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Abstract: This paper introduces an estimation procedure for a random effects probit model
in presence of heteroskedasticity and a likelihood ratio test for homoskedasticity. The cases
where the heteroskedasticity is due to individual effects or idiosyncratic errors or both are
analyzed. Monte Carlo simulations show that the test performs well in the case of high degree
of heteroskedasticity. Furthermore, the power of the test increases with larger individual and
time dimensions. The robustness analysis shows that applying the wrong approach may generate
misleading results except for the case where both individual effects and idiosyncratic errors are
modelled as heteroskedastic.
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1. Introduction

The problem that heteroskedasticity presents for panel data regression has been widely discussed
in the literature (Baltagi 2008; Baltagi et al. 2006; Montes-Rojas and Sosa-Escudero 2011). Let us
consider the one-way error component model, i.e., with the error term defined as uit = µi + νit , i =
1, . . . , N , t = 1, . . . , T where the individual effects µi and the idiosyncratic errors νit are assumed
to be random (i.e., µi ∼ iid(0, σ2

µ) and νit ∼ iid(0, σ2
ν )). Several authors (Baltagi 1988; Mazodier

and Trognon 1978; Randolph 1988; Wansbeek 1989, among others) consider different types of
heteroskedasticity depending upon whether individual effects (µi) or idiosyncratic errors (νit) or both
are heteroskedastic. Baltagi et al. (2006) and later Montes-Rojas and Sosa-Escudero (2011) proposed
Lagrange Multiplier (LM) test procedures to check for the presence of heteroskedasticity in linear
models for various cases. However, such test procedures for panel data binary choice models are
lacking. In addition, to the best of my knowledge, there is no existing procedure to estimate an
heteroskedastic probit model on panel data.

The use of random effects probit models panel data has been popularized due to the problem
of incidental parameters (Baltagi 2008; Lancaster 2000). Since this model is generally applied to
micro-panels, heteroskedasticity problems are likely to arise. One must account for heteroskedasticity
since it could result in misleading conclusions about coefficients and marginal effects interpretation
(Greene 2012). Two approaches are used to calculate the marginal effects after probit models in applied
works: (i) integrating with respect to individual effects, or (ii) assuming the individual effects to be
null (Bland and Cook 2018). In the case (i), the probability of positive outcome is given by Pr(yit =

1|Xit) = Φ
(

Xit β√
σ2

ν+σ2
µ

)
while in case (ii), this probability is given by Pr(yit = 1|Xit, µi = 0) = Φ

(
Xit β
σν

)
,

where Φ and φ are respectively the standard normal cumulative probability and the standard normal
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density functions. Thus, the marginal effect for variable xk (denoted me(xk)) is given by Equation (1)
for case (i) and Equation (2) for case (ii):

me(xk) =
βk√

σ2
ν + σ2

µ

φ

(
Xitβ√
σ2

ν + σ2
µ

)
(1)

me(xk) =
βk
σν

φ
(Xitβ

σν

)
. (2)

In Equations (1) and (2), it clearly appears that the marginal effects estimated in both case (i) and
(ii) depend on the variance components. Since these variance components are functions of individual
characteristics in the presence of heteroskedasticity, thus considering an homoskedastic model yields
misestimated marginal effects. This stresses the need for an empirical implementation of an estimation
and test procedure to deal with heteroskedasticity on panel probit models.

The aim of this paper is to introduce an estimation procedure that accounts for this
heteroskedasticity using the Gauss-Hermite quadrature scheme1. In addition, the papers aims at
providing a likelihood ratio (LR) test procedure for homoskedasticity in a panel probit model that
allows one to investigate various forms of heteroskedasticity under alternative hypothesis. Monte
Carlo simulations are conducted to estimate the power and the empirical size of the test and a
robustness analysis is completed to ensure that the test and estimation procedures perform well.
Results suggest that the estimation procedure has good performances and that it performance also
depends on the quadrature parameters. The LR test has excellent power when there is high degree
of heteroskedasticity and its performance depends on sample size in the situation of low degree of
heteroskedasticity. The contribution of this paper to the literature is twofold. Firstly, it introduces
a procedure to estimate a panel probit model with heteroskedasticity. The procedure allows one to
deal with different sources of heteroskedasticity. Secondly, based on the power and the empirical
size of the test, it shows that the LR test for homoskedasticity has good performance. The robustness
of the estimation procedure and the test performance have been assessed using an extensive Monte
Carlo simulation.

The rest of this paper is organized as follows. Section 2 presents the different forms of
heteroskedasticity encountered in the literature and derives the likelihood estimator in a general setting.
Section 3 discusses the estimation requirements and test procedures to deal with heteroskedasticity.
In Section 4, the power and the empirical size of the test as well as the bias and the mean square error
of the estimated parameters are computed based on Monte Carlo simulations. Section 5 presents
robustness analysis. Section 6 presents a case study that illustrates the estimation of the parameters
and marginal effects in the presence of heteroskedasticity. Section 7 concludes.

2. Heteroskedasticity and Likelihood Function

This section discusses the different types of heteroskedasticity encountered in the literature and
specifies the likelihood function.

2.1. Different Sources of Heteroskedasticity

Consider the following one-way error components probit model:

yit = 1R+

(
Xitβ + uit

)
∀ i = 1, . . . , N ; t = 1, . . . , T, (3)

1 A user-written Stata’s ado file is provided to deal with these purposes. This ado file is an extension of the existing Stata’s
hetprobit and xtprobit, re commands that accounts for each of the types of heteroskedasticity observed in panel one-way
error component models in the literature. A Stata code for computing the marginal effects after the proposed estimation
procedure is given in the Appendix A.
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where uit is decomposed in individual unobserved effects (µi) and idiosyncratic errors (νit). We consider
the random effects model. Classical assumptions for the estimation of a random effects model are the
following: (i) the individual effects µi are independent from the idiosyncratic errors νit, and (ii) the
explanatory variables Xit are independent from the individual effects µi and the idiosyncratic errors νit.
In addition, some assumptions are made on the variance components to deal with heteroskedasticity
issues. These assumptions lead to three cases of heteroskedasticity identified in the literature:

• Heteroskedasticity a la Mazodier and Trognon (1978): The heteroskedasticity is due to the
individual effects. Thus, µi ∼ iid(0, σ2

µi
) and νit ∼ iid(0, σ2

ν ).
• Heteroskedasticity a la Baltagi (1988) and Wansbeek (1989): the heteroskedasticity is due to the

idiosyncratic errors. Thus, µi ∼ iid(0, σ2
µ) and νit ∼ iid(0, σ2

νit
).

• Heteroskedasticity a la Randolph (1988): The heteroskedasticity is due to both the individual
effects and the idiosyncratic errors. Thus, µi ∼ iid(0, σ2

µi
) and νit ∼ iid(0, σ2

νit
). An alternative

specification by Verbon (1980) is to consider that µi ∼ iid(0, σ2
µi
) and νit ∼ iid(0, σ2

νi
).

In this paper, the heteroskedastic component is assumed to a function of some observed
variables. More specifically, when the heteroskedasticity is due to the µi, the variance depends

on time-invariant exogenous variables Zµi and expressed as σµi = σµhµ

(
Z
′
µi

θµ

)
. Alternatively, when

the heteroskedasticity is due to the νit, the variance depends on exogenous variables Zνit and has the

following expression: σνit = σνhν

(
Z
′
νit

θν

)
. The approach of Verbon (1980) can be modelled with a

variance of idiosyncratic errors that is σνi = σνhν

(
Z
′
νi

θν

)
. The functions hµ(.) and hν(.) are twice

continuously differentiable and satisfy hµ(.) > 0, hν(.) > 0, hµ(0) = 1 and hν(0) = 1. Zµi and Zνit are
vectors of regressors and have no constant term included. Note that the variance of the idiosyncratic
errors is set to one (σν = 1) in order to avoid identification problems (Greene 2012). This identification
problem occurs when a constant term is included since it implies that the variance of idiosyncratic
errors will not be 1 when θν is null.

