1X2

n+1 + ... + apX2
n−p+2.

Obviously, Xn+1 can be easily written as a function of the past observations Xn, ... , Xn+1−p and the
unknown future error εn+1. Furthermore, we can also rewrite Xn+2 to be a function of Xn, ... , Xn+1−p
and the unknown future errors εn+1 and εn+2. The notations are as follows:

Xn+1 =εn+1

√
α + a1Xn + a2X2

n−1 + ... + apX2
n−p+1

= f1(Xn, ..., Xn−p+1; εn+1)
(4)
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and:

Xn+2 =εn+2

√
α + a1X2

n+1 + a2X2
n + ... + apX2

n−p+2

=εn+2

√
α + a1ε2

n+1(α + a1Xn + a2X2
n−1 + ... + apX2

n−p+1) + a2X2
n + ... + apX2

n−p+2

= f2(Xn, ..., Xn−p+1; εn+1, εn+2).

(5)

Recursively, we can express Xn+h for any h ≥ 1 as a function of past observations {X1, . . . , Xn}
and the unknown future innovations {εn+1, . . . , εn+h} in the form:

Xn+h = fh(X1, ..., Xn; εn+1, . . . , εn+h). (6)

Since {X1, . . . , Xn} are given and known, we can write (6) simply as:

Xn+h = fh(εn+1, . . . , εn+h), for any h ≥ 1. (7)

The squared financial returns can be rewritten as f 2
h . Based on the assumption that εt is i.i.d N(0, 1),

the conditional distribution function Ff 2
h

of the future squared returns f 2
h (·) can be derived. Hence, the

optimal predictor (conditional median for L1 or conditional mean for L2) of x2
n+h is easy to calculate by

Ff 2
h
.

Take h = 1 and h = 2 as examples. By (4) and (5), the L2 optimal predictors of X2
n+1 and X2

n+2 are:

X̂2
n+1 =E{ε2

n+1(α + a1Xn + a2X2
n−1 + ... + apX2

n−p+1)|Fn}

=α + a1X2
n + a2X2

n−1 + ... + apX2
n−p+1,

(8)

and:

X̂2
n+2 =E[ε2

n+2(α + a1σ2
n+1ε2

n+1 + a2X2
n + ... + apX2

n−p+2)|X1, ... , Xn]

=α + a1σ2
n+1 + a2X2

n + ... + apX2
n−p+2

(9)

since E(ε2
n+1|Fn) = 1 and E(ε2

n+2|Fn) = 1 by assumption. First, we can note that X̂2
n+1 = f 2

1 (ε
2
n+1 = 1)

and X̂2
n+2 = f 2

2 (ε
2
n+1 = 1, ε2

n+2 = 1). Actually, we can easily verify that the L2 optimal predictor for
any h ≥ 1 is given by:

X̂2
n+h = f 2

h (ε
2
n+1 = 1, . . . , ε2

n+h = 1). (10)

Note that because all εt’s are independent of each other, as well as of the past values of the X
series, the h-step-ahead predictor in (10) is equivalent to the method of multi-stage/iterated prediction
that uses the predicted values of the current time step to determine its value in the next time step.
However, for the L1 case, because the median function is not a linear operator, this equivalence breaks
down; see Section 2.3 in what follows.

Remark 1. As already mentioned, the benchmark for fitting financial returns is the GARCH(1,1). Nevertheless,
a GARCH(1,1) model is tantamount to an ARCH(p) model with p = ∞ and an exponentially-decreasing
coefficient; see, e.g., Francq and Zakoian (2011). Because of the exponentially decrease of the ARCH coefficients,
it is customary to approximate the GARCH(1,1) models with an ARCH(p) where p is finite, albeit large. In this
sense, all the above results apply verbatim to a GARCH(1,1) process as well. Of course, in fitting a GARCH(1,1)
model, the GARCH equation is used to fit four parameters, which are then expanded to the p coefficients of the
approximating ARCH(p) model.
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2.2. L2 Optimal Prediction for NoVaS

Given a sequence of observations {X1, . . . , Xn}, we can fit the data by a special application of
the model-free methodology, NoVaS, which was introduced by Politis (2003, 2007) for stationary data
in prediction of squared financial returns. Let us continue considering a zero mean and (strictly)
stationary financial return time series {Xt}. The NoVaS methodology is trying to map the dataset
X1, . . . , Xn to an i.i.d Gaussian dataset {Wt, t ≤ n}.

The starting point is the ARCH model defined by:

Xt = Zt

√√√√a +
p

∑
i=1

aiX2
t−i (11)

under which, the residual:
Xt√

a + ∑
p
i=1 aiX2

t−i

(12)

is thought of as perfectly normalized and variance-stabilized, as it is assumed to be i.i.d.N(0, 1),
which is actually not true here. This ratio can be interpreted as an attempt to “Studentize” the return
Xt by dividing with a time-localized measure of the standard deviation of Xt. However, there seems to
be no reason to exclude the value of Xt from an empirical, causal estimate of the standard deviation of
Xt; recall that a causal estimate is one involving present and past data only, i.e., the data {Xs, s ≤ t}.

Hence, the work in Politis (2003) defined a new “Studentized” quantity as follows:

Wt :=
Xt√

αs2
t−1 + a0X2

t + ∑
p
i=1 aiX2

t−i

for t = p + 1, p + 2, . . . , n. (13)

In the above, s2
t−1 is an estimator of σ2

X = Var(X1) based on the data up to (but not including1)
time t; under the zero mean assumption for X1, the natural estimator is s2

t−1 = (t− 1)−1 ∑t−1
k=1 X2

k .
The definition in Equation (13) describes the proposed normalizing and variance-stabilizing

transformation under which the data series {Xt} is mapped to the new series {Wt}. The order p (≥ 0)
and the vector of nonnegative parameters (α, a0, . . . , ap) are chosen by the practitioner with the twin
goals of normalization and variance stabilization.

Furthermore, the NoVaS transformation Equation (13) can be re-arranged to yield:

Xt = Wt

√√√√αs2
t−1 + a0X2

t +
p

∑
i=1

aiX2
t−i. (14)

Formally, the only real difference between the NoVaS of Equation (14) and the ARCH of
Equation (11) is the presence of the term X2

t paired with the coefficient a0. Replacing the term a
in Equation (11) by the term αs2

t−1 in Equation (14) is only natural since the former has, by necessity,
units of variance; in other words, the term a in Equation (11) is not scale invariant, whereas the term α

in Equation (14) is.
Given the assumed structure of the return series, the target of variance stabilization,

which amounts to constructing a local estimator of scale for Studentization purposes, requires:

α ≥ 0, ai ≥ 0 for all i ≥ 0, and α +
p

∑
i=0

ai = 1. (15)

1 The reason for not including time t in the variance estimator is for purposes of notational clarity, as well as the easy
identifiability of the effect of the coefficient a0 associated with X2

t in the denominator of Equation (13).
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Equation (15) has the interesting implication that the {Wt} series can be assumed to have a
(unconditional) variance that is (approximately) unity. Nevertheless, note that p and α, a0, . . . , ap must
be carefully chosen to achieve a degree of conditional homoscedasticity as well; to do this, one must
necessarily take p small enough, as well as α small enough or even equal to zero, so that a local (as
opposed to global) estimator of scale is obtained. The work in Politis (2003) provided two structures for
the ai coefficients satisfying Equation (15). One is to let α = 0 and ai = 1/(p + 1) for all 0 ≤ i ≤ p; this
specification is called the simple NoVaS transformation and involves only one parameter, namely the
order p, to be chosen by the practitioner. The other one is given by the exponential (decay) NoVaS, where
α = 0 and ai = c′e−ci for all 0 ≤ i ≤ p. The exponential scheme involves choosing two parameters:
p and c > 0, since c′ is determined by Equation (15). For more details of how to select the optimal
parameters here, see Politis (2015).

The above Equation (14) can be used for one-step-ahead prediction in an analogous way to the
ARCH/GARCH models already discussed. In fact, Equation (14) is formally analogous to an ARCH(p)
model with i.i.d. errors given by εt =

Wt√
1−a0W2

t
. Hence, the construction of the previous subsection can

be repeated to write Xn+h as some function of {X1, . . . , Xn} and {Wt, t = 1, . . . , h} for any h ≥ 1, i.e.,

Xn+h = fh(X1, . . . , Xn; Wn+1, . . . , Wn+h). (16)

Since the data {X1, . . . , Xn} are given, we can simplify (16) as:

Xn+h = fh(Wn+1, . . . , Wn+h). (17)

In the L2 sense, the optimal predictor of X2
n+h based on Fn is given by:

X̂2
n+h = E(X2

n+h|Fn) = E{ f 2
h (Wn+1, . . . , Wn+h)|Fn)} (18)

Since the Wt are i.i.d, we can get analogous results with those concerning the ARCH/GARCH
models, i.e.,

X̂2
n+h = f 2

h (W
2
n+1 = 1, . . . , W2

n+h = 1)) (19)

Therefore, for any h ≥ 1, we can use similar ideas to that in the ARCH/GARCH cases to conduct
multi-step-ahead prediction in NoVaS by approximating the conditional mean or median from their
conditional distribution functions.

2.3. L1 Optimal Prediction and Generalizations

We can generalize the above prediction method to an interesting class of prediction functions g(·),
namely the power family where g(x) = xk for some fixed k and the power-absolute value family where
g(x) = |x|k. So far, we have worked on the prediction of X2

n+h, that is g(x) = x2. More generally, we
can derive the best L2 or L1 predictor of g(Xn+h) given Fn.

Regarding L1 optimal prediction, it was already mentioned that it is not equivalent to the
multi-stage/iterated approach. For the h = 2 case, we can easily get an analytic formula of the
conditional distribution of g(Xn+h) assuming an ARCH(p) model with normal errors. An approximate
analytic form of the conditional distribution function of X2

n+2 is given as follows:

Ff 2
2
(x|{Xn, ... , X1}) =

γ( 1
2 , x

2A )

B
√

π
, x > 0

where:
A = α + a2X2

n + a3X2
n−1 + ... + apX2

n−p+2,

B = a1σ2
n+1 = a1(α + a1X2

n + ... + apX2
n−p+1),
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γ(s, x) =
∫ x

0
ts−1e−tdt, s > 0.

