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Abstract: It is often reported in the forecast combination literature that a simple average of candidate
forecasts is more robust than sophisticated combining methods. This phenomenon is usually
referred to as the “forecast combination puzzle”. Motivated by this puzzle, we explore its possible
explanations, including high variance in estimating the target optimal weights (estimation error),
invalid weighting formulas, and model/candidate screening before combination. We show that
the existing understanding of the puzzle should be complemented by the distinction of different
forecast combination scenarios known as combining for adaptation and combining for improvement.
Applying combining methods without considering the underlying scenario can itself cause the puzzle.
Based on our new understandings, both simulations and real data evaluations are conducted to
illustrate the causes of the puzzle. We further propose a multi-level AFTER strategy that can integrate
the strengths of different combining methods and adapt intelligently to the underlying scenario.
In particular, by treating the simple average as a candidate forecast, the proposed strategy is shown
to reduce the heavy cost of estimation error and, to a large extent, mitigate the puzzle.

Keywords: combining for adaptation; combining for improvement; multi-level AFTER; model
selection; structural break

1. Introduction

Since the seminal work of Bates and Granger (1969), both empirical and theoretical investigations
support that when multiple candidate forecasts for a target variable are available to an analyst,
forecast combination often provides more accurate forecasting performance in terms of mean squared
forecast error (MSFE) than using a single candidate forecast. The benefits of forecast combination are
attributable to the fact that individual forecasts often use different sets of information, are subject to
model bias from different, but unknown model misspecifications, and/or are varyingly affected by
structural breaks. The review of Timmermann (2006) provided a comprehensive account of various
forecast combination methods. Usually, the attention is on an optimal weight as a theoretically best
choice within a scope of consideration (e.g., the best linear or convex combination that minimizes
forecast risk). Correspondingly, one popular combining strategy is the pursuit of the target optimal
weight through a sensible minimization of MSFE. For example, Bates and Granger (1969) proposed
to estimate the optimal weight using the error variance-covariance structure of the individual
forecasts. Granger and Ramanathan (1984) approximated the optimal weight under a linear regression
framework.

With rapid advances in data-driven technology, forecast combination and model averaging
methods have become increasingly popular and fruitful research areas. In particular, combining
methods are usually approached under either frequentist or Bayesian frameworks. From the frequentist
perspective, combining methods are developed for various specific statistical prediction and forecasting
tasks (often based on least-squares criteria) such as linear regression, factor models, generalized
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linear models, treatment effects estimation, and spatial modeling, among many others (e.g., Yang
2004, Wan et al. 2010, Ando and Li 2014; Cheng et al. 2015; Cheng and Hansen 2015; Zhang et al.
2016; Zhu et al. 2018; Zhang and Yu 2018, and the references therein). Bayesian-based averaging
techniques are also powerful and well-developed tools in many important forecasting scenarios (e.g.,
Hoeting et al. 1999, Steel 2011; Garcia-Donato and Martinez-Beneito 2013; Steel 2014; Forte et al. 2018,
and the references therein). Furthermore, methods that take mixed flavor on frequentist and Bayesian
techniques are known to be promising approaches to model averaging and combining (e.g., Magnus
and De Luca 2016; Magnus et al. 2016; De Luca et al. 2018 and the references therein). Methods inspired
by screening (e.g., Fan and Lv 2008; Fan and Song 2010), shrinkage (e.g., Tibshirani 1996; Zou 2006),
sequential stepwise (e.g., Zhang 2011; Ing and Lai 2011; Qian et al. 2019), and/or greedy boosting (e.g.,
Friedman et al. 2000; Friedman 2001; Yang et al. 2018) techniques are also developed for combining
models under high-dimensional scenarios (e.g., J. Chen et al. 2018, Lan et al. 2019, and the references
therein).

Despite the popularity and sophistication of combining methods, empirical studies have
repeatedly reported that the simple average (SA) is an effective and robust combination method that
often outperforms more complicated methods (see Winkler and Makridakis 1983, Clemen and Winkler
1986, and Diebold and Pauly 1990 for some early examples). In a review and annotated bibliography
on early studies, Clemen (1989) raised the question, “What is the explanation for the robustness of
the simple average of forecasts?”. Specifically, he proposed two questions of interest, “(1) Why does
the simple average work so well, and (2) under what conditions do other specific methods work
better?” The robustness of SA is also echoed in more recent literature. For example, Stock and Watson
(2004) built autoregressive models with univariate predictors (macroeconomic variables) as candidate
forecasts for the output growth of seven developed countries and found that SA, together with other
methods of least data adaptivity, is among the top-performing forecast combination methods. Stock
and Watson (2004) further coined the term “forecast combination puzzle” (FCP), which refers to “the
repeated finding that simple combination forecasts outperform sophisticated adaptive combination
methods in empirical applications”. In another recent example, Genre et al. (2013) used survey data
from professional forecasters as the individual candidates to construct combined forecasts for three
target variables. Despite some promising results of complicated methods, they further noted that the
observed improvement over SA was rather vague when a period of financial crisis was included in the
analysis. Past empirical evidence appears to support the mysterious existence of FCP, which was also
summarized in Timmermann (2006) (Section 7.1).

Many attempts have been made to demystify FCP. One popular and arguably the most
well-studied explanation for FCP is the estimation error of methods that target the optimal combination
weights. Smith and Wallis (2009) rigorously studied the estimation error issue. Using the forecast
error variance-covariance structure, they showed both theoretically and numerically that the estimator
targeting the optimal weight can have large variance, and consequently, the estimated optimal weight
can be very different from the true optimal weight, often even more so than the simple equal weight.
Elliott (2011) studied the theoretical maximal performance gain of the optimal weight over SA by
optimizing the error variance-covariance structure and pointed out that the gain is often small enough
to be overshadowed by estimation error. Timmermann (2006) and Hsiao and Wan (2014) also illustrated
conditions for the optimal weight to be close to the equal weight, so that the relative gain of the optimal
weight over SA is small. Claeskens et al. (2016) considered the random weight and showed that
when the weight variance is taken into account, SA can perform better than using the “optimal”
weight. Under linear regression settings, Huang and Lee (2010) discussed the estimation error and
the relative gain of the optimal weight. Interestingly, the recent development in the M4competition
(Makridakis et al. 2018) and several other studies (e.g., L. Chen et al. 2018) showed evidence that SA
can be sub-optimal compared to some forecast combining methods although SA remains to be a good
benchmark; the important progress echos part of our paper’s conclusions, and the investigation on the
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classical FCP issues provides a relevant and useful platform for helping to understand in depth the
large performance difference observed for combination methods.

Following the FCP literature, unless stated otherwise, all the “estimation errors” we will mention
in this article are with respect to the estimation of the target optimal weight. We should not confuse
these estimation errors with those for estimating parameters in statistical models (based on which
forecasts are made). Although the understanding of the latter estimation errors is an important
topic in its own right, it is not directly relevant to our discussion. Indeed, it is not uncommon
to assume that an analyst is agnostic about and may have no control over how the candidate
forecasts are generated. These candidate forecasts can be obtained from expert opinions or their
underlying statistical models can be proprietary. Throughout this article, we are concerned about how
to understand combinations of existing candidate forecasts rather than how to explain forecast errors
of the individual candidate forecasts.

In addition to estimation error, nonstationarity and structural breaks in the data generating
process (DGP) are believed to contribute to the unstable performance of the estimated “optimal”
weight. For example, Hendry and Clements (2004) demonstrated that when candidate forecasting
models are all misspecified and breaks occur in the information variables, forecast combination
methods that target the optimal weight may not perform as well as SA. From the perspective of
candidate forecasts, Lahiri et al. (2013) suggested that during periods of unstable relative performance,
adjusting the weights agilely based on recent observations can sometimes hurt the aggregate forecast
performance compared to maintaining the weights cautiously. Besides structural breaks, they attributed
this phenomenon to forecast outliers, the effects of which can be mitigated by the robust methods
proposed in Cheng and Yang (2015). Huang and Lee (2010) proposed that the candidate forecasts are
often weak; that is, they have low predictive content on the target variable, making the optimal weight
similar to the simple equal weight.