In the rest of the paper, as in Montes-Rojas and Sosa-Escudero (2011) and Baltagi et al. (2006), the

results are reported for the functions hµ(.) and hν(.) set to exponential functions. Then, hµ

(
Z
′
µi

θµ

)
=

exp
(

Z
′
µi

θµ

)
and hν

(
Z
′
νit

θν

)
= exp

(
Z
′
νit

θν

)
. Thus, the variance of the individual effects can be

rewritten as σµi = σµexp
(

Z
′
µi

θµ

)
= exp

(
λ0 + Z

′
µi

θµ

)
, with λ0 = log(σµ).

2.2. Likelihood Function

The individual level likelihood is given by:

Li =
∫
R

[ Ti

∏
t=1

Φ
(
εit
)]

φµ(µi)dµi (4)

where Φ denotes the standard normal cumulative distribution function, φµ denotes the density function of

a normal distribution with mean 0 and variance equal to the variance of µi that is σµi = σµhµ

(
Z
′
µi

θµ

)
, and

εit =

qit

(
Xitβ + µi

)
hν

(
Z′νit

θν

)
qit = 2yit − 1.
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Note that this general form of the likelihood function allows dealing with homoskedasticity
and each of the aforementioned heteroskedasticity cases. The homoskedastic model is given by
θµ = θν = 0. The heteroskedastic model where µi are heteroskedastic is given by θµ 6= 0 and θν = 0;
the heteroskedastic model where νit are heteroskedastic is given by θµ = 0 and θν 6= 0; while the
heteroskedastic model where both µi and νit are heteroskedastic is given by θµ 6= 0 and θν 6= 0.

3. Estimation and Tests

The estimation procedure was based on a Gauss–Hermite quadrature scheme. This section
discusses the requirements for the use of this approach. Then, the procedure to test for
homoskedasticity is presented.

3.1. Estimation Requirements

Given that the likelihood function (Equation (4)) has an integral form, it is common in the literature
to use a numerical integration method. Gauss–Hermite quadrature is used to provide an approximation
of the likelihood function that has a tractable form for likelihood maximization algorithms (Liu and
Pierce 1994; Naylor and Smith 1982). It consists in approximating the integral

∫
R g(x)exp(−x2)dx by a

weighted sum of the function g(.) taken at some specific points called nodes.
The Gauss–Hermite quadrature scheme used herein is the one proposed by Liu and Pierce (1994).

Let Q denotes the number of quadrature points, xq, q = 1, . . . , Q and wq, q = 1, . . . , Q denote respectively
the quadrature points (nodes) and their corresponding weights. Then, the individual level likelihood is
given in Equation (4) can be re-expressed as a sum of functions as follows:

Li =
∫
R

[ Ti

∏
t=1

Φ
(
εit
)]

φµ(µi)dµi =
Q

∑
q=1

w∗q g(x∗q ). (5)

With

g(µi) =

[ Ti

∏
t=1

Φ
(
εit
)]

φµ(µi)

x∗q = γ +
√

2σxq

w∗q =
√

2σwqexp(x2
q)

γ = Arg
(

max
µi

g(µi)

)
σ =

(
− ∂2log(g(µi))

∂µ2
i

|µi=γ

)−1/2

∂2log(g(µi))

∂µ2
i

= −
φ
(
εit
)
Φ
(
uit
)
+

(
φ
(
εit
))2

(
hν

(
Z′νit

θν

)
Φ
(
εit
))2 − 1(

hµ

(
Z′µi

θµ

))2 ,

where φ denotes the density function of the standard normal distribution2.
The individual level log-likelihood function depends on the selected number of quadrature points

Q. A discussion based on empirical applications of the effect of the number of quadrature points on
the estimation results and the computing time is presented by Moussa and Delattre (2018). Researchers

2 The estimation procedure described above has been implemented as a Stata user-written ado file using the Stata’s d0
procedure for maximum likelihood estimation (see Gould et al. 2010; Moussa and Delattre 2018).
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can check the impact of a selected number of quadrature points on the results. A quadrature points
check is conducted in Section 5 for the model with heteroskedasticity due to both µi and νit that is the
most complete case of heteroskedasticity in panel models3.

3.2. Test Procedure

As described by Greene (2012), the issue of heteroskedasticity test can be analyzed using
a misspecification test procedure. The homoskedastic panel probit model can be viewed as a
restricted model in which θµ and θµ are constrained to be null (Zµi and Zνit are omitted in the
model). Thus, the homoskedastic probit model is nested in the heteroskedastic one. The omitted
variables tests in literature are based on the likelihood-ratio (LR), the Lagrange multiplier (LM),
and the Wald test. These three tests are asymptotically equivalent. However, this equivalence is
valid for probit models only if the error components are homoskedastic and uncorrelated over time
(Lechner 1995). The following relationship between test statistics for linear models has been proved
(Wald ≥ LR ≥ LM, Johnston and DiNardo 2001). This implies that the LM test is less likely to
reject the null hypothesis of homoskedasticity. In the literature, the LM test is mostly used to test for
homoskedasticity in linear models even for panel data models (Baltagi et al. 2006; Montes-Rojas and
Sosa-Escudero 2011). The LR test is mainly used for nonlinear models. On the cross-section probit
model, Davidson and MacKinnon (1984) show that the LR test performs well. The Wald test has poor
performance on finite sample when testing for nonlinear hypothesis (Davidson and MacKinnon 1984;
Wooldridge 2001). The power of the LM test for homoskedasticity on probit model may be problematic
since it fails to distinguish between heteroskedasticity and simple omission of a variable in the index
function (Greene 2018; Davidson and MacKinnon 1984).

For the aforementioned reasons, the heteroskedasticity tests used herein are based on the LR
test procedure. LR test addresses the issue of the change in model fit when new variables are
added (Wooldridge 2001). Thus, it requires the estimation of both the full heteroskedastic and the
homoskedastic models. Since the aim of this paper is to propose an estimation procedure of a random
effects probit model for panel data in presence of heteroskedasticity, the LR statistics will be easy to
compute. The LR test statistics is given by:

LR = 2
(

LogLU − LogLR

)
∼ χ2(p) (6)

where LogLR and LogLU denote the log-likelihood of the restricted and unrestricted models
respectively, and p is the number of parameters that are omitted in the homoskedastic panel probit
model, i.e., the dimension (number of column) of Zµi or Zνit or the sum of the dimensions of Zµi

and Zνit .
Following the sources of the heteroskedasticity and as specified by Baltagi et al. (2006), three types

of hypothesis can be tested. These hypothesis are related to the joint test for homoskedasticity of
both individual effects and idiosyncratic errors (H0 : θµ = θν = 0) and to the two marginal tests for
homoskedasticity of one of the aforementioned error components assuming the other component
homoskedastic (i.e., H0 : θµ = 0 | θν = 0 and H0 : θν = 0 | θµ = 0).

Monte Carlo simulations are conducted in Section 4 to check for the robustness of the test by
estimating its power and empirical size. The power of the test is defined as the percentage of rejection
at 5% significance level of the null hypothesis of homoskedasticity in presence of heteroskedasticity.
The empirical size refers to the percentage of false rejection at 5% significance level of the null
hypothesis of homoskedasticity.

3 For all others applications presented herein, Q = 10 is used as the number of quadrature points.
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4. Monte Carlo Experiments

The Monte Carlo4 experiments conducted herein are based on a data generated as follows.
For i = 1, . . . , N and t = 1, . . . , T the binary dependant variable is generated as:

yit = 1R+

(
α0 + α1 ∗ X1it + α2 ∗ X2it + µi + νit

)
, (7)

where X1 and X2 are generated from a random uniform distribution. The error components µi and
νit are generated following a normal data generating process with zero mean and standard deviation

σµi = σµhµ

(
Z
′
µi

θµ

)
and σνit = hν

(
Z
′
νit

θν

)
respectively. The time invariant variable Zµi and the

variable Zνit are generated from a random uniform distribution. The parameters of the index function
are set to α0 = 1.5, α1 = 0.8, and α2 = −2. For each type of heteroskedasticity presented in Section 2,
nine (9) Monte Carlo experiments in which N = {50, 100, 500} and T = {5, 10, 20} are conducted with
5000 replications.