Solving Ff 2
h
(x|{Xn, ... , X1}) = 1

2 , we obtain X̂2
n+2 ≈

π
8 AB2 + π4B4 for the L1 optimal predictor.

The general case h ≥ 1 has been recently worked out by Abadir et al. (2018). However,
the analytical method crucially depends on the assumption for the error distribution. A more robust
way to approximate the conditional distribution of g(Xn+h) can be derived using bootstrapping2.

Before going into bootstrapping, note that a simple Monte Carlo simulation can re-produce
the analytical calculations in a straightforward manner. For example, if the ARCH/GARCH
errors are assumed independent with a particular distribution function Fε, we can easily generate
pseudo-replicates of Xn+h by using Equation (7), and simulating many sets of {εn+1, . . . , εn+h} where
each εt is drawn i.i.d from Fε.

If Fε has a known structural form with some unknown parameters, e.g., Student-t with unknown
degrees of freedom, one can use a data-based estimate of the unknown parameter in order to estimate
Fε and then proceed with the simulation; this is then equivalent to a parametric bootstrap procedure. In
the more realistic case where Fε is treated as unknown, it can be estimated by the empirical distribution
of the ARCH/GARCH residuals and then used in the simulation; this is equivalent to the standard
(nonparametric) bootstrap. Because of the formal analogy of NoVaS to ARCH models, a similar
bootstrap method works for NoVaS as well; this is the so-called model-free bootstrap. Detailed
Algorithms 1–5 are given in the following two subsections.

2.4. Bootstrap Algorithms for ARCH/GARCH Point Prediction

Assume an ARCH/GARCH model with all parameters known and errors {εt} ∼ i.i.d. with known
distribution Fε. Under the independence of {εt} for all t ≥ 1, we can generate many ε∗n+1, . . . , ε∗n+h ∼
i.i.d. from Fε by Monte Carlo simulation and compute many pseudo-values of the quantity of interest
g(X∗n+h).

Algorithm 1: h-step ahead prediction with parameters known: Monte Carlo.

Step 1. Generate {ε∗n+1, ... , ε∗n+h} i.i.d. from Fε, and plug them into the function (7) to obtain the
pseudo-value X∗n+h. Repeat the above procedure M times, and denote the M

pseudo-values by {X(1)
n+h, .... , X(M)

n+h}.
Step 2. Calculate the optimal predictor ̂g(Xn+h) of g(Xn+h) by taking the sample median

(under L1 risk) or sample mean (under L2 risk) of the set {g(X(1)
n+h), . . . , g(X(M)

n+h)}.

If the parameters and Fε in the ARCH model are unknown, estimates must be used, in which case
the Monte Carlo simulation becomes bootstrapping. Let F̂ε denote the estimator of Fε. The two cases,
parametric and nonparametric bootstrap, depend on whether the parametric form of Fε is known or
not. In the former case, F̂ε uses the parametric form of Fε with parameters estimated and plugged in.
In the latter, F̂ε is typically taken to be the empirical distribution of the ARCH residuals normalized to
unit variance.

2 The bootstrap validity is not shown in this paper, because it is beyond the scope of the paper.
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Algorithm 2: h-step ahead prediction with parameters unknown: bootstrap.

Step 1. Fit the data with an ARCH(p) or GARCH(1,1) model, and obtain the estimators
{â0, â1, ... , âp} of {a0, a1, ... , ap}. Furthermore, record the residuals {ε̂1, ... , ε̂n} with the
distribution function F̂ε. We will use F̂ε to estimate Fε in the following steps.

Step 2. Perform Step 1 and Step 2 of Algorithm 1 using F̂ε instead Fε and {â0, â1, ... , âp} instead of
{a0, a1, ... , ap}.

Remark 2. The work in Bose and Mukherjee (2009) proposed a weighted linear estimator (WLE) to estimate
the ARCH parameters. This method does not involve nonlinear optimization and gives a closed-form expression,
so it is computationally easier to obtain the estimator compared to maximum likelihood. In our numerical work,
we used the WLE to obtain the estimators {â0, â1, ... , âp} of {a0, a1, ... , ap} in Algorithm 2.

2.5. Bootstrap Algorithms for NoVaS-Based Point Prediction

We now go back to the model-free setting of Section 2.2. In order to estimate the conditional
mean or conditional median in the NoVaS setting, we should first use one of the NoVaS methods
(simple vs. exponential, generalized or not, etc.) to obtain the coefficients α, a0, a1, ... , ap. Based on
the independence of the Wt, we can use Monte Carlo and/or bootstrap to generate different W∗n+k for
k = 1, . . . , h, and consequently approximate the distribution of fh(Wn+1, . . . , Wn+h). Denote by F̂W the
empirical distribution of the transformed data Wp+1, . . . , Wn. Similar to Algorithm 2, we can use either
a (truncated)3 standard normal distribution or F̂W to generate the pseudo-values W∗n+k.

Algorithm 3: h-step ahead prediction for NoVaS: bootstrap.

Step 1. Use one of the NoVaS methods (simple vs. exponential, generalized or not, etc.) to obtain
the transformed data {Wt for t = p + 1, . . . , n} and the coefficients α, p, and a0, a1, ... , ap.

Step 2. Compute the analytic form of Equation (16), i.e., express Xn+h as a function of {X1, ... , Xn}
and {Wn+1, ... , Wn+h} using the values {a0, a1, ... , ap} obtained in Step 1.

Step 3. Generate {W∗n+1, ... , W∗n+h} as i.i.d. either from a (truncated) standard normal distribution
or from F̂W , and plug them into the function (16) to obtain the pseudo-value X∗n+h. Repeat

the above procedure M times and denote the M pseudo-values by {X(1)
n+h, .... , X(M)

n+h}.
Step 4. Calculate the optimal predictor ̂g(Xn+h) of g(Xn+h) by taking the sample median (under L1

risk) or sample mean (under L2 risk) of the set {g(X(1)
n+h), . . . , g(X(M)

n+h)}.

3. Optimal Multi-Step-Ahead Prediction Intervals

Going beyond point prediction, it may be desirable to construct prediction intervals for g(Xn+h)

with a target coverage level (1− β)100%. One-step ahead prediction intervals have been discussed in
detail in Pan and Politis (2016); see also Chapter 10 of Politis (2015). In this section, we will propose
a construction of multi-step ahead prediction intervals in the given setting of financial returns data
{X1, . . . , Xn}.

3 From (13), it follows that:
1

W2
t
=

αs2
t−1 + a0X2

t + ∑
p
i=1 aiX2

t−i

X2
t

≥ a0

since all the parameters are nonnegative; thus, |Wt| ≤ 1/
√

a0, i.e., the range of the Wt is finite. Typically, the {Wt} variables
have a large enough range such that the boundedness is not seen as spoiling the normality from a practical perspective, but
in any theoretical works and/or simulations, it is necessary to use the standard normal distribution truncated to the range
±1/
√

a0.
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As explained in Politis (2015), the bootstrap is a sine qua non for the construction of prediction
intervals as it allows us to incorporate the variability of estimated quantities in our estimate of the
conditional distribution of g(Xn+h) given {X1, . . . , Xn}. The variability of estimated quantities is not
so important in point prediction when only the center of the conditional distribution is of interest.
However, it is crucial in order to obtain an estimate of the conditional distribution that is not too
narrow, yielding prediction intervals with accurate coverage.

In what follows, we give the algorithms for bootstrap prediction intervals for g(Xn+h) in the two
settings: model-based for ARCH/GARCH models and model-free based on NoVaS. The algorithms
follow the “forward bootstrap” paradigm introduced in Pan and Politis (2016).

Algorithm 4: Bootstrap prediction intervals for g(Xn+h) under ARCH/GARCH models.

Step 1. Fit the ARCH(p) model to the data {X1, . . . , Xn}, i.e., obtain the estimators {â0, â1, ... , âp}
and the residuals {ε̂p+1, . . . , ε̂n}.

Step 2. Use Algorithm 1 or Algorithm 2 to compute ̂g(Xn+h), the point predictor of g(Xn+h) of choice.
Step 3. (a) Re-sample (with replacement) the residuals {ε̂p+1, . . . , ε̂n} to create the pseudo-errors

ε∗p+1, · · · , ε∗n and ε∗n+1, · · · , ε∗n+h.
(b) Let (X∗1 , . . . , X∗p)′ = (X1+I , · · · , Xp+I)

′ where I is generated as a discrete random
variable uniform on the values 0, 1, . . . , n− p. Now, use the fitted ARCH model of Step 1 to
generate bootstrap pseudo-data X∗t for t = p + 1, . . . , n in a recursive manner.
(c) Based on the bootstrap data X∗1 , . . . , X∗n, re-estimate the parameters obtaining {â∗0, â∗1, ... , â∗p}.
(d) Re-define the last p values of the bootstrap data to match the original, i.e., re-define
X∗t = Xt for t = n− p + 1, . . . , n; this is the “forward bootstrap”4 construction.
(e) Use the fitted ARCH model of Step 1, the bootstrap data X∗1 , . . . , X∗n, and the
pseudo-errors ε∗n+1, · · · , ε∗n+h to generate recursively the future bootstrap data X∗t for
t = n + 1, . . . , n + h.
(f). Based on the bootstrap data X∗n−p+1, . . . , X∗n and the re-estimated parameters {â∗0 , â∗1 , ... , â∗p},
use Algorithm 1 or 2 (according to which one was used in Step 2 to calculate the bootstrap
predictor denoted by ̂g(X∗n+h).

