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Abstract: This paper proposes a class of partial cointegrated models allowing for structural breaks in
the deterministic terms. Moving-average representations of the models are given. It is then shown
that, under the assumption of martingale difference innovations, the limit distributions of partial
quasi-likelihood ratio tests for cointegrating rank have a close connection to those for standard full
models. This connection facilitates a response surface analysis that is required to extract critical
information about moments from large-scale simulation studies. An empirical illustration of the
proposed methodology is also provided.
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1. Introduction

Partial cointegration models with structural shifts in level or linear trends are quite common in
practice; however, no formal analysis is available for these models. The likelihood analysis of the partial
models with such breaks is based on reduced rank regression, just like standard full cointegrated
vector autoregressive models introduced by Johansen (1988, 1995). The main difference lies in the fact
that likelihood-based tests for cointegrating rank in the partial models involve a set of new asymptotic
distributions which reflect the combination of weakly exogenous regressors and broken deterministic
terms. We generalise the standard assumption of normal innovations (Johansen 1995) to a flexible class
of heterogeneous martingale difference innovations. We then derive the asymptotic distributions of
the test statistics in question and provide a simulated responsed surface of the asymptotic distribution.

The presented models combine two widely used extensions of Johansen’s original model. The first
extension was a partial cointegrated system investigated by Harbo et al. (1998), referred to as HJNR
henceforth, see also Pesaran et al. (2000). This partial system is a conditional vector autoregressive
model for a vector of variables, Yt, given another vector of variables, Zt, as well as lags of both
variables. They also presented simulated tables for asymptotic rank test distributions based on the
partial system. Boswijk (1995) and Ericsson and MacKinnon (2002) explored the use of conditional
autoregressive models. Recently, Cavaliere et al. (2018) considered information criteria based on the
HNJR test statistics. The second extension was a full cointegrated system with structural breaks in
a constant level or linear trend, a model explored by Johansen et al. (2000), referred to as JMN hereafter.
This full model is a multivariate extension of model C of Perron (1989), where both level and linear
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trend slope change at the time of the break, as opposed to his models A and B, in which only one of the
two is changing. Deterministic breaks in cointegrated systems have also been explored by Inoue (1999)
and Hendry and Massmann (2007).

Each of the two extensions above has proved to be useful in empirical applications; furthermore,
subsequent practical work has shown that we frequently require both of the two extensions
simultaneously. As an example, Bårdsen et al. (2005) built a large scale model of the Norwegian
economy by combining a number of smaller partial cointegration models. Each of these sub-systems
is regarded as a partial model subject to structural shifts, and these types of models are useful in
a practical sense for empirical macroeconomic research. As it stands, however, the exact asymptotic
properties of likelihood-based test statistics derived from the partial models with structural breaks
are unknown, so that a formal econometric study based on these models is unfeasible. This paper,
therefore, conducts both analytical and simulation-based investigations into the unknown asymptotic
properties so that researchers can perform a formal analysis using the partial models with structural
breaks. Another example of these partial models is a trade model for the UK by Schreiber (2015),
which we are going to use as an empirical illustration later in this paper.

This paper shows that the asymptotic distributions of the proposed likelihood-based test statistics
are dependent on information about the dimension of the variables Yt and Zt, cointegrating rank,
the number of breaks and their locations, but the distributions themselves are free of any unknown
parameters. Hence, the limit distributions can be simulated given the above information, as in a manner
similar to Johansen (1995, §15), HJNR or MacKinnon et al. (1999). The Granger–Johansen representation
for the full model in JMN is also reexamined as a basis for the required asymptotic study, and this
reexamination can be viewed as a useful clarification of roles of a set of starting values in the workings
of the system. It should be noted that a condition for weak exogeneity reviewed in Section 2 is assumed
to be satisfied when exploring the properties of the test statistics; the violation of this condition can give
rise to a class of limit results that are unfavourable in applications, as discussed by Johansen (1992a).
This assumption is testable by following an ex-post testing procedure suggested by Johansen (1992a)
and others. We demonstrate this procedure in the empirical illustration in Section 5.

In deriving the asymptotic distributions of the test statistics, the assumption of normal innovations
in Johansen (1995), HJNR and JMN, is relaxed to the assumption of martingale difference innovations,
with a view to widening the scope of applications of the proposed models. This means we have to
be careful in developing asymptotic arguments required for the quasi-likelihood ratio test statistics.
We use martingale limit results of Anderson and Kunitomo (1992) and Brown (1971) for approximately
stationary components and for non-stationary components, respectively.

Furthermore, it is shown that the derived asymptotic distributions can be approximated by
gamma distributions, a class of common statistical distributions identifiable only by the first two
moments; the validity of this gamma-distribution approximation method in various other existing
models was documented by Nielsen (1997), Doornik (1998) and JMN. The study utilises the fact that
mean and variance of the limit distributions for the proposed partial models are expressible in terms of
the mean and variance for full models and certain covariance terms. As a result, it is feasible to apply
the gamma approximation method to simulation results based on the fullmodels, in order to obtain
precise limit quantiles of the test statistics for the proposed partial models. Hence, we are justified in
conducting comprehensive simulations in the full-model framework, the results of which are applied
in a response surface analysis combined with the gamma approximation method. The outcomes of the
response surface analysis are tabulated in two tables, the accuracy of which is verified by moving back
to the partial-model framework. The tables allow researchers to conduct formal applied studies with
the proposed partial models. A brief empirical study is also provided.

Overall, this paper adds to the literature on time series econometrics and applied macroeconomics.
As a result, the partial cointegrated models will be recognised as more flexible and practical devices
for modelling and analysing non-stationary time series data containing structural breaks. For I(2)
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models, Paruolo and Rahbek (1999) proposed partial analysis while Kurita et al. (2011) introduced
a model with deterministic shifts. In future work, it may be of interest to combine those ideas as well.

The rest of this paper consists of five sections. Section 2 introduces partial cointegrated models
subject to deterministic breaks and their moving-average representations. Section 3 derives partial
quasi likelihood-based tests for cointegrating rank allowing for the breaks, and explores the limit
distributions of the test statistics. In this section, a response surface analysis is performed by using
simulated distributions and then the results of the analysis are summarised as a set of statistical tables.
An empirical illustration of the proposed methodology is provided in Section 5. Finally, Section 6 gives
concluding remarks. This study used Ox (Doornik 2013) and PcGive (Doornik and Hendry 2013) to
conduct the simulations and the empirical study, respectively.

2. Models and Representations

We introduce partial cointegrated vector autoregressive models with deterministic breaks.
Section 2.1 reviews the existing models known, while Sections 2.2–2.4 provide details of the
proposed models.