To estimate the power of the test, two cases are considered. The first set of experiments consists of
a generated dataset with low degree of heteroskedasticity (i.e., setting θµ = 0.7 and θν = 0.6). A second
set of experiments consists of a generated dataset with a high degree of heteroskedasticity (i.e., setting
θµ = 2.1 and θν = 1.8) for each of the 27 models aforementioned. In these experiments, the variance
of the individual effects is set to σ2

µ = 0.2 (i.e., λ0 = −0.8). The results of these experiments are
presented in Section 4.1. The empirical size of the test is estimated using a generated dataset with no
heteroskedasticity (i.e., setting θµ = θν = 0). A well performing test would be such that its empirical
size does not significantly differ from the nominal size of 5%. The results of these simulations are
presented in Section 4.1.

Further Monte Carlo experiments have been conducted to cover several situations. These
experiments consist of setting the following parameters: σ2

µ = {2, 6}, θµ = {0, 1, 2, 3} and θν =

{0, 1, 2, 3}. The results of this second set of experiments for N = {50, 500} and T = {5, 20} are
reported in Tables A1–A3 in Appendix D.

4.1. Power and Empirical Size of the Test

Table 1 shows the power of the LR test for each of the aforementioned experiments. The Monte
Carlo experiment for the marginal test H0 : θµ = 0 | θν = 0 reveals that the test performs well in the
case of high degree of heteroskedasticity even for small samples (N = 50 and T = 5, the power of the
LR test is 81.72%). However, in the case of low degree of heteroskedasticity, the test does not perform
well on a sample with small N. For N = 50, the power of the test is 12.04% when T = 5 and increasing
T to 10 and 20 yields in a power of 19.9% and 27.4% respectively. But, the power of the LR test is very
high for a sample with large N. For N = 500, the power of the test is respectively 69.54% for T = 5,
94.14% for T = 10 and 99.26% for T = 20. Nonetheless, increasing σ2

µ from 0.2 a larger value, say 2 or 6
results in a decrease in the power of the test when T is large and to an increase of the power of the test
when T is low (see Table A2 in Appendix D).

For the marginal test H0 : θν = 0 | θµ = 0, the Monte Carlo experiment shows that the performance
of the test is mitigated for small samples in presence of high heteroskedasticity. With N = 50, when
T = 5 the power of the test is 47.78%. However, increasing the time dimension to T = 10 and T = 20
the power of the test increases drastically to 93.7% and 99.98% respectively. In the case of low degree
of heteroskedasticity, the power of the test is very high when N or T is large. When N is small, the
performance is low (22.86% with N = 50 and T = 5) and increases with T (39.74% with T = 10 and

4 An example of the Stata code for the experiment of the power of the test in presence of heteroskedasticity due to both µi and
νit with N = 100 and T = 5 is provided in the Appendix C. The Appendix B reports the Stata code used to generate the data.
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67.14% with T = 20). Nonetheless, increasing σ2
µ from 0.2 a larger value, say two or six results in a

drastic increase in the power of the test (see Table A3 in Appendix D).
As for the joint test H0 : θµ = θν = 0, the Monte Carlo experiment reveals that the test has good

performance in the case of high heteroskedasticity even when N is small. For N = 50, the power of the
test is 65.16% with T = 5 and reaches 100% with T = 20. In the case of low degree of heteroskedasticity,
the power of the test is excellent when N or T is large. For small N, the power of the test is low. It is
14.62% when N = 50 and T = 5, and when T is fixed at 5, increasing N to 500 yields in a drastic
increase in the power of the test (96.74%). Nonetheless, fixing N at 50 and increasing T to 10 and
20 yields in a power of the test of 35.16% and 63.74% respectively. Furthermore, increasing σ2

µ from 0.2 a
larger value, say two or six results in an increase in the power of the test (see Table A1 in Appendix D).

Table 1. Power of the likelihood ratio (LR) test for homoskedasticity based on 5000 replications.

Settings H0 : θµ = 0 | θν = 0 H0 : θν = 0 | θµ = 0 H0 : θµ = θν = 0

Dimensions Obs. % % %

Low degree of heteroskedasticity: σ2
µ = 0.2, θµ = 0.7 and θν = 0.6

(N, T) = (50, 5) 250 12.04 23.86 14.62
(N, T) = (100, 5) 500 19.88 43.32 31.68
(N, T) = (500, 5) 2500 69.54 97.22 96.74

(N, T) = (50, 10) 500 19.9 39.74 35.16
(N, T) = (100, 10) 1000 34.04 65.62 64.72
(N, T) = (500, 10) 5000 94.14 99.98 100

(N, T) = (50, 20) 1000 27.4 67.14 63.74
(N, T) = (100, 20) 2000 50.58 93.2 92.94
(N, T) = (500, 20) 10, 000 99.26 100 100

High degree of heteroskedasticity: σ2
µ = 0.2, θµ = 2.1 and θν = 1.8

(N, T) = (50, 5) 250 81.72 47.78 65.16
(N, T) = (100, 5) 500 98.44 85 96.2
(N, T) = (500, 5) 2500 100 100 100

(N, T) = (50, 10) 500 94.72 93.7 98.12
(N, T) = (100, 10) 1000 98.88 99.9 99.96
(N, T) = (500, 10) 5000 100 100 100

(N, T) = (50, 20) 1000 98.36 99.98 100
(N, T) = (100, 20) 2000 100 100 100
(N, T) = (500, 20) 10, 000 100 100 100

Table 2 presents the empirical size of the test based the Monte Carlo experiments described above.
The empirical size of the test H0 : θµ = 0 | θν = 0 varies between 4.54% and 5.36%. The empirical size
of the test H0 : θν = 0 | θµ = 0 varies between 4.48% and 5.54% and between 4.52% and 5.14% in the
case of the joint test H0 : θµ = θν = 0. All these empirical sizes do not significantly differ from the
nominal size5 of the test.

5 The empirical size estimated on 5000 replications is significantly different from the nominal size of 5% if it does not range

between 4.4% and 5.6%. These thresholds are calculated as 0.05± 1.96
√

0.05∗0.95
5000 .
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Table 2. Empirical size of the LR test for homoskedasticity based on 5000 replications.

Settings H0 : θµ = 0 | θν = 0 H0 : θν = 0 | θµ = 0 H0 : θµ = θν = 0

Dimensions Obs. % % %

(N, T) = (50, 5) 250 4.82 4.98 4.54
(N, T) = (100, 5) 500 4.7 5.02 4.52
(N, T) = (500, 5) 2500 4.64 5.34 4.68

(N, T) = (50, 10) 500 5.36 5.46 4.72
(N, T) = (100, 10) 1000 4.54 4.74 5.14
(N, T) = (500, 10) 5000 4.62 4.48 4.68

(N, T) = (50, 20) 1000 5.08 5.00 4.94
(N, T) = (100, 20) 2000 4.92 4.48 5.04
(N, T) = (500, 20) 10, 000 4.58 5.54 5.04

4.2. Bias and Mean Square Error of the Estimates

This subsection aims at evaluating the robustness of the proposed estimation procedure. For this
purpose, the modelling approach for the case where both µi and νit are heteroskedastic is used.
The parameters of the model are those set in Section 4. The bias and the mean square error (MSE) of
the estimates are computed based on 5000 replications for N = {50, 500} and T = {5, 20}. The results
are presented in Table 3.

The results suggest that the MSEs of both index function and variance parameters decrease with
the number of observations. The bias of the index function parameters are lower than 5% regardless of
the individual and time dimensions of the panel. The bias for the parameters of the variance of µi and
νit becomes lower as the time dimension of the panel increases. It reaches 5% for (N, T) = (500, 20).

Table 3. Bias and mean square error (MSE) of the estimates based on 5000 replications.