(g) Calculate the bootstrap root5: g(X∗n+h)− ̂g(X∗n+h).
Step 4. Repeat Step 3 above B times; the B bootstrap root replicates are collected in an empirical

distribution whose α-quantile is denoted q(α). The (1− β)100% equal-tailed prediction
interval for g(Xn+h) is then given by [ ̂g(Xn+h) + q(β/2), ̂g(Xn+h) + q(1− β/2)].

4 Most of the bootstrap methods will not have their last p values X∗t where t = n, . . . , n− p + 1, exactly equal to the original
values as needed for the prediction process. Herein lies the problem, since the behavior of the predictors for future values
needs to be captured conditionally on the original values. In this forward bootstrap step, we redefine the last p values of
X∗t and make them equal to the original ones; see Pan and Politis (2014).

5 Since we do not have much information of the distribution of g(Xn+h) − ̂g(Xn+h), we could use the distribution of
g(X∗n+h)− ̂g(X∗n+h) to approximate it. Therefore, we can employ the quantile of the approximated distribution to calculate
the prediction intervals in the following steps. See more theoretical inference in Politis (2015).
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Algorithm 5: Model-free (MF) bootstrap prediction intervals for g(Xn+h) based on NoVaS.

Step 1. Use one of the NoVaS algorithms (simple vs. exponential, generalized or not, etc.) to obtain
the transformed data {Wt for t = p + 1, . . . , n} that are assumed to be approximately i.i.d.
Let p, α, and ai denote the fitted NoVaS parameters.

Step 2. Use Algorithm 3 to calculate ̂g(Xn+h), the chosen point predictor of g(Xn+h).
Step 3. (a) Re-sample randomly (with replacement)6 the transformed variables {Wt for

t = p + 1, . . . , n} to create the pseudo-data W∗p+1, · · · , W∗n−1, W∗n and W∗n+1, · · · , W∗n+h.
(b) Let (X∗1 , . . . , X∗p)′ = (X1+I , · · · , Xp+I)

′ where I is generated as a discrete random variable
uniform on the values 0, 1, . . . , n− p. Generate the bootstrap pseudo-data X∗t for
t = p + 1, . . . , n using:

X∗t =
W∗t√

1− a0W∗2t

√√√√αs∗2t−1 +
p

∑
i=1

aiX∗2t−i for t = p + 1, . . . , n (20)

where s∗2t−1 = (t− 1)−1 ∑t−1
k=1 X∗2k .

(c) Based on the bootstrap data X∗1 , . . . , X∗n, re-estimate the NoVaS parameters, obtaining p∗, α∗,
and a∗i ; for simplicity, we can keep the same value for p, i.e., let p∗ equal p.
(d) Re-define the last p values of the bootstrap data to match the original, i.e., re-define X∗t = Xt

for t = n− p + 1, . . . , n; this is the “forward bootstrap” construction.
(e) Calculate the bootstrap future value X∗n+h by iteration as:

X∗n+1 =
W∗n+1√

1− a0W∗2n+1

√√√√αs2
n +

p

∑
i=1

aiX2
n−i+1

where s2
n = n−1 ∑n

i=1 X2
i .

If h < p, for j = 2, . . . , h:

X∗n+j =
W∗n+j√

1− a0W∗2n+j

√√√√αs2
n+1−j +

j−1

∑
k=1

akX∗2n−k+j +
p

∑
i=j

aiX2
n−i+j (21)

If h ≥ p, for j = 2, . . . , h:

X∗n+j =
W∗n+j√

1− a0W∗2n+j

√√√√αs2
n+1−j +

p

∑
i=1

aiX∗2n−i+j (22)

where s2
n+1−j = (n + j− 1)−1(∑n

i=1 X2
i + ∑

j−1
k=1 X∗2n+k).

(f) Based on the bootstrap data X∗n−p+1, . . . , X∗n and the parameters p∗, α∗, a∗0 , a∗1 , . . . , a∗p, use

Algorithm 3 to calculate the bootstrap predictor ̂g(X∗n+h).

(g) Calculate the bootstrap root: g(X∗n+h)− ̂g(X∗n+h).
Step 4. Repeat Step 3 above B times; the B bootstrap root replicates are collected in an empirical

distribution whose α-quantile is denoted q(α). The (1− β)100% equal-tailed prediction
interval for g(Xn+h) is given by [ ̂g(Xn+h) + q(β/2), ̂g(Xn+h) + q(1− β/2)].

6 It is also possible to use other bootstrap methods, for example wild bootstrap or block bootstrap, to create pseudo-data.
It depends on the information you have for Wt.
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4. Simulations and Finite Sample Performance

In this section, we conduct simulations to examine the finite sample performance of
our algorithms.

4.1. Settings

In the simulation, 200 datasets Xn = (X1, . . . , Xn)′, each of size n = 100, are generated separately
by the following seven different GARCH(1,1) models.

Model 1. Standard GARCH with Gaussian errors and finite fourth moment:
Xt = σtεt, σ2

t = 0.00001 + 0.73σ2
t−1 + 0.10X2

t−1, {εt} ∼ i.i.d. N(0, 1).
Model 2. Standard GARCH with Gaussian errors and infinite fourth moment:
Xt = σtεt, σ2

t = 0.00001 + 0.8895σ2
t−1 + 0.10X2

t−1, {εt} ∼ i.i.d. N(0, 1).
Model 3. Standard GARCH with Student-t errors:
Xt = σtεt, σ2

t = 0.00001 + 0.73σ2
t−1 + 0.10X2

t−1, {εt} ∼ i.i.d. t distributed with five degrees of freedom.
Model 4. GARCH with time-varying parameters (TV-GARCH):
The value of β decreases as a linear function of t, starting at β1 = 0.10 for t = 1, and ending at β = 0.05
for t = n. At the same time, the value of α increases as a linear function of t, starting at α = 0.73 for
t = 1, and ending at α = 0.93 for t = n. ω = 0.00001 and {εt} ∼ i.i.d. N(0, 1).
Model 5. Two-state Markov Switching GARCH(1,1) (MS-GARCH):

Xt = σtεt, σ2
t =

2

∑
s=1

1{P(St = s)}[ωs + αtσ
2
t−1 + βsX2

t−1]

In the first regime, we set α1 = 0.9, β1 = 0.07, ω1 = 2.4e− 5. In the second regime, we set α2 = 0.7,
β2 = 0.22, ω2 = 1.2e− 4. The transition probabilities for the first regime are p11 = 0.9 and p12 = 0.1,
while for the second regime, we use p21 = 0.3 and p22 = 0.7. {εt} ∼ i.i.d. N(0, 1).
Model 6. Smooth transition GARCH (ST-GARCH):

Xt = [a− b(t/T)]σtεt, σ2
t = ω + ασ2

t−1 + βX2
t−1

where {εt} ∼ i.i.d. N(0, 1). ω = 1.2e− 5, α = 0.9, β = 0.07, a = α + β = 0.97, and b = β/α ≈ 0.078.
Model 7. Stochastic volatility model (SV-GARCH):

Xt|ht ∼ N(0, exp(ht)),

ht|ht−1 ∼ N(µ + φ(ht−1 − µ), η2), h0 ∼ N(µ, η2/(1− φ2)),

where µ = −10, φ = 0.95, η = 0.2.

We performed up to five-step-ahead point predictions and interval predictions for each dataset.
We used M = 5000 simulations to compute the point predictions. For the bootstrap prediction intervals,
we used B = 300 replications; we would have liked to use a higher number of bootstrap replications,
but it was practically infeasible having 200 simulated datasets in each of which the point predictors
were computed in a computer-intensive way. However, a practitioner having a single dataset at hand
could (and should) use a higher B, e.g., B = 1000 or more.

Five models or transformations were used to fit the data in both point predictions and interval
predictions as follows: fitting a GARCH(1,1) model, simple-NoVaS, exponential NoVaS (Exp-NoVaS),
generalized simple NoVaS (GS-NoVaS), and generalized exponential NoVaS (GE-NoVaS).

In point predictions, the mean absolute deviations (MAD) and mean squared errors (MSE) for
five-step-ahead point predictions in both the L1 and L2 sense (the absolute value or the square of
the prediction error at the updated time point averaged over the 200 replications) were recorded.
Furthermore, the bootstrap prediction interval (Li, Ui) with a nominal coverage 95% was constructed
for the future values Xn+h with h = 1, . . . , 5.
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The corresponding empirical average coverage level (CVR) and the average length (LEN) of the
constructed intervals and the standard error (St.err) associated with each length of the constructed
intervals are calculated as:

CVR =
1
N

N

∑
i=1

1[Li ,Ui ]
X(n+h,i)

LEN =
1
N

N

∑
i=1

LENi and St.err =

√√√√ 1
N

N

∑
i=1

(LENi − LEN)2

where LENi = Ui − Li.

4.2. Results and Discussions

The simulation results for point predictions are shown in Tables 1–28. The following conclusions
can be obtained from the results:

• When comparing the MADs between the L1 and L2 predictions by fitting the same models,
we can find that the MADs of L1 predictions were always smaller than those of L2 predictions.
Furthermore, we can find that the MSEs of L1 predictions were always bigger than those of
L2 predictions, when comparing the MSEs between the L1 and L2 predictions with the same
model settings. This was expected since in the L1 sense, we tried to minimize the mean absolute
deviations, while for L2, the loss function to be minimized was the mean squared error.

• Furthermore, for each model’s fitting results, there were no obvious error accumulation problems
in the multi-step-ahead prediction for both L1 and L2 measures.

• NoVaS methods consistently performed better than GARCH(1,1) for all data generating
processes. When the prediction step h was higher, the difference of their respective performances
became smaller.

Table 1. MADs of L1 predictions for data generated from GARCH(1,1) with ω = 0.00001, α =

0.8895, θ = 0.10, and {εt} ∼ i.i.d. N(0, 1). Exp, exponential; GS, generalized simple; GE, generalized
exponential.