2.1. Previous Models

The cointegrated vector autoregressive model was proposed by Johansen (1988, 1995). Suppose that we
observe a p-variate vector time series Xt integrated of order 1, denoted as I(1) hereafter. In the presence
of two lags, a constant and restricted linear trend, the model equation for Xt

∆Xt = (Π, Π`)

(
Xt−1

t

)
+ Γ∆Xt−1 + µ + εt for t = 3, . . . , T, (1)

with index ` for the linear trend model and the associated cointegrating rank hypothesis, for r ≤ p,

rank (Π, Π`) ≤ r so that (Π, Π`) = α(β′, γ). (2)

Here, the initial values X1 and X2 are fixed while p-vector innovations ε3, . . . , εT are distributed
as independent normal, denoted by Np(0, Ω). The parameters in Equation (1) are all variation free,
defined as α, β ∈ Rp×r, γ ∈ Rr, µ ∈ Rp and Γ, Ω ∈ Rp×p and with Ω being positive definite. This model
is interpreted in terms of its Granger–Johansen representation. The likelihood function is maximised
through reduced rank regression of ∆Xt on the vector of Xt−1, 1 corrected for ∆Xt−1. The cointegrating
rank r can be determined through a sequence of rank test statistics, which have Dickey–Fuller type
limit distributions depending on the number of common trends, p− r in this case, and with a linear
trend adjustment. Once the rank is determined, asymptotic inference for the cointegrating vectors β

and the adjustment vectors α can be based on χ2 distributions.
The partial model is derived from the model given by Equation (1), which is referred to as the full

model henceforth. This allows exogenous regressors that are not necessarily analysed in the model
equation. With a view to setting up the partial model, let us introduce an integer m satisfying
0 ≤ r ≤ m < p, so that we can decompose Xt into an m-vector Yt and a vector Zt of dimension p−m.
Decompose the parameters and error terms of Equation (1) conformably so that, for instance,

Π =

(
Πy

Πz

)
, Γ =

(
Γy

Γz

)
, µ =

(
µy

µz

)
, εt =

(
εy,t

εz,t

)
and Ω =

(
Ωyy Ωyz

Ωzy Ωzz

)
.

We also define the population regression coefficient ω = ΩyzΩ−1
zz , which leads to a class of

conditional coefficients Πy·z = Πy − ωΠz, Γy·z = Γy − ωΓz and µy·z = µy − ωµz. The partial or
conditional model for Yt given Zt is then presented as
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∆Yt = ω∆Zt + (Πy·z, Πy·z,`)

(
Xt−1

t

)
+ Γy·z∆Xt−1 + µy·z + εy·z,t, (3)

where the conditional innovation sequence εy·z,t = εy,t −ωεz,t is Nm(0, Ωyy·z) distributed, so εy·z,t is
independent of Zt and the overall past series, while its variance is

Ωyy·z = Ωyy −ΩyzΩ−1
zz Ωzy. (4)

The cointegration rank hypothesis is, for r ≤ m,

rank (Πy·z, Πy·z,`) ≤ r so that (Πy·z, Πy·z,`) = αy·z(β′, γ), (5)

where αy·z = αy −ωαz. The marginal model for Zt is simply given as

∆Zt = αz(β′, γ)

(
Xt−1

t

)
+ Γz∆Xt−1 + µz + εz,t. (6)

Due to the conditioning of Yt on Zt, the innovations εy·z,t and εz,t are independent. Even so,
the cointegrating relationships β′Xt−1 + γt form cross equation restrictions, so that maximum
likelihood estimation involves a joint analysis of (3) and (6). The rank can be determined from a partial
analysis using information criteria albeit without size control as argued by Cavaliere et al. (2018).

Weak exogeneity arises when αz = 0. In this case, the partial model and the marginal model
are unrelated and Zt is weakly exogenous for a class of parameters of interest, αy, β and γ, in the
sense of Engle et al. (1983). See also Johansen (1992a, 1992b, 1995, §8) and HJNR. Maximum likelihood
estimation can be performed by analysing the two models separately, i.e., the partial model is estimated
by reduced rank regression while the marginal model is by least squares regression. The maintained
assumption is that the joint vector Xt has r cointegrating relations and hence p− r common trends,
with the cointegrating relations being in the partial model for Yt. A notable feature of the setup is that
it is left unspecified whether or not Zt is cointegrated. In a one-lag model Zt will not be cointegrated,
but with further lags Zt could be cointegrated since the short-run dynamics are determined by both α

and Γ; see HJNR (p. 390) for an example of these models. HJNR explored an asymptotic theory for
likelihood-based rank testing in the partial model (3). The asymptotic distribution of HJNR’s rank
test statistic is of the Dickey–Fuller type, now depending on both m − r and p − r, which are the
dimensions of common trends for Yt and Xt, respectively. Seo (1998) suggested a class of cointegrated
models where a stationary regressor, ∆Zt is included in a cointegration model. This corresponds to a
models of the type (3), but where Xt−1 is replaced by only Yt−1. In general, this results in an inference
that depends on nuisance parameters. Rahbek and Mosconi (1999) noticed that, if the stationary
regressor ∆Zt is cumulated and entered in the cointegrating vector Xt−1 as in (3), then the asymptotic
distributions of HJNR would apply.

Structural breaks in deterministic terms were included in the full system model by JMN. The idea is
to consider, say, two sub-samples starting at time T0 and T1, respectively, for 0 = T0 < T1 < T2 = T.
The dynamic parameters in the model are the same for both sub-samples, while the parameters for
deterministic terms can differ. In the model with lag-length k = 2, the observations Tj−1 + 1, Tj−2 + 2
for j = 1, 2 are held back as initial observations. Thus, the transition from one regime to the next is not
modelled. Recently, Harvey and Thiele (2017) used a similar idea in a structural time series model.

2.2. The Partial Model with Structural Breaks

We are in a position to introduce a new model, a partial cointegrated model allowing for structural
breaks in its deterministic terms.

We start by defining the timing of the sub-samples. Suppose we have T observations. We extend
the partial model to the one with a pre-specified number of sub-sample periods, q say, and k lags.
Following JMN, we introduce the sub-sample structure 0 = T0 < T1 < · · · < Tq = T. The model will
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have k lags. Thus, for each sub-sample j, the effective range is Tj−1 + k < t ≤ Tj. In summary, we have
data for 0 < t ≤ T, while the effective sample is the collection of effective sub-samples, that is,

Tj−1 + k < t ≤ Tj where 1 ≤ j ≤ q. (7)

The model has dynamic parameters that are common across the sub-sample periods, whereas the
parameters for deterministic terms vary. This gives, for each effective sub-sample j as defined above:

∆Yt = ω∆Zt + αy(β′, γj)

(
Xt−1

t

)
+

k−1

∑
i=1

Γy·z,i∆Xt−i + µy·z,j + εy·z,t, (8)

where γj ∈ Rr, µj = (µ′y,j, µ′z,j)
′ ∈ Rp and µy·z,j = µy,j − ωµz,j for j = 1, . . . , q, along with

Γi = (Γ′y,i, Γ′z,i)
′ ∈ Rp×p and Γy·z,i = Γy,i − ωΓz,i for i = 1, . . . , k − 1, and all the other parameters

were defined in the previous sub-section. Note that the parameters for deterministic terms depend on j,
indicating the presence of parameter shifts according to regime changes. A class of initial observations
XTj−1+1, . . . , XTj−1+k plays the dual role of capturing the transition from the previous regime, j− 1 and
of serving as the initial observations for the regime j. In some applications, the transition between the
regimes may be longer than k observations, in which case more observations could be classified as
initial observations. The marginal model for Zt under αz = 0 is

∆Zt =
k−1

∑
i=1

Γz∆Xt−i + µz,j + εz,t. (9)

We can form a full model equation as in Equation (1) for each sub-sample period. This is the
model of JMN with weak exogeneity imposed. This model will be presented in the next sub-section.