Settings (N, T) = (50, 5) (N, T) = (50, 20) (N, T) = (500, 5) (N, T) = (500, 20)

Parameter DGP Bias MSE Bias MSE Bias MSE Bias MSE

Parameters of the index function

α0 1.5 0.0009 0.2435 0.0814 0.0554 0.0402 0.0225 0.0606 0.0126
α1 0.8 0.0040 0.2474 0.0331 0.0474 0.0237 0.0221 0.0400 0.0062
α2 −2 0.0072 0.4323 0.0834 0.0814 0.0530 0.0388 0.0909 0.0172

Parameters of the variances of µi and νit

λ0 −0.8 0.1683 1.5406 0.0609 0.2058 0.0517 0.0846 0.0407 0.0177
θµ 0.7 0.1660 1.1061 0.0232 0.4044 0.0412 0.1204 0.0353 0.0316
θν 0.6 0.0721 0.2369 0.0618 0.0447 0.0456 0.0225 0.0301 0.0119

4.3. Robustness of Validity

In this subsection, the robustness of validity of the test procedure is assessed using the framework
described by Montes-Rojas and Sosa-Escudero (2011). The aim is to assess how the departure away
from normality of the data generating process (DGP) of the error components might affect the results
of the test. For this purpose, the empirical size of the tests (H0 : θµ = 0 | θν = 0, H0 : θν = 0 | θµ = 0,
and H0 : θµ = θν = 0) is computed for N = 50 and T = 5 using 5000 replications. The empirical sizes
for normal, student with three degrees of freedom, exponential, uniform, and chi-square DGP are
estimated respectively. The results are presented in Table 4.

The results suggest that a deviation from the normal DGP has heavy consequences on the
empirical size on the test. The higher effect on the empirical size of the test is observed for exponential
DGP. These results were expected since the estimation procedure, i.e., the Gauss–Hermite quadrature,
is accurate only when the integral function has a Gaussian factor.
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Table 4. Empirical size of the test based on 5000 replications for N = 50 and T = 5.

DGP H0 : θµ = 0 | θν = 0 H0 : θν = 0 | θµ = 0 H0 : θµ = θν = 0

Normal 4.82 4.98 5.54
Student (3) 6.38 7.86 8.32
Exponential 17.56 7.18 21.36
Uniform 5.74 7.68 8.7
Chi-square 3.24 5.8 4.5

5. Additional Robustness Checks

To further check for the robustness of the proposed approach, three analysis are conducted.
Based on data simulated with parameters setted in Section 4, the first analysis consists in checking
whether the estimation procedure provides estimates that are consistent with the data generating
process. This analysis complements the measure of bias and MSE done in Section 4.2 by focusing of the
difference between each estimated parameter and the DGP. The second robustness analysis consists in
checking the effect of the number of quadrature points on the estimated parameters. The third analysis
focuses on the robustness to misspecified heteroskedasticity, i.e., how the test procedure performs
when a researcher applies the wrong test.

5.1. Application Examples and Comparisons

For each of the three cases of heteroskedasticity described in Section 2, two applications are
provided: (i) the first on a random sample of size N = 500 and T = 5, (ii) and the second on
a random sample of size N = 500 and T = 20. For each of these applications, comparisons
with the homoskedastic panel probit and the heteroskedastic pooled probit models are provided.
The log-likelihood and the LR statistics are provided for the heteroskedastic pooled probit and
the heteroskedastic panel probit models. Estimates are in the Appendix E for models with
heteroskedasticity due to µi are provided in Table A4, those of models with heteroskedasticity due to
νit are provided in Table A5, and Table A6 provides the estimates of models with heteroskedasticity
due to both µi and νit.

Results suggest that in the presence of heteroskedasticity due to µi, the pooled heteroskedastic
model underestimates the heteroskedastic factor (coefficient of variable Zµi ) for both T = 5 and T = 20
models. The homoskedastic part of the variance is well estimated using the homoskedastic panel probit
model. It also appears that the parameters estimated from the homoskedastic and the heteroskedastic
panel probit models are not different. However, as expected, the pooled model yields to bias in the
estimated parameters especially when T is large.

In the presence of heteroskedasticity due to νit, the pooled heteroskedastic model gives correct
estimates of the heteroskedastic factor (coefficient of variable Zνit ) and the parameters of the model
with T = 20. However, with T = 5, the estimated parameters are different from that of the data
generating process (DGP). These estimates are not different from those provided by the pooled
heteroskedastic model. The homoskedastic panel probit model yields estimates of parameters and
variance components that differ from the DGP.

The estimation of the model with heteroskedasticity due to both µi and νit by a homoskedastic
panel probit model leads to parameters that are different from the DGP. The heteroskedatic pooled
probit model yields to estimated individual effects variance that is different from the DGP.

5.2. Quadrature Points Check

The data generated for the examples in Section 5.1 with N = 500 and T = 20 are used for the
quadrature points check. This quadrature check is conducted on the heteroskedastic model where the
heteroskedasticity is due to both µi and νit which is the more general case of heteroskedasticity.

The quadrature points check shows that using Q under 10, in this example, leads to significant
differences in the estimated parameters from the DGP (See details in Table A7 in the Appendix F).
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For Q = 10 or more quadrature points, the estimated parameters are not significantly different from the
DGP. Furthermore, as the number of quadrature points increases, the estimated parameters converge
to the DGP’s values and become more accurate. This result has also been found in several applications
that use Gauss–Hermite quadrature (Baltagi 2008; Moussa and Delattre 2018). Moreover, for Q = 10,
the relative difference in log-likelihood is around 0.001 while the relative difference in the LR statistics
is around 0.1. In terms of computation time, the convergence is generally reached quickly. It takes from
41 seconds for Q = 6 to 133 seconds for Q = 20 for the model to converge. However, the computation
time may vary considerably according to the number of explanatory variables and to the sample size.

5.3. Misspecified Heteroskedasticity: Effects of Applying the Wrong Approach

To check for robustness, this subsection analyzes what happens when researchers apply the wrong
heteroskedasticity modelling approach to a model with heteroskedasticity. For example, what happens
if in the presence of heteroskedasticity due to both µi and νit, researchers apply the procedure for
estimation of heteroskedasticity due to µi? A second set of robustness check consists in applying one
of the three tests to a homoskedastic model. For this purpose, the data generated in Section 5.1 for the
examples with N = 500 and T = 20 are used. Thus, for each case, the number of quadrature points is
set to Q = 10. For example, on a dataset generated with µi heteroskedastic, the heteroskedasticity due
to νit and the heteroskedasticity due to both µi and νit modelling approaches are applied.

Table 5 shows the results of LR tests and the variance components for each of the aforementioned
cases. Results suggest that when only µi are heteroskedastic, the application of the heteroskedasticity
due to νit modelling approach results in incorrect estimates for the variance components and the LR
test concludes to the presence of heteroskedasticity due to νit. The results of Monte Carlo simulations
presented in Table A3 in Appendix D show that the acceptance rate of the null hypothesis in such
a situation varies between 6.6% and 96.4% according to the panel’s dimension and the degree of
heteroskedasticity. Furthermore, the higher the variance of µi, the higher the acceptance rate. Contrary
to the latter and as expected, if researchers apply the heteroskedasticity due to both µi and νit modelling
approach, the results are consistent with that obtained when applying the right approach and the
parameter θν that indicates the presence of heteroskedasticity due to νit is not significantly different
from zero. The same results hold for the case where only νit are heteroskedastic except that the
LR test concludes to no presence of heteroskedasticity due to µi when this modelling approach is
used. The results from Monte Carlo simulations presented in Table A1 in Appendix D show that
the acceptance rate of the null hypothesis does not significantly differ from 5%. In the case where
both µi and νit are heteroskedastic, applying the wrong modelling approach yields in identification
of the related heteroskedasticity while the others forms are ignored. For example, if researchers
apply the heteroskedasticity due to νit modelling approach, the LR test concludes to the existence
of heteroskedasticity due to νit while the heteroskedasticity from the individual effects is ignored.
The Monte Carlo simulations conducted (see Tables A2 and A3 in Appendix D) show that the
power of the test is close to that of the right test. This result suggest that it is better starting by
the heteroskedasticity due to both µi and νit modelling approach. Then, if one of the sources has no
significant contribution to heteroskedasticity, then researchers can turn to the other source with the use
of the specific modelling approach.
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Table 5. Estimated variance components and LR tests on wrong models.

Case µi Heteroskedastic νit Heteroskedastic µi and νit Heteroskedastic

Model (1) (2) (3) (4) (5) (6)

LogL −4499.6355 −4492.5752 −5231.2132 −5189.5929 −5235.0043 −5210.8403

LR stat 7.0066 *** 21.1272 *** 0.5819 83.8224 *** 23.1831 *** 71.5111 ***

The variance parameters.

