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Abstract: In this paper, we study forecasting problems of Bitcoin-realized volatility computed on data
from the largest crypto exchange—Binance. Given the unique features of the crypto asset market, we
find that conventional regression models exhibit strong model specification uncertainty. To circumvent
this issue, we suggest using least squares model-averaging methods to model and forecast Bitcoin
volatility. The empirical results demonstrate that least squares model-averaging methods in general
outperform many other conventional regression models that ignore specification uncertainty.
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1. Introduction

Bitcoin, the first and still one of the foremost applications of blockchain technology by far,
was introduced early in 2008. Until the end of December 2018, the market capitalization of Bitcoin
was roughly $65 billion with $3800 per token. As for the whole Bitcoin network, by the end of
December 2018, there are more than 10,000 full nodes distributed across the world and roughly
$2.5 billion of value transacted on the main network. With the growth of the Bitcoin market, many
investors are starting to view it as an emerging new asset class. In September 2015, the Commodity
Futures Trading Commission (CFTC) in the United States officially designated Bitcoin as a commodity.
Improved measures of Bitcoin volatility enable us to better gauge the current level of volatility and to
understand its dynamics. Most importantly, Bitcoin volatility is now directly tradable,1 which accredits
the importance of Bitcoin volatility forecasting.

How to model and predict the volatility of financial assets is an interesting topic in
risk management. Traditional approaches employ parametric models such as the generalized
autoregressive conditional heteroskedasticity (GARCH) or stochastic volatility models. Recently
a new approach to modeling volatility dynamics has relied on improved measures of ex post volatility
composed from high-frequency intraday data. This new measure is called realized volatility (RV),
which possesses a slowly decaying autocorrelation function, sometimes known as long-memory.2

Various models have been proposed to capture stylized facts of realized volatility series, such as the
fractionally integrated autoregressive moving average (ARFIMA) models3 used in Andersen et al.

1 The CME Group Inc. (Chicago Mercantile Exchange & Chicago Board of Trade) in December 2017 launched Bitcoin future
(XBT), with Bitcoin as the underlying asset.

2 This phenomenon has been documented by Dacorogna et al. (1993) and Andersen et al. (2001b) for the foreign exchange
market and by Andersen et al. (2001a) for stock market returns.

3 ARFIMA is designed to model time series with long memory at the beginning. It is now a popular tool for modeling
volatility, since volatility exhibits long memory.
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(2001b) and the heterogeneous autoregressive (HAR) model proposed by Corsi (2009). Compared with
the ARFIMA model, the HAR model soon gained popularity because of its computational simplicity
(e.g., ordinary least squares) and excellent out-of-sample performance.4

The HAR model can provide an intuitive economic interpretation that agents with three
frequencies of trading (daily, weekly, and monthly) perceive and respond to, which changes the
corresponding components of volatility.5 Nevertheless, the suitability of such a specification is not
subject to enough verification. Craioveanu and Hillebrand (2012) employed a parallel computing
method to investigate all the possible combinations of lags in the additive model. Others tested the
validity of the lag structure in the conventional HAR model from a model selection perspective; see,
e.g., Audrino et al. (2015,2016); and Audrino et al. (2016), among others. While the lag terms in the
HAR model survive the tests based on the least absolute shrinkage and selection operator (LASSO)
and the adaptive LASSO (Audrino et al. 2015; Audrino and Knaus 2016) only in the case of simulated
data by the HAR model, there is strong evidence in Audrino et al. (2016) that casts some doubts on the
fixed choice of aggregation frequencies in the HAR model. In particular, Audrino et al. (2016) found
that a conventional fixed lag structure was not statistically sustained by the group LASSO estimates
for certain individual stocks in an unstable market environment such as the 2007–2009 crisis. They
addressed the above issue with a proposed flexible HAR model, built dynamically from the group
LASSO estimates.

The above conclusions may or may not hold in Bitcoin volatility forecasting considering the
unique features of the crypto asset market. To tackle this question from a different angle, we consider
the forecast implication of a flexible lag structure generated by the least squares model-averaging
method. Unlike the model selection approach that picks only one winning model out of a pool
of candidate models, model averaging calculates the weighted average of a group of candidate
models. Barnard (1963) first discussed the concept of “model combination” in a paper studying airline
passenger data. Buckland et al. (1997) suggested using the exponential Akaike information criterion
(AIC) estimates as the model weights and proposed the model averaged AIC. There exists many
other averaging-type approaches that provide a means to tackle model uncertainty, for instance, the
Bayesian model-averaging method discussed in length in Hoeting et al. (1999), the weighted-average
least squares method by Magnus et al. (2010), and the random forest method by Breiman (2001),
among others.

The performance of the model-averaging method heavily relies on the weights chosen for the
estimation process. In a pioneering study, Hansen (2007) proposed the Mallows model averaging
(MMA) method that is asymptotically optimal in the sense of achieving the lowest possible mean
squared errors. Wan et al. (2010) completed the theoretical foundation of the MMA. Extensions
of the MMA that allow possible structural breaks, near unit root, and heteroskedasticity can be
found in Hansen (2009,2010), and Hansen and Racine (2012), respectively. Xie (2015) proposed the
prediction model averaging (PMA) method. Zhao et al. (2016) extended the PMA method to allow for
heteroskedastic error terms (HPMA). Liu and Okui (2013) also proposed a heteroskedasticity-robust
Mallows’ Cp model-averaging method (HRCP).

There is a growing literature on solving the model uncertainty issue in volatility forecasting
with least squares model averaging. Lehrer et al. (2018) proposed the model averaging HAR
(MAHAR) method that optimally averages the forecasts of HAR models with different lag
indexes. Qiu et al. (2019) showed that the above method can be extended to a more complicated HAR
model with estimators of the variation of positive and negative returns (semi-variance components).
Besides the above methods, we consider the approach designed by Qiu and Xie (2018), who proposed
the heteroskedasticity-robust model averaging HAR method (H-MAHAR) that mainly applies the

4 Corsi et al. (2012) provided a comprehensive review of the development of HAR-type models and their various extensions.
5 Müller et al. (1993) referred to this interpretation as the Heterogeneous Market Hypothesis.
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HPMA as the core model averaging estimator to exchange rate volatility. As a complement to the
HPMA, we also include the jackknife model averaging (JMA) and the heteroskedasticity robust Cp

(HRCP) model averaging estimators as companion methods in this paper.
In the empirical exercise, we consider a series of estimators including 9 conventional regression

methods, 1 LASSO method, and 4 model-averaging methods to model and forecast the realized
variance of Bitcoin prices. We show that the model-averaging methods that account for model
uncertainty generally outperform the conventional regressions and the model-selection-based LASSO
method. Moreover, the heteroskedasticity-robust methods tend to perform relatively better. Compared
with non-model-averaging methods, the H-MAHAR method yields the highest forecasting accuracy in
most of the exercises. The improvement that H-MAHAR provides is statistically significant at the 5%
level, as confirmed by the Giacomini–White test (Giacomini and White 2006).