The partial model can be formulated as a single equation for the full sample period in terms of
the following notation. Following JMN, we define impulse dummy variables as

Dj,t =

{
1 for t = Tj−1,
0 otherwise,

for j = 1, . . . , q and t = 1, . . . , T,

so that Dj,t−i = 1 if t = Tj−1 + i, and also define indicators for the effective samples as

Ej,t =

Tj−Tj−1

∑
i=k+1

Dj,t−i =

{
1 for Tj−1 + k < t ≤ Tj,
0 otherwise,

and Et =
(
E1,t, . . . , Eq,t

)′ .
The whole-sample model equation then has the form, with X`

t−1 = (X′t−1, tE′t)
′, where the index `

indicates the model with a linear trend, for t = k + 1, . . . , T,

∆Yt = ω∆Zt + αy(Πy, Πy,`)X`
t−1 +

k−1

∑
i=1

Γy·z,i∆Xt−i + µy·zEt +
k

∑
i=1

q

∑
j=2

ϕj,iDj,t−i + εy·z,t, (10)

with cointegration rank hypothesis, for r ≤ m,

H`(r) : rank (Πy, Πy,`) ≤ r so that (Πy, Πy,`) =
(

β′, γ
)

. (11)

Here, ϕj,i ∈ Rm represents a class of parameters for Dj,t−i for i = 1, . . . , k and j = 2, . . . , q,
while the parameters γ and µy·z are now redefined in a manner allowing for breaks as

γ = (γ1, . . . , γq) ∈ Rr×q and µy·z = (µy·z,1, . . . , µy·z,q) ∈ Rm×q,
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which are used in the rest of this study. Equation (8), or its whole-sample form (10), is referred to as
the partial model with a broken linear trend term.

2.3. Representations

Various properties of the proposed partial model (8) will be analysed using the Granger–Johansen
representation of an I(1) process, which is formulated based on the full model for Xt; thus,
the representation is the same as that in JMN (Theorem 2.1). In JMN, each sub-sample period is analysed
conditionally on its initial observations. As a result, the representation for each sub-sample period is
the same as that in Johansen (1995, Theorem 4.2). The initial values for each sub-sample can be large
and thus be influential even in the asymptotic context, but, when following the underlying argument
of JMN, one can see that such initial values do not play critical roles in the required asymptotic analysis.
Following Kurita and Nielsen (2009), we show this in two steps: first, we analyse a homogeneous
equation, and then consider the roles of deterministic terms by moving to a non-homogeneous equation.
For further details, see the proof of Theorem 1 below.

For each sub-sample, the full model for Xt is defined as a joint system of (8) and (9) through:

∆Xt = α(β′, γj)

(
Xt−1

t

)
+

k−1

∑
i=1

Γi∆Xt−i + µj + εt, (12)

while the corresponding homogeneous equation is

∆X̃t = αβ′X̃t−1 +
k−1

∑
i=1

Γi∆X̃t−i + εt, (13)

where X̃t denotes a p-variate mean-zero vector time series. We then set up a companion vector based
on (13) and analyse a companion form of this equation. Several choices are conceivable with respect to
a companion form for (13) and we use the choice that appears, for instance, in Hansen (2005). For the
purpose of studying details of the representation, the parameters need to satisfy Assumption 1 below.
This is applicable to both (12) and (13). Some additional notation is required. When β has full column
rank r, let β⊥ denote a p× (p− r) dimensional orthogonal complement, so that (β, β⊥) is invertible
and β′⊥β = 0 and introduce the normalization β = β(β′β)−1. The same notation applies to α.

Assumption 1. Assume that the roots of the characteristic polynomial,

A(z) = (1− z)Ip − αβ′z−
k−1

∑
i=1

Γi(1− z)zi,

are outside the complex unit circle or at unity; furthermore, assume that the matrices α and β have full column
rank r and that the square matrix α′⊥Ψβ⊥ has full rank p− r, where Ψ = Ip −∑k−1

i=1 Γi.

Given Assumption 1, we can define C = β⊥(α
′
⊥Ψβ⊥)

−1α′⊥ This is often referred to as the impact
matrix in cointegration literature; see Paruolo (1997) for inference on this matrix.

We are approaching the stage where the Granger–Johansen representation for each sub-sample
period is presented. For the homogeneous Equation (13), let us define

α =


α Γ1 · · · Γk−1
0 Ip 0
...

. . .
...
0

0 · · · 0 Ip

 , Λ =



Ip 0 · · · 0

Ip −Ip
...

0
. . .

... 0
0 · · · 0 Ip −Ip


, (14)
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as well as

β′ =

(
β′ 0
0 Ip(k−1)

)
Λ, X̃t−1 =

 Xt−1
...

Xt−k

 , (15)

and ι = (Ip, 0, . . . , 0)′ together with r = r + p (k− 1) . The representation is then given in the theorem
below, the proof of which is provided in Appendix B.

Theorem 1. Suppose that Assumption 1 is fulfilled. Then, an r-variate process β′X̃t derived from ation (13)
satisfies, on the effective sample Tj−1 + k < t ≤ Tj for 1 ≤ j ≤ q,

β′X̃t = (Ir + β′α)β′X̃t−1 + β′ιεt with |eigen(Ir + β′α)| < 1, (16)

which is a stable first-order vector autoregression. The solution to (13) is given as

X̃t = C
t

∑
s=Tj−1+k+1

εs + {(I − CΨ)β̄, CΥ}β′X̃t − C(Ψ, Υ)ΛX̃Tj−1+k, (17)

where Υ = (Υ1, . . . Υk−1) with Υi = −Γi − · · · − Γk−1. Thus, the variable Xt in (12) satisfies

Xt = C
t

∑
s=Tj−1+k+1

εs + (I − CΨ)β̄β′X̃t − C
k−1

∑
i=1

Γi

i−1

∑
`=0

∆X̃t−`

− CΨX̃Tj−1+k + C
k−1

∑
i=1

Γi

i−1

∑
`=0

∆X̃Tj−1+k−` + τc,j + τ`,jt, (18)

for X̃t = Xt − τc,j − τ`,jt with the parameters τc,j and τ`,j satisfying

Ψτl,j = αβ′(τc,j − τ`,j) + µj and β′τ`,j + γj = 0.

Note that the initial observations for the j-th sub-sample in (18) are expressed in terms of
linear combinations of the mean-zero values X̃Tj−1+1, . . . , X̃Tj−1+k, so that we can in general argue
that the the starting values for each sub-sample period do not play critical roles in asymptotic
analysis. This property was not explicitly examined in JMN. Thus, Theorem 1 can be seen as a
useful clarification of roles of the initial values in the full cointegrated model subject to deterministic
breaks. The Granger–Johansen representation is utilised in proofs of asymptotic theorems in Section 3.

As an alternative to the above sub-sample representation, one can derive a joint representation
for the whole sample. For this purpose, we need a full system equation for Xt over the entire sample
period. This equation is derived from a combination of (12) over j = 1, . . . , q augmented with dummies
Dj,t−i and Ej,t, as in (10); that is,

∆Xt = α
(

β′, γ
)

X`
t−1 +

k−1

∑
i=1

Γi∆Xt−i + µEt +
k

∑
i=1

q

∑
j=2

κj,iDj,t−i + εt, (19)

where κj,i ∈ Rp for i = 1, . . . , k and j = 2, . . . , q, and µ = (µ1, . . . , µq) ∈ Rp×q; see Equation (2.6) in
JMN. We then replace the innovations εt with εD

t = εt + αγtEt + µEt + ∑k
i=1 ∑

q
j=2 κj,iDj,t−i to reach a

whole-sample representation such as

Xt ≈ C
t

∑
s=k+1

εD
s + C1(L)εD

t + A for k < t ≤ T, (20)
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where C1(L)εD
t denotes a moving-average process whose coefficients decrease exponentially fast,

and A depends on initial observations X1, . . . , Xk, satisfying β′A = 0. This is an approximation,
since the precise formulation of the moving-average component requires introduction of an infinite past,
while the model is formulated as conditional on the initial observations. As before the deterministic
parts of the common trends C ∑T

s=k+1 εD
s will be piecewise constant since Cα = 0, so that each constant

fails to cumulate to a linear trend. A similar approach was adopted in I(2) cointegration analysis by
Kurita et al. (2011). The representation (20) is clear and concise, but the transition from one regime
to another is considered to be explicitly autoregressive, which may leave less flexibility to represent
regime transitions of some persistent and messy nature. For the asymptotic study conducted below,
we follow JMN by using the sub-sample representation (18).