Prediction Step 1 2 3 4 5

Fitting a GARCH 8.23× 10−5 7.35× 10−5 6.93× 10−5 8.86× 10−5 1.49× 10−4

Simple-NoVaS 6.99× 10−5 7.88× 10−5 8.29× 10−5 1.06× 10−4 1.63× 10−4

Exp-NoVaS 7.21× 10−5 8.28× 10−5 8.72× 10−5 1.14× 10−4 1.70× 10−4

GS-NoVaS 6.30× 10−5 7.31× 10−5 8.07× 10−5 8.71× 10−5 9.94× 10−5

GE-NoVaS 7.02× 10−5 8.44× 10−5 8.76× 10−5 1.16× 10−4 1.71× 10−4

Table 2. MADs of L2 predictions for data generated from GARCH(1,1) with ω = 0.00001, α =

0.8895, θ = 0.10, and {εt} ∼ i.i.d. N(0, 1).

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.48× 10−4 2.07× 10−4 2.67× 10−4 3.20× 10−4 4.60× 10−4

Simple-NoVaS 5.22× 10−5 6.44× 10−5 6.61× 10−5 8.82× 10−5 1.49× 10−4

Exp-NoVaS 5.13× 10−5 6.41× 10−5 6.58× 10−5 8.84× 10−5 1.50× 10−4

GS-NoVaS 4.71× 10−5 5.97× 10−5 6.06× 10−5 8.48× 10−5 1.46× 10−4

GE-NoVaS 4.84× 10−5 6.26× 10−5 6.38× 10−5 8.73× 10−5 1.48× 10−4
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Table 3. MSEs of L1 predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.8895, θ =

0.10, and {εt} ∼ i.i.d. N(0, 1).

Prediction Step 1 2 3 4 5

Fitting a GARCH 2.48× 10−8 4.42× 10−8 4.36× 10−8 1.94× 10−7 1.12× 10−6

Simple-NoVaS 1.23× 10−8 4.24× 10−8 4.17× 10−8 1.94× 10−7 1.12× 10−6

Exp-NoVaS 1.18× 10−8 4.21× 10−8 4.14× 10−8 1.94× 10−7 1.12× 10−6

GS-NoVaS 1.08× 10−8 4.09× 10−8 3.94× 10−8 1.92× 10−7 1.13× 10−6

GE-NoVaS 1.10× 10−8 4.14× 10−8 4.06× 10−8 1.92× 10−7 1.12× 10−6

Table 4. MSEs of L2 predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.8895, θ =

0.10, and {εt} ∼ i.i.d. N(0, 1).

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.03× 10−7 2.11× 10−7 3.92× 10−7 6.26× 10−7 1.86× 10−6

Simple-NoVaS 1.36× 10−8 4.15× 10−8 4.10× 10−8 1.93× 10−7 1.11× 10−6

Exp-NoVaS 1.31× 10−8 4.13× 10−8 4.07× 10−8 1.93× 10−7 1.12× 10−6

GS-NoVaS 1.03× 10−8 3.88× 10−8 3.73× 10−8 1.91× 10−7 1.13× 10−6

GE-NoVaS 1.13× 10−8 3.98× 10−8 3.93× 10−8 1.88× 10−7 1.11× 10−6

Table 5. MADs of L1 predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.73, θ =

0.10, and {εt} ∼ i.i.d. N(0, 1).

Prediction Step 1 2 3 4 5

Fitting a GARCH 4.84× 10−5 4.69× 10−5 5.18× 10−5 5.45× 10−5 5.99× 10−5

Simple-NoVaS 4.94× 10−5 4.73× 10−5 5.26× 10−5 5.59× 10−5 6.00× 10−5

Exp-NoVaS 4.87× 10−5 4.69× 10−5 5.24× 10−5 5.55× 10−5 6.00× 10−5

GS-NoVaS 4.83× 10−5 4.67× 10−5 5.17× 10−5 5.44× 10−5 5.94× 10−5

GE-NoVaS 4.84× 10−5 4.69× 10−5 5.25× 10−5 5.43× 10−5 6.00× 10−5

Table 6. MADs of L2 predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.73, θ =

0.10, and {εt} ∼ i.i.d. N(0, 1).

Prediction Step 1 2 3 4 5

Fitting a GARCH 5.68× 10−5 5.45× 10−5 5.54× 10−5 6.25× 10−5 0.26× 10−5

Simple-NoVaS 6.20× 10−5 6.05× 10−5 6.06× 10−5 6.96× 10−5 6.67× 10−5

Exp-NoVaS 6.20× 10−5 6.09× 10−5 6.15× 10−5 7.05× 10−5 6.87× 10−5

GS-NoVaS 5.98× 10−5 5.81× 10−5 5.84× 10−5 6.55× 10−5 6.37× 10−5

GE-NoVaS 5.50× 10−5 5.30× 10−5 5.75× 10−5 6.22× 10−5 6.23× 10−5

Table 7. MSEs of L1 predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.73, θ =

0.10, and {εt} ∼ i.i.d. N(0, 1).

Prediction step 1 2 3 4 5

Fitting a GARCH 7.94× 10−9 8.48× 10−9 7.80× 10−9 8.67× 10−9 1.03× 10−8

Simple-NoVaS 8.00× 10−9 8.35× 10−9 7.85× 10−9 8.88× 10−9 1.03× 10−8

Exp-NoVaS 7.95× 10−9 8.33× 10−9 7.83× 10−9 8.84× 10−9 1.03× 10−8

GS-NoVaS 7.78× 10−9 8.35× 10−9 7.63× 10−9 8.59× 10−9 1.02× 10−8

GE-NoVaS 8.02× 10−9 8.64× 10−9 7.99× 10−9 8.92× 10−9 1.02× 10−8
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Table 8. MSEs of L2 predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.73, θ =

0.10, and {εt} ∼ i.i.d. N(0, 1).

Prediction Step 1 2 3 4 5

Fitting a GARCH 7.28× 10−9 7.47× 10−9 6.50× 10−9 7.64× 10−9 8.65× 10−9

Simple-NoVaS 7.79× 10−9 7.50× 10−9 6.84× 10−9 8.67× 10−9 8.85× 10−9

Exp-NoVaS 7.48× 10−9 7.34× 10−9 6.64× 10−9 8.39× 10−9 8.70× 10−9

GS-NoVaS 7.12× 10−9 7.40× 10−9 6.41× 10−9 7.90× 10−9 8.43× 10−9

GE-NoVaS 6.99× 10−9 7.44× 10−9 6.43× 10−9 7.68× 10−9 8.53× 10−9

Table 9. MADs of L1 predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.73, θ =

0.10, and {εt} ∼ i.i.d. t distributed with degrees of freedom of 5.

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.46× 10−4 1.26× 10−4 1.29× 10−4 1.84× 10−4 1.77× 10−4

Simple-NoVaS 1.44× 10−4 1.24× 10−4 1.27× 10−4 1.82× 10−4 1.76× 10−4

Exp-NoVaS 1.43× 10−4 1.22× 10−4 1.26× 10−4 1.80× 10−4 1.75× 10−4

GS-NoVaS 1.43× 10−4 1.23× 10−4 1.27× 10−4 1.80× 10−4 1.76× 10−4

GE-NoVaS 1.43× 10−4 1.23× 10−4 1.29× 10−4 1.81× 10−4 1.77× 10−4

Table 10. MADs of L2 predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.73, θ =

0.10, and {εt} ∼ i.i.d. t distributed with degrees of freedom of 5.

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.72× 10−4 1.53× 10−4 1.63× 10−4 2.17× 10−4 2.16× 10−4

Simple-NoVaS 1.58× 10−4 1.35× 10−4 1.44× 10−4 1.97× 10−4 1.92× 10−4

Exp-NoVaS 1.57× 10−4 1.35× 10−4 1.46× 10−4 1.98× 10−4 1.93× 10−4

GS-NoVaS 1.56× 10−4 1.35× 10−4 1.45× 10−4 1.99× 10−4 1.92× 10−4

GE-NoVaS 1.59× 10−4 1.34× 10−4 1.48× 10−4 2.01× 10−4 1.94× 10−4

Table 11. MSEs of L1 predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.73, θ =

0.10, and {εt} ∼ i.i.d. t distributed with degrees of freedom of 5.

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.06× 10−7 7.11× 10−8 8.97× 10−8 2.95× 10−7 3.81× 10−7

Simple-NoVaS 1.03× 10−7 6.86× 10−8 9.00× 10−8 2.93× 10−7 3.83× 10−7

Exp-NoVaS 1.03× 10−7 6.83× 10−8 9.00× 10−8 2.93× 10−7 3.82× 10−7

GS-NoVaS 1.03× 10−7 6.90× 10−8 9.05× 10−8 2.94× 10−7 3.84× 10−7

GE-NoVaS 1.05× 10−7 6.88× 10−8 9.23× 10−8 2.96× 10−7 3.85× 10−7

Table 12. MSEs of L2 predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.73, θ =

0.10, and {εt} ∼ i.i.d. t distributed with degrees of freedom of 5.