The reminder of the paper is arranged as follows. Section 2 provides a more detailed overview of
existing HAR strategies. Section 3 discusses the way to model uncertainty under heteroskedasticity
using least squares model averaging. Section 4 describes the data. Section 5 presents the empirical
results, where we compared 14 methods in rolling window exercises. In all cases, model-averaging
methods tended to have the dominating performance. To examine the robustness of the results,
we tried different experimental settings in Section 6. Section 7 concludes this paper.

2. Prior HAR-Type Strategies to Forecast Volatility

Following Andersen and Bollerslev (1998), we estimate daily RV at day t (RVt) by summing the
corresponding M equally spaced intra-daily squared returns rt,j. Here, the subscript t indexes day t
and j indicates the time within day t,

RVt ≡
M

∑
j=1

r2
t,j (1)

where t = 1, 2, ..., T, j = 1, 2, ..., M, and rt,j define continuously compounded high-frequency returns
by differing log-prices pt,j (rt,j = pt,j − pt,j−1).

Among the RV models, the HAR model proposed by Corsi (2009) is quite prevalent. Not only is
this because the HAR model accurately approximates the long-memory and multiscaling properties
of RV but also this is very easy to implement in practice. The standard HAR model in Corsi (2009)
postulates that the h-step-ahead daily RVt+h can be described by

RVt+h = β0 + βdRV(1)
t + βwRV(5)

t + βmRV(22)
t + et+h, (2)

where the explanatory variables can take the general form of RV(l)
t . RV(l)

t is defined by

RV(l)
t ≡ l−1

l

∑
s=1

RVt−s (3)

where l is the period averages of daily RV, β is the coefficients, and {et}t is a zero mean innovation
process. The standard HAR model in Equation (2) is pinned down by some vector of lag index
l = [1, 5, 22].

Andersen et al. (2007) extended the standard HAR model two ways. First, they added the daily
jump component Jt to Equation (2) to explicitly capture its impacts. The extended model is denoted
the HAR-J model:

RVt+h = β0 + βdRV(1)
t + βwRV(5)

t + βmRV(22)
t + βjJt + et+h, (4)
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where the empirical measurement of the squared jumps is Jt = max(RVt − BPVt, 0) and the
standardized realized bipower variation (BPV) is defined as

BPVt ≡ (2/π)−1
M

∑
j=2
|rt,j−1||rt,j|.

Second, through a decomposition of RV into the continuous sample path and the jump component
based on the Z1,t statistic, Andersen et al. (2007) reconstructed the HAR-J model by explicitly
incorporating the two types of volatility components mentioned above. The Z1,t statistic identifies the
“significant” jumps CJt and the continuous sample path components CSPt respectively as

CSPt ≡ I(Zt ≤ Φα) · RVt + I(Zt ≤ Φα) · BPVt,

CJt = I(Zt > Φα) ·max(RVt − BPVt, 0),

where Zt is the ratio statistic in Huang and Tauchen (2005)6 and Φα is the cumulative distribution
function (CDF) of a standard Gaussian distribution with an α level of significance. The daily, weekly,
and monthly average components of CSPt and CJt are then constructed in the same manner as RV(l)

in Equation (3). The model specification for the continuous HAR-J, in other words, the HAR-CJ,
is given by

RVt+h = β0 + βc
dCSP(1)

t + βc
wCSP(5)

t + βc
mCSP(22)

t + β
j
dCJ(1)t + β

j
wCJ(5)t + β

j
mCJ(22)

t + et+h. (5)

Note the HAR-CJ model explicitly controls for the weekly and monthly effects of continuous
jumps through the CJ(1)t , CJ(5)t , and CJ(22)

t terms, whereas the HAR-J model consists of only one
aggregate jump term Jt. Thus, the HAR-J model can be regarded as a special and restrictive case of the
HAR-CJ model for βd = βc

d + β
j
d, βj = β

j
d, βw = βc

w + β
j
w, and βm = βc

m + β
j
m.

To capture the role of the “leverage effect” in predicting volatility dynamics,
Patton and Sheppard (2015) developed a group of models using signed realized measures. The first
model, denoted as HAR-RS-I, decomposes the daily RV in the standard HAR model (Equation (2))
into two asymmetric semi-variances: RS+t and RS−t .

RVt+h = β0 + β+
d RS+t + β−d RS−t + βwRV(5)

t + βmRV(22)
t + et+h, (6)

where RS−t = ∑M
j=1 r2

t,j · I(rt,j < 0) and RS+t = ∑M
j=1 r2

t,j · I(rt,j > 0). To verify whether the realized
semi-variances add something beyond the classical leverage effect, Patton and Sheppard (2015)
augmented the HAR-RS-I model with a term interacting the lagged RV with an indicator for negative
lagged daily returns RV(1)

t · I(rt < 0). The second model in Equation (7) is named HAR-RS-II.

RVt+h = β0 + β1RV(1)
t · I(rt < 0) + β+

d RS+t + β−d RS−t + βwRV(5)
t + βmRV(22)

t + et+h, (7)

6 The ratio statistic is defined as

Zt(∆) = ∆−1/2 × [RVt(∆)− BPVt(∆)]RVt(∆)−1

[(µ−4
1 + 2µ−2

1 − 5)max{1, TQt(∆)BPVt(∆)−2}]1/2

where ∆ is the notion of increasingly finer sampled returns, µ1 = E(|Z|) denotes the mean of the absolute value of standard
normally distributed random variable, and TQt is the standardized realized tripower quarticity measure: TQt(∆) =

∆−1µ−3
4/3 ∑1/∆

j=3 |rt+j·∆,∆|4/3|rt+(j−1)·∆,∆|4/3|rt+(j−2)·∆,∆|4/3 with µ4/3 = E(|Z|4/3).
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where RV(1)
t · I(rt < 0) is designed to capture the effect of negative daily returns. As in the HAR-CJ

model, the third and fourth models in Patton and Sheppard (2015), denoted as HAR-SJ-I and HAR-SJ-II
respectively, disentangle the signed jump variations and the BPV from the volatility process.

RVt+h = β0 + β
j
dSJt + β

bpv
d BPVt + βwRV(5)

t + βmRV(22)
t + et+h, (8)

RVt+h = β0 + β
j−
d SJ−t + β

j+
d SJ+t + β

bpv
d BPVt + βwRV(5)

t + βmRV(22)
t + et+h, (9)

where SJt = RS+t − RS−t , SJ+t = SJt · I(SJt > 0), and SJ−t = SJt · I(SJt < 0). The HAR-SJ-II model
extends the HAR-SJ-I model by distinguishing the effect of a positive jump variation from that of a
negative jump variation.