2.4. The Partial Model with Shifts in The Level

In some applications, it suffices to exclude the broken linear trends and just include shifts in the
constant term. By restricting the broken constant term within the cointegrating space, Equation (10) is
reduced to, with Xc

t−1 = (X′t−1, E′t)
′ and index c for model with breaks in the constant level,

∆Yt = ω∆Zt + (Πy, Πy,c)Xc
t−1 +

k−1

∑
i=1

Γy·z,i∆Xt−i +
k

∑
i=1

q

∑
j=2

ϕj,iDj,t−i + εy·z,t (21)

and cointegration rank hypothesis, for r ≤ m,

Hc(r) : rank (Πy, Πy,c) ≤ r or that (Πy, Πy,c) = αy
(

β′, γ
)

. (22)

The Granger–Johansen representation has the same form as (18) but is subject to

β′τc,j + γ′j = 0 and τ`,j = 0.

3. Testing for Cointegrating Rank in the Partial Models

This section addresses the issue of testing for cointegrating rank in the suggested partial models
with deterministic shifts. Section 3.1 introduces a partial likelihood ratio test for the choice of rank
based on the broken linear-trend model and Section 3.2 derives its limit distribution. Section 3.3 then
turns to the broken constant model and examines the test statistic based upon it. Finally, Section 4
derives a class of approximations to the limit distributions by means of computer simulations and
response surface regression.

3.1. Rank Test Statistic

For each sub-sample period, the partial model (10) is seen as equivalent to that in HJNR, given
the presence of structural breaks in its deterministic terms. We derive the log partial likelihood
ratio test statistic for the cointegration rank hypothesis H`(r) defined in (11). This likelihood is
analysed by reduced rank regression in a manner similar to the original cointegration model in
Johansen (1988, 1995). We show that the reduced rank regression can be done in three, numerically
equivalent ways.

The first approach is based on a full-sample reduced rank regression. Regress each of the vectors
∆Yt and X`

t−1 = (X′t−1, tE′t)
′ on a vector Ht consisting of the variables ∆Zt, the lagged differences

∆Xt−1, . . . , ∆Xt−k+1, the intercepts Et and the impulse dummies Dj,t−i for i = 1, . . . , k and j = 2, . . . , q,
so that Ht has dimension pk−m + q + k(q− 1). This gives residuals R0,t and R1,t:(

R0,t
R1,t

)
=

(
∆Yt

X`
t−1

)
−

T

∑
s=k+1

(
∆Ys

X`
s−1

)
H′s

(
T

∑
s=k+1

HsH′s

)−1

Ht for k < t ≤ T.
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The second approach is viewed as a sub-sample approach. We note that the impulse dummies
result in a perfect fit for each transitional period in between two connecting regimes; thus, R0,t and R1,t
are zero for all transitional periods. We can, therefore, compute the residuals R0,t and R1,t by analysing
the effective sub-sample periods only; see also Doornik et al. (1998, §12.2). For this purpose, let us form
regressors Pt from the variables ∆Zt, the lagged differences ∆Xt−1, . . . , ∆Xt−k+1 and the intercepts Et,
so that Pt is a vector of dimension pk−m + q. The residuals R0,t and R1,t then satisfy

(
R0,t
R1,t

)
=

(
∆Yt

X`
t−1

)
−

q

∑
j=1

Tj

∑
s=Tj−1+k+1

(
∆Ys

X`
s−1

)
P′s

 q

∑
j=1

Tj

∑
s=Tj−1+k+1

PsP′s

−1

Pt,

for Tj−1 + k < t ≤ Tj with 1 ≤ j ≤ q, while R0,t and R1,t are zero, otherwise.
The third approach is recognised as a two-step approach, in which we first demean the observed

time series and then partial out influences from the lagged differences. In the first step, we analyse
two vectors ∆Yt and X`

t−1, along with a vector Vt consisting of the variables ∆Zt and the lagged
differences ∆Xt−1, . . . , ∆Xt−k+1. These three vectors are demeaned within each sub-sample period,
yielding Z0,t, Z1,t and Z2,t defined as Z0,t

Z1,t
Z2,t

 =

 ∆Yt

X`
t−1
Vt

− 1
Tj − Tj−1 + k

Tj

∑
s=Tj−1+k+1

 ∆Ys

X`
s−1
Vs

 , (23)

for 1 ≤ j ≤ q and Tj−1 + k < t ≤ Tj and zero otherwise. In the second step, we compute

(
R0,t
R1,t

)
=

(
Z0,t
Z1,t

)
−

T

∑
s=k+1

(
Z0,s
Z1,s

)
Z ′2,s

(
T

∑
s=k+1

Z2,sZ ′2,s

)−1

Z2,t.

Since Z0,t, Z1,t are zero within the transitional periods, so are the residuals R0,t, R1,t.
With the residuals R0,t and R1,t in hand, we can compute the product moments(

S00 S01

S10 S11

)
=

1
T − k

T

∑
t=k+1

(
R0,t
R1,t

)(
R0,t
R1,t

)′
, (24)

and a set of squared canonical correlations 1 ≥ λ̂1 ≥ · · · ≥ λ̂m ≥ 0 by solving the eigenvalue problem

0 = det(λS11 − S10S−1
00 S01).

Hence, the log partial likelihood ratio (PLR) test statistic for the null hypothesis of cointegrating
rank r, H`(r), against the hypothesis H`(m) is

PLR{H`(r)|H`(m)} = −(T − k)
m

∑
i=r+1

log(1− λ̂i). (25)

3.2. Asymptotic Distribution of the Test Statistic

We derive the asymptotic distribution of the rank test statistic in a setting where the relative
break points satisfy Tj/T → vj for j = 0, . . . , q while T goes to infinity. The relative break points satisfy
0 = v0 < v1 < · · · < vq = 1. Indeed, with int(x) denoting the integer part of x, then the q-vector
Eint(Tu) on u ∈ [0, 1] has the limit

eu =
{

1(v0<u<v1)
, . . . , 1(vq−1<u<vq)

}′
. (26)
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In the standard framework developed by Johansen (1995), the innovation sequence εt is
assumed to be independent and identically Gaussian distributed, and this assumption was adopted
by HJNR and JMN as reviewed in Section 2.1 above. We relax this normality assumption to a
martingale difference assumption. If the innovations εt are not normal, the model equations lead
to a quasi-likelihood function rather than a likelihood function. Weak exogeneity is preserved as it
is a property of the likelihood rather than the distribution of the innovations as such. The partial
innovation εy·z,t = εy,t −ωεz,t and the marginal innovation εz,t are uncorrelated, but they will not be
independent in general when moving away from the normality assumption. We can no longer appeal
to the conditional-distribution argument, as implied in Equation (3). Thus, the conditional-distribution
argument is replaced with a regression argument, see Appendix C.2. The martingale difference
assumption is summarised as Assumption 2 below.

Assumption 2. Assume that εt is a martingale difference sequence with respect to a filtration Ft such that
E(εt|Ft−1) = 0 almost surely (a.s.). Let Ω be a positive definite matrix. Suppose that
(i) E(εtε

′
t) = Ω;

(ii) T−1 ∑T
t=1 E(εtε

′
t|Ft−1)

P→ Ω;
(iii) either of the following boundedness conditions

(a) supt∈N E{ε′tεt1(ε′tεt>a)|Ft−1}
P→ 0 as a→ ∞;

(b) supt∈N E|εt|4 < ∞.