Zµi 0.6952
[0.3888;1.0016]

*** 0.1588
[−0.2497;0.5673]

0.1392
[−0.2652;0.5436]

0.8079
[0.4655;1.1504]

***

λ0 −0.8047
[−0.9916;−0.6178]

*** −1.1308
[−1.3659;−0.8957]

*** −0.8886
[−1.1252;−0.6519]

*** −1.1642
[−1.3771;−0.9513]

***

σµ 0.5985
[0.5369;0.6672]

*** 0.6012
[0.5419;0.6669]

***

Zνit −0.1974
[−0.3455;−0.0493]

*** −0.0442
[−0.1627;0.0743]

0.6025
[0.4726;0.7324]

*** 0.5479
[0.4223;0.6734]

***

95% level confident interval in brackets; ***: Significant at the 1% level. In columns (1) and (2), the dataset has
been generated with µi heteroskedastic. Then, the modelling and test approaches for heteroskedasticity due
to νit (column 1) and to both µi and νit (column 2) are applied. For columns (4) and (5) the dataset is generated
with νi heteroskedastic and the modelling and test approaches for heteroskedasticity due to µi (column 3) and
to both µi and νit (column 4) are applied. In columns (5) and (6), the dataset is generated with both µi and νit
heteroskedastic and the modelling and test approaches for heteroskedasticity due to µi (column 5) and to νit
(column 6) are applied.

Table 6 shows the results of the application of one of the three tests to a situation where there
is no heteroskedasticity. As expected, the LR tests conclude to homoskedasticity for all of the three
modelling approaches. The Monte Carlo simulations conducted show that the acceptance rate of the
null hypothesis does not differ significantly from the nominal size of the test (see Tables A1–A3 in
Appendix D).

Table 6. Estimated variance components and LR tests on homoskedastic model.

Model (1) (2) (3)

LogL −4536.406 −4535.2483 −4535.1225

LR stat 0.2644 2.5797 2.8313

The variance parameters.

Zµi 0.0856
[−0.2406;0.4118]

0.0835
[−0.2428;0.4098]

λ0 −0.7031
[−0.886;−0.5203]

*** −0.7452
[−0.9357;−0.5548]

***

σµ 0.4938
[0.4421;0.5514]

***

Zνit −0.0987
[−0.2197;0.0222]

−0.0985
[−0.2194;0.0224]

95% level confident interval in brackets; ***: Significant at the 1% level; The data used for the results in this
Table are generated with no heteroskedasticity. Then, the modelling and test approaches for heteroskedasticity
due to µi (column 1), to νit (column 2) and to both µi and νit (column 3) are applied.

6. Case Study

In this section, the illustration dataset for panel probit models used by Greene (2012) and refereed
as Example 17.11 pp. 274–275 is used. This dataset is related to German health care utilization and
contains 26,326 observations with N = 7293 and T varying between 1 and 7. The model estimates the
effects of socioeconomic variables (age, income, kids, education, and marital status) on the probability
to visit a doctor. The results by Greene (2012) are replicated and the marginal effects are calculated
with respect to the two approaches aforementioned. Then, the heteroskedastic probit model in the
more general setting where both µi and νit are heteroskedastic is estimated and the marginal effects
are computed. Table 7 shows the results of the estimates for the two approaches.
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Table 7. Estimated coefficients and marginal effects.

Variables Homoskedastic Model Heteroskedastic Model

Coe f . M.E.+ M.E.++ Coe f . M.E.+ M.E.++

age 0.0201
[0.0175;0.0228]

*** 0.0055
[0.0048;0.0062]

*** 0.0069
[0.0061;0.0078]

*** 0.0027
[0.0023;0.0032]

*** 0.0061
[0.0055;0.0066]

*** 0.0076
[0.007;0.0082]

***

income −0.0032
[−0.1341;0.1278]

−0.0009
[−0.0366;0.0349]

−0.0011
[−0.0463;0.0441]

−0.001
[−0.0256;0.0237]

−0.0212
[−0.0581;0.0157]

−0.0316
[−0.0747;0.0115]

kids −0.1538
[−0.2079;−0.0996]

*** −0.0420
[−0.0567;−0.0272]

*** −0.053
[−0.0717;−0.0344]

*** −0.0336
[−0.0433;−0.0238]

*** −0.0497
[−0.064;−0.0353]

*** −0.0549
[−0.0707;−0.039]

***

education −0.0337
[−0.0462;−0.0212]

*** −0.0092
[−0.0126;−0.0058]

*** −0.0116
[−0.0159;−0.0073]

*** −0.0065
[−0.0083;−0.0046]

*** −0.0038
[−0.0066;−0.001]

*** −0.0018
[−0.0051;0.0014]

married 0.0163
[−0.0477;0.0803]

0.0045
[−0.013;0.0219]

0.0056
[−0.0164;0.0277]

0.0005
[−0.0101;0.011]

0.0007
[−0.0149;0.0163]

0.0008
[−0.0164;0.018]

intercept 0.0341
[−0.1591;0.2273]

0.0558
[0.0251;0.0864]

***

The variance parameters: variance of µi

f emale −0.0766
[−0.1101;−0.0431]

***

λ0 −2.1074
[−2.1311;−2.0837]

***

σµ 0.9007
[0.8649;0.9379]

***

The variance parameters: variance of νit

age −0.0215
[−0.0232;−0.0198]

***

income 0.2098
[0.028;0.3916]

**

education −0.061
[−0.0691;−0.0529]

***

LogL −16, 273.964 −14, 019.325

LR stat 4509.45 ***

95% level confident interval in brackets; ***: Significant at the 1% level; **: Significant at the 5% level; +: marginal effects by integrating with respect to µi ; ++: marginal effects
assuming µi = 0. The coefficients of the homoskedastic model are those reported by Greene (2012).
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The LR test of homoskedasticity leads to the rejection of the null hypothesis of homoskedasticity.
Thus, there is the presence of heteroskedasticity due to both µi and νit. The estimated parameters
are significantly different between the homoskedastic and the heteroskedastic models. The same
result holds for the marginal effects. However, the differences in marginal effects are lower using
the marginal effects integrated with respect to µi that the ones computed assuming µi = 0. Using
the former approach, results suggest that ageing increases by 0.55% the probability to visit a doctor
using the homoskedastic model and by 0.61% using the heteroskedastic model. These estimates are
respectively 0.69% and 0.76% using the second approach. An increase in the number education years
reduces by 0.92% the probability of visiting a doctor using the homoskedastic model and by 0.38%
using the heteroskedastic model. Assuming µi = 0, an increase in the number of education years
reduce by 1.16% the probability of visiting a doctor using the homoskedastic model while the effect is
not significant using the heteroskedastic model.

7. Conclusions

The use of a random effects probit model has been popularized due to the problem of incidental
parameters encountered when dealing with fixed effects models for binary outcomes in panel data.
However, researchers do not test for the presence of heteroskedasticity in the error terms and then
do not control for that when estimating these models. This paper proposes an estimation procedure
that accounts for heteroskedasticity for both individual effects and idiosyncratic errors separately and
jointly as well as a LR test for homoskedasticity.