3. Model Uncertainty

It has been a tradition for the past literature to assume the lag structure of the HAR model to be
l = [1, 5, 22], which mimics the daily, weekly, and monthly traders in traditional financial markets that
only open on workdays. On the other hand, given the 24/7 nonstop nature of bitcoin trading, it may not
be appropriate to set the lag index at [1, 5, 22]. An initial guess for the lag index would be l = [1, 7, 30]
that represents the tradition of daily, weekly, and monthly averages. However, the suitability of such a
specification is subject to a statistical investigation, which is likely to cause evident model uncertainty.

Suppose the dependent variable is y = [RV1, ..., RVT ]
> and the explanatory variable is X =

[x1, ..., xT ]
>,7 where the specification of xt takes the general form of the HAR model

xt =
[
1, RV(l1)

t−h, RV(l2)
t−h, ..., RV

(lp)

t−h
]
. (10)

Here, we do not restrict the lag index l = [l1, l2, ..., lp] to be [1, 5, 22]. Instead, we acknowledge the
specification uncertainty in l and consider a group of M candidate models to approximate the true
data generating process. Following an usual approach in the model averaging literature, the set of

M candidate models is constructed by taking a full permutation of all the lags from RV(l1)
t−h to RV

(lp)

t−h

(RV(l1)
t−h, ..., RV

(lp)

t−h and [l1, ..., lp] = [1, ..., 30]). The maximum lag order lp is chosen as 30. In this way,
there are distinct model weights assigned to each HAR-type model with different lag combinations.
Moreover, as the underlying data sets vary, this will alter the relevant model weights, which effectively
makes the method dynamic and data-driven.

Note that the model averaging estimator with pre-screened candidate models is implemented in
this paper, since keeping the total number of candidate models manageable or slowing its convergence
to infinity is a necessary condition to maintain the asymptotic optimality of least square model
averaging estimators. However, in the context of the HAR model with a maximum lag order
of lp, we could end up with 2lp candidate models and the number of potential models grows
exponentially with lp. To solve this issue, we first apply the model screening method, for example,
the adaptive regression by mixing with the model selection (ARMS) approach by Yuan and Yang
(2005) or the hetero-robust model screening (HRMS) approach by Xie (2017). Both methods shrink
the number of potential models by specifying model selection criteria before model averaging to an
appropriate degree.

The true model is presumed to be
y = µ + e, (11)

where y = [y1, ..., yT ]
>, µ = [µ1, ..., µT ]

>, and e = [e1, ..., eT ]
>. µt can be considered the conditional

mean in the period t, µt = E(yt|yt−h, yt−h−1, . . .), and the error term et has the zero conditional mean

7 Although all the elements in xt are h-period lags from the period t, we follow the conventional notation in time series and
denote xt as the explanatory variable corresponding to the period t dependent variable.
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E(et|yt−h, yt−h−1, . . .) = 0. Note that the error term e is assumed to be heteroskedastic such that
E(e2

t |xt) = σ2
t , which reflects a more realistic characterization of the realized volatility for a wide class

of financial assets. In addition, we also hypothesize that e is not serially correlated and E(e>e|X) =

Ω = diag{σ2
1 , ..., σ2

T}.8 Let the mth candidate model be

y = Xmβm + em,

where Xm are subsets of columns of X. With Xm at hand, βm can be estimated by β̂
m

=(
Xm>Xm)−1Xm>y, and thus, µ is estimated by

µ̂m = Xm β̂
m
= Xm(Xm>Xm)−1Xm>y = Pmy,

where Pm is a projection matrix for the model m. Extending from Hansen (2008), the optimal
mean-square h-period ahead forecast is the conditional mean µT+h. Therefore, the least-squares
forecast of yT+h from the mth approximation model is then ŷm

T+h = µ̂m
T+h = xm

T+h
> β̂

m
. Note that by

the definition of Equation (10), xm
T+h is observable in period t.

We obtain the forecasts of yT+h from all approximation models and define the vector of forecasts
ŷT+h

ŷT+h ≡
[
ŷ1

T+h, ŷ2
T+h, · · · , ŷM

T+h

]>
. (12)

The model averaging forecast is simply the weighted average of ŷT+h such that

ŷT+h(w) ≡ w>ŷT+h =
M

∑
m=1

wmŷm
T+h,

where w =
[
w1, ..., wM]> is a weight vector in the unit simplex in RM

H ≡
{

w ∈ [0, 1]M :
M

∑
m=1

wm = 1

}
.

The performance of model averaging forecast crucially depends on the weight vector w.
The model averaging estimator of the conditional mean is then given by

µ̂(w) ≡ P(w)y, (13)

where P(w) ≡ ∑M
m=1 wmPm is the averaged projection matrix. The H-MAHAR method is the

heteroskedasticity-robust version of the model averaging HAR (MAHAR) method proposed by
Lehrer et al. (2018). The MAHAR criterion function is defined as follows:

MAHAR(w) =
(
y− µ̂(w)

)>(y− µ̂(w)
) (T + k(w)

T − k(w)

)
, (14)

where k(w) ≡ ∑M
m=1 wmkm is the effective number of parameters and km is the number of regressors

in the model m. We estimate the MAHAR weight estimator by minimizing the MAHAR criterion
function under the restriction of w ∈ H.

8 Corsi et al. (2008) also demonstrated that the residuals of commonly used realized volatility models for the S&P 500 index
exhibit non-Gaussianity and volatility clustering. They assessed its relevance for modeling and forecasting volatility in the
proposed HAR-GARCH model.
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Like most model selection and model averaging criteria, the H-MAHAR criterion balances
between the fit and the complexity of a model:

H-MAHAR(w) =
(
y− µ̂(w)

)>(y− µ̂(w)
)
+ 2tr

(
P(w)Ω̂(w)

)
, (15)

where Ω̂(w) ≡ diag{ê2
1(w), ..., ê2

T(w)} is the averaged estimate of the Ω matrix using model averaging
residuals ê(w) = [ê2

1(w), ..., ê2
T(w)]> = y− µ̂(w).

The criterion in Equation (15) can be implemented to compute the empirical weight vector
ŵ through

ŵ = arg min
w∈H

H-MAHAR(w).

Therefore, we obtain the model averaging forecast of yT+h following ŷT+h(ŵ) = ŵ>ŷT+h. Note that
the H-MAHAR estimator can be considered an extension to the model averaging with averaging
covariance matrix (MAACM) estimator of Zhao et al. (2016) under the HAR framework, whereas the
original MAACM estimator assumes no dynamic model structures.