The boundedness conditions in part (iii) are not nested. Part (a) can be satisfied without the
existence of fourth moments as in part (b). Conversely, bounded fourth moments in part (b) do not
necessarily imply part (a); see Remark A1 in Appendix C.1.

Under Assumption 2, we are able to apply the results of Brown (1971) to analyse the random
walk components of the process. For this, we require a Lindeberg condition, which is established in
Lemma A1 in Appendix C.1 under Assumption 2. Brown’s result is for univariate martingale difference
sequences and requires that the ratio of the sum of conditional variances to that of unconditional
variances should converge to unity. For the multivariate case, we can apply the Cramér–Wold
device and form linear combinations of the present multivariate martingale differences. Using parts
(i), (ii) we can then show that Brown’s ratios converge to unity.

Under Assumption 2, we can also analyse the (approximately) stationary components of the
process. Under part (iii.a), we can apply the results of Anderson and Kunitomo (1992), which exploit
a truncation argument. Under part (iii.b) we can apply the same ideas as in Anderson and Kunitomo
(1992) but without the truncation argument.

Cointegration models with heteroscedasticity have previously been analysed by for instance
Cavaliere et al. (2010) and Boswijk et al. (2016). The former paper is concerned with rank testing
in a full system. For the analysis of the (approximately) stationary components, it relies on
Hannan and Heyde (1972) who require an almost sure version of Assumption 2(ii). The latter paper
is concerned with testing on the cointegrating vectors in a full system with an elaborate, deterministic
structure for the variances of the innovations.

Before proceeding to the main results, we present a set of stronger assumptions requiring constant
conditional variance, see Assumption 3 and Lemma 1 below. These assumptions were used by
Lai and Wei (1982, 1985) as well as Chan and Wei (1988). They have two advantages. First, they are
easier to check for practitioners than the convergence results in Assumption 2. Second, the assumptions
could be used to derive a variety of almost sure convergence results, as explored by Lai and Wei
(1982, 1985) and Nielsen (2005), although we will not exploit those properties here.

Assumption 3. Assume that εt is a martingale difference sequence with respect to a filtration Ft such that
E(εt|Ft−1) = 0 a.s. and
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(i) Var(εt|Ft−1) = Ω a.s., where Ω is positive definite;
(ii) supt∈N E(|εt|2+ξ |Ft−1) < ∞ a.s. for some ξ > 0.

Lemma 1. Assumption 3 implies Assumption 2.

We can now present the limit distribution of the PLR statistic (25), noting that, formally, it is a

a log partial quasi-likelihood ratio test statistic under Assumption 3. For this purpose, let D→ signify
weak convergence, while let Bu represent a (p− r)-dimensional standard Brownian motion process on
u ∈ [0, 1] and let B(m−r)

u be the first m− r coordinates of Bu. The limit distribution is given in the next
theorem, which is proved in Appendix C.3.

Theorem 2. Suppose that Assumptions 1 and 2 are satisfied along with αz = 0, so that Zt is weakly exogenous
with respect to αy, β and γ. As T → ∞, with relative break points satisfying Tj/T → vj for 0 = v0 < v1 <

· · · < vq = 1, the PLR test statistic (25) under H` (r) satisfies

PLR{H`(r)|H`(m)} D→ DF`(m− r, p− r; v), (27)

where, with eu defined in (26),

DF`(m− r, p− r; v) = tr

{∫ 1

0
dB(m−r)

u G′u

(∫ 1

0
GuG′udu

)−1 ∫ 1

0
GudB(m−r)′

u

}
,

Gu =

(
Bu

ueu

)
−
∫ 1

0

(
Bs

ses

)
es
′ds
(∫ 1

0
ese′sds

)−1

eu.

Note that, when p = m, the result in Theorem 2 corresponds to Theorem 3.1 in JMN. A direct
simulation of (27) is rather laborious. By exploiting some analytic properties of the distributions, we are
able to simplify this simulation task. The next Theorem 3 describes these properties by linking the
moments of the limit distribution in Theorem 2 to those for the full model. Theorem 3 provides a basis
for simulation in Section 4. The proof of this theorem, given in Appendix C.3, is based on a slight
modification of results in Doornik (1998, §9); see also Boswijk and Doornik (2005).

Theorem 3. Let Bi,u be the i-th coordinate of the Brownian motion Bu. Let

Ti =
∫ 1

0
dBi,uG′u

(∫ 1

0
GuG′udu

)−1 ∫ 1

0
GudB′i,u for i = 1, . . . , p− r.

Then, T1, . . . ,Tp−r are identically distributed and any pairs Tj,Tk are also identically distributed.
Moreover, the limiting statistic (26) satisfies DF`(m− r, p− r; v) = ∑m−r

i=1 Ti with expectation and variance
given by

E{DF`(m− r, p− r; v)} =

(
m− r
p− r

)
E

(
p−r

∑
i=1

Ti

)
,

Var{DF`(m− r, p− r; v)} =

(
m− r
p− r

)
Var

(
p−r

∑
i=1

Ti

)
− (m− r)(p−m)Cov(T1,T2).

Since the above Theorem 3 links the moments of the statistics for partial systems and for a full
system, we can now proceed by simulating distributions for full systems only. JMN simulated response
surfaces for the mean and variance of ∑

p−r
i=1 Ti. As we will also need a response surface for Cov(T1,T2),

we have to redo their simulation exercise. For this purpose, we quote a result from JMN.
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Theorem 4 (JMN, Theorem 3.2). Let B[1], . . . , B[q] be independent (p− r)-dimensional standard Brownian
motions and define

Jj =

{∫ 1

0
(u|1)2 du

}−1/2 ∫ 1

0
(u|1)

{
dB[j](m−r)

u

}
,

Kj =
∫ 1

0

(
B[j]

u

∣∣∣ u, 1
) {

dB[j](m−r)
u

}′
,

Lj =
∫ 1

0

(
B[j]

u

∣∣∣ u, 1
) (

B[j]
u

∣∣∣ u, 1
)′

du.

Then, the limiting variable (26) for a full sample with p = m satisfies

DF`(p− r, p− r; v) = tr

( q

∑
j=1

Kj∆vj

)′{ q

∑
j=1

Lj
(
∆vj
)2
}−1( q

∑
j=1

Kj∆vj

)+
q

∑
j=1

J′j Jj,

where ∆vj = vj− vj−1. Here, the two summands are independent and ∑
q
j=1 J′j Jj is distributed as χ2{q (m− r)}.

Moreover, let J[i]j and K[i]
j denote the ith coordinate of Jj and Kj so that

Ti =

(
q

∑
j=1

K[i]
j ∆vj

)′{ q

∑
j=1

Lj
(
∆vj
)2
}−1( q

∑
j=1

K[i]
j ∆vj

)
+

q

∑
j=1

(J[i]j )2.

As in JMN, we note that Theorem 4 implies a simple relation between the limiting statistics for
models with q and with q− 1 sub-sample periods that is

lim
∆vq→0

DF`(p− r, p− r; v1, . . . vq−1, vq) = DF`(p− r, p− r; v1, . . . vq−1) + J′q Jq, (28)

where DF`(p− r, p− r; v1, . . . vq−1) and J′q Jq are independent and J′q Jq is χ2(p− r).

3.3. Asymptotic Distribution for the Broken Constant Case

The model investigated previously has a broken linear trend. A variant of this model is free of
such a linear trend but with a broken constant; see Equation (21). Equation (8) then reduces to

∆Yt = ω∆Zt + αy(β′, γj)

(
Xt−1

1

)
+

k−1

∑
i=1

Γy·z,i∆Xt−i + εy·z,t.