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.05× 10−7 6.94× 10−8 8.91× 10−8 2.84× 10−7 3.79× 10−7

Simple-NoVaS 9.24× 10−8 6.03× 10−8 8.32× 10−8 2.77× 10−7 3.66× 10−7

Exp-NoVaS 9.16× 10−8 5.96× 10−8 8.28× 10−8 2.76× 10−7 3.64× 10−7

GS-NoVaS 9.17× 10−8 6.07× 10−8 8.35× 10−8 2.77× 10−7 3.67× 10−7

GE-NoVaS 9.48× 10−8 6.12× 10−8 8.53× 10−8 2.80× 10−7 3.67× 10−7
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Table 13. MADs of L1 predictions for data generated from GARCH(1,1) with slowing-varying
parameters (TV-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.94× 10−4 2.17× 10−4 2.01× 10−4 1.76× 10−4 2.09× 10−4

Simple-NoVaS 1.91× 10−4 2.12× 10−4 2.03× 10−4 1.72× 10−4 2.07× 10−4

Exp-NoVaS 1.91× 10−4 2.12× 10−4 2.02× 10−4 1.72× 10−4 2.06× 10−4

GS-NoVaS 1.91× 10−4 2.13× 10−4 2.02× 10−4 1.73× 10−4 2.06× 10−4

GE-NoVaS 1.97× 10−4 2.17× 10−4 2.02× 10−4 1.79× 10−4 2.13× 10−4

Table 14. MADs of L2 predictions for data generated from GARCH(1,1) with slowing-varying
parameters (TV-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.90× 10−4 2.13× 10−4 2.03× 10−4 1.73× 10−4 2.02× 10−4

Simple-NoVaS 1.94× 10−4 2.11× 10−4 2.07× 10−4 1.74× 10−4 2.10× 10−4

Exp-NoVaS 1.94× 10−4 2.11× 10−4 2.05× 10−4 1.74× 10−4 2.09× 10−4

GS-NoVaS 1.91× 10−4 2.10× 10−4 1.99× 10−4 1.71× 10−4 2.03× 10−4

GE-NoVaS 1.89× 10−4 2.09× 10−4 1.99× 10−4 1.72× 10−4 2.07× 10−4

Table 15. MSEs of L1 predictions for data generated from GARCH(1,1) with slowing-varying
parameters (TV-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.21× 10−7 1.70× 10−7 1.28× 10−7 1.06× 10−7 1.58× 10−7

Simple-NoVaS 1.15× 10−7 1.61× 10−7 1.23× 10−7 9.86× 10−8 1.53× 10−7

Exp-NoVaS 1.16× 10−7 1.61× 10−7 1.23× 10−7 9.95× 10−8 1.52× 10−7

GS-NoVaS 1.16× 10−7 1.62× 10−7 1.24× 10−7 9.99× 10−8 1.53× 10−7

GE-NoVaS 1.25× 10−7 1.70× 10−7 1.31× 10−7 1.08× 10−7 1.61× 10−7

Table 16. MSEs of L2 predictions for data generated from GARCH(1,1) with slowing-varying
parameters (TV-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.07× 10−7 1.55× 10−7 1.12× 10−7 9.44× 10−8 1.41× 10−7

Simple-NoVaS 9.60× 10−8 1.41× 10−7 1.06× 10−7 8.36× 10−8 1.32× 10−7

Exp-NoVaS 9.60× 10−8 1.40× 10−7 1.05× 10−7 8.39× 10−8 1.30× 10−7

GS-NoVaS 9.70× 10−8 1.41× 10−7 1.07× 10−7 8.51× 10−8 1.32× 10−7

GE-NoVaS 1.04× 10−7 1.47× 10−7 1.12× 10−7 9.02× 10−8 1.38× 10−7

Table 17. MADs of L1 predictions for data generated from two-state Markov switching GARCH(1,1)
(MS-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 6.76× 10−4 7.67× 10−4 8.44× 10−4 7.80× 10−4 7.14× 10−4

Simple-NoVaS 7.00× 10−4 7.74× 10−4 8.85× 10−4 7.90× 10−4 7.26× 10−4

Exp-NoVaS 7.02× 10−4 7.75× 10−4 8.87× 10−4 7.92× 10−4 7.26× 10−4

GS-NoVaS 6.97× 10−4 7.70× 10−4 8.80× 10−4 7.91× 10−4 7.23× 10−4

GE-NoVaS 7.06× 10−4 7.75× 10−4 8.85× 10−4 7.98× 10−4 7.27× 10−4
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Table 18. MADs of L2 predictions for data generated from two-state Markov switching GARCH(1,1)
(MS-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 7.80× 10−4 9.01× 10−4 9.21× 10−4 9.17× 10−4 8.80× 10−4

Simple-NoVaS 6.77× 10−4 7.50× 10−4 8.59× 10−4 7.73× 10−4 7.10× 10−4

Exp-NoVaS 6.78× 10−4 7.50× 10−4 8.61× 10−4 7.75× 10−4 7.09× 10−4

GS-NoVaS 6.76× 10−4 7.50× 10−4 8.59× 10−4 7.76× 10−4 7.08× 10−4

GE-NoVaS 6.81× 10−4 7.50× 10−4 8.62× 10−4 7.79× 10−4 7.09× 10−4

Table 19. MSEs of L1 predictions for data generated from two-state Markov switching GARCH(1,1)
(MS-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.27× 10−6 2.30× 10−6 2.35× 10−6 2.78× 10−6 1.49× 10−6

Simple-NoVaS 1.45× 10−6 2.46× 10−6 2.73× 10−6 3.09× 10−6 1.76× 10−6

Exp-NoVaS 1.45× 10−6 2.46× 10−6 2.73× 10−6 3.10× 10−6 1.76× 10−6

GS-NoVaS 1.43× 10−6 2.45× 10−6 2.71× 10−6 3.10× 10−6 1.74× 10−6

GE-NoVaS 1.46× 10−6 2.47× 10−6 2.74× 10−6 3.12× 10−6 1.76× 10−6

Table 20. MSEs of L2 predictions for data generated from two-state Markov switching GARCH(1,1)
(MS-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.29× 10−6 2.28× 10−6 2.05× 10−6 2.55× 10−6 1.51× 10−6

Simple-NoVaS 1.34× 10−6 2.33× 10−6 2.58× 10−6 2.97× 10−6 1.64× 10−6

Exp-NoVaS 1.34× 10−6 2.33× 10−6 2.59× 10−6 2.98× 10−6 1.64× 10−6

GS-NoVaS 1.33× 10−6 2.32× 10−6 2.57× 10−6 2.97× 10−6 1.62× 10−6

GE-NoVaS 1.35× 10−6 2.33× 10−6 2.59× 10−6 2.99× 10−6 1.64× 10−6

Table 21. MADs of L1 predictions for data generated from smooth transition GARCH(1,1) (ST-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.83× 10−4 1.78× 10−4 2.01× 10−4 2.02× 10−4 2.22× 10−4

Simple-NoVaS 1.83× 10−4 1.79× 10−4 2.03× 10−4 2.02× 10−4 2.24× 10−4

Exp-NoVaS 1.82× 10−4 1.78× 10−4 2.03× 10−4 2.02× 10−4 2.24× 10−4

GS-NoVaS 1.81× 10−4 1.78× 10−4 2.02× 10−4 1.98× 10−4 2.21× 10−4

GE-NoVaS 1.82× 10−4 1.79× 10−4 2.05× 10−4 1.99× 10−4 2.24× 10−4

Table 22. MADs of L2 predictions for data generated from smooth transition GARCH(1,1) (ST-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 2.23× 10−4 2.14× 10−4 2.18× 10−4 2.39× 10−4 2.42× 10−4

Simple-NoVaS 1.91× 10−4 1.88× 10−4 2.02× 10−4 2.09× 10−4 2.19× 10−4

Exp-NoVaS 1.89× 10−4 1.86× 10−4 2.03× 10−4 2.09× 10−4 2.19× 10−4

GS-NoVaS 1.90× 10−4 1.89× 10−4 2.03× 10−4 2.09× 10−4 2.17× 10−4

GE-NoVaS 1.86× 10−4 1.83× 10−4 2.06× 10−4 2.03× 10−4 2.20× 10−4

Table 23. MSEs of L1 predictions for data generated from smooth transition GARCH(1,1) (ST-GARCH)

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.12× 10−7 1.23× 10−7 1.14× 10−7 1.13× 10−7 1.43× 10−7

Simple-NoVaS 1.16× 10−7 1.24× 10−7 1.19× 10−7 1.21× 10−7 1.48× 10−7

Exp-NoVaS 1.16× 10−7 1.24× 10−7 1.20× 10−7 1.21× 10−7 1.49× 10−7

GS-NoVaS 1.12× 10−7 1.22× 10−7 1.16× 10−7 1.16× 10−7 1.45× 10−7

GE-NoVaS 1.18× 10−7 1.27× 10−7 1.22× 10−7 1.21× 10−7 1.50× 10−7
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Table 24. MSEs of L2 predictions for data generated from smooth transition GARCH(1,1) (ST-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.05× 10−7 1.13× 10−7 9.61× 10−8 1.04× 10−7 1.25× 10−7

Simple-NoVaS 1.01× 10−7 1.09× 10−7 9.96× 10−8 1.04× 10−7 1.23× 10−7

Exp-NoVaS 9.93× 10−8 1.08× 10−7 1.00× 10−7 1.03× 10−7 1.23× 10−7

GS-NoVaS 9.84× 10−8 1.08× 10−7 9.85× 10−8 1.00× 10−7 1.21× 10−7

GE-NoVaS 1.00× 10−7 1.11× 10−7 1.02× 10−7 1.02× 10−7 1.24× 10−7

Table 25. MADs of L1 predictions for data generated from the stochastic volatility model (SV-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 5.35× 10−5 5.77× 10−5 4.72× 10−5 4.28× 10−5 3.86× 10−5

Simple-NoVaS 5.34× 10−5 5.69× 10−5 4.79× 10−5 4.45× 10−5 3.78× 10−5

Exp-NoVaS 5.35× 10−5 5.66× 10−5 4.74× 10−5 4.35× 10−5 3.75× 10−5

GS-NoVaS 5.23× 10−5 5.68× 10−5 4.74× 10−5 4.23× 10−5 3.79× 10−5

GE-NoVaS 5.23× 10−5 5.71× 10−5 4.79× 10−5 4.31× 10−5 3.85× 10−5

Table 26. MADs of L2 predictions for data generated from the stochastic volatility model (SV-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 5.77× 10−5 6.23× 10−5 5.56× 10−5 5.29× 10−5 5.12× 10−5

Simple-NoVaS 6.02× 10−5 6.17× 10−5 5.85× 10−5 5.99× 10−5 5.41× 10−5

Exp-NoVaS 6.10× 10−5 6.19× 10−5 5.99× 10−5 6.04× 10−5 5.68× 10−5

GS-NoVaS 5.74× 10−5 6.29× 10−5 6.10× 10−5 5.85× 10−5 5.69× 10−5

GE-NoVaS 5.66× 10−5 5.96× 10−5 5.45× 10−5 5.28× 10−5 4.77× 10−5

Table 27. MSEs of L1 predictions for data generated from the stochastic volatility model (SV-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 1.04× 10−8 1.69× 10−8 1.08× 10−8 7.03× 10−9 5.06× 10−9

Simple-NoVaS 1.02× 10−8 1.65× 10−8 1.05× 10−8 7.06× 10−9 4.82× 10−9

Exp-NoVaS 1.04× 10−8 1.65× 10−8 1.06× 10−8 6.99× 10−9 4.78× 10−9

GS-NoVaS 1.00× 10−8 1.66× 10−8 1.04× 10−8 6.92× 10−9 4.80× 10−9

GE-NoVaS 1.03× 10−8 1.70× 10−8 1.08× 10−8 6.94× 10−9 5.04× 10−9

Table 28. MSEs of L2 predictions for data generated from the stochastic volatility model (SV-GARCH).