Another heteroskedasticity-robust model-averaging method is the JMA estimator by
Hansen and Racine (2012). The original JMA deals with cross-sectional data. Zhang et al. (2013)
proved the asymptotic optimality of the JMA estimator under a dependent time-series. The JMA
estimator is also known as leave-one-out cross-validation model averaging. As its name indicates,
the JMA requires the use of jackknife residuals for the average estimator. The jackknife residual vector
for model m can be conveniently expressed as êm

J = Dm êm, where êm is the least squares residual vector
and Dm is the n× n diagonal matrix with the ith diagonal element equal to (1− hm

i )
−1. The term

hm
i is the ith diagonal element of the projection matrix Pm. Define an n × M matrix with all the

jackknife residuals, in which ÊJ =
[
ê(1)J , ..., ê(M)

J

]
. The least squares cross-validation criterion for the

JMA is simply

JMAn(w) =
1
n

w>Ê>J ÊJw

with model weights w estimated through ŵ = argminw∈H JMAn(w).
Liu and Okui (2013) adopted the same model setup to propose the HRCP model averaging

estimator for linear regression models with heteroskedastic errors. They demonstrated the asymptotic
optimality of the HRCP estimator when the error term exhibits heteroskedasticity. They proposed
estimating the model weights by the following feasible HRCP criterion:

HRCP(w) = ‖y− P(w)y‖2 + 2
n

∑
i=1

ê2
i pii(w) (16)

with ŵ = arg min
w∈H

HRCP(w). Obtaining w by minimizing Equation (16) under the condition w ∈ H

is a quadratic optimization process.
Equation (16) includes a preliminary estimate êi that must be obtained prior to estimation.

Liu and Okui (2013) discussed several ways to obtain êi in practice. When the models are nested,
Liu and Okui (2013) suggested using the residuals from the largest model. When the models are
non-nested, they recommended building a model that contains all the regressors in the potential
models and taking the corresponding predicted residuals. In addition, a degree-of-freedom correction
on êi is reccomended to improve finite-sample properties. For example, when the mth model is chosen
to obtain êi, we may use

ê =
√

n/(n− km)(I − Pm)y

instead of (I − Pm)y to generate the preliminary estimate êi.
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4. Data Description

Binance was founded in September 2017 and is now the largest crypto exchange around the world.
Since the Bitcoin to U.S. dollar (BTC/USD) price data on Binance has only recently become available,
we use the data from 1 January 2018 to 20 December 2018 for this exercise. The total number of daily
observations is 352. We estimate the daily RV using Equation (1) at the 5-min interval.

The evolution of the RV data over this period is plotted by the solid line in the upper panel of
Figure 1, whereas the horizontal axis represents the date and the vertical axis on the left-hand side
stands for RV. Besides RV, the price of BTC/USD is also depicted by the dashed line with the vertical
axis on the right-hand- ide representing the price. We also list the corresponding daily trading volume
in the lower panel of Figure 1. As seen in Figure 1, the dynamics of the RV follow the movements of
price and volume: the RV increases as the price changes dramatically, which is usually accompanied
by a noticeable peak in the trading volume.

Table 1 presents summary statistics for the data and p-values of both the Jarque–Bera (JB) test
for normality and of the Augmented Dickey–Fuller (ADF) tests for unit root. Note that, for the JB
and ADF test statistics that are outside tabulated critical values, we report the maximum (0.999) or
minimum (0.001) p-values. In Table 1, we consider the first half, the second half, and full samples
in columns 2–4, respectively. Each of the series exhibits tremendous variability and a large range
across the respective sample period. Furthermore, none of the series are normally distributed or
nonstationary at the 5% level.

Table 1. Descriptive statistics of the BTC/USD RV.

Statistics First Half Second Half Full Sample

Mean 32.4200 12.3319 22.3760
Median 21.9565 6.4271 11.8865
Maximum 197.6081 115.6538 197.6081
Minimum 1.8285 0.5241 0.5241
Std. Dev. 33.7164 17.2047 28.5575
Skewness 2.4792 3.2186 2.9249
Kurtosis 10.6082 15.9842 14.3301

Jarque–Bera 0.0010 0.0010 0.0010
ADF Test 0.0010 0.0010 0.0010

Table 1 reports the mean, the sample mean, median, minimum, maximum, standard deviation, skewness, and
kurtosis for the realized variance series of the BTC/USD returns. The p-values of the Jarque–Bera and the Augmented
Dickey–Fuller (ADF) tests for RV are recorded in order to test their normality and stationarity, respectively. Note
that, for JB and ADF test statistics that are outside tabulated critical values, we report the maximum (0.999) or
minimum (0.001) p-values.
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Figure 1. BTC/USD price, realized variance, and volume on Binance.
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5. The Empirical Exercise

To investigate the relative prediction efficiency of the H-MAHAR estimator and its comparison
methods, we conduct an h-step-ahead rolling window exercise of forecasting the BTC/USD RV for
various forecasting horizons.9 Table 2 lists each estimator considered in the exercise. For all the
HAR-type estimators in Panel A, except the HAR-Full model with all the lagged covariates from 1 to
30, we set l = [1, 7, 30]. For the model-averaging methods in Panel B, our general unrestricted model
that includes all covariates is the HAR-Full model which only replaces RV(1)

t
10 with the semi-variance

components from the HAR-RS-I. The candidate model set is first pre-screened by the ARMS method
of Yuan and Yang (2005), and we only pick the top 10 models. The tuning parameter in LASSO
is estimated through a 5-fold cross-validation.11 Throughout the experiment, the window length
is fixed at 100 observations. We also tried other window lengths and reached similar conclusions.
See Section 6.2 for additional details.

Table 2. List of heterogeneous autoregressive (HAR)-type estimators.

Panel A: Conventional Regressions
(1) AR(1) a simple autoregressive model
(2) HAR-Full the HAR model proposed in Corsi (2009) with l = [1, 2, ..., 30], equivalent to a restricted AR(30)
(3) HAR the conventional HAR model proposed in Corsi (2009) with l = [1, 7, 30]
(4) HAR-J the HAR model with jump component proposed in Andersen et al. (2007)
(5) HAR-CJ the HAR model with continuous jump component proposed in Andersen et al. (2007)
(6) HAR-RS-I the HAR model with semi-variance components (Type I) proposed in Patton and Sheppard (2015)
(7) HAR-RS-II the HAR model with semi-variance components (Type II) proposed in Patton and Sheppard (2015)
(8) HAR-SJ-I the HAR model with semi-variance and jump components (Type I) proposed in Patton and Sheppard (2015)
(9) HAR-SJ-II the HAR model with semi-variance and jump components (Type II) proposed in Patton and Sheppard (2015)

Panel B: Methods Acknowledging Model Uncertainty
(10) LASSO the LASSO HAR method proposed in Audrino and Knaus (2016)
(11) MAHAR the model averaging HAR method proposed in Lehrer et al. (2018)
(12) HRCP the hetero-robust model-averaging method proposed in Liu and Okui (2013)
(13) JMA the jackknife model-averaging method discussed in Zhang et al. (2013)
(14) H-MAHAR the hetero-robust model averaging HAR method proposed in Qiu and Xie (2018)

Table 2 lists all the HAR-type estimators included in the empirical exercise. For all the conventional HAR
specifications without considering model uncertainty in Panel A, except the HAR-Full model (all the lagged
covariates from 1 to 30), we set l = [1, 7, 30]. To build the candidate models for the model-averaging methods in
Panel B, we take a general unrestricted model that includes all covariates in the HAR-Full model and only replace

RV(1)
t by the semi-variance components from HAR-RS-I.