A Monte Carlo experiment was conducted to estimate the power of the test. It shows that the LR
test performs well generally. However, on samples with a low degree of heteroskedasticity, the power
of the test is around 20% for panels with small N and T but it increases drastically with larger N and T.
The analysis also show that applying the wrong estimation and test procedures may yield misleading
conclusions about heteroskedasticity.
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Appendix A. STATA Code for Computing the Marginal Effects

//model with mu_i h e t e r o s k e d a s t i c s
x t h e t p r o b i t y_muhet x1 x2 , quad ( 1 0 ) hetmu (xmu) hettype (mu)
//marginal e f f e c t f o r v a r i a b l e x1 ( i n t e g r a t e d with r e s p e c t to mu_i )
margins , dydx ( x1 ) expr ( normal ( xb (#1)/ s q r t (1+ exp ( xb ( # 2 ) ) ^ 2 ) ) )
//marginal e f f e c t f o r v a r i a b l e x1 ( assuming mu_i=0)
margins , dydx ( x1 ) expr ( normal ( xb (#1)/ exp ( xb ( # 2 ) ) ) )

//model with nu_i t h e t e r o s k e d a s t i c s
x t h e t p r o b i t y_muhet x1 x2 , quad ( 1 0 ) hetnu ( xnu ) hettype ( nu )
//marginal e f f e c t f o r v a r i a b l e x1 ( i n t e g r a t e d with r e s p e c t to mu_i )
margins , dydx ( x1 ) expr ( normal ( xb (#1)/ s q r t ( exp ( xb (#2) )^2+ exp ( xb ( # 3 ) ) ^ 2 ) ) )
//marginal e f f e c t f o r v a r i a b l e x1 ( assuming mu_i=0)
margins , dydx ( x1 ) expr ( normal ( xb (#1)/ exp ( xb ( # 2 ) ) ) )

//model with both mu_i and nu_i t h e t e r o s k e d a s t i c s
x t h e t p r o b i t y_bothhet x1 x2 , quad ( 1 0 ) hetmu (xmu) hetnu ( xnu ) hettype ( both )
//marginal e f f e c t f o r v a r i a b l e x1 ( i n t e g r a t e d with r e s p e c t to mu_i )
margins , dydx ( x1 ) expr ( normal ( xb (#1)/ s q r t ( exp ( xb (#2) )^2+ exp ( xb ( # 3 ) ) ^ 2 ) ) )
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//marginal e f f e c t f o r v a r i a b l e x1 ( assuming mu_i=0)
margins , dydx ( x1 ) expr ( normal ( xb (#1)/ exp ( xb ( # 3 ) ) ) )

Appendix B. STATA Code for Generating the Dataset

c l e a r
// T=5 i s s e t here f o r f i r s t ind iv idua l
s e t obs 5
gen id =1
lab var id " panel id "
f o r v a l n = 2/500 { // N=500 i s s e t here

l o c a l k = 5∗ ‘n ’ // T=5 f o r others i n d i v i d u a l s
qui s e t obs ‘k ’
qui r e p l a c e id = ‘n ’ i f id ==.

}
// Time v a r i a b l e i s generated here
by id , s o r t : gen t =_n
lab var t " time id "
// S e t t i n g seed to avoid v a r i a t i o n f o r random v a r i a b l e s
s e t seed 1
gen x1 = runiform ( )
gen x2 = runiform ( )
// Generate hetmu t h a t i s time−i n v a r i a n t
gen zmu = runiform ( ) i f t ==5
by id , s o r t : r e p l a c e zmu = zmu[_N] i f _n !=_N
gen znu = runiform ( )
// Generate the var iances
gen sig_mu = exp (−0.8 + 0 . 7∗zmu)
gen sig_mu1 = exp (−0.8)
gen sig_nu = exp ( 0 . 6 ∗ znu )
// Generate mu_i t h a t i s time−i n v a r i a n t
gen mu_i = rnormal ( 0 , 1 ) i f t ==5
by id , s o r t : r e p l a c e mu_i = mu_i [_N] i f _n !=_N
// Generating y
gen p_mu = normal ( ( 1 . 5 + 0 . 8 ∗ x1−2∗x2+mu_i∗sig_mu ) )
gen p_nu = normal ( ( 1 . 5 + 0 . 8 ∗ x1−2∗x2+mu_i∗sig_mu1 )/ sig_nu )
gen p_both = normal ( ( 1 . 5 + 0 . 8 ∗ x1−2∗x2+mu_i∗sig_mu )/ sig_nu )
gen y_mu = cond ( runiform () <=p_muhet , 1 , 0 )
gen y_nu = cond ( runiform () <= p_nuhet , 1 , 0 )
gen y_both = cond ( runiform () <= p_bothhet , 1 , 0 )
// S e t t i n g panel
x t s e t id t
//Heteroskedast ic model : Mazodier and Trognon ( 1 9 7 8 )
x t h e t p r o b i t y_mu x1 x2 , quad ( 1 0 ) hetmu (zmu) hettype (mu)
x t p r o b i t y_mu x1 x2 , in tp ( 1 0 ) nolog // Comparison models
h e t p r o b i t y_mu x1 x2 , het (zmu)
//Heteroskedast ic model : B a l t a g i ( 1 9 8 8 ) and Wansbeek ( 1 9 8 9 )
x t h e t p r o b i t y_nu x1 x2 , quad ( 1 0 ) hetnu ( znu ) hettype ( nu )
x t p r o b i t y_nu x1 x2 , in tp ( 1 0 ) nolog // Comparison models
h e t p r o b i t y_nu x1 x2 , het ( znu )
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//Heteroskedast ic model : Randolph ( 1 9 8 8 )
x t h e t p r o b i t y_both x1 x2 , quad ( 1 0 ) hetmu (zmu) hetnu ( znu ) hettype ( both )
x t p r o b i t y_both x1 x2 , in tp ( 1 0 ) nolog // Comparison models
h e t p r o b i t y_both x1 x2 , het (zmu znu )

Appendix C. STATA Code for Monte Carlo Experiments

c l e a r
s e t matsize 10000
mat LRS = J ( 5 0 0 1 , 1 , 0 )
s e t seed 1
s e t obs 5
gen id =1
lab var id " panel id "
f o r v a l n = 2/100 {

l o c a l k = 5∗ ‘n ’
s e t obs ‘k ’
r e p l a c e id = ‘n ’ i f id ==.

}
by id , s o r t : gen t =_n
lab var t " time id "
f o r v a l kk=1/5000 {
qui {
keep id t
gen x1 = runiform ( )
gen x2 = runiform ( )
gen zmu = runiform ( ) i f t ==5
by id , s o r t : r e p l a c e xmu = xmu[_N] i f _n !=_N
gen znu = runiform ( )
gen sig_mu = exp (−0.8 + 0 . 7∗zmu)
gen sig_nu = exp ( 0 . 6 ∗ znu )
gen mu_i = rnormal ( 0 , 1 ) i f t ==5
by id , s o r t : r e p l a c e mu_i = mu_i [_N] i f _n !=_N
gen p1 = normal ( ( 1 . 5 + 0 . 8 ∗ x1−2∗x2+mu_i∗sig_mu )/ sig_nu )
gen y1 = cond ( runiform () <=p1 , 1 , 0 )
x t s e t id t
x t h e t p r o b i t y1 x1 x2 , quad ( 1 0 ) hetmu (zmu) hetnu ( znu ) hettype ( both )
mat LRS [ ‘ kk ’ , 1 ] = e ( l r s t a t )

i f chiprob ( 2 , e ( l r s t a t ) ) < 0 . 0 5 {
mat LRS [ 5 0 0 1 , 1 ] = LRS[5001 ,1 ]+1

}
}
}
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Appendix D. Power of the Test for Different Degrees of Heteroskedasticity

Appendix D.1. Testing for the Joint Hypothesis

Table A1. Power and size of the LR test based on 5000 replications: case of H0 : θµ = θν = 0.

Setting σ2
µ = 2 σ2

µ = 6

N = 50 N = 500 N = 50 N = 500

θµ θν T = 5 T = 20 T = 5 T = 20 T = 5 T = 20 T = 5 T = 20

0 0 4.48 4.88 4.44 5.42 5.58 5.52 5.6 5.6
0 1 12.68 91.24 99.48 100 6.6 92.24 98.42 100
0 2 35.88 99.92 100 100 31.84 100 100 100
0 3 50.22 99.94 100 100 38.42 100 100 100

1 0 22.08 39.08 99.48 100 13.36 29.3 98.46 100
1 1 26.56 97.56 100 100 14.46 90.04 99.6 100
1 2 46.36 100 100 100 49.26 100 100 100
1 3 45.78 100 100 100 62.56 100 100 100

2 0 30.79 72.34 100 100 21.08 43.12 100 100
2 1 54.14 99.26 100 100 23.08 75.34 100 100
2 2 78.28 100 100 100 65.62 100 100 100
2 3 79.28 100 100 100 87.06 100 100 100

3 0 50.92 73.8 100 100 30.08 58.46 100 100
3 1 59.52 96.88 100 100 37.72 56.46 100 100
3 2 90.3 100 100 100 57.88 99.92 100 100
3 3 95.46 100 100 100 93.8 100 100 100

Appendix D.2. Testing for the Marginal Hypothesis of No Heteroskedasticity in Individual Effects Given
Homoskedastic Idiosyncratic Errors

Table A2. Power and size of the LR test based on 5000 replications: case of H0 : θµ = 0 | θν = 0.