As before, the partial quasi-likelihood is maximized by reduced rank regression. We follow the
third approach (23) in Section 3.1, in which the broken linear trend is now replaced with the broken
constant, so that we consider the vectors ∆Yt and X`

t−1 = (X′t−1, E′t)
′, together with the vector Vt

composed of the variables ∆Zt and the lagged differences ∆Xt−1, . . . , ∆Xt−k+1. Equation (23) then
reduces to  Z0,t

Z1,t
Z2,t

 =

 ∆Yt

X`
t−1
Vt

 .

The limit distribution of the log partial quasi-likelihood ratio test statistic for cointegrating rank r,
denoted by PLR{Hc(r)|Hc(m)}, is given in Theorem 5 below. Its proof is based on a set of modifications
of the proofs for the limit theorems in the previous sub-sections.
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Theorem 5. Suppose that Assumptions 1 and 2 are satisfied along with αz = 0, so that Zt is weakly exogenous
with respect to αy, β and γ. As T → ∞, with relative break points satisfying Tj/T → vj for 0 = v0 < v1 <

· · · < vq = 1, the PLR test statistic (25) under Hc (r) satisfies

PLR{Hc(r)|Hc(m)} D→ DFc(m− r, p− r; v),

where DFc is defined as in Theorem 2 with the difference that

Gu =

(
Bu

eu

)
.

The results in Theorems 3 and 4 also apply with the present choice of Gu.

4. Approximations of the Asymptotic Distributions

The limit distributions of the cointegrating rank test statistics are non-standard, as shown in the
previous sub-sections; however, given the existing results in the literature, the distributions can be
closely approximated by a gamma distribution identified by the first two moments. We first derive
this approximation and then show how to implement the approximation.

4.1. Derivation of Response Surface

The literature shows that the asymptotic distributions for cointegration rank testing are nearly
gamma distributed. The approximating gamma distribution can be captured either through the mean
and variance of the asymptotic distribution or through the associated shape and scale parameters.
The quality of the gamma-distribution approximation method has been documented in several papers.
Using analytic methodology, Nielsen (1997) showed a very good agreement between limit distributions
and approximate gamma distributions in tests for unit roots. Doornik (1998) then conducted detailed
simulation studies to demonstrate a similar agreement for standard full-system cointegration rank
test statistics; see also Doornik (2003) for various tables of asymptotic quantiles produced by the
gamma-distribution approximations. JMN also employed this method.

In order to apply the gamma approximation method, we first define parameters for shape and
scale. By Theorem 3, the partial system statistic satisfies DF`(m− r, p− r; v) = ∑m−r

i=1 Ti, where the
statistics Ti are identically distributed and also the pairs Ti, Tj are identically distributed. Thus, we get

E(
m−r

∑
i=1

Ti) = (m− r)E(T1),

Var(
m−r

∑
i=1

Ti) = (m− r)Var(T1) + (m− r)(m− r− 1)Cov(T1,T2).

Solve for E(T1) and Var(T1) when m = p and insert above to get

E(
m−r

∑
i=1

Ti) =
m− r
p− r

E(
p−r

∑
i=1

Ti), (29)

Var(
m−r

∑
i=1

Ti) =
m− r
p− r

Var(
p−r

∑
i=1

Ti)− (m− r)(p−m)Cov(T1,T2). (30)

Thus, it suffices to approximate the moments of the full sample distributions through simulation.
Numerically, it appears that better approximations arise when approximating shape and scale
parameters instead of mean and variance. We therefore write
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Var(
p−r

∑
i=1

Ti) = δ2
p−rλp−r, E(

p−r

∑
i=1

Ti) = δp−rλp−r. (31)

From this, we get the shape and scale parameters as

1
λp−r

=
Var(∑

p−r
i=1 Ti)

{E(∑p−r
i=1 Ti)}2

, δp−r =
Var(∑

p−r
i=1 Ti)

E(∑
p−r
i=1 Ti)

.

Hence, we simulated λp−r, δp−r and Cov(T1,T2) and constructed response surfaces to
approximate the distribution of DF`(m− r, p− r; v). Following JMN and Doornik (1998), we applied a
variety of data generating processes and present the results using response surface analysis.

The quantities λp−r, δp−r and Cov(T1,T2) were simulated for a set of given p− r, T and relative
break points. Following JMN, we chose q = 3 as the maximum number of sub-samples, with a and b
representing the smallest and the second smallest of relative sample lengths, respectively. For example,
if q = 2 along with v1 ≤ 1− v1, we then have a = 0 and b = v1. The grid points a and b were selected
in the same way as those for Figure 1 in JMN e.g., (a, b) = (0, 0), (0, 0.05), (0, 0.1), · · · , so that they
were subject to the constraints of a ≤ b and b ≤ (1− a− b) and the total number of their combinations
was 20, along with the selection of non-stationary components p− r = 1, . . . , 8. For the overall sample
sizes or Ts, JMN used 10 integers derived from 500/i for i = 1, . . . , 10, but we quadrupled them in
order to improve approximations to the underlying limit distributions of the response variables. Thus,
we obtained a new set of 10 sample sizes, Ts, ranging from 200 to 2000. For log λp−r and log δp−r,
this simulation design led to 1600 (= 20× 8× 10) cases, while the number of cases was reduced to
1400 for Cov(T1,T2) as a result of missing values corresponding to p− r = 1.

The computational algorithm used in our study was based on Theorem 4. These asymptotic
results justify simulating three sets of T-step random walks for broken linear-trend and constant cases
and scaling them according to the pre-specified relative sample lengths. The number of simulation
replications N was set at 100,000.

For the response surface analysis, we used log λp−r, log δp−r and Cov(T1,T2) as the response
variables, instead of the logged means and variance as in JMN. It turns out that the use of these response
variables (log λp−r, in particular) mitigates the residual heteroscedasticity problem, hence resulting
in a reduction of the number of indicator variables required for p− r = 2 and p− r = 1. Note that
Cov(T1,T2) needs to be included in the set of response variables in any response surface study, in order
to make use of Equation (30). In addition, note that taking the log of Cov(T1,T2) is not permissible,
since covariance is not always positive.

Compared to JMN, we increased the maximum number of observations from T = 500 to T = 2000.
It was found that the large-sample (T ≥ 1000) approximates of the mean and variance in small
dimensions (p− r ≤ 3) tend to be rather different from those when T is small. This finding is consistent
with Doornik (1998), who introduced a set of indicator variables being assigned 1 for p− r = 2 and
p− r = 1 and assigned 0 otherwise; these indicators put residual heteroscedasticity under control even
in the presence of influential values for p− r = 2 and p− r = 1.

We regressed each of the three response variables, log λp−r, log δp−r and Cov(T1,T2) on a set
of regressors formed from a, b, p− r and T. Our baseline function form was a modified version of
Equation (3.11) in JMN. In the context of the present paper, the equation in JMN is expressed as

y =
2

∑
m=0

(
φm +

4

∑
i=1

ϕimzi +
4

∑
i=1

∑
j≥i

ψijmzizj +
4

∑
i=1

∑
j≥i

∑
k≥j

ωijkmzizjzk

)
dm,

where y is either log λp−r, log δp−r or Cov(T1,T2), while z1 = p− r, z2 = a, z3 = b, z4 = T−1 and
dm = (p− r)−m. Following Doornik (1998), we also added to this equation a set of indicator variables
as explanatory variables, each of which is 1 for a selected value of dimension p− r and is 0 otherwise.
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Performing a series of regression analyses and carefully removing insignificant explanatory variables
by utilising the Autometrics option available in PcGive (Doornik and Hendry 2013), we arrived at
parsimonious response–surface functions for log λp−r, log δp−r and Cov(T1,T2); these functions are
henceforth denoted f z

p−r (p− r, a, b, T) with z taking values λ, δ and cov, respectively.
Tables A1 and A2 in Appendix A record the rounded coefficients for a, b, p− r and their variants

in the response surface regression for the broken linear trend case and the broken constant case,
respectively. The inverse of the observation number, T−1, and its variants such as T−2, also play
critical roles in the response surface regression, but all of them are irrelevant asymptotically and thus
disregarded when calculating the limit approximates based on these tables.