Prediction Step 1 2 3 4 5

Fitting a GARCH 8.99× 10−9 1.51× 10−8 1.02× 10−8 6.76× 10−9 5.29× 10−9

Simple-NoVaS 8.70× 10−9 1.42× 10−8 9.99× 10−9 7.62× 10−9 5.49× 10−9

Exp-NoVaS 8.82× 10−9 1.39× 10−8 1.00× 10−8 7.41× 10−9 5.51× 10−9

GS-NoVaS 8.10× 10−9 1.42× 10−8 1.02× 10−8 6.92× 10−9 5.32× 10−9

GE-NoVaS 8.37× 10−9 1.46× 10−8 1.00× 10−8 6.62× 10−9 5.27× 10−9

As regards prediction intervals, the simulation results are summarized in Tables 29–35. Generally,
the conclusions were similar to those of the point predictions. Furthermore, NoVaS methods gave
more accurate coverage than GARCH(1,1) in the L1 sense prediction for all seven data generating
processes. In the L2 sense, when the data were generated from a standard GARCH(1,1) with normal
errors, GARCH(1,1) gave as good coverage as NoVaS. When we used other models to generate
data, for example, GARCH(1,1) with t distributed errors or MS-GARCH(1,1) or ST-GARCH(1,1) etc.,
GARCH(1,1) performed very poorly, while NoVaS methods were still performing well.
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Table 29. Interval predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.8895, θ =

0.10, and ε ∼ i.i.d N(0, 1). CVR, average coverage level; LEN, average length.

L2 L1

GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.714 1.28× 10−2 1.77× 10−2 1 0.744 1.01× 10−2 1.55× 10−2

2 0.746 1.28× 10−2 1.79× 10−2 2 0.734 1.13× 10−2 1.83× 10−2

3 0.746 1.37× 10−2 1.87× 10−2 3 0.768 1.19× 10−2 1.95× 10−2

4 0.766 1.18× 10−2 1.59× 10−2 4 0.734 1.20× 10−2 1.99× 10−2

5 0.786 1.28× 10−2 1.75× 10−2 5 0.744 1.28× 10−2 2.04× 10−2

EXP-NoVaS EXP-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.958 2.00× 10−2 1.35× 10−2 1 0.936 1.99× 10−2 1.39× 10−2

2 0.952 2.07× 10−2 1.44× 10−2 2 0.936 2.19× 10−2 1.52× 10−2

3 0.952 1.98× 10−2 1.27× 10−2 3 0.944 1.94× 10−2 1.27× 10−2

4 0.946 2.17× 10−2 1.43× 10−2 4 0.944 2.08× 10−2 1.28× 10−2

5 0.950 2.19× 10−2 1.32× 10−2 5 0.936 2.19× 10−2 1.51× 10−2

Simple-NoVaS Simple-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.946 1.98× 10−2 1.35× 10−2 1 0.934 1.84× 10−2 1.32× 10−2

2 0.942 1.78× 10−2 1.41× 10−2 2 0.946 1.91× 10−2 1.49× 10−2

3 0.946 1.92× 10−2 1.35× 10−2 3 0.936 2.04× 10−2 1.47× 10−2

4 0.946 2.07× 10−2 1.34× 10−2 4 0.964 1.93× 10−2 1.40× 10−2

5 0.956 2.21× 10−2 1.43× 10−2 5 0.954 2.07× 10−2 1.45× 10−2

GS-NoVaS GS-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.948 2.05× 10−2 1.39× 10−2 1 0.95 1.61× 10−2 1.21× 10−2

2 0.942 1.78× 10−2 1.41× 10−2 2 0.94 2.07× 10−2 1.47× 10−2

3 0.952 1.93× 10−2 1.43× 10−2 3 0.936 1.62× 10−2 1.25× 10−2

4 0.948 2.14× 10−2 1.30× 10−2 4 0.936 1.70× 10−2 1.42× 10−2

5 0.954 2.26× 10−2 1.40× 10−2 5 0.94 1.78× 10−2 1.32× 10−2

GE-NoVaS GE-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.948 1.73× 10−2 1.14× 10−2 1 0.958 1.98× 10−2 1.13× 10−2

2 0.948 1.66× 10−2 1.05× 10−2 2 0.942 1.68× 10−2 1.16× 10−2

3 0.952 1.98× 10−2 1.27× 10−2 3 0.944 1.94× 10−2 1.27× 10−2

4 0.946 2.17× 10−2 1.43× 10−2 4 0.944 2.08× 10−2 1.28× 10−2

5 0.950 2.19× 10−2 1.32× 10−2 5 0.942 2.32× 10−2 1.13× 10−2

Table 30. Interval predictions for data generated from GARCH(1,1) with ω = 0.00001, α = 0.73, θ =

0.10, and ε ∼ i.i.d N(0, 1).

L2 L1

GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.948 4.39× 10−3 2.11× 10−3 1 0.92 3.76× 10−3 3.18× 10−3

2 0.940 4.53× 10−3 2.23× 10−3 2 0.936 5.49× 10−3 5.21× 10−3

3 0.950 4.47× 10−3 2.74× 10−3 3 0.938 5.99× 10−3 5.52× 10−3

4 0.952 4.02× 10−3 1.89× 10−3 4 0.922 7.16× 10−3 6.31× 10−3

5 0.934 3.77× 10−3 2.74× 10−3 5 0.92 4.57× 10−3 4.21× 10−3



Econometrics 2019, 7, 34 18 of 23

Table 30. Cont.

L2 L1

EXP-NoVaS EXP-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.954 4.46× 10−3 2.69× 10−3 1 0.954 4.74× 10−3 2.29× 10−3

2 0.972 4.40× 10−3 2.55× 10−3 2 0.95 4.62× 10−3 2.19× 10−3

3 0.938 4.17× 10−3 2.59× 10−3 3 0.95 4.64× 10−3 2.12× 10−3

4 0.958 4.62× 10−3 2.59× 10−3 4 0.948 4.58× 10−3 2.12× 10−3

5 0.950 4.58× 10−3 2.49× 10−3 5 0.942 4.45× 10−3 1.88× 10−3

Simple-NoVaS Simple-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.960 4.54× 10−3 2.50× 10−3 1 0.946 4.28× 10−3 2.45× 10−3

2 0.958 4.27× 10−3 2.97× 10−3 2 0.95 4.26× 10−3 2.33× 10−3

3 0.968 4.63× 10−3 2.87× 10−3 3 0.952 4.21× 10−3 2.62× 10−3

4 0.960 4.73× 10−3 2.85× 10−3 4 0.954 4.25× 10−3 2.55× 10−3

5 0.948 4.15× 10−3 2.93× 10−3 5 0.948 4.19× 10−3 2.32× 10−3

GS-NoVaS GS-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.949 4.37× 10−3 2.53× 10−3 1 0.946 4.26× 10−3 2.37× 10−3

2 0.948 4.63× 10−2 2.78× 10−3 2 0.95 4.26× 10−3 2.33× 10−3

3 0.938 4.17× 10−3 2.59× 10−3 3 0.95 4.22× 10−3 2.42× 10−3

4 0.945 3.76× 10−3 2.71× 10−3 4 0.948 4.20× 10−3 1.91× 10−3

5 0.950 4.58× 10−3 2.49× 10−3 5 0.948 4.19× 10−3 2.32× 10−3

GE-NoVaS GE-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.946 4.92× 10−3 2.57× 10−3 1 0.96 5.37× 10−3 2.00× 10−3

2 0.946 4.68× 10−3 2.38× 10−3 2 0.948 5.13× 10−3 3.34× 10−3

3 0.958 4.39× 10−3 2.35× 10−3 3 0.952 4.03× 10−3 2.05× 10−3

4 0.954 4.30× 10−3 2.03× 10−3 4 0.95 4.80× 10−3 2.03× 10−3

5 0.948 4.15× 10−3 2.93× 10−3 5 0.944 4.42× 10−3 2.78× 10−3

Table 31. Results of interval predictions for data generated from GARCH(1,1) with ω = 0.00001, α =

0.73, θ = 0.10, and ε ∼ i.i.d t5.

L2 L1

GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.924 4.17× 10−3 3.18× 10−3 1 0.936 2.35× 10−3 8.60× 10−3

2 0.931 3.75× 10−3 2.57× 10−3 2 0.928 2.15× 10−3 7.50× 10−3

3 0.922 4.47× 10−3 2.24× 10−3 3 0.92 2.37× 10−3 8.52× 10−3

4 0.925 4.02× 10−3 2.63× 10−3 4 0.938 2.92× 10−3 6.95× 10−3

5 0.922 4.56× 10−3 2.79× 10−3 5 0.92 2.79× 10−3 8.20× 10−3

EXP-NoVaS EXP-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.945 4.46× 10−3 2.66× 10−3 1 0.95 3.38× 10−3 2.95× 10−3

2 0.942 4.25× 10−3 2.72× 10−3 2 0.958 3.80× 10−3 2.72× 10−3

3 0.943 4.54× 10−3 2.77× 10−3 3 0.946 3.75× 10−3 2.40× 10−3

4 0.949 4.94× 10−3 2.72× 10−3 4 0.952 3.76× 10−3 2.43× 10−3

5 0.954 4.72× 10−3 3.08× 10−3 5 0.946 3.40× 10−3 2.84× 10−3
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Table 31. Cont.