While the aforementioned points are valid and valuable, they do not seem to depict the complete
picture of the puzzle. In this paper, we provide our perspectives on FCP to contribute to its settling.
In our view, besides providing explanations of FCP, it is also important to point out the potential
danger of recommending SA for broad and indiscriminate use. Here, we focus on the mean squared
error (MSE). It should be pointed out that the main points are expected to stand for other losses as well
(e.g., absolute error) and that some combination approaches (e.g., AFTER, Yang 2004; Zhang et al. 2013)
can handle general loss functions.

The rest of this article is organized as follows. In Section 2, we list some aspects of FCP that have
not been much addressed, but are important for understanding the puzzle in our view. The forecast
combination problem we consider is formally introduced in Section 3. Our understandings of FCP
are elaborated in Sections 4–8, which include the existence of two distinct scenarios (combining
for adaptation vs. combining for improvement), improperly derived weighting formulas, and the
prevalent use of model screening. We argue that SA is not as robust as is often believed. In particular,
Section 5 proposes a multi-level AFTER approach in an attempt to mitigate FCP. The performance of
this approach is also evaluated in Section 9 using data from the U.S. Survey of Professional Forecasters
(SPF). A brief conclusion is given in Section 10. Some theoretical results are collected in the Appendix.

2. Additional Aspects of FCP

The previous work nicely pointed out that estimation error is an important source of FCP and
characterized the impact of the estimation error in certain settings. Indeed, in general, when the
forecast combination weighting formula is valid in the sense that an optimal weight can be correctly
estimated by minimizing MSFE, an insufficiently small sample size may not support reliable estimation
of the weight, resulting in inflated variance of the combined forecast. The explanation with structural
breaks also makes sense for certain situations. Furthermore, in our view, there are several additional
aspects that may need to be considered for understanding FCP.



Econometrics 2019, 7, 39 4 of 26

1. A key factor missing in addressing the FCP is the true nature of the improvability of the candidate
forecasts. While we all strive for better forecast performance than the candidates, that may not be
feasible (at least for the methods considered). Thus, we have two scenarios (Yang 2004): (i) One
of the candidates is pretty much the best we can hope for (within the considerations of course),
and consequently, any attempt to beat it becomes futile. We refer to this scenario as “combining for
adaptation” (CFA), because the proper goal of a forecast combination method under this scenario
should be targeting the performance of the best individual candidate forecast, which is unknown.
(ii) The other scenario is that a significant accuracy gain over all the individual candidates can be
realized by combining the forecasts. We refer to this scenario as “combining for improvement”
(CFI), because the proper goal of a forecast combination method under this scenario should be
targeting the performance of the best combination of the candidate forecasts to overcome the
defects of the candidates. In practical applications, both scenarios could be possible. Without
factoring in this aspect, comparison of different combination methods may become somewhat
misleading. In our view, bringing this lurking aspect into the analysis is beneficial to understand
forecast combinations. With the above forecast combination scenarios spelled out, a natural
question follows: can we design a combination method to bridge the two camps of methods
proposed for the two scenarios? That is, in practical applications, without necessarily knowing
the underlying forecast scenario, can we have a combination strategy adaptive to both scenarios?

2. The methods being examined in the literature on FCP are mostly specific choices (e.g., least
squares estimation). Can we do better with other methods (that may or may not have been
invented yet) to mitigate relatively heavy estimation price? Furthermore, it is often assumed that
the forecasts are unbiased and the forecast errors are stationary, which may not be proper for
many applications. What happens when these assumptions do not hold?

3. It has been stated in the literature that the simple methods (e.g., SA) are robust based on empirical
studies. This may not be necessarily true in the usual statistical sense (rigorously or loosely).
In many published empirical results, the candidate forecasts were carefully selected/built and
thus well-behaved. Therefore, the finding in favor of the robustness of SA may be proper only
for such situations in which the data analyst has extensive expertise on the forecasting problem
and has done quite a bit of work on screening out poor/un-useful candidates; when allowing
for the possibility of poor/redundant candidates for wider applications, the FCP may not be
applicable anymore. It should be added that in various situations, the screening of forecasts
are far from being an easy task, and the complexity may well be at the same level as model
selection/averaging. Therefore, the view that we can do a good job in screening the candidate
forecasts and then simply recruit SA can be overly optimistic. With the above, it is important to
examine the robustness of SA in a broader context.

As is described in the first aspect, there are two distinct scenarios: CFA and CFI. The CFA scenario
can happen if one of the candidate forecasts is based on a model sophisticated enough to capture
the true DGP (yet still relatively simple to permit accurate estimation of the parameters) and/or
the other candidate forecasts only add redundant information. The CFI scenario can often happen
when different candidate forecasts use different information, and/or their underlying models have
misspecifications in different ways. The scenarios of CFA vs. CFI are also echoed by the discussion of
forecast selection vs. combination to a certain degree (e.g., Kourentzes et al. 2019 and the references
therein), although this paper is solely focused on understanding forecast combination methods.

There are various existing combining methods designed for the two scenarios. The methods for
the CFI scenario typically seek to estimate the optimal weight, and their examples include classical
variance-covariance-based optimization (Bates and Granger 1969), linear regression (Granger and
Ramanathan 1984), and more recent frequentist (often based on least-squares criteria) methods
discussed in the Introduction. On the other hand, the combining methods for the CFA scenario should
ideally perform similarly to the best individual candidate forecast. The typical methods suitable for the
CFA scenario include AIC model averaging (Buckland et al. 1997) and Bayesian model averaging, often
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in parametric settings. The method of AFTER (Yang 2004) and various exponential-weighting-based
averaging procedures (e.g., Yang 2001; Rolling et al. 2018) may be used in both parametric and
non-parametric settings.

Clearly, these two camps of methods (CFI vs. CFA) are designed with very different purposes.
The former is in some sense more “aggressive” that the methods are designed to target the optimal
weight in order to improve forecast accuracy over all candidate forecasts. The latter is relatively
“conservative” in the sense that the methods are only designed to match the performance of the best
candidate. Intuitively, to achieve the more aggressive target, the former methods are expected to pay a
somewhat higher estimation price, and applying them under a CFA scenario may lead to suboptimal
results. On the other hand, it is not ideal either to apply the latter methods under a CFI scenario since
such practice violates the original design purpose of these methods. As one contribution, we offer the
distinction between the two scenarios that can contribute to understanding the FCP. We will see in
Section 4 that failing to bring in the underlying scenarios and specific types of data when choosing
the combining methods may result in incorrectly applying a combining method not designed for
the underlying scenario and consequently delivering forecasting results worse than other simple
alternatives (including SA). In addition, as will be discussed later, we offer a practically adaptive
solution called multi-level AFTER (mAFTER) to help bridge the theory and practice in face of uncertain
forecast scenarios.

Related to the first two aspects regarding whether we can mitigate the estimation price, we cannot
fully address them without a proper framework, because for any sensible method, one can always
find a situation to favor it over its competitors. The framework we consider with theoretical support
is through a minimax view: If one has a specific class of combination of the forecasts in mind and
wants to target the best combination in this class, then without any restriction/assumption on the
unbiasedness of the candidate forecasts and the stationarity of the forecast errors, the minimax view
seeks an understanding of the minimum price we have to pay no matter what method (existing or not)
is used for combining. It turns out that the framework from the minimax view is closely related to the
forecast combination scenarios discussed in the first aspect.

Indeed, Yang (2004) showed that from a minimax perspective, because of the relatively aggressive
target set for the CFI scenario, we have to pay a heavier cost than the target set for the CFA scenario.
Specifically, if we let K denote the number of forecasts and T denote the forecasting horizon, when the
target is to find the optimal weight to minimize the forecast risk over a set of weights satisfying a
convex constraint (which is appropriate under the CFI scenario), the estimation cost is O(

K log(1+T/K)
T )

for relatively large T (T > K2) and O(log(K)/
√

T log T) for relatively small T (T ≤ K2) (note that the
bounds can be slightly improved to be exactly minimax optimal; see, e.g., Wang et al. (2014) in a simpler
setting). In contrast, if the target is to match the performance of the best individual forecast (which is
appropriate under the CFA scenario), the estimation cost is reduced to O(log(K)/T), which tends to
be smaller than that of the CFI scenario.