It should also be noted that a response–surface regression analysis of Cov(T1,T2) was technically
difficult in terms of residual diagnostic tests. Doornik (1998) used the average of estimates for
Cov(T1,T2) when performing a response surface analysis for partial systems with no break. We adhered
to the regression approach, rather than simply taking the average of the covariance estimates,
by assigning importance to various significant influences of a, b and p − r on the behaviour of
Cov(T1,T2). This regression analysis indeed bore fruit and clarified the highly complex structure of
the dependence of Cov(T1,T2) on a, b, p− r and its variants, as shown in the third column of each
of Tables A1 and A2. These findings about Cov(T1,T2) are not known in the literature, thus giving
added value to the response surface study conducted in this paper, although the impact of variation in
Cov(T1,T2) on the approximate shape and scale parameters may not always be large.

Tables 1 and 2 display a set of examples demonstrating the accuracy of the response surface
regression results. A class of approximately 95% limit quantiles is presented in each of the tables for
various combinations of a, b, p− r and m− r, when either broken-linear-trend or broken-constant
specifications are adopted in analysis. Approximate quantiles in the fifth column (q95) in Tables 1 and 2
are derived from Tables A1 and A2, respectively; that is, they are from the full-system-based response
surface analysis, combined with the mappings (29), (30) and (31). By contrast, approximate quantiles
recorded in the sixth column (q∗95) of each table, except those for a = b = 0, were obtained directly
from auxiliary response surface regressions based on partial-system simulations with the same Ts
and N as above. Each of these auxiliary regression equations employed a simulated 95% quantile as a
response variable and involved a constant, T−1 and its powers if necessary, as explanatory variables.
The regression equations vary in specification for the purpose of capturing the underlying smooth
response surfaces of various simulated quantiles; the graph of each regression’s actual and fitted
values was checked to ensure the capturing of the underlying smoothness. Estimated constants in
these regression equations are recorded in the columns for q∗95 as approximate 95% limit quantiles.
The limit quantiles in q∗95 for a = b = 0 (that is, no break cases) were taken from Doornik (2003).

Tables 1 and 2 show that the quantiles in q95 almost coincide with those in q∗95 regardless of
specifications of the deterministic terms; see the seventh column of each table for

∣∣q95/q∗95 − 1
∣∣, a series

of absolute relative errors, all of which are very small. This correspondence can be seen as strong
evidence supporting the validity of the proposed approximation method based on the full model.
Furthermore, the eighth column of each table records a class of discrepancies in approximate p-values,
defined as ∆papp = g

(
q95) (q95 − q∗95

)
, in which g (·) represents a gamma density function calculated

from simulated mean and variance. Most of the discrepancies are very small, and even the largest
one is around 0.02 when p− r is relatively large, for which we should recall that a large value of p− r
could give rise to various other distortion issues in practice. The overall evidence allows us to argue
that the approximate quantiles work as useful critical values in applications from a practical viewpoint.
The Supplementary Materials includes an Ox code for simulating asymptic distribution. This can be
used if further precision is needed.

As a caveat in relation to large values for p− r, let us recall that our response surface regression
was conducted by using a class of realistic number of non-stationary variables, p − r = 1, . . . , 8,
which suffice in most applied research. Thus, an empirical study using a partial system of large
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dimension may require careful examinations of the underlying cointegrating rank, in addition to the
application of the proposed PLR tests to the data under study, as discussed by Juselius (2006, §8).

Table 1. A comparative analysis of 95% limit quantiles: broken linear-trend models.

p− r m− r a b q95 q∗95 |q95/q∗95− 1| ∆papp

2 1 0.0 0.0 15.45 15.33 0.0078 0.0058
2 1 0.0 0.3 21.25 21.25 0.0000 0.0000
2 1 0.1 0.4 25.63 25.76 0.0050 −0.0065
2 1 0.2 0.3 27.23 27.11 0.0044 0.0055
2 1 0.3 0.3 27.74 27.62 0.0043 0.0056
4 3 0.0 0.0 50.29 50.08 0.0042 0.0100
4 3 0.0 0.3 65.09 64.97 0.0018 0.0057
4 3 0.1 0.4 77.01 76.84 0.0022 0.0082
4 3 0.2 0.3 80.25 80.11 0.0017 0.0068
4 3 0.3 0.3 81.92 81.84 0.0010 0.0039
5 3 0.0 0.0 57.35 57.32 0.0005 0.0015
5 3 0.0 0.3 72.27 72.03 0.0033 0.0112
5 3 0.1 0.4 84.00 83.98 0.0002 0.0010
5 3 0.2 0.3 87.23 87.10 0.0015 0.0063
5 3 0.3 0.3 88.44 88.47 0.0003 −0.0015
7 4 0.0 0.0 91.64 91.79 0.0016 −0.0077
7 4 0.0 0.3 110.97 110.81 0.0014 0.0076
7 4 0.1 0.4 126.33 126.34 0.0001 −0.0005
7 4 0.2 0.3 130.53 130.07 0.0035 0.0215
7 4 0.3 0.3 131.26 131.45 0.0014 −0.0097

Notes. q95 denotes 95% limit quantiles approximated from the full systems, while q∗95 denotes those calculated
directly from the partial systems. ∆papp represents discrepancies in approximate p-values.

Table 2. A comparative analysis of 95% limit quantiles: broken constant models.

p− r m− r a b q95 q∗95 |q95/q∗95− 1| ∆papp

2 1 0.0 0.0 12.21 12.28 0.0057 −0.0036
2 1 0.0 0.3 15.51 15.55 0.0026 −0.0020
2 1 0.1 0.4 18.24 18.35 0.0060 −0.0055
2 1 0.2 0.3 18.71 18.75 0.0021 −0.0020
2 1 0.3 0.3 18.81 18.87 0.0032 −0.0030
4 3 0.0 0.0 42.76 42.60 0.0038 0.0077
4 3 0.0 0.3 50.66 50.71 0.0010 −0.0024
4 3 0.1 0.4 57.40 57.67 0.0047 −0.0141
4 3 0.2 0.3 58.63 58.69 0.0010 −0.0029
4 3 0.3 0.3 58.83 58.90 0.0012 −0.0035
5 3 0.0 0.0 50.06 49.96 0.0020 0.0049
5 3 0.0 0.3 57.88 57.73 0.0026 0.0073
5 3 0.1 0.4 64.64 64.73 0.0014 −0.0046
5 3 0.2 0.3 65.66 65.50 0.0024 0.0078
5 3 0.3 0.3 65.62 65.66 0.0006 −0.0020
7 4 0.0 0.0 82.47 82.35 0.0015 0.0059
7 4 0.0 0.3 92.22 92.26 0.0004 −0.0020
7 4 0.1 0.4 101.46 101.56 0.0010 −0.0050
7 4 0.2 0.3 102.01 102.04 0.0003 −0.0015
7 4 0.3 0.3 101.81 102.16 0.0034 −0.0182

Notes. q95 denotes 95% limit quantiles approximated from the full systems, while q∗95 denotes those calculated
directly from the partial systems. ∆papp represents discrepancies in approximate p-values.