We first consider the case of one-day-ahead forecast (h = 1). The results of the prediction
experiment are reported in Table 3. The estimation strategies are listed in the first column, and the
remaining columns present alternative criteria to evaluate the forecast performance. The criteria
include (i) the mean squared forecast error (MSFE), (ii) the mean absolute forecast error (MAFE),
(iii) the standard deviation of the forecast error (SDFE), and (iv) the Mincer–Zarnowitz pseudo R2.

9 Additional results using both the GARCH(1, 1) and the ARFIMA(p, d, q) models are available upon request. These estimators
performed poorly relative to the HAR model and thus are not included for space limitation.

10 The reason we have to exclude RV(1)
t is because the summation of semi-variance terms equals RV(1)

t .
11 We also tried the 10-fold cross-validation and fixed tuning parameter

√
log n log(k−1)

n . The results remain qualitatively intact.
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Table 3. Out-of-sample forecast comparison for the BTC/USD RV.

Method MSFE MAFE SDFE Pseudo R2

Panel A: Conventional Regressions
AR(1) 239.1504 10.0717 15.4645 0.4106
HAR-Full 302.3662 10.8925 17.3887 0.2548
HAR 204.6532 8.3302 14.3057 0.4956
HAR-J 208.7348 8.5570 14.4477 0.4856
HAR-CJ 215.9540 8.3766 14.6954 0.4678
HAR-RS-I 193.2083 8.1705 13.8999 0.5238
HAR-RS-II 197.3354 8.2618 14.0476 0.5137
HAR-SJ-I 193.7362 8.2167 13.9189 0.5225
HAR-SJ-II 201.1249 8.3640 14.1819 0.5043

Panel B: Method Acknowledging Model Uncertainty
LASSO 247.8799 8.2628 15.7442 0.3891
MAHAR 191.9673 7.1735 13.8552 0.5269
HRCP 196.8785 7.3539 14.0313 0.5148
JMA 191.9862 7.1772 13.8559 0.5269
H-MAHAR 191.3624 7.1621 13.8334 0.5284

Table 3 compares the out-of-sample performance of the H-MAHAR estimator relative to its comparison methods.
The sample period for the Bitcoin RV spans from 1 January 2018 to 20 December 2018 (a total of 352 observations). We
use a rolling window of 100 observations to estimate the coefficients of all the models and evaluate the out-of-sample
forecast performance at h = 1. Bold numbers indicate the best performing model by each criterion.

To ease interpretation, the results that identify the estimator with the best performance in each
column of Table 3 is marked in bold. The performance of autoregressive models, represented by the
AR(1) and HAR-Full models, is weak. For each panel, the HAR-type methods demonstrate noticeably
improved performances relative to the autoregressive models. In the case of Bitcoin volatility, there is
not much gain from including the jump and/or semi-variance components in the standard HAR
model. The above set of results suggests that the heterogeneity in modeling Bitcoin volatility cannot
be fully accommodated by simply adding extra covariates to the linear model. The least squares
model-averaging methods that acknowledge model uncertainty show superior forecasting accuracy
under all the evaluation criteria. Among the averaging methods, H-MAHAR displays the best
performance. On the other hand, the model-selection-based LASSO method has the worst performance
in this situation.

To examine if the improvement from the least squares model-averaging methods is statistically
significant, we perform the modified Giacomini–White (GW) test (Giacomini and White 2006)12 of
the null hypothesis that the column method performs equally as well as the row method in terms of
MAFE. The corresponding p-values are presented in Table 4 for h = 1. We see that the gains in forecast
accuracy from the model-averaging methods relative to other strategies are statistically significant at
the 5% level.

By exploring weight estimates of the H-MAHAR estimator on the full dataset, we can shed light
on both the relative importance of the candidate models and the inclusion of various HAR-type lagged
components. The models that are assigned the five highest weights by the H-MAHAR estimator
are described in Table 5 (presented in the 2nd row of Table 5 in a descending fashion). The “x” sign
indicates that the corresponding covariate (listed in the first column) is contained in the model. Certain
variables, like RV−t and RV(30)

t , are included in every model, but variables like RV+
t or RV(10)

t are
excluded from each of the top five dominant models.

12 Giacomini and White (2006) proposed a framework for out-of-sample predictive ability testing and forecast selection
designed for use in the realistic situation in which the forecasting model is possibly misspecified due to unmodeled
dynamics, unmodeled heterogeneity, incorrect functional form, or any combination of these. The null hypothesis of the GW
test is that the two models we want to compare are equally accurate on average based on certain criterion.



Econometrics 2019, 7, 40 12 of 20

Table 4. Results of the Giacomini–White test for h = 1.

Method AR(1) Full HAR J CJ RS-I RS-II SJ-I SJ-II LASSO MAHAR HRCP JMA

Panel A: Conventional Regressions
AR(1) - - - - - - - - - - - - -
HAR-Full 0.1617 - - - - - - - - - - - -
HAR 0.0000 0.0000 - - - - - - - - - - -
HAR-J 0.0000 0.0000 0.0888 - - - - - - - - - -
HAR-CJ 0.0000 0.0000 0.8449 0.4070 - - - - - - - - -
HAR-RS-I 0.0000 0.0000 0.4376 0.1074 0.4895 - - - - - - - -
HAR-RS-II 0.0000 0.0000 0.7418 0.2239 0.7047 0.1137 - - - - - - -
HAR-SJ-I 0.0000 0.0000 0.5839 0.1283 0.5811 0.3202 0.5546 - - - - - -
HAR-SJ-II 0.0000 0.0000 0.8739 0.4253 0.9667 0.0969 0.4063 0.1413 - - - - -

Panel B: Methods Acknowledging Model Uncertainty
LASSO 0.0009 0.0000 0.8632 0.4805 0.7957 0.8245 0.9980 0.9113 0.8042 - - - -
MAHAR 0.0000 0.0000 0.0001 0.0000 0.0007 0.0003 0.0001 0.0002 0.0001 0.0029 - - -
HRCP 0.0000 0.0000 0.0008 0.0001 0.0037 0.0035 0.0018 0.0023 0.0012 0.0150 0.0255 - -
JMA 0.0000 0.0000 0.0001 0.0000 0.0007 0.0003 0.0001 0.0002 0.0001 0.0030 0.5774 0.0251 -
H-MAHAR 0.0000 0.0000 0.0000 0.0000 0.0006 0.0002 0.0001 0.0001 0.0001 0.0024 0.3481 0.0227 0.3119

The modified Giacomini–White test (Giacomini and White 2006) is implemented to test the null hypothesis that the row method (in vertical headings)
performs equally as well as the column method (in horizontal headings) in terms of the absolute forecast error. Corresponding p-values for each
method are reported in Panels A to B of Table 4.
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Table 5. Top 5 models from the heteroskedasticity-robust model averaging HAR (H-MAHAR)
estimator.