Due to the relatively heavy cost under the CFI scenario, it may not be always ideal to pursue the
goal of the optimal weight. Indeed, even if the optimal weight gives better performance than the best
individual candidate, the improvement may not be enough to offset the additional estimation cost
(i.e., increased variance) as identified in Yang (2004) and Wang et al. (2014). As another contribution,
we show in Section 6 that an appropriately-constructed forecast combination strategy (mAFTER) can
perform in an intelligent way according to the underlying CFI or CFA scenario. If CFI is the correct
scenario, the proposed strategy can behave both aggressively and conservatively so that it performs
similarly to SA when SA is much better than, e.g., the linear regression method, and similarly to the
latter when SA is worse.

Besides the estimation error and necessary distinction of the underlying scenarios discussed in
the first two aspects, the following three straightforward reasons can also contribute to FCP. First,
the weighting derivation formula used by complicated methods may not be suitable for the situation.
For example, under structural breaks, old historical data no longer hold support for a valid optimal
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weighting scheme, and the known justification of well-established combining methods fails as a result
(Hendry and Clements 2004). In Section 7, our Monte Carlo examples also show that SA may dominate
the complicated methods when breaks occur in DGP dynamics. Second, it is common practice that
the candidate forecasts are already screened in some ways so that they are more or less on an equal
footing. For example, Stock and Watson (1998) and Stock and Watson (2004) applied various model
selection methods such as AIC and BIC to identify promising linear or nonlinear candidate forecast
models. Bordignon et al. (2013) selected models of different types (ARMAX, time-varying coefficients,
etc.) and suggested that SA works well when combining a small number of well-performing forecasts.
In studies using survey data of professional forecasters, it is also expected that each professional
forecaster performs some model screening before satisfactorily settling down with his/her own
forecast. In these cases, there may not be particularly poor candidate forecasts, and the candidates
(at least the top ones) tend to contribute more or less equally to the optimal combination, making SA
a competitive method. In Section 8, we use Monte Carlo examples to show that screening can be a
source of FCP. Lastly, the puzzle can also be a result of publication bias; people expect sophisticated
methods to work better than simple ones and tend to emphasize their surprising results when the
converse is actually observed.

Furthermore, we partially address the issues raised in the third aspect and provide some auxiliary
information on the behavior of SA in Sections 6–8. In particular, SA’s performance may change
significantly or even substantially when an optimal, poor, or redundant forecast is added or the degree
of the screening of the candidate forecasts is done differently, among others.

3. Problem Setup

Suppose that an analyst is interested in forecasting a real-valued time series y1, y2, · · · . Given
each time point t ≥ 1, let xt be the (possibly multivariate) information variable vector revealed
prior to the observation of yt. The xt may not be accessible to the analyst. Conditional on xt and
zt−1 =: {(xj, yj), 1 ≤ j ≤ t − 1}, yt is subsequently generated from some unknown distribution
pt(·|xt, zt−1) with conditional mean mt = E(yt|xt, zt−1) and conditional variance vt = Var(yt|xt, zt−1).
Then, yt can be represented as yt = mt + εt, where εt is the random noise with conditional mean and
conditional variance being zero and vt, respectively.

Assume that prior to the observation of yt, the analyst has access to K real-valued candidate
forecasts ŷt,i (i = 1, · · · , K). These forecasts may be constructed with different model structures, and/or
with different components of the information variables, but the details regarding how each original
forecast is created may not be available in practice and are not assumed to be known. The analyst’s
objective in (linear) forecast combination is to construct a weight vector wt = (wt,1, · · · , wt,K)

T ∈ RK,
based on the available information prior to the observation of yt, to find a point forecast of yt by
forecast combination ŷt,wt = ∑K

i=1 wt,i ŷt,i. The weight vector may be different at different time points.
At time t− 1, the optimal weight minimizes the forecast risk of the combined forecast E(yt − ŷt,wt)

2

with wt in a given set (e.g., the set of all convex weight vectors, i.e., {wt : wt,i ≥ 0, ∑K
i=1 wt,i = 1};

or the set of all real vectors, i.e., {wt : −∞ < wt,i < ∞, 1 ≤ i ≤ K}). Alternatively, the optimal
weights can also be defined conditionally by minimizing E(yt − ŷt,wt | Ht−1)

2, whereHt−1 consists of
all variables available for error prediction at time t− 1 (Gibbs and Vasnev 2017).

To gauge the performance of a procedure that produces forecasts {ŷt, t = 1, 2, . . . }, given time
horizon T, we consider the average forecast risk:

RT =
1
T

T

∑
t=1

E(yt − ŷt)
2
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in our analysis and simulation studies. For real data evaluation, since the risk cannot be computed, we
used the mean squared forecast error (MSFE) as a substitute:

MSFET =
1
T

T

∑
t=1

(yt − ŷt)
2.

According to the FCP, simple methods with little or no time variation in weight w (e.g., equal
weighting) often outperform complicated methods with much time variation in terms of RT
and MSFET .

Since AFTER (Yang 2004) is one of the typical methods designed for the CFA scenario and plays
an important role in our following discussion, we briefly describe the AFTER weight assignment
procedure in the next subsection.

AFTER Method

At each time point t − 1 (prior to the observation of yt), AFTER updates the weight for the
candidate forecasts based on their previous forecast performance and assigns to the forecast ŷt,i
(1 ≤ i ≤ K) the weight:

wt,i =

t−1

∏
j=1

v̂−1/2
j,i exp

(
−λ

t−1

∑
j=1

ψ
(
(yj − ŷj,i)/v̂1/2

j,i
))

K

∑
i′=1

t−1

∏
j=1

v̂−1/2
j,i′ exp

(
−λ

t−1

∑
j=1

ψ
(
(yj − ŷj,i′)/v̂1/2

j,i′
)) , (1)

where ψ(·) is a pre-specified loss function, λ is a tuning parameter, and v̂j,i is an estimate of the
conditional variance vj from the ith candidate forecast prior to the observation of yj. More explicitly,
we can write (1) as an efficient weight updating scheme:

wt,i =
wt−1,i v̂

−1/2
t−1,i exp

(
−λψ

(
(yt−1 − ŷt−1,i)/v̂1/2

t−1,i
))

K

∑
i′=1

wt−1,i′ v̂
−1/2
t−1,i′ exp

(
−λψ

(
(yt−1 − ŷt−1,i′)/v̂1/2

t−1,i′
)) .

In practice, we can let v̂j,i be the sample variance of the previous forecast errors of the ith candidate
forecast and set the tuning parameter λ to be one. Throughout this paper, we let ψ(·) be the quadratic
loss ψ(x) = x2. Under some mild regularity conditions, Theorem 5 in Yang (2004) shows that, in terms
of the average forecast risk, AFTER can automatically match the performance of the best individual
candidate forecast, with a relatively small price of C log(K)/T for some positive constant C > 0.

4. CFA versus CFI: A Hidden Source of FCP

In this section, we study the performance of forecast combination methods under the two distinct
scenarios discussed in Section 2. Not recognizing these scenarios can itself result in FCP. We used two
simple, but illustrative Monte Carlo examples under regression settings similar to those of Huang and
Lee (2010) to demonstrate the CFA and CFI scenarios.

Case 1. Suppose yt (t = 1, · · · , T) is generated by the linear model:

yt = xtβ + εt,
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where xt’s are i.i.d. N(0, σ2
X) and εt’s are independent of xt’s and are i.i.d. N(0, σ2). Consider the

two candidate forecasts generated by:

Forecast 1: ŷt,1 = xt β̂t;

Forecast 2: ŷt,2 = α̂t,

where β̂t and α̂t are both obtained from ordinary least squares (OLS) estimation using
historical data.