L2 L1

Simple-NoVaS Simple-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.950 4.82× 10−3 2.35× 10−3 1 0.953 4.01× 10−3 3.07× 10−3

2 0.963 4.86× 10−3 3.26× 10−3 2 0.942 3.58× 10−3 2.73× 10−3

3 0.966 4.85× 10−3 2.82× 10−3 3 0.952 3.28× 10−3 2.48× 10−3

4 0.954 5.04× 10−3 3.05× 10−3 4 0.952 3.51× 10−3 2.54× 10−3

5 0.944 4.36× 10−3 2.51× 10−3 5 0.944 4.20× 10−3 3.03× 10−3

GS-NoVaS GS-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.950 4.82× 10−3 2.35× 10−3 1 0.948 3.64× 10−3 4.49× 10−3

2 0.954 4.47× 10−3 2.93× 10−3 2 0.956 3.22× 10−3 5.92× 10−3

3 0.952 4.69× 10−3 3.03× 10−3 3 0.946 3.31× 10−3 4.08× 10−3

4 0.950 4.57× 10−3 2.99× 10−3 4 0.948 3.23× 10−3 4.52× 10−3

5 0.954 4.50× 10−3 3.06× 10−3 5 0.95 3.62× 10−3 4.54× 10−3

GE-NoVaS GE-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.950 4.90× 10−3 2.57× 10−3 1 0.954 3.65× 10−3 2.78× 10−3

2 0.946 4.36× 10−3 2.93× 10−3 2 0.954 3.86× 10−3 2.84× 10−3

3 0.948 4.48× 10−3 2.82× 10−3 3 0.946 3.64× 10−3 2.81× 10−3

4 0.952 4.58× 10−3 2.78× 10−3 4 0.95 3.53× 10−3 2.89× 10−3

5 0.952 4.53× 10−3 2.94× 10−3 5 0.966 6.38× 10−3 3.92× 10−3

Table 32. Results of interval predictions for data generated from TV-GARCH(1,1).

L2 L1

GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.850 1.57× 10−3 1.07× 10−2 1 0.726 1.12× 10−3 4.97× 10−3

2 0.848 1.20× 10−3 1.60× 10−3 2 0.716 1.32× 10−3 5.88× 10−3

3 0.858 1.84× 10−3 2.77× 10−3 3 0.718 8.87× 10−3 3.90× 10−3

4 0.844 2.32× 10−3 2.02× 10−3 4 0.716 9.78× 10−3 4.39× 10−3

5 0.856 2.29× 10−3 1.68× 10−3 5 0.72 1.24× 10−3 5.77× 10−3

EXP-NoVaS EXP-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.948 2.40× 10−3 2.20× 10−3 1 0.952 2.76× 10−3 2.45× 10−3

2 0.950 2.23× 10−3 2.17× 10−3 2 0.952 2.74× 10−3 2.50× 10−3

3 0.952 2.93× 10−3 2.15× 10−3 3 0.95 2.69× 10−3 2.62× 10−3

4 0.954 3.02× 10−3 2.18× 10−3 4 0.942 2.78× 10−3 2.65× 10−3

5 0.950 2.86× 10−3 2.12× 10−3 5 0.948 2.82× 10−3 2.61× 10−3

Simple-NoVaS Simple-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.950 2.32× 10−3 2.37× 10−3 1 0.942 2.20× 10−3 2.30× 10−3

2 0.956 2.20× 10−3 2.36× 10−3 2 0.956 2.82× 10−3 2.45× 10−3

3 0.960 2.88× 10−3 2.15× 10−3 3 0.948 2.60× 10−3 2.50× 10−3

4 0.952 2.50× 10−3 2.27× 10−3 4 0.946 2.79× 10−3 2.36× 10−3

5 0.954 2.80× 10−3 2.01× 10−3 5 0.946 2.47× 10−3 2.62× 10−3



Econometrics 2019, 7, 34 20 of 23

Table 32. Cont.

L2 L1

GS-NoVaS GS-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.950 2.32× 10−3 2.37× 10−3 1 0.942 2.20× 10−3 2.30× 10−3

2 0.950 2.52× 10−3 2.57× 10−3 2 0.948 2.57× 10−3 2.33× 10−3

3 0.952 2.59× 10−3 2.53× 10−3 3 0.952 2.52× 10−3 2.18× 10−3

4 0.950 2.37× 10−3 2.05× 10−3 4 0.946 2.97× 10−3 2.22× 10−3

5 0.950 2.62× 10−3 2.12× 10−3 5 0.95 2.64× 10−3 2.21× 10−3

GE-NoVaS GE-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.948 2.40× 10−3 2.20× 10−3 1 0.948 2.77× 10−3 2.66× 10−3

2 0.950 2.23× 10−3 2.17× 10−3 2 0.952 2.71× 10−3 2.83× 10−3

3 0.942 2.47× 10−3 2.25× 10−3 3 0.95 2.53× 10−3 2.50× 10−3

4 0.948 2.44× 10−3 2.17× 10−3 4 0.95 2.75× 10−3 2.49× 10−3

5 0.949 2.29× 10−3 2.12× 10−3 5 0.954 2.64× 10−3 2.47× 10−3

Table 33. Results of interval predictions for data generated from MS-GARCH(1,1).

L2 L1

GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.868 3.32× 10−2 1.78× 10−2 1 0.856 3.27× 10−2 1.25× 10−2

2 0.872 3.42× 10−2 1.50× 10−2 2 0.89 3.04× 10−2 1.10× 10−2

3 0.868 3.58× 10−2 1.62× 10−2 3 0.882 3.10× 10−2 1.07× 10−2

4 0.858 3.67× 10−2 1.86× 10−2 4 0.886 3.09× 10−2 1.12× 10−2

5 0.87 3.60× 10−2 2.10× 10−2 5 0.908 7.66× 10−3 1.28× 10−2

EXP-NoVaS EXP-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.946 4.14× 10−2 2.18× 10−2 1 0.952 3.97× 10−2 2.67× 10−2

2 0.948 4.02× 10−2 2.26× 10−2 2 0.944 4.22× 10−2 2.80× 10−2

3 0.96 4.78× 10−2 2.19× 10−2 3 0.958 3.99× 10−2 2.74× 10−2

4 0.958 4.16× 10−2 2.06× 10−2 4 0.938 3.86× 10−2 2.80× 10−2

5 0.956 4.27× 10−2 2.07× 10−2 5 0.944 4.20× 10−2 2.97× 10−2

Simple-NoVaS Simple-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.954 4.21× 10−2 2.87× 10−2 1 0.958 3.05× 10−2 2.03× 10−2

2 0.948 3.98× 10−2 2.81× 10−2 2 0.936 3.08× 10−2 2.26× 10−2

3 0.94 4.47× 10−2 2.91× 10−2 3 0.936 3.45× 10−2 2.13× 10−2

4 0.948 4.26× 10−2 2.80× 10−2 4 0.94 3.42× 10−2 2.28× 10−2

5 0.946 4.32× 10−2 2.93× 10−2 5 0.938 3.52× 10−2 2.16× 10−2

GS-NoVaS GS-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.954 4.21× 10−2 2.87× 10−2 1 0.948 3.21× 10−2 2.16× 10−2

2 0.948 3.98× 10−2 2.81× 10−2 2 0.946 3.26× 10−2 2.18× 10−2

3 0.942 4.75× 10−2 2.84× 10−2 3 0.948 3.46× 10−2 2.28× 10−2

4 0.948 4.26× 10−2 2.80× 10−2 4 0.952 3.17× 10−2 2.21× 10−2

5 0.946 4.32× 10−2 2.93× 10−2 5 0.946 3.22× 10−2 2.02× 10−2
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Table 33. Cont.

L2 L1

GE-NoVaS GE-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.954 4.30× 10−2 2.08× 10−2 1 0.948 3.40× 10−2 2.19× 10−2

2 0.952 3.93× 10−2 2.09× 10−2 2 0.942 3.24× 10−2 2.09× 10−2

3 0.948 4.36× 10−2 2.03× 10−2 3 0.946 3.63× 10−2 2.15× 10−2

4 0.948 4.20× 10−2 2.05× 10−2 4 0.95 3.08× 10−2 2.39× 10−2

5 0.95 4.29× 10−2 2.07× 10−2 5 0.944 3.55× 10−2 2.90× 10−2

Table 34. Results of interval predictions for data generated from ST-GARCH(1,1).

L2 L1

GARCH(1,1) GARCH(1,1).