Model 1 Model 2 Model 3 Model 4 Model 5

Weight 0.3441 0.3355 0.2546 0.0488 0.0170

Panel A: HAR-RS Components
RV+

t
RV−t x x x x x

Panel B: Selected HAR Covariates
RV(15)

t x x x
RV(16)

t x x x
RV(18)

t x x
RV(22)

t x x
RV(23)

t x x
RV(28)

t x x x x
RV(29)

t x x x x x
RV(30)

t x x x x x

Table 5 describes the models that are assigned the five highest weights by the H-MAHAR estimator. Note that x
denotes that the explanatory variable is included in the specific model.

Throughout our analysis, we find that the incorporation of negative semi-variances improves
the prediction accuracy and explains a large fraction of the variation in RV, which is consistent
with the finding of the literature (Patton and Sheppard 2015). The H-MAHAR method places large
weights on models with HAR components of lag indices greater than 15, which may be in part due
to the strong short-term performance of the RV−t variable. We also observe that HAR components

with high lag indices (for example, RV(29)
t and RV(30)

t ) mimicking the long-term dynamics of RV are
intensively picked by the model averaging process. Most importantly, none of the top 5 models has
the conventional lag index specification of [1, 7, 30]. The above exercise uncovers the sheer existence of
model uncertainty for Bitcoin volatility and accredits the use of model-averaging methods.

6. Robustness Check

In this section, we perform three robustness checks on our results in Section 5. We first extend the
exercises to relatively longer forecast horizons. Specifically, we consider h = 2, 3, and 4. In the second
robustness check, we consider alternative window lengths. In the last robustness check, the H-MAHAR
method is compared with Model 1 from Table 5, the one with the highest model weight among all
candidate models.

6.1. Various Forecast Horizons

Table 6 represents the forecast performance of the considered estimators for h = 2, 3, and 4
periods ahead.13 Table 7 examines the statistical significance of the forecasting accuracy improvement.
For all h periods, the forecasts by least squares model averaging estimators dominate those by other
methods in general. Among all the model averaging estimators, the HRCP method is seen to perform
the best in most times according to the criteria we used, although such improvement is not statistically
significant according to the results in Table 7.

13 Note that the forecasting horizons we considered in this paper are all short. The HAR-type models which our
model-averaging methods build upon do not perform well in the long forecasting horizons. One possible explanation is
that the Bitcoin market is relatively small compared to conventional stock markets; therefore, it is more sensitive to various
policy shocks, information impact, and even social media sentiment changes. Most of these shocks are short-lived, and it
seems that the momentum effect does not last long in Bitcoin realized volatility. How to model Bitcoin volatility in a long
forecasting horizon is beyond the scope of this paper and guarantees future research.
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Table 6. Forecast performance comparison for various horizons.

Method MSFE MAFE SDFE Pseudo R2 MSFE MAFE SDFE Pseudo R2 MSFE MAFE SDFE Pseudo R2

h = 2 h = 3 h = 4

Panel A: Conventional Regressions
AR(1) 262.9289 10.3286 16.2151 0.3062 277.6988 10.6643 16.6643 0.2643 283.2303 10.9911 16.8294 0.2502
HAR-Full 334.5891 11.6691 18.2918 0.1171 346.2303 12.1207 18.6073 0.0828 346.7523 12.2453 18.6213 0.0821
HAR 224.2440 8.8998 14.9748 0.4083 234.6886 9.3141 15.3196 0.3783 241.8037 9.2817 15.5500 0.3599
HAR-J 226.2970 8.9210 15.0432 0.4028 235.0144 9.2912 15.3302 0.3774 245.8197 9.5108 15.6786 0.3493
HAR-CJ 221.2180 8.8997 14.8734 0.4162 223.1287 9.1104 14.9375 0.4089 244.7930 9.6451 15.6459 0.3520
HAR-RS-I 226.5678 8.9060 15.0522 0.4021 258.0224 9.5877 16.0631 0.3164 230.6331 9.0845 15.1866 0.3895
HAR-RS-II 231.1408 9.0014 15.2033 0.3901 262.3614 9.7318 16.1976 0.3050 242.0860 9.3867 15.5591 0.3591
HAR-SJ-I 228.7837 8.9241 15.1256 0.3963 260.7971 9.6530 16.1492 0.3091 232.6273 9.1173 15.2521 0.3842
HAR-SJ-II 233.0146 9.1070 15.2648 0.3851 290.9509 9.6781 17.0573 0.2292 239.4566 9.3162 15.4744 0.3661

Panel B: Methods Acknowledging Model Uncertainty
LASSO 265.2809 8.7407 16.2874 0.3000 270.9054 9.0213 16.4592 0.2823 270.9619 9.2020 16.4609 0.2827
MAHAR 216.7814 8.4566 14.7235 0.4280 228.6793 8.4375 15.1221 0.3942 225.0127 8.1343 15.0004 0.4043
HRCP 217.2918 8.4100 14.7408 0.4266 228.5923 8.3638 15.1193 0.3944 220.1249 7.9448 14.8366 0.4173
JMA 216.9337 8.4577 14.7287 0.4276 228.7295 8.4372 15.1238 0.3940 227.8901 8.1982 15.0960 0.3967
H-MAHAR 216.9262 8.4746 14.7284 0.4276 228.7536 8.4606 15.1246 0.3940 223.9671 8.1245 14.9655 0.4071

Table 6 compares the out-of-sample performance of the H-MAHAR estimator relative to its comparison methods. The sample period for the Bitcoin RV spans from 1 January
2018 to 20 December 2018 (a total of 352 observations). We use a rolling window of 100 observations to estimate the coefficients of all the models and evaluate the out-of-sample
forecast performance at h = 2, 3, and 4. The results for each h are reported in the left, middle, and right blocks, respectively. Bold numbers indicate the best performing model by
each criterion.
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Table 7. Results of the Giacomini–White test for various forecast horizons.