Given that Forecast 1 essentially represents the true model, its combining with Forecast 2 cannot
improve the performance of the best individual forecast asymptotically, thus giving an example of
the CFA scenario. Let T0 be a fixed start point of the evaluation period, and let T be the end point.
Given the evaluation period from T0 to T, let RT,1, RT,2, and RT,w be the average forecast risks of
Forecast 1, Forecast 2, and the combined forecast, respectively. If we let RT,SA be the average forecast
risk at time T for SA, we expect that RT,SA > RT,1. Indeed, Proposition A1 in the Appendix A shows:

RT,1

RT,SA
→ σ2

σ2 + β2σ2
X/4

as T → ∞, (2)

and asymptotically, the optimal combination assigns all the weight to Forecast 1. Under a CFA scenario
such as this case, since the best candidate is unknown and often difficult to identify, the natural goal of
forecast combination is to match the performance of the best candidate.

Case 2. Suppose yt (t = 1, · · · , T) is generated by the linear model:

yt = xt,1β1 + xt,2β2 + εt,

where the xt = (xt,1, xt,2)
T are i.i.d. following a bivariate normal distribution with mean 0 and

common variance σ2
X = σ2

X1
= σ2

X2
. Let ρ denote the correlation between xt,1 and xt,2. The random

error εt’s are independent of xt’s and are i.i.d. N(0, σ2). Consider the two candidate forecasts
generated by:

Forecast 1: ŷt,1 = xt,1 β̂t,1;

Forecast 2: ŷt,2 = xt,2 β̂t,2,

where β̂t,1 and β̂t,2 are both obtained from OLS estimation with historical data.

Different from Case 1, Case 2 presents a scenario where each candidate forecast employs only
part of the information set. It is expected, to some extent, that combining the two forecasts works like
pooling different sources of important information, resulting in performance better than either of the
candidate forecasts. By defining the average forecast risks RT,1, RT,2, RT,SA the same way as in Case 1,
we can see from Proposition A2 in the Appendix A that:

RT,1

RT,SA
→

σ2
X
(
(1 + ρ2)β2

2 − 2ρ2β1β2
)
+ σ2

1
2 σ2

X(1− ρ2)
(
(β2

1 + β2
2)/2− ρ2β1β2

)
+ σ2

as T → ∞. (3)

Clearly, when the two coefficients are not very different and the two information sets are not
highly correlated, SA can significantly improve the forecast performance over the best candidate. This
case gives one straightforward example of the CFI scenario, and it is appropriate to seek the more
aggressive goal of finding the best linear combination of candidate forecasts.

Our view is that the discussion of the FCP should take into account the different combining
scenarios. Next, we perform Monte Carlo studies on the two cases to provide an explanation.
Combining methods suitable for the CFA scenario have been developed to target the performance of
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the best individual candidate. In our numerical studies, we chose the AFTER method (Yang 2004) as
representative, and it is known that AFTER pays a smaller estimation price than methods that target
the optimal linear or convex weighting. In contrast, combining methods for the CFI scenario usually
attempt to estimate the optimal weight. For simplicity, we chose linear regression of the response
on the candidate forecasts (LinReg) as the representative. The method of Bates and Granger (1969)
without estimating correlation (BG) was used as an additional benchmark.

For Case 1, we performed simulations as follows. Set σ2 = σ2
X = 1. Consider a sequence of 20 β’s

such that the corresponding signal-to-noise (S/N) ratios are evenly spaced between 0.05 and five in the
logarithmic scale. For each β, we conduct the following simulation 100 times to estimate the average
forecast risk. A sample of 100 observations is generated. The first 60 observations are used to build
the candidate forecast models, which are subsequently used to generate forecasts for the remaining
40 observations. The methods of SA, BG, AFTER, and LinReg are applied to combine the candidate
forecasts, and the last 20 observations are used for performance evaluation. The average forecast risk
of each forecast combination method is divided by that of SA to obtain the normalized average forecast
risk (denoted by normalized RT). The results are summarized in Figure 1.

0.05 0.10 0.20 0.50 1.00 2.00 5.00

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

S/N Ratio

N
or

m
al

iz
ed

 R
T 

AFTER
BG
LinReg

Figure 1. (Case 1) Comparing the average forecast risk of different forecast combination methods (the
dashed line represents the simple average (SA) baseline; the x-axis is in logarithmic scale). BG, Bates
and Granger; LinReg, linear regression.

In Case 2, we set ρ = 0 and β = β1 = β2 for simplicity. The remaining simulation settings are the
same as Case 1. The normalized average forecast risks (relative to SA) are summarized in Figure 2.

It is clear from Figure 1 that AFTER was the preferred method of choice under the CFA scenario
presented in Case 1. LinReg, on the other hand, consistently underperformed compared to AFTER.
Interestingly, when S/N was relatively low (less than 0.35), we observed the “puzzle” that LinReg
performed worse than SA, which is due to the weight estimation error. If we correctly identify that it is
the CFA scenario and apply a corresponding method like AFTER, the “puzzle” disappears: AFTER
can perform better than (or very close to) SA.
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Figure 2. (Case 2) Comparing the average forecast risk of different forecast combination methods (the
dashed line represents the SA baseline; the x-axis is in the logarithmic scale).

In Case 2, if AFTER was applied under this CFI scenario, we observed the “puzzle” that SA
outperformed AFTER. Once we understand the difference between the CFA and CFI scenarios, this
“puzzle” is not surprising: while AFTER is designed to target the performance of the best individual
forecast, (3) shows that SA can improve over the best individual forecast in Case 2. LinReg appeared
to be the correct method of choice when the S/N ratio was relatively high. However, similar to what
was observed in Case 1, LinReg suffered from weight estimation error when the S/N ratio was low,
once again giving the “puzzle” that LinReg performed worse than SA.

Case 2 also shows the interesting observation that it was not always optimal to apply SA even
when SA was the “optimal” weight in a restricted sense. Indeed, (A2) and (A3) in Proposition A2
imply that if we adopted the common restriction that the sum of all weights was one, SA was the
asymptotic optimal weight. However, if we imposed no restriction on the weight range, the asymptotic
optimal weight assigned a unit weight to each candidate forecast. This also explained the advantage of
LinReg over SA in Case 2 when the S/N ratio was large.

In the simulation exposition, we also considered the information variables xt and xt,i (i = 1, 2) to
have AR(1) model assumptions: for Case 1, assume xt satisfies:

xt = φxt−1 + ξt, (4)

where ξt’s are normally distributed random errors with mean zero and xt’s are marginally normal
with mean zero and variance σ2

X ; for Case 2, assume xt,i’s follow the same AR(1) settings as (4). We set
φ = 0.7 and σX = 1 and repeated the same experiment as described before. The corresponding results
on the normalized average forecast risk are summarized in Figures A1 and A2 in the Appendix A,
which show similar patterns as those of Figures 1 and 2.

The observations above illustrate that different combining methods can have strikingly different
performance depending on the underlying scenario. The FCP can appear when a combining method
is not properly chosen according to the correct scenario. Without knowing the underlying scenario,
comparing these methods may not provide a complete picture of FCP. We advocate the practice of
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trying to identify the underlying scenario (CFA or CFI) when considering forecast combination, which
will be further explored in Rolling et al. (2019). It should be pointed out that when the relevant
information is limited, it may not be feasible to identify confidently the forecast combination scenario.
In such a case, a forced selection, similar to the comparison of model selection and model combining
(averaging) described in Yuan and Yang (2005), would induce enlarged variability of the resulting
forecast. An alternative reasonable solution could be an adaptive combination of forecasts as illustrated
in the next section.

5. Multi-level AFTER

With the understanding in Section 4, we see that when considering forecast combination methods,
effort should be made to understand whether there is much room for improvement over the best
candidate. When this is difficult to decide or impractical to implement due to handling a large
number of quantities to be forecast in real time, we may turn to the question: Can we find an adaptive
(or universal) combining strategy that performs well in both CFA and CFI scenarios? Note that here
adaptive refers to adaptation to the forecast combination scenario (instead of adaptation to achieving
the best individual performance). Another question follows: Under the CFI scenario, can the adaptive
combining strategy still perform as well as SA when the price of estimation error is high? As we have
seen in Case 2 of Section 4, using methods (e.g., LinReg) intended for the CFI scenario alone cannot
successfully address the second question.