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.89 2.80× 10−3 2.14× 10−3 1 0.894 2.53× 10−3 3.80× 10−3

2 0.888 2.19× 10−3 2.79× 10−3 2 0.902 2.88× 10−3 4.28× 10−3

3 0.904 2.15× 10−3 2.87× 10−3 3 0.884 2.48× 10−3 3.20× 10−3

4 0.908 2.07× 10−3 2.04× 10−3 4 0.9012 2.73× 10−3 4.21× 10−3

5 0.896 2.00× 10−3 2.09× 10−3 5 0.89 2.02× 10−3 4.92× 10−3

EXP-NoVaS EXP-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.956 3.35× 10−3 2.57× 10−3 1 0.958 3.70× 10−3 2.69× 10−3

2 0.96 3.40× 10−3 2.58× 10−3 2 0.944 3.60× 10−3 2.54× 10−3

3 0.946 3.60× 10−3 2.73× 10−3 3 0.966 3.64× 10−3 2.65× 10−3

4 0.942 3.42× 10−3 2.51× 10−3 4 0.956 3.52× 10−3 2.46× 10−3

5 0.944 3.56× 10−3 2.70× 10−3 5 0.962 3.66× 10−3 2.53× 10−3

Simple-NoVaS Simple-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.952 3.44× 10−3 2.32× 10−3 1 0.944 3.44× 10−3 2.75× 10−3

2 0.956 3.49× 10−3 2.24× 10−3 2 0.938 3.65× 10−3 2.75× 10−3

3 0.958 3.46× 10−3 2.04× 10−3 3 0.934 3.67× 10−3 2.81× 10−3

4 0.954 3.40× 10−3 2.10× 10−3 4 0.946 3.60× 10−3 2.72× 10−3

5 0.946 3.73× 10−3 2.19× 10−3 5 0.938 3.51× 10−3 2.51× 10−3

GS-NoVaS GS-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.952 3.49× 10−3 2.18× 10−3 1 0.946 3.73× 10−3 2.16× 10−3

2 0.956 3.30× 10−3 2.29× 10−3 2 0.956 3.86× 10−3 2.31× 10−3

3 0.948 3.51× 10−3 2.29× 10−3 3 0.954 3.84× 10−3 2.27× 10−3

4 0.948 3.54× 10−3 2.36× 10−3 4 0.95 3.82× 10−3 2.15× 10−3

5 0.944 3.56× 10−3 2.70× 10−3 5 0.946 3.76× 10−3 2.22× 10−3

GE-NoVaS GE-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.946 3.37× 10−3 2.10× 10−3 1 0.954 3.64× 10−3 2.60× 10−3

2 0.944 3.51× 10−3 2.76× 10−3 2 0.952 3.60× 10−3 2.55× 10−3

3 0.946 3.60× 10−3 2.73× 10−3 3 0.956 3.61× 10−3 2.55× 10−3

4 0.948 3.44× 10−3 2.49× 10−3 4 0.95 3.76× 10−3 2.68× 10−3

5 0.948 3.69× 10−3 2.61× 10−3 5 0.944 3.46× 10−3 2.31× 10−3
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Table 35. Results of interval predictions for data generated from SV-GARCH(1,1).

L2 L1

GARCH(1,1) GARCH(1,1)

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.878 2.24× 10−2 2.99× 10−2 1 0.884 1.22× 10−2 1.93× 10−2

2 0.862 2.11× 10−2 2.51× 10−2 2 0.882 1.28× 10−2 2.10× 10−2

3 0.896 2.49× 10−2 2.78× 10−2 3 0.872 1.17× 10−2 1.60× 10−2

4 0.87 2.14× 10−2 2.18× 10−2 4 0.878 1.26× 10−2 1.46× 10−2

5 0.892 2.32× 10−2 2.33× 10−2 5 0.876 1.33× 10−2 1.63× 10−2

EXP-NoVaS EXP-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.954 2.71× 10−2 2.59× 10−2 1 0.944 1.84× 10−2 2.33× 10−2

2 0.952 2.80× 10−2 2.67× 10−2 2 0.93 2.01× 10−2 2.46× 10−2

3 0.956 2.79× 10−2 2.66× 10−2 3 0.954 1.96× 10−2 2.45× 10−2

4 0.95 2.84× 10−2 2.65× 10−2 4 0.942 2.19× 10−2 2.62× 10−2

5 0.968 3.07× 10−2 2.84× 10−2 5 0.93 1.88× 10−2 2.43× 10−2

Simple-NoVaS Simple-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.952 2.68× 10−2 2.79× 10−2 1 0.942 2.08× 10−2 2.40× 10−2

2 0.95 2.77× 10−2 2.92× 10−2 2 0.932 2.46× 10−2 2.53× 10−2

3 0.946 2.78× 10−2 2.74× 10−2 3 0.95 2.63× 10−2 2.84× 10−2

4 0.958 3.05× 10−2 2.90× 10−2 4 0.926 2.25× 10−2 2.65× 10−2

5 0.954 2.66× 10−2 2.73× 10−2 5 0.934 2.07× 10−2 2.41× 10−2

GS-NoVaS GS-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.952 2.68× 10−2 2.79× 10−2 1 0.95 2.17× 10−2 2.42× 10−2

2 0.95 2.77× 10−2 2.92× 10−2 2 0.96 2.05× 10−2 2.40× 10−2

3 0.952 2.84× 10−2 2.96× 10−2 3 0.95 2.18× 10−2 2.44× 10−2

4 0.944 2.28× 10−2 2.34× 10−2 4 0.95 2.22× 10−2 2.48× 10−2

5 0.946 2.34× 10−2 2.18× 10−2 5 0.942 2.28× 10−2 2.55× 10−2

GE-NoVaS GE-NoVaS

STEPS CVR LEN ST.ERR STEPS CVR LEN ST.ERR
1 0.954 2.71× 10−2 2.59× 10−2 1 0.952 2.02× 10−2 2.35× 10−2

2 0.948 2.52× 10−2 2.29× 10−2 2 0.948 2.18× 10−2 2.47× 10−2

3 0.956 2.79× 10−2 2.66× 10−2 3 0.948 1.95× 10−2 2.29× 10−2

4 0.95 2.84× 10−2 2.65× 10−2 4 0.942 2.29× 10−2 2.58× 10−2

5 0.946 2.74× 10−2 2.46× 10−2 5 0.946 2.10× 10−2 2.34× 10−2

Our results accentuate the drawbacks of GARCH(1,1) associated with one-step ahead predictions
from previous work; see Politis (2015) and the references therein. In particular, NoVaS methods
were invariably more robust than GARCH(1,1) fitting when the data have a stochastic structure that
deviates from a stationary GARCH(1,1) model, e.g., a time-varying GARCH, a GARCH with structure
breaks, etc.

5. Conclusions

In this paper, we derived a new way of multi-step-ahead predictions for ARCH/GARCH and
NoVaS methods only based on the basic assumptions of models or transformation. This method has
good properties based on our theoretical methodology and simulated results. To sum up:

• The ARCH/GARCH version of our algorithms worked well for data that are generated by a
stationary GARCH(1,1) model.

• The NoVaS version of our algorithms worked well for time series data that are either GARCH or
have a stochastic structure that deviates from a stationary GARCH(1,1) model.
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• There was no apparent error accumulation issue in the multi-step-ahead prediction.
• The methods were theoretically and computationally straightforward.
• Combined with the one-step ahead prediction results in Politis (2015), NoVaS was shown to

outperform GARCH model fitting most of the time, for h-step-ahead prediction for all h ≥ 1.

Author Contributions: Conceptualization, D.N.P.; methodology, J.C. and D.N.P.; software, J.C.; validation, J.C.;
formal analysis, J.C.; investigation, J.C.; resources, J.C.; data curation, J.C.; writing original draft preparation, J.C.;
writing review and editing, D.N.P.; visualization, J.C.; supervision, D.N.P.; project administration, D.N.P.; funding
acquisition, D.N.P.

Funding: This research was partially supported by the National Science Foundation Grant DMS 16-13026.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the decision to
publish the results.

References

Abadir, Karim, Alessandra Luati, and Paolo Paruolo. 2018. The Forecast Density of a Garch(1,1). Working Paper.
Bologna: University of Bologna.

Andersen, Torben G., Tim Bollerslev, Peter F. Christoffersen, and Francis X. Diebold. 2006. Volatility and
Correlation Forecasting. In Handbook of Economic Forecasting. Amsterdam: Elsevier, vol. 1, chp. 15,
pp. 777–878.

Bollerslev, Tim, Ray Y. Chou, and Kenneth F. Kroner. 1992. ARCH modeling in finance: A review of the theory
and empirical evidence. Journal of Econometrics 52: 5–59. [CrossRef]

Bose, Arup, and Kanchan Mukherjee. 2009. Bootstrapping a weighted linear estimator of the arch parameters.
Journal of Time Series Analysis 30: 315–31. doi:10.1111/j.1467-9892.2009.00613.x. [CrossRef]

Engle, Robert F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of united
kingdom inflation. Econometrica 50: 987–1007. [CrossRef]

Francq, Christian, and Jean-Michel Zakoian. 2011. GARCH Models: Structure, Statistical Inference and Financial
Applications. Chichester: John Wiley & Sons.

Pan, Li, and Dimitris N. Politis. 2014. Bootstrap prediction intervals for markov processes. Computational Statistics
& Data Analysis 100: 467–94.

Pan, Li, and Dimitris N. Politis. 2016. Bootstrap prediction intervals for linear, nonlinear and nonparametric
autoregressions. Journal of Statistical Planning and Inference 177: 1–27. [CrossRef]

Politis, Dimitris N. 2003. A normalizing and variance–stabilizing transformation for financial time series.
In Recent Advances and Trends in Nonparametric Statistics. Edited by Michael G. Akritas and Dimitris N. Politis.
Amsterdam: JAI, pp. 335–47.doi:10.1016/B978-044451378-6/50022-3. [CrossRef]

Politis, Dimitris N. 2007. Model-free versus Model-based Volatility Prediction. Journal of Financial Econometrics 5:
358–59. doi:10.1093/jjfinec/nbm004. [CrossRef]

Politis, Dimitris N. 2015. Model-Free Prediction and Regression: A Transformation-Based Approach to Inference.
New York: Springer.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0304-4076(92)90064-X
http://dx.doi.org/10.1111/j.1467-9892.2009.00613.x
http://dx.doi.org/10.2307/1912773
http://dx.doi.org/10.1016/j.jspi.2014.10.003
https://doi.org/http://dx.doi.org/10.1016/B978-044451378-6/50022-3
http://dx.doi.org/10.1016/B978-044451378-6/50022-3
https://doi.org/10.1093/jjfinec/nbm004
http://dx.doi.org/10.1093/jjfinec/nbm004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	 Optimal Multi-Step-Ahead Point Prediction
	Lg Optimal Prediction for ARCH(p) and GARCH(1,1) Models
	Lg Optimal Prediction for NoVaS
	Lg Optimal Prediction and Generalizations
	Bootstrap Algorithms for ARCH/GARCH Point Prediction
	Bootstrap Algorithms for NoVaS-Based Point Prediction

	Optimal Multi-Step-Ahead Prediction Intervals
	Simulations and Finite Sample Performance
	Settings
	Results and Discussions

	Conclusions
	References