Method AR(1) Full HAR J CJ RS-I RS-II SJ-I SJ-II LASSO MAHAR HRCP JMA

Panel A: h = 2
AR(1) - - - - - - - - - - - - -
HAR-Full 0.0688 - - - - - - - - - - - -
HAR 0.0008 0.0000 - - - - - - - - - - -
HAR-J 0.0013 0.0000 0.7804 - - - - - - - - - -
HAR-CJ 0.0065 0.0000 0.9999 0.9478 - - - - - - - - -
HAR-RS-I 0.0011 0.0000 0.9548 0.9016 0.9848 - - - - - - - -
HAR-RS-II 0.0033 0.0000 0.4109 0.5236 0.7577 0.1555 - - - - - - -
HAR-SJ-I 0.0011 0.0000 0.8446 0.9817 0.9418 0.6648 0.3559 - - - - - -
HAR-SJ-II 0.0048 0.0000 0.2016 0.2599 0.5321 0.0556 0.4204 0.0425 - - - - -
LASSO 0.0149 0.0004 0.7522 0.7190 0.7794 0.7414 0.6079 0.7187 0.4705 - - - -
MAHAR 0.0005 0.0000 0.2397 0.2196 0.2723 0.2467 0.1613 0.2397 0.1070 0.5903 - - -
HRCP 0.0003 0.0000 0.1952 0.1811 0.2413 0.2040 0.1304 0.1987 0.0868 0.5285 0.6363 - -
JMA 0.0005 0.0000 0.2430 0.2231 0.2768 0.2500 0.1640 0.2428 0.1090 0.5930 0.9213 0.6168 -
H-MAHAR 0.0006 0.0000 0.2616 0.2404 0.2964 0.2685 0.1780 0.2606 0.1188 0.6154 0.3316 0.4998 0.2370

Panel B: h = 3
AR(1) - - - - - - - - - - - - -
HAR-Full 0.0974 - - - - - - - - - - - -
HAR 0.0121 0.0000 - - - - - - - - - - -
HAR-J 0.0149 0.0000 0.8366 - - - - - - - - - -
HAR-CJ 0.0281 0.0001 0.6213 0.6402 - - - - - - - - -
HAR-RS-I 0.0477 0.0001 0.2135 0.3144 0.3559 - - - - - - - -
HAR-RS-II 0.0979 0.0002 0.0511 0.1174 0.2237 0.1753 - - - - - - -
HAR-SJ-I 0.0580 0.0002 0.1491 0.2454 0.3068 0.0937 0.4849 - - - - - -
HAR-SJ-II 0.0933 0.0005 0.2751 0.3349 0.3545 0.5870 0.7948 0.8733 - - - - -
LASSO 0.0410 0.0014 0.6278 0.6430 0.9034 0.3877 0.2914 0.3399 0.3513 - - - -
MAHAR 0.0011 0.0000 0.0393 0.0431 0.1216 0.0218 0.0102 0.0174 0.0327 0.3106 - - -
HRCP 0.0007 0.0000 0.0236 0.0257 0.0872 0.0136 0.0059 0.0108 0.0230 0.2573 0.4987 - -
JMA 0.0011 0.0000 0.0402 0.0443 0.1260 0.0223 0.0105 0.0178 0.0333 0.3115 0.9892 0.4993 -
H-MAHAR 0.0012 0.0000 0.0471 0.0515 0.1411 0.0258 0.0124 0.0206 0.0372 0.3333 0.4041 0.3999 0.2248

Panel C: h = 4
AR(1) - - - - - - - - - - - - -
HAR-Full 0.1863 - - - - - - - - - - - -
HAR 0.0063 0.0000 - - - - - - - - - - -
HAR-J 0.0150 0.0000 0.1822 - - - - - - - - - -
HAR-CJ 0.0272 0.0006 0.3321 0.6941 - - - - - - - - -
HAR-RS-I 0.0022 0.0000 0.2372 0.0900 0.1312 - - - - - - - -
HAR-RS-II 0.0109 0.0001 0.6134 0.6596 0.5091 0.0238 - - - - - - -
HAR-SJ-I 0.0021 0.0000 0.2823 0.0800 0.1454 0.4460 0.0413 - - - - - -
HAR-SJ-II 0.0038 0.0000 0.8608 0.4391 0.3665 0.0606 0.5947 0.0570 - - - - -
LASSO 0.0723 0.0047 0.9119 0.6823 0.5731 0.8570 0.7716 0.8976 0.8607 - - - -
MAHAR 0.0003 0.0000 0.0242 0.0067 0.0027 0.0370 0.0057 0.0317 0.0122 0.0649 - - -
HRCP 0.0004 0.0000 0.0118 0.0027 0.0009 0.0172 0.0046 0.0149 0.0061 0.0484 0.5237 - -
JMA 0.0004 0.0000 0.0385 0.0124 0.0051 0.0593 0.0100 0.0516 0.0207 0.0866 0.1211 0.4208 -
H-MAHAR 0.0002 0.0000 0.0200 0.0049 0.0025 0.0331 0.0055 0.0281 0.0112 0.0673 0.8426 0.5390 0.3280

The modified Giacomini–White test (Giacomini and White 2006) is implemented to test the null hypothesis that the row method (in vertical headings) performs equally as well as the column
method (in horizontal headings) in terms of the absolute forecast error. Corresponding p-values for each h are reported in Panels A to C of Table 7.
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6.2. Alternative Window Lengths

In the main exercises, we set the window length at L = 100. In this section, we also tried other
window lengths such as L = 50 and 200. We present the estimation results for h = 1. Although not
reported here, we also tried other forecast horizons and the robustness remains intact.

Table 8 shows the forecast performance of all the methods for various window lengths. In all the
cases, the H-MAHAR estimator yields the smallest MSFE, MAFE, and SDFE and the largest Pseudo
R2. We examine the statistical significance of the forecast accuracy improvement in Table 9. The small
p-values on the H-MAHAR method against other methods, especially that with no model averaging
estimators, indicate that the improvement is significant at the 5% level in most cases.

Table 8. Forecast performance comparison under different window lengths.

Method MSFE MAFE SDFE Pseudo R2 MSFE MAFE SDFE Pseudo R2

L = 50 L = 150

Panel A: Conventional Regression
AR(1) 249.6477 10.0160 15.8002 0.5658 238.3546 9.9032 15.4387 0.4277
HAR-Full 1637.2399 22.4248 40.4628 −1.8473 243.7945 9.6486 15.6139 0.4147
HAR 276.8757 10.5585 16.6396 0.5185 212.9744 8.2480 14.5936 0.4887
HAR-J 293.4600 10.7562 17.1307 0.4896 210.7548 8.2194 14.5174 0.4940
HAR-CJ 374.7990 11.8093 19.3597 0.3482 208.9187 8.2310 14.4540 0.4984
HAR-RS-I 283.6314 10.6281 16.8414 0.5067 201.2067 8.1321 14.1847 0.5169
HAR-RS-II 295.0338 10.7334 17.1765 0.4869 204.8401 8.1870 14.3122 0.5082
HAR-SJ-I 284.4146 10.6127 16.8646 0.5054 200.6347 8.1156 14.1646 0.5183
HAR-SJ-II 299.5199 10.9971 17.3066 0.4791 206.0011 8.2656 14.3527 0.5054