σ2
µ = 2 σ2

µ = 6

Setting N = 50 N = 500 N = 50 N = 500

T = 5 T = 20 T = 5 T = 20 T = 5 T = 20 T = 5 T = 20

θµ

0 5.26 5.46 5.06 5.02 4.42 5.08 4.76 4.72
1 24.86 47.12 99.54 100 5.88 15.76 77.84 98.68
2 35.16 71.7 100 100 6.22 17.68 90.52 100
3 29.14 64.98 100 100 4.94 15.28 99.32 100

θν

0 5.26 5.46 5.06 5.02 4.42 5.08 4.76 4.72
1 5.78 5.46 5.56 4.74 5.06 4.82 4.72 4.4
2 5.26 5.06 5.58 4.46 5.56 4.62 5.02 4.42
3 5.12 4.94 4.96 4.44 5.44 4.74 4.92 4.42

θµ θν

0 0 5.26 5.46 5.06 5.02 4.42 5.08 4.76 4.72
0 1 5.78 5.46 5.56 4.74 5.06 4.82 4.72 4.4
0 2 5.26 5.06 5.58 4.46 5.56 4.62 5.02 4.42
0 3 5.12 4.94 4.96 4.44 5.44 4.74 4.92 4.42



Econometrics 2019, 7, 35 17 of 22

Table A2. Cont.

σ2
µ = 2 σ2

µ = 6

Setting N = 50 N = 500 N = 50 N = 500

T = 5 T = 20 T = 5 T = 20 T = 5 T = 20 T = 5 T = 20

1 0 24.86 47.12 99.54 100 5.88 15.76 77.84 98.68
1 1 27.2 53.2 99.6 100 15.66 34.26 96.3 100
1 2 23.88 45.78 97.2 100 22.56 42.84 98.64 100
1 3 14 33.56 79.58 100 19.08 31.72 92.44 100

2 0 35.16 71.7 100 100 6.22 17.68 90.52 100
2 1 59.46 91.98 100 100 24.76 59.52 100 100
2 2 67 94.98 100 100 55.48 89.68 100 100
2 3 52.72 89.16 100 100 55.9 88.36 100 100

3 0 29.14 64.98 100 100 4.94 15.28 99.32 100
3 1 66.46 95.96 100 100 21.56 59.06 100 100
3 2 88.42 99.8 100 100 65.1 97.06 100 100
3 3 86.9 99.66 100 100 83.36 99.58 100 100

Appendix D.3. Testing for the Marginal Hypothesis of no Heteroskedasticity in Idiosyncratic Errors Given
Homoskedastic Individual Effects

Table A3. Power and size of the LR test based on 5000 replications: case of H0 : θν = 0 | θµ = 0.

σ2
µ = 2 σ2

µ = 6

Setting N = 50 N = 500 N = 50 N = 500

T = 5 T = 20 T = 5 T = 20 T = 5 T = 20 T = 5 T = 20

θν

0 4.64 4.48 4.44 5.1 5.56 5.6 5.6 5.6
1 20.5 95.6 99.8 100 11.12 96.62 99.5 100
2 54.28 99.98 100 100 52.8 100 100 100
3 66.18 99.96 100 100 62.46 100 100 100

θµ

0 4.64 4.48 4.44 5.1 5.56 5.6 5.6 5.6
1 6.6 8.2 39.06 43.18 23.96 23.98 87.02 96.4
2 16.08 23.78 77.06 96.1 15.54 34.34 99.96 99.42
3 25.28 29.19 97.98 98.72 24.58 49.7 99.96 100

θµ θν

0 0 4.64 4.48 4.44 5.1 5.56 5.6 5.6 5.6
0 1 20.5 95.6 99.8 100 11.12 96.62 99.5 100
0 2 54.28 99.98 100 100 52.8 100 100 100
0 3 66.18 99.96 100 100 62.46 100 100 100

1 0 6.6 8.2 39.06 43.18 23.96 23.98 87.02 96.4
1 1 11.52 96.46 99.54 100 34.2 87.7 84.38 100
1 2 50.92 100 100 100 53.16 100 100 100
1 3 60.96 100 100 100 76.9 100 100 100

2 0 16.08 23.78 77.06 96.1 15.54 34.34 99.96 99.42
2 1 24.22 86.38 91.18 100 25.24 50.28 100 100
2 2 45.94 100 100 100 34.06 99.98 100 100
2 3 70.08 100 100 100 78.88 100 100 100

3 0 25.28 29.19 97.98 98.72 24.58 49.7 99.96 100
3 1 33.71 56.64 98.04 99.92 32.36 59.6 100 100
3 2 48.88 99.98 100 100 51.34 99.32 100 100
3 3 67.52 100 100 100 65.98 100 100 100
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Appendix E. Application and Comparisons

Appendix E.1. Application and Comparison for Data Generated with Individual Effects Heteroskedastic

Table A4. Estimated index function and variance parameters.

Variables DGP Homoskedastic Heteroskedastic Heteroskedastic
Panel Probit Pooled Probit Panel Probit

With (N, T) = (500, 5)

LogL −1241.7666 −1283.699 −1238.6702

LR stat 9.52 *** 6.2328 **

The estimated index function parameters.

X1 0.8 0.8285
[0.6008;1.0561]

*** 0.87
[0.6053;1.1348]

*** 0.8289
[0.6021;1.0557]

***

X2 −2 −1.9558
[−2.2014;−1.7102]

*** −2.1149
[−2.5151;−1.7146]

*** −1.9628
[−2.2077;−1.7179]

***

intercept 1.5 1.3993
[1.2052;1.5922]

*** 1.4881
[1.206;1.7702]

*** 1.3992
[1.2077;1.5907]

***

The variance parameters.

Zµi 0.7 0.4086
[0.1485;0.6686]

*** 0.7147
[0.1192;1.3103]

**

λ0 −0.8 −0.8713
[−1.2052;−0.5373]

*** −0.8449
[−1.257;−0.4327]

***

σν (assumed) 1 1 1 1

With (N, T) = (500, 20)

LogL −4500.4005 −4928.991 −4492.8442

LR stat 8.81 *** 20.5892 ***

The estimated index function parameters.

X1 0.8 0.7235
[0.6114;0.8356]

*** 0.6531
[0.5392;0.7671]

*** 0.719
[0.6073;0.8307]

***

X2 −2 −2.0158
[−2.1368;−1.8949]

*** −1.8368
[−1.9884;−1.6852]

*** −2.0038
[−2.1238;−1.8838]

***

intercept 1.5 1.5913
[1.4813;1.7012]

*** 1.4502
[1.3315;1.5689]

*** 1.5688
[1.4651;1.6725]

***

The variance parameters.

Zµi 0.7 0.182
[0.0613;0.3028]

*** 0.6953
[0.39;1.0016]

***

λ0 −0.8 −0.8252
[−1.0042;−0.6462]

*** −0.7853
[−0.9646;−0.6059]

***

σν (assumed) 1 1 1 1

95% level confident interval in brackets; ***: Significant at the 1% level. **: Significant at the 5% level.
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Appendix E.2. Application and Comparison for Data Generated with Idiosyncratic Errors Heteroskedastic

Table A5. Estimated index function and variance parameters.

Variables DGP Homoskedastic Heteroskedastic Heteroskedastic
Panel Probit Pooled Probit Panel Probit

With (N, T) = (500, 5)

LogL −1356.3042 −1363.723 −1352.2662

LR stat 5.99 ** 8.0787 ***

The estimated index function parameters.