It turns out that the answers to these two questions are affirmative. The idea is related to a
philosophical comment in Clemen et al. (1995, p. 134):

Any combination of forecasts yields a single forecast. As a result, a particular combination of
a given set of forecasts can itself be thought of as a forecasting method that could compete...

The use of forecast (or procedure) combination is a theoretically powerful tool to achieve adaptive
minimax optimality (e.g., Yang 2004; Wang et al. 2014). In the context of our discussion, combined
forecasts such as SA, AFTER, and LinReg can all be considered as the candidate forecasts and may be
used as individual candidates in a forecast combination scheme.

Accordingly, we designed a two-step combining strategy: first, we constructed three new
candidate forecasts using SA, AFTER, and LinReg; second, we applied the AFTER algorithm on
these new candidate forecasts to generate a combined forecast. We refer to this two-step algorithm
as multi-level AFTER (mAFTER) because two layers of the AFTER algorithms are involved. The key
lies in the AFTER algorithm in the second step, which allows mAFTER to target automatically the
performance of the best individual candidate among SA, AFTER, and LinReg. Under the CFA scenario,
mAFTER can perform as if we are using AFTER alone considering that AFTER is the proper method
of choice. Under the CFI scenario, mAFTER can perform close to the better of SA and LinReg. Thus,
when LinReg has relatively high estimation error, mAFTER will perform close to SA and thereby
reduce the high cost.

Indeed, if we denote the forecasts generated from SA, LinReg, and mAFTER by ŷ(SA)
t , ŷ(LR)

t , and

ŷ(M)
t , respectively, we have Proposition 1 as follows.

Proposition 1. Under the regularity conditions shown in the Appendix A, the average forecast risk of the
mAFTER strategy satisfies:

1
T

T

∑
t=T0

E(yt − ŷ(M)
t )2 ≤min

(
inf

1≤i≤K

1
T

T

∑
t=T0

E(yt − ŷt,i)
2 +

c1 log(K)
T

,

1
T

T

∑
t=T0

E(yt − ŷ(SA)
t )2 +

c2

T
,

1
T

T

∑
t=T0

E(yt − ŷ(LR)
t )2 +

c2

T

)
,

where c1 and c2 are some positive constants not depending on the time horizon T.
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Proposition 1 is a consequence of Theorem 5 in Yang (2004). It indicates that, in terms of the
average forecast risk, mAFTER can match the performance of the best original individual forecast,
the SA forecast, and the LinReg forecast (whichever is the best), with a relatively small price of order
at most log(K)/T.

To confirm that the mAFTER strategy can mitigate the “puzzles” illustrated in the previous
section, we repeated the simulation studies of Case 1 and Case 2 and summarize the results in Figures 3
and 4, respectively. In Case 1, mAFTER correctly tracked the performance of AFTER. In Case 2, when
S/N was relatively large (>0.5), mAFTER took advantage of the opportunity to improve over the
original individual forecasts and performed very close to LinReg; when S/N was relatively small
(<0.5), mAFTER behaved very similarly to SA and reduced the relatively heavy estimation error by
LinReg. We also performed the simulation with information variables under AR(1) as (4); the results
are summarized in Figures A3 and A4 in the Appendix A, which show similar patterns as that of
Figures 3 and 4. Rather than relying on SA, a “sophisticated” combining strategy like mAFTER can be
an appealingly safe method that, to some extent, mitigates FCP.

Note that mAFTER is a rather general forecast combination strategy. In the first step of the strategy,
the analyst can choose their own way of generating new candidate forecasts (not necessarily restricted
to AFTER and LinReg), as long as they include SA, representative methods for the CFA scenario, and
representative methods for the CFI scenario. AFTER and LinReg were simply chosen in our study as
convenient representatives. We also demonstrate the performance of the mAFTER strategy in the real
data example in Section 9.
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Figure 3. (Case 1) Performance of mAFTER under the adaptation scenario (the dashed line represents
the SA baseline; the x-axis is in the logarithmic scale).
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Figure 4. (Case 2) Performance of mAFTER under the improvement scenario (the dashed line represents
the SA baseline; the x-axis is in logarithmic scale).

6. Is SA Really Robust?

The SA has been praised for being robust among the top performers relative to other forecast
combination methods. It is obvious that SA cannot be robust in the traditional statistical sense:
even a single really bad candidate can damage the performance of the combined forecast to an
arbitrarily worse position. A more interesting question is to assess the robustness of SA in practically
relevant settings.

The previous two sections showed that SA is not always robust in terms of its relative performance
when dealing with the two different scenarios. In this section, we show that SA is not robust even in
the loose sense when new forecast candidates are added to the candidate pool, especially if the new
candidates have only redundant information with respect to the original candidate pool. In contrast,
the AFTER-type combining methods can be rather robust against adding poor or redundant candidate
forecasts. Here, we consider the following three cases.

Case 3. Suppose a new information variable xt,3 has the same distribution as xt,1 and is independent
of zt−1, yt, and (xt,1, xt,2). A new candidate forecast ŷt,3 = xt,3 β̂t,3 joins the candidate pool in
Case 2, where β̂t,3 is obtained from OLS estimation with historical data.

Case 4. A new candidate forecast ŷt,3 = xt,2 β̂t,2 identical to Forecast 2 joins the candidate pool in
Case 2.

Case 5. A new candidate forecast ŷt,3 = x̃t,2 β̃t,2 is generated using a transformed information variable
x̃t,2 = exp(xt,2), where β̃t,2 is obtained from OLS estimation with historical data. This new
forecast joins the candidate pool in Case 2.

Note that the new candidate in Case 3 is a very poor forecast, while the new candidates in Case 4
and Case 5 contain a subset of the information variables. In all of the cases above, no new information
is added to the candidate pool. Following the same simulation setting as Case 2, we focused on
SA and AFTER and computed the ratio between the MSFE after adding the new candidate and the
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MSFE in Case 2. Figure 5 shows that the performance of AFTER remained almost the same, while the
performance of SA worsened after adding the non-informative or redundant candidate forecasts.
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Figure 5. Studying the robustness of SA against adding new candidate forecasts.

7. Improper Weighting Formulas: A Source of the FCP Revisited

Generally speaking, the popular forecast combination methods often implicitly assume that
the time series and/or the forecast errors are stationary. It is expected in theory that they should
perform well if we have access to long enough historical data. In practice, however, such derived
weighting formulas can often be unsuitable when the DGP changes and the candidate forecasts
cannot adjust quickly to the new reality. For example, it is often believed that structural breaks can
unexpectedly happen, making the relative performance of the candidate forecasts unstable and giving
us the impression that SA performs well.

Next, we use a Monte Carlo example to illustrate the FCP under structural breaks. Rather than
assuming deterministic shifts in information variables (Hendry and Clements 2004), we considered
breaks in the DGP dynamics:

yt =


∑4

k=1 β1,kyt−k + εt if 1 ≤ t ≤ 50,

β2,1yt−1 + β2,2yt−2 + εt if 51 ≤ t ≤ 100,

β3,1yt−1 + εt if 101 ≤ t ≤ 150,

where the coefficients β j,k (j = 1, 2, 3) are randomly generated from the uniform distribution on (0, 1)
and εt’s are i.i.d. N(0, 1). Here, structural breaks happen at t = 50 and t = 100. The candidate forecast
models are autoregressions from Lag 1 to Lag 6, and we apply SA, BG, LinReg, and AFTER to generate
the combined forecasts. The simulation was repeated 100 times, and the last 100 time points served
as the evaluation period to obtain the average forecast risk. For comparison, we considered the BG,
LinReg, and AFTER methods with estimation rolling window size rw = 20 or 40, meaning only the
most recent rw observations were used to estimate the weights for each forecast. The results are
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summarized in Table 1. The average forecast risk was normalized with respect to SA, and the numbers
in parentheses are standard errors.