Panel B: Method Acknowledges Model Uncertainty
LASSO 806.0115 15.7427 28.3903 −0.4017 252.3836 7.7437 15.8866 0.3940
MAHAR 255.5945 9.3474 15.9873 0.5555 200.1770 7.3587 14.1484 0.5194
HRCP 298.5371 10.1002 17.2782 0.4808 203.2551 7.4930 14.2568 0.5120
JMA 257.5357 9.4021 16.0479 0.5521 200.4459 7.3838 14.1579 0.5187
H-MAHAR 252.6259 9.2245 15.8942 0.5607 199.8410 7.3540 14.1365 0.5202

Table 8 compares the out-of-sample performance of the H-MAHAR estimator relative to its comparison methods.
The sample period for the Bitcoin RV spans from 1 January 2018 to 20 December 2018 (a total of 352 observations).
We consider alternative rolling window lengths of 50 and 150 observations to estimate the coefficients of all the
models and evaluate the out-of-sample forecast performance at h = 1. The results for each L are reported in the left
and right blocks, respectively. Bold numbers indicate the best performing model by each criterion.
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Table 9. Results of the Giacomini–White test for different window lengths.

Method AR(1) Full HAR J CJ RS-I RS-II SJ-I SJ-II LASSO MAHAR HRCP JMA

Panel A: L = 50
AR(1) - - - - - - - - - - - - -
HAR-Full 0.0000 - - - - - - - - - - - -
HAR 0.1474 0.0000 - - - - - - - - - - -
HAR-J 0.0681 0.0000 0.4518 - - - - - - - - - -
HAR-CJ 0.0034 0.0000 0.0321 0.0603 - - - - - - - - -
HAR-RS-I 0.1389 0.0000 0.8267 0.7392 0.0471 - - - - - - - -
HAR-RS-II 0.0890 0.0000 0.6123 0.9521 0.0642 0.5173 - - - - - - -
HAR-SJ-I 0.1486 0.0000 0.8691 0.7025 0.0448 0.7674 0.4758 - - - - - -
HAR-SJ-II 0.0244 0.0000 0.1869 0.4996 0.1604 0.1067 0.3281 0.1017 - - - - -
LASSO 0.0000 0.0015 0.0000 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000 - - - -
MAHAR 0.1109 0.0000 0.0062 0.0016 0.0001 0.0043 0.0022 0.0051 0.0003 0.0000 - - -
HRCP 0.8760 0.0000 0.3767 0.2145 0.0160 0.3150 0.2315 0.3332 0.0954 0.0000 0.0045 - -
JMA 0.1450 0.0000 0.0089 0.0024 0.0002 0.0062 0.0032 0.0073 0.0005 0.0000 0.0783 0.0056 -
H-MAHAR 0.0552 0.0000 0.0024 0.0005 0.0001 0.0015 0.0007 0.0019 0.0001 0.0000 0.1164 0.0059 0.0532

Panel B: L = 150
AR(1) - - - - - - - - - - - - -
HAR-Full 0.6126 - - - - - - - - - - - -
HAR 0.0000 0.0003 - - - - - - - - - - -
HAR-J 0.0000 0.0003 0.7912 - - - - - - - - - -
HAR-CJ 0.0002 0.0013 0.9390 0.9513 - - - - - - - - -
HAR-RS-I 0.0001 0.0004 0.5688 0.6630 0.7045 - - - - - - - -
HAR-RS-II 0.0001 0.0008 0.7840 0.8864 0.8770 0.4173 - - - - - - -
HAR-SJ-I 0.0001 0.0004 0.5361 0.5855 0.6460 0.7331 0.4473 - - - - - -
HAR-SJ-II 0.0001 0.0012 0.9318 0.8167 0.8949 0.1200 0.4995 0.0689 - - - - -
LASSO 0.0000 0.0005 0.1911 0.2364 0.3101 0.3522 0.2891 0.3814 0.2050 - - - -
MAHAR 0.0000 0.0000 0.0014 0.0015 0.0028 0.0033 0.0024 0.0043 0.0007 0.3147 - - -
HRCP 0.0000 0.0000 0.0068 0.0079 0.0114 0.0158 0.0118 0.0196 0.0038 0.5165 0.0173 - -
JMA 0.0000 0.0000 0.0018 0.0021 0.0037 0.0045 0.0033 0.0057 0.0009 0.3481 0.0001 0.0463 -
H-MAHAR 0.0000 0.0000 0.0013 0.0015 0.0027 0.0031 0.0023 0.0040 0.0006 0.3081 0.6172 0.0204 0.0166

The modified Giacomini–White test (Giacomini and White 2006) is implemented to test the null hypothesis that the row method (in vertical headings) performs equally as well as the column
method (in horizontal headings) in terms of the absolute forecast error. Corresponding p-values for each L are reported in Panels A to B of Table 9, respectively.
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7. Conclusions

In this paper, we study the forecast performance of least squares model-averaging methods when
predicting Bitcoin volatility. Our method allows for a more general lag structure under the HAR
framework, instead of restricting it to daily, weekly, and monthly frequencies. Specially, we estimate
the semi-variance HAR models in Patton and Sheppard (2015) with the least squares model-averaging
method and consider constructing the potential model set with a full permutation of all of the possible
lags and the maximum lag order of 30. The H-MAHAR-embedded model is data-driven, as the
empirical weights on potential models with different lag combinations vary with underlying volatility
series and forecast horizons.

In the out-of-sample application to high-frequency data of the realized variance of BTD/USD,
we provide suggestive evidence that there exists excessive model uncertainty when modeling
the Bitcoin volatility by conventional regression methods. We further demonstrate that the
model-averaging methods can generally outperform conventional regression methods under various
forecast criteria as well as across all forecast horizons (h = 1, 2, 3, 4). Specifically, we apply the
GW test to examine the statistical significance of the improvement made by the model-averaging
method. We reveal that the model-averaging method, especially the one robust to heterskedasicity
(the H-MAHAR), performs significantly better than conventional regressions at a 5% confidence level.
Therefore, the least squares model-averaging methods adapt themselves remarkably well to a relatively
short sample with evident model uncertainty.

This research also shed some light on future works related to the emerging asset class such as
the cryptocurrency. When a new asset class is introduced, proper asset valuation theory is always
invented with lags and institutional investors will hesitate to enter the market for risk control purposes.
Regulations and technology developments are also likely to keep the market structure susceptible
to shocks and to cause great price variations. Moreover, the lack of trading data of long durations is
particularly a concern compared with other well-established asset classes. In this situation, model
averaging contributes to alleviating model specification uncertainty and even to controlling for
heteroskedasticity. There are still some interesting questions left to further research, for instance,
the deep relationship between the crypto trading environment (i.e., the impact of sentiment ) and
volatility data structure.
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