X1 0.8 0.7217
[0.515;0.9284]

*** 0.752
[0.511;0.9931]

*** 0.8878
[0.6085;1.167]

***

X2 −2 −1.5232
[−1.7353;−1.3111]

*** −1.698
[−2.0197;−1.3763]

*** −1.9064
[−2.2846;−1.5283]

***

intercept 1.5 1.0644
[0.9026;1.2262]

*** 1.2019
[0.9675;1.4364]

*** 1.3267
[1.0544;1.599]

***

The variance parameters.

Zνit 0.6 0.3358
[0.0649;0.6067]

*** 0.4247
[0.1352;0.7143]

***

σµ 0.45 0.3857
[0.2935;0.507]

*** 0.4805
[0.3619;0.638]

***

With (N, T) = (500, 20)

LogL −5230.5929 −5280.282 −5189.8208

LR stat 89.12 *** 83.3667 ***

The estimated index function parameters.

X1 0.8 0.5561
[0.4553;0.6568]

*** 0.7271
[0.5877;0.8665]

*** 0.7618
[0.6191;0.9046]

***

X2 −2 −1.5742
[−1.6786;−1.4698]

*** −2.0745
[−2.2619;−1.8871]

*** −2.1414
[−2.3319;−1.951]

***

intercept 1.5 1.2223
[1.1361;1.3086]

*** 1.5999
[1.4578;1.7419]

*** 1.638
[1.4917;1.7842]

***

The variance parameters.

Zνit 0.6 0.6417
[0.5062;0.7772]

*** 0.603
[0.4731;0.7329]

***

σµ 0.45 0.3549
[0.3144;0.4007]

*** 0.44
[0.3883;0.4987]

***

95% level confident interval in brackets; ***: Significant at the 1% level. **: Significant at the 5% level.
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Appendix E.3. Application and Comparison for Data Generated with Both Individual Effects and
Idiosyncratic Heteroskedastic

Table A6. Estimated index function and variance parameters.

Variables DGP Homoskedastic Heteroskedastic Heteroskedastic
Panel Probit Pooled Probit Panel Probit

With (N, T) = (500, 5)

LogL −1378.8704 −1407.272 −1371.3114

LR stat 11.00 *** 15.1319 ***

The estimated index function parameters.

X1 0.8 0.7061
[0.4946;0.9175]

*** 0.8069
[0.5124;1.1015]

*** 0.8886
[0.6023;1.1749]

***

X2 −2 −1.4263
[−1.6449;−1.2077]

*** −1.6477
[−2.0588;−1.2365]

*** −1.7918
[−2.1511;−1.4324]

***

intercept 1.5 1.0207
[0.8499;1.1915]

*** 1.1883
[0.8931;1.4836]

*** 1.2692
[1.002;1.5365]

***

The variance parameters.

Zµi 0.7 0.1062
[−0.1847;0.3971]

0.6385
[0.0271;1.2499]

**

λ0 −0.8 −1.1807
[−1.5411;−0.8204]

*** −0.767
[−1.2244;−0.3096]

***

Zνit 0.6 0.4681
[0.1734;0.7628]

*** 0.448
[0.155;0.7411]

***

With (N, T) = (500, 20)

LogL −5245.4829 −5447.011 −5200.2317

LR stat 63.51 *** 92.7282 ***

The estimated index function parameters.

X1 0.8 0.5571
[0.4553;0.659]

*** 0.7218
[0.5743;0.8692]

*** 0.7407
[0.6011;0.8804]

***

X2 −2 −1.5148
[−1.62;−1.4096]

*** −1.9041
[−2.117;−1.6912]

*** −1.9696
[−2.1449;−1.7943]

***

intercept 1.5 1.1794
[1.0879;1.271]

*** 1.468
[1.3057;1.6302]

*** 1.5026
[1.3669;1.6383]

***

The variance parameters.

Zµi 0.7 0.1148
[−0.0189;0.2485]

* 0.7565
[0.4228;1.0902]

***

λ0 −0.8 −1.4512
[−1.6468;−1.2556]

*** −0.9136
[−1.1258;−0.7013]

***

Zνit 0.6 0.5498
[0.4099;0.6896]

*** 0.5255
[0.4108;0.6603]

***

95% level confident interval in brackets; ***: Significant at the 1% level. **: Significant at the 5% level.
*: Significant at the 10% level.
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Appendix F. Estimates for Different Numbers of Quadrature Points

Table A7. Changes in Parameters and in log-likelihood with respect to the number of quadrature point Q.

Variables DGP Q = 6 Q = 8 Q = 10 Q = 12 Q = 14 Q = 16 Q = 18 Q = 20

LogL −5233.2859 −5210.0882 −5200.2317 −5195.4211 −5192.3082 −5190.1575 −5189.2627 −5188.4647

Wald stat 66.3381 81.5596 94.3733 103.304 109.889 115.235 116.835 117.604
LR stat 67.0431 80.8018 92.7282 100.563 106.433 110.666 112.443 114.037

X1 0.8 0.6809
[0.5508;0.811]

*** 0.7143
[0.579;0.8495]

*** 0.7407
[0.6011;0.8804]

*** 0.7598
[0.6167;0.9028]

*** 0.7751
[0.6292;0.9211]

*** 0.7889
[0.6403;0.9375]

*** 0.7962
[0.646;0.9464]

*** 0.8035
[0.6517;0.9553]

***

X2 −2 −1.8256
[−1.9899;−1.6612]

*** −1.9058
[−2.0755;−1.7361]

*** −1.9696
[−2.1449;−1.7943]

*** −2.0171
[−2.1978;−1.8365]

*** −2.0568
[−2.2428;−1.8709]

*** −2.0906
[−2.2814;−1.8999]

*** −2.1087
[−2.3029;−1.9145]

*** −2.1265
[−2.3244;−1.9287]

***

Intercept 1.5 1.3551
[1.2299;1.4803]

*** 1.4401
[1.3098;1.5703]

*** 1.5026
[1.3669;1.6383]

*** 1.5479
[1.4067;1.6892]

*** 1.5852
[1.4384;1.7319]

*** 1.6162
[1.4642;1.7681]

*** 1.6332
[1.4774;1.7889]

*** 1.6497
[1.4901;1.8094]

***

Zµi 0.7 0.8259
[0.4615;1.1903]

*** 0.7739
[0.4341;1.1137]

*** 0.7565
[0.4228;1.0902]

*** 0.7366
[0.4036;1.0696]

*** 0.7436
[0.4094;1.0778]

*** 0.7582
[0.4241;1.0923]

*** 0.7598
[0.425;1.0947]

*** 0.7697
[0.4347;1.1046]

***

λ0 −0.8 −1.0917
[−1.3352;−0.8482]

*** −0.984
[−1.2023;−0.7656]

*** −0.9136
[−1.1258;−0.7013]

*** −0.8603
[−1.0733;−0.6474]

*** −0.831
[−1.0463;−0.6157]

*** −0.8104
[−1.0266;−0.5941]

*** −0.7967
[−1.015;−0.5784]

*** −0.7887
[−1.0077;−0.5697]

***

Zνit 0.6 0.4013
[0.2782;0.5244]

*** 0.4761
[0.3529;0.5993]

*** 0.5355
[0.4108;0.6603]

*** 0.5783
[0.4512;0.7053]

*** 0.6142
[0.4842;0.7442]

*** 0.6435
[0.5109;0.7761]

*** 0.6593
[0.5243;0.7943]

*** 0.6747
[0.5372;0.8122]

***

∆ in LogL 0.0044 0.0019 0.0009 0.0006 0.0004 0.0002 0.0002
∆ in Wald stat 0.2259 0.155 0.0936 0.0632 0.0482 0.0138 0.0065
∆ in LR stat 0.2022 0.1458 0.0836 0.0578 0.0394 0.0159 0.0141
∆ in param. 0.162 0.1022 0.0631 0.0335 0.0341 0.0465 0.0533 0.0599

Time (sec) 41 53 62 79 96 106 130 133

95% level confident interval in brackets; ***: Significant at the 1% level. ∆ denotes the relative difference defined as |x−y|
1+|y| . It is calculated to assess the variation in the log-likelihood

(LogL), LR stat and parameters when the number of quadrature points Q increases. ∆ in parameters is calculated as the maximum relative difference between parameters for two
different Q.
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