Table 1. Comparing the normalized average forecast risk of different combination methods under
structural breaks.

SA LinReg BG AFTER

standard 1.000 1.026 (0.011) 1.005 (0.003) 1.047 (0.010)
rw = 40 1.000 1.060 (0.033) 0.992 (0.002) 0.991 (0.009)
rw = 20 1.000 1.64 (0.42) 0.980 (0.003) 0.952 (0.007)

We can see from Table 1 that all three standard combining methods, when finding weights using
all historical data, underperformed compared to SA due to the unstable relative performance of
candidate forecasts. As we shrank the estimation window size to the most recent 40 and 20 time points,
BG and AFTER achieved better performance than SA, while the performance of LinReg worsened.
This result can be understood by noting that there are two opposing factors when we shrink the weight
estimation window. When using only the most recent forecasts, we decreased the bias of the weighting
formula supported by the old data, but simultaneously increased the variance of the estimated weight.
Among the three methods considered, the estimation error factor dominated for LinReg. On the other
hand, AFTER was not designed to target aggressively the optimal weight, thus benefiting more from
the shrinking rolling window.

Due to the complex impact of structural breaks on forecast combination methods, it is arguably
true that the focus should be made on how to detect the problem (e.g., Altissimo and Corradi 2003;
Davis et al. 2006) and how to come up with new combining forms accordingly (e.g., using the most
recent observations to avoid an improper weighting formula). However, proper identification of
structural breaks can be difficult to achieve in practice, and this example shows that in the presence of
structural breaks, the relative performance of SA was not always robust compared to BG and AFTER
with naively-chosen rolling windows.

8. Linking Forecast Model Screening to FCP

In empirical studies, the candidate forecasting models are often screened/selected in some way
to generate a smaller set of candidates for combining. As is demonstrated in Case 3 of Section 6,
the performance of SA was particularly susceptible to poorly-performing candidate models. Therefore,
the common practice of model screening may contribute to improving the observed performance of
SA.

Next, we illustrate the impact of screening with a Monte Carlo example. Let xt ∈ Rp (p = 20)
be the p-dimensional information variable vector randomly generated from a multivariate normal
distribution with mean 0 and covariance Σ, where (Σ)i,j = ρ|i−j| and ρ = 0 or 0.5. Consider a DGP
with the linear model setting:

yt = xT
t β + εt,

where coefficient β = (3, 3, 2, 1, 1, 1, 1, 0, 0, · · · , 0) and εt are i.i.d. N(0, σ2) with σ = 2 or 4. Under this
setting, only the first seven variables in xt are important for yt, while the remaining variables are not.

If we assume that the analyst has full access to the information vector xt’s, we may build linear
models as the candidate forecasts with any subset of the information variables. If we select the best
subset model with the right size using the ABC criterion (Yang 1999) or combine the subset regression
models by proper adaptive combining methods (Yang 2001), the prediction risk can adaptively achieve
the minimax optimality over soft and hard sparse function classes (Wang et al. 2014). Inspired by this
result, we considered the following screening-and-combining approach. First, given the model size
(that is, the number of information variables used in a candidate linear model), choose the best OLS
model based on the residual sum of squares. Second, from the p models selected from the first step,
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find the best X% (X = 10, 20, 40, 60, 80) of the models based on the ABC criterion. Note that the ABC
criterion for a subset model with size r is ABC(r) = ∑n

t=1(yt − ŷt,r)2 + 2rσ2 + σ2 log (p
r), where n is

the estimation sample size, ŷt,r is the fitted response, and σ2 can be replaced by the usual unbiased
estimates of σ2. The selected subset models after this two-step procedure were then used to build
the candidate forecasts for combining. In simulation, the total time horizon was set to be 200. The
screening procedures were applied to the first 100 observations, and the remaining models were used
to build the candidate forecasts for the latter 100 time points. Different forecast combination methods
were applied, and their performance is evaluated using the last 50 observations. The simulation was
repeated 100 times, and the normalized average forecast risk (relative to SA) is summarized in Table 2.

Table 2. Comparing the normalized average forecast risk of different forecast combination methods
after the procedure of screening and selecting the best X% models for subsequent forecast combining.

Best X% 10% 20% 40% 60% 80%

σ = 2, ρ = 0

AFTER 0.998 0.989 0.966 0.951 0.945
BG 1.000 0.999 0.997 0.997 0.996
LinReg 1.017 1.024 1.056 1.098 1.151

σ = 2, ρ = 0.5

AFTER 0.996 0.990 0.968 0.956 0.951
BG 1.000 0.998 0.997 0.997 0.996
LinReg 1.013 1.024 1.043 1.095 1.159

σ = 4, ρ = 0

AFTER 0.994 0.987 0.984 0.981 0.974
BG 0.999 0.998 0.998 0.998 0.997
LinReg 1.002 1.012 1.056 1.101 1.163

σ = 4, ρ = 0.5

AFTER 0.995 0.990 0.976 0.969 0.961
BG 1.000 0.999 0.998 0.997 0.997
LinReg 1.004 1.010 1.030 1.086 1.136

Table 2 shows that AFTER outperformed all the other competitors including SA in this case study.
This is consistent with our understanding of a typical CFA scenario, under which AFTER is the proper
choice of combining method. However, as we decreased X and selected smaller sets of candidate
forecasts for combining, the performance of SA gradually approached that of AFTER. LinReg, which
is not a proper choice under the CFA scenario, appeared to underperform compared to SA. As X
decreased, LinReg became less subject to weight estimation error, and the performance of LinReg
improved relative to SA.

From this example, we can see that the performance of SA was not robust to the degree of
screening. Generally, it can be a challenging task to ensure an optimal screening to make SA perform
well. Without a good screening/selection rule, it leaves too much freedom for the analyst to make
reliable decisions. We note that a possible solution is to first create new candidate forecasts (e.g.,
forecasts generated by linear regression methods) to utilize most or all of the important information,
and then the roles of a good screening/selection rule can be played by applying the multi-level AFTER
approach (introduced in Section 5) on both the original forecasts and the combined forecasts to reduce
the influence of the poorly-performing or redundant forecasts.

9. Real Data Evaluation

In this section, we study the U.S. SPF (Society of Professional Forecasters) dataset to evaluate
SA and the mAFTER strategy. This dataset is a quarterly survey on macroeconomic forecasts in the
United States. Lahiri et al. (2013) nicely handled the missing forecasts by adopting two missing forecast
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imputation strategies known as the regression imputation (REG-Imputed) and the simple average
imputation (SA-Imputed) to generate the complete panels (see also the updates in Lahiri et al. 2017).
As pointed out by Lahiri et al. (2013), the change of the data administration agency in 1990 and the
subsequently shifting missing data pattern made it difficult to use the entire data period for meaningful
evaluation. In this empirical illustration, we adopted this missing forecast imputation and the forecast
selection strategies; we used the datasets shared by Lahiri et al. (2013) on the period from 1968 to 1990
(pre-1990 period) and the period from 2000 to 2013 (post-2000 period) to evaluate the performance of
the mAFTER strategy. Note that an alternative and convenient way to handle missing data was also
discussed in Matsypura et al. (2018) for certain covariance-based combination methods.

Three macroeconomic variables are considered: seasonally-adjusted annual rate of change for
GDP price deflator (PGDP), growth rate of real GDP (RGDP), and quarterly average of the monthly
unemployment rate (UNEMP). For the pre-1990 period, the datasets for RGDP and PGDP had 14
candidate forecasts, and the datasets for UNEMP had 13 candidate forecasts. For the post-2000 period,
all the datasets had 19 candidate forecasts. Each forecast provided g-quarter-ahead (g = 1, 2, 3, 4)
forecasting. We applied SA, AFTER, BG, LinReg, and mAFTER to each SPF dataset of a macroeconomic
variable with a given missing forecast imputation method. Each forecast combination method used
the first 20 time points to build up the initial weights, and the remaining time points were used to
calculate the normalized MSFE of each method relative to SA. By taking the average over the four
MSFEs that correspond to the 1,2,3,4-quarter ahead forecasting, we summarize the performance of
different combining methods in Table 3 for the pre-1990 period and Table 4 for the post-2000 period.

Table 3. Comparing the performance of forecast combination methods with the Society of Professional
Forecasters (SPF) datasets (pre-1990 period). Values shown are normalized MSFEs averaged over 1-,
2-, 3-, and 4-quarter-ahead forecasting. mAFTER, multi-level AFTER; RGDP, growth rate of real GDP;
UNEMP, quarterly average of the monthly unemployment rate; REG, regression.

Target Variable SA LinReg BG AFTER mAFTER

REG-imputed

PGDP 1.00 1.88 0.95 0.90 0.90
RGDP 1.00 1.64 1.00 1.11 1.01
UNEMP 1.00 1.79 0.99 0.98 0.98

SA-imputed

PGDP 1.00 2.17 0.98 0.95 0.95
RGDP 1.00 1.83 1.00 1.13 1.03
UNEMP 1.00 1.69 0.99 0.97 0.98

From Table 3 for the pre-1990 period, although AFTER performed quite differently with different
target macroeconomic variables, the mAFTER strategy delivered overall robust performance for all
three variables. For PGDP, AFTER performed the best and beat SA by as much as 10%. Using
mAFTER successfully maintained this advantage over SA. For RGDP, while SA and BG beat AFTER
by up to 13%, mAFTER successfully pulled the performance to be within 3% of SA. Finally, for the
UNEMP variable, SA, BG, and AFTER all performed very similarly with no more than a 3% difference,
and the performance of mAFTER did not deviate much from either SA or AFTER. The LinReg method
performed poorly for all three target variables. It is interesting to note from Figure 6 that for both the
PGDP and RGDP variables, the largest performance difference between SA and AFTER was found
in the one-quarter ahead forecasting; in each case, mAFTER robustly matched the better of SA and
AFTER.
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Figure 6. Comparing normalized MSFEs of different forecast combination methods with REG-Imputed
SPF datasets (pre-1990 period). Left panel: PGDP variable. Right panel: RGDP variable. For each
method, the bars from left to right represent 1-, 2-, 3-, and 4-quarter ahead forecasting results,
respectively. The dashed line represents the SA baseline.

Table 4. Comparing the performance of the forecast combination methods with SPF datasets (post-2000
period). Values shown are normalized MSFEs averaged over 1-, 2-, 3-, and 4-quarter ahead forecasting.

Target Variable SA LinReg BG AFTER mAFTER

REG-imputed

PGDP 1.00 5.70 1.00 1.15 1.02
RGDP 1.00 6.55 1.00 1.03 1.02
UNEMP 1.00 1.03 0.95 0.90 0.91

SA-imputed

PGDP 1.00 8.05 1.00 1.15 1.02
RGDP 1.00 3.03 1.02 1.03 1.02
UNEMP 1.00 1.01 0.96 0.92 0.93

Like the pre-1990 period, we observe from Table 4 for the post-2000 period that AFTER continued
to exhibit very different performance across different target variables, while mAFTER remained
relatively robust. In particular, for the UNEMP variable, AFTER performed well compared to SA
by reducing the averaged MSFEs by as much as 10%; satisfactorily, mAFTER largely maintained
the performance advantage of AFTER. On the other hand, for the PGDP variable, the averaged
MSFEs for the plain-vanilla AFTER were about 15% higher than those of SA and BG, but mAFTER
successfully improved the performance of AFTER to be within 3% of SA. For the RGDP variable,
SA, BG, and AFTER (including mAFTER) performed similarly with no more than a 3% difference.
These observed empirical results coincided with the robustness expectation from Proposition 1 on the
mAFTER strategy.

10. Conclusions

Inspired by the seemingly mysterious FCP, we attempted to offer some explanations of why the
puzzle can occur and investigated when a sophisticated combining method can work well compared
to SA. Our study illustrated that the following reasons may contribute to the puzzle.

First, estimation error is known to be an important source of FCP. Both theoretical and empirical
evidence show that a relatively small sample size may prevent some combining methods from reliably
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estimating the optimal weight. Second, FCP can appear if we apply a combining method without
consideration of the underlying data scenarios. The relative performance of SA may depend heavily
on which scenario is more proper for the data. Third, the weighting formula of the combining methods
is not always appropriate for the data, because structural breaks and shocks can unexpectedly happen.
The weighting formula obtained by sophisticated methods may not adjust fast enough to the reality,
resulting in performance less stable than SA. Fourth, candidate forecasts are often screened in some
way so that the remaining forecasts used for combining tend to have similar performance, and SA may
tend to work well in such cases. However, SA can be sensitive to the screening process, and enlarging
the pool of candidates may benefit other combination methods; therefore, empirical observations
that SA works well after model screening should be taken with a grain of salt. Fifth, there may be
publication bias in that people tend to report the existence of FCP when SA gives good empirical
results, but may not emphasize the performance of SA when it gives mediocre results.

Regarding the first two reasons above, it is not hard to find data and build candidate forecasts in a
certain way to favor a sophisticated or simple method. Under the CFA scenario, the estimation price can
be mitigated by applying combining methods designed to target the performance of the best candidate
forecast. Under the CFI scenario, past literature has properly pointed out the potentially high cost of
estimation error when targeting the optimal weight, but we do not necessarily have to pay a very high
cost. A carefully-designed mAFTER strategy can perform aggressively to target the optimal weight
when information is sufficient to support exploiting the optimal weighting and perform conservatively
like SA when the degree of estimation error is high. mAFTER can also intelligently perform according
to the underlying scenario (CFA or CFI), circumventing the “puzzle” caused by improperly-chosen
combining methods. Lastly, it is worth noting that FCP, a classical issue that emerged decades ago,
remains to be a relevant topic and testbed for further understanding of important forecast combination
methods; it would be interesting to exploit the proposed ideas and strategies here to the new post-M4
competition settings (Makridakis et al. 2018), and we leave comprehensive exploration efforts for
future investigation.
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Appendix A

Appendix A.1. Assumptions of Proposition 1

The following two assumptions are sufficient regularity conditions for Propostion 1. Note
that Assumption A1 is satisfied if we truncate the candidate forecasts to have certain lower and
upper bounds. Assumption A2 is satisfied if the conditional distributions of the random noise are
sub-Gaussian.

Assumption A1. There exists a positive constant M such that the candidate forecasts satisfy with probability
one that:

sup
1≤i≤K,1≤t≤T

|mt − ŷt,i| ≤ M.
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Assumption A2. There exist a constant r0 > 0 and continuous functions 0 < h1(r), h2(r) < ∞ on [−r0, r0]

such that for every 1 ≤ t ≤ T and r ∈ [−r0, r0],

E
(
|εt|2 exp(r|εt|)| xt, zt−1

)
≤ h1(r) and:

E
(
exp(r|εt|)| xt, zt−1

)
≤ h2(r)

with probability one.

Appendix A.2. Propositions and Proofs

Proposition A1. Under the settings of Case 1, the average forecast risk of Forecast 1 relative to the SA satisfies:

RT,1

RT,SA
→ σ2

σ2 + β2σ2
X/4

as T → ∞.

In addition, if we consider the weight vectors in R2, the asymptotic optimal combination weight w∗ satisfies:

w∗ =: arg min
w∈R2

(
lim

T→∞
RT,w

)
=

(
1
0

)
.

Proposition A2. Under the settings of Case 2, the average forecast risk of Forecast 1 relative to the SA satisfies:

RT,1

RT,SA
→

σ2
X
(
(1 + ρ2)β2

2 − 2ρ2β1β2
)
+ σ2

1
2 σ2

X(1− ρ2)
(
(β2

1 + β2
2)/2− ρ2β1β2

)
+ σ2

as T → ∞. (A1)

In addition, the asymptotic optimal combination weight w̃∗ under the restriction Θ = {w : w1 + w2 =

1} satisfies:

w̃∗ =: arg min
w∈Θ

(
lim

T→∞
RT,w

)
=

(
w̃∗1
w̃∗2

)
, (A2)

where:

w∗1 =
(1 + ρ2)β2

1 − β1β2(ρ
3 + 2ρ2 − ρ)

(1 + ρ2)(β2
1 + β2

2)− β1β2(2ρ3 + 4ρ2 − 2ρ)
,

w∗2 =
(1 + ρ2)β2

2 − β1β2(ρ
3 + 2ρ2 − ρ)

(1 + ρ2)(β2
1 + β2

2)− β1β2(2ρ3 + 4ρ2 − 2ρ)
;

in particular, if β1 = β2 and |ρ| 6= 1, then w̃∗ = ( 1
2 , 1

2 )
T . The asymptotic optimal combination weight w∗

without the restriction satisfies:

w∗ =: arg min
w∈R2

(
lim

T→∞
RT,w

)
=


1−ρ(

β2+ρβ1
β1+ρβ2

)

1−ρ2

1−ρ(
β1+ρβ2
β2+ρβ1

)

1−ρ2

 ; (A3)

in particular, if β1 = β2 and |ρ| 6= 1, then w∗ = ( 1
1+ρ , 1

1+ρ )
T .

The proof of Proposition A1 is similar to that of Proposition A2. In the following, we provide a
sketch for the proof of Proposition A2.
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Proof of Proposition A2. Let rT,1 = E(yT − ŷT,1)
2, rT,2 = E(yT − ŷT,2)

2 and rT,w = E(yT − ŷT,w)2 be
the point-wise forecast risks at time T for Forecast 1, Forecast 2, and the combined forecast, respectively.
We will first verify that under the restriction Θ = {w : w1 + w2 = 1},

rT+1,1 = σ2
(

1 +
1

T − 2

)
+ σ2

X β2

(
β2 + β2E

(
ρ̂2 σ̂2

X2

σ̂2
X1

)
− 2ρβ1E

(
ρ̂

σ̂X2

σ̂X1

))
,

rT+1,2 = σ2
(

1 +
1

T − 2

)
+ σ2

X β1

(
β1 + β1E

(
ρ̂2 σ̂2

X1

σ̂2
X2

)
− 2ρβ2E

(
ρ̂

σ̂X1

σ̂X2

))
,

rT+1,w = σ2(1− w2
1 − w2

2) + w2
1rT+1,1 + w2

2rT+1,2 + 2w1w2

(
ρσ2

X β1β2
(
1 +E(ρ̂)2)

− σ2
X β1β2E

(
ρ̂

σ̂X2

σ̂X1

)
− σ2

X β1β2E
(
ρ̂

σ̂X1

σ̂X2

)
+

ρσ2
Xσ2

T
E
( ρ̂

σ̂X1 σ̂X2

))
, (A4)

where σ̂Xi =
√

∑T
t=1 x2

t,i/T is the estimated covariate standard deviation (i = 1, 2) and ρ̂ = ∑T
t=1 xt,1xt,2
Tσ̂X1 σ̂X2

is the estimated covariate correlation.
First, we have:

rT+1,1 = E(yT+1 − xT+1,1 β̂T+1,1)
2

= E
(

εT+1 + xT+1,1β1 + xT+1,2β2 −
xT+1,1 ∑T

t=1 xt,1yt

∑T
t=1 x2

t,1

)2

= σ2 +E
(

xT+1,1β1 + xT+1,2β2 −
xT+1,1 ∑T

t=1 xt,1((xt,1 + xt,2) β + εt)

∑T
t=1 x2

t,1

)2

= σ2 +E(xT+1,2β2)
2 +E

(
(xT+1,1β2)

2(∑T
t=1 xt,1xt,2

∑T
t=1 x2

t,1

)2
)
+E

( x2
T+1,1(∑

T
t=1 xt,1εt)2

(∑T
t=1 x2

t,1)
2

)
− 2E

( xT+1,1xT+1,2β1β2 ∑T
t=1 xt,1xt,2

∑T
t=1 x2

t,1

)
= σ2 + σ2

X β2
2 + σ2

X β2
2E
(

ρ̂2 σ̂2
X2

σ̂2
X1

)
+

σ2

T − 2
− 2ρσ2

X β1β2E
(

ρ̂
σ̂X2

σ̂X1

)
.

The expression for rT+1,2 can be derived similarly. For rT+1,w, we have:

rT+1,w = E(yT+1 − w1ŷT+1,1 − w2ŷT+1,2)
2

= σ2 +E
(

w1(xT+1,1β1 + xT+1,2β2 − xT+1,1 β̂T+1,1)

+ w2(xT+1,1β1 + xT+1,2β2 − xT+1,2 β̂T+1,2)
)2

= σ2(1− w2
1 − w2

2) + w2
1rT+1,1 + w2

2rT+1,2 + 2w1w2 A1,

where:

A1 = E
(
(xT+1,1β1 + xT+1,2β2)(xT+1,1β1 − xT+1,1 β̂T+1,1)

)
+E

(
(xT+1,1β1 + xT+1,2β2)(xT+1,2β2 − xT+1,2 β̂T+1,2)

)
+E(xT+1,1xT+1,2 β̂T+1,1 β̂T+1,2)

=: A11 + A12 + A13.
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With tedious algebra, it is not hard to show that:

A11 = −(β1β2σ2
X + β2

2ρσ2
X)E

(
ρ̂

σ̂X2

σ̂X1

)
,

A12 = −(β1β2σ2
X + β2

1ρσ2
X)E

(
ρ̂

σ̂X1

σ̂X2

)
,

A13 = ρσ2
X β1β2

(
1 +E(ρ̂2)

)
+ β2

1σ2
XρE

(
ρ̂

σ̂X1

σ̂X2

)
+ β2

2σ2
XρE

(
ρ̂

σ̂X2

σ̂X1

)
+

ρσ2
Xσ2

T
E
( ρ̂

σ̂X1 σ̂X2

)
.

Together with the previous displays, we verify Formula (A4) for rT+1,w. Subsequently, (A1) can
be verified by noting that the xt’s are normally distributed and that rT,i/RT,i → 1 as T → ∞ (i = 1, 2).
Then, we can apply the Karush–Kuhn–Tucker (KKT) conditions for minimizing limT→∞ RT,w with the
constraint on Θ to obtain (A2) straightforwardly.

When there is no restriction on w, tedious derivation similar to above for rT+1,w gives that:

lim
T→∞

rT+1,w = σ2 + σ2
X(β2

1 + β2
2 + 2ρβ1β2)

+ σ2
X

(
−2w1(β2

1 + 2ρβ1β2 + ρ2β2
2)− 2w2(β2

2 + 2ρβ1β2 + ρ2β2
1)

+ w2
1(β2

1 + ρ2β2
2 + 2ρβ1β2) + w2

2(β2
2 + ρ2β2

1 + 2ρβ1β2)

+ 2w1w2
(
ρ(1 + ρ2)β1β2 + ρ2β2

1 + ρ2β2
2
))

.

Consequently, with first-order optimality conditions, the display above implies (A3). This
completes the proof of Proposition A2.

Appendix A.3. Additional Numerical Results

In the following, we provide the plots for the average forecast risk of different forecast combination
methods when the information variables have the AR(1) assumptions. These plots in Figures A1 to A4
appear to give similar patterns as those of Figures 1 to 4.
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Figure A1. (Case 1) Comparing the average forecast risk of different forecast combination methods
with AR(1) information variables (the dashed line represents the SA baseline; the x-axis is in
logarithmic scale).
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Figure A2. (Case 2) Comparing the average forecast risk of different forecast combination methods
with AR(1) information variables (the dashed line represents the SA baseline; the x-axis is in
logarithmic scale).
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Figure A3. (Case 1) Performance of mAFTER under the adaptation scenario with AR(1) information
variables (the dashed line represents the SA baseline; the x-axis is in logarithmic scale).
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Figure A4. (Case 2) Performance of mAFTER under improvement scenario with AR(1) information
variables (the dashed line represents the SA baseline; the x-axis is in logarithmic scale).
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