4.2. Implementation of Response Surface

The response surface in Tables A1 and A2 are used as follows. The response surface is aimed at
the situation with two breaks. However, Theorem 4 shows that with a simple correction the response
surface can also be used with a single break or no break.



Econometrics 2019, 7, 42 17 of 35

In the case of q = 3 sample periods and thus 2 breaks at T1, T2, where 0 < T1 < T2 < T, we let a, b
be the smallest and second-smallest relative sub-sample length. Thus, if v1 = T1/T, v2 = (T2 − T1)/T,
v3 = (T − T2)/T so that v1 + v2 + v3 = 1. We choose a = min(v1, v2, v3) and b = median(v1, v2, v3).

In the case of q = 2 sample periods and thus 1 break at T1, where 0 < T1 <, then v1 = T1/T,
v2 = (T − T1)/T, so that v1 + v2 = 1. We let a = 0 and b = min(v1, v2).

In the case of q = 1 sample period and thus no break, let a = b = 0. Theorem 4 and (28) show that
the mean and variance for the cases where q < 3 can be found from those for q = 3 by choosing a, b as
indicated and subtracting (3− q)(p− r) and 2(3− q)(p− r), respectively.

Given the choices of p− r, m− r, a and b, compute the approximations to

f λ
p−r = log λp−r, f δ

p−r = log δp−r, cp−r = Cov(T1,T2). (32)

Table A1 is used for the case with a broken linear trend while Table A2 is used for the case with a
broken constant. This is then inserted in (31), which in turn is inserted into (29), (30), while correcting
for the number of breaks, that is,

E(
m−r

∑
i=1

Ti) =
m− r
p− r

exp ( f δ
p−r + f λ

p−r)− (3− q)(m− r), (33)

Var(
m−r

∑
i=1

Ti) =
m− r
p− r

exp (2 f δ
p−r + f λ

p−r)− (m− r)(p−m)cp−r − 2(3− q)(m− r). (34)

Finally, we approximate the quantile of interest or the p-value of the observed PLR statistic using
a gamma distribution with mean and variance matching (33) and (34). Equivalently, one can specify
the shape and scale of the gamma distribution as mean2/variance and variance/mean.

A spreadsheet for implementing the response surfaces in Tables A1 and A2 is available in the
Supplementary Materials. This also includes an Ox program for simulating the asymptotic distributions
and calculating p-values of observed test statistics for specifications outside the range covered by
Tables A1 and A2, for instance when the number of structural breaks is greater than 2 or q > 3.

5. Empirical Illustration

As empirical illustration, we analyse a set of quarterly time series data from Schreiber (2015),
who attained an econometric system for the exchange rate and bilateral trade between the UK and
Germany. She decomposed the UK-Germany economic system into two blocks, a foreign exchange
block and bilateral trade block, in order to obtain a data-congruent representation useful for forecasting
and policy analysis. Various econometric studies were conducted by Schreiber (2015), and one of them
was the analysis of a partial model for the bilateral trade block with a structural break. The methodology
developed in the above sections enables us to conduct formal tests for cointegrating rank that underlies
such a partial system subject to a break. This partial system analysis may also be encouraged in terms
of local power advantage of partial-system-based tests over those based on a full system under weak
exogeneity, as demonstrated by Doornik et al. (1998) as well as Kurita (2011).

Figure 1 presents an overview of the quarterly data spanning the sample period of the first quarter
in 1991—the second quarter in 2014, denoted as 1991.1–2014.2 hereafter. The variable tbt is the trade
balance between the UK and Germany, i.e., the difference between the log of exports of UK goods
to Germany and the log of imports of German goods to the UK; dulct represents the unit labour cost
differential between the two countries; yt and y∗t denote the logs of the UK and German gross domestic
products, respectively; pppt represents the terms of trade in logarithm. See Schreiber (2015) for further
details of the data. The figure indicates the presence of a structural break around 2008–2009 attributable
to a global economic recession over this period.
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Figure 1. Data. (a) tbt is the trade balance between the UK and Germany; (b) dulct is the unit labour
cost differential between the UK and Germany; (c) yt and y∗t are the logs of the UK and German gross
domestic products, respectively; (d) pppt is the terms of trade.

In this empirical illustration, we analyse the data using a bivariate partial autoregressive model
for tbt and dulct, with yt, y∗t and pppt assumed to be weakly exogenous for the class of parameters of
interest such as cointegrating vectors; that is, p = 5 and m = 2. This assumption is based on Schreiber’s
study, suggesting that modelling the bilateral trade block centering on tbt and dulct appears to be
conformable to the underlying data structure. The lag-length k = 2 is selected for our bivariate partial
autoregressive model.

With regard to the issue on a structural break, we adopt a broken trend specification; that is,
the presence of a shift in the restricted trend as well as the unrestricted constant. The second sub-sample
period starts in 2008.3, corresponding to the observation point in Tq−1 for q = 2, which results in the
selection of relative break points a = 0 and b = 0.255. According to (10), our bivariate model with
k = 2 requires a set of two impulse dummy variables for the initial values of the second sub-sample
periods. In addition, a pair of impulse dummy variables, Dp1998(1) and Dp2006(2), is employed in
our model to capture outliers in the data, as in Schreiber (2015); the former variable is 1 in 1998.1 and
zero otherwise for an outlier due to the Asian financial crisis, while the latter is 1 in 2006.2 and zero
otherwise, corresponding to an outlier attributable to an increase in oil prices.

A set of residual diagnostic tests for the partial system is reported in Table 3. Most of the test
statistics are given in the form Fj(d f 1, d f 2), which denotes an approximate F test (with relevant
degrees of freedom d f 1 and d f 2) against the alternative hypothesis j. The alternative hypotheses are
specified as: 5th-order serial correlation (FAR5, Godfrey 1978), 4th-order autoregressive conditional
heteroscedasticity (FARCH4, Engle 1982), heteroscedasticity (FHET , White 1980). Chi-squared tests for
normality (χ2

ND, Doornik and Hansen 2008) are also recorded in the table. We also note the following
caveats based on recent advances in the field of mis-specification tests: Nielsen (2006) demonstrated
that FAR5 is a valid test in the presence of unit roots; Berenguer-Rico and Wilms (2018) showed that
FHET is valid after eliminating outliers from the observations, while χ2

ND is not necessarily valid after
the removal of outliers, which was demonstrated by Berenguer-Rico and Nielsen (2017). In any case,
no evidence is found in Table 3, suggesting significant mis-specification problems. We can thus judge
this partial system is formulated sufficiently well to be subjected to PLR tests for cointegrating rank.



Econometrics 2019, 7, 42 19 of 35

Table 3. Diagnostic test statistics for the estimated partial system.

Single-Eq. Tests tbt dulct Vector Tests

FAR5(5,66) 0.946[0.457] 0.777[0.570] FAR5(20,120) 0.542[0.943]
FARCH4(4,84) 0.469[0.758] 0.511[0.728] FHET(93,162) 0.838[0.825]
FHET(31,56) 0.726[0.831] 1.016[0.468] χ2

ND(4) 2.233[0.693]
χ2

ND(2) 1.341[0.512] 0.426[0.808]

Notes. Figures in square brackets are p-values.

Table 4 presents a class of PLR test statistics for the determination of cointegrating rank, along with
the corresponding p-values and approximate 95% limit quantiles calculated from the response surface
outcomes in the previous section. We used Table A1 in Appendix A to calculate approximates to
log δp−r, log λp−r and Cov(T1,T2), and then applied them to the mappings (29) and (30) adjusted for
extraχ2 terms, so that the gamma-distribution approximation method yielded the p-values. Table 4
shows that, at the 5% level, the null hypothesis r = 0 is rejected while the hypothesis r ≤ 1 fails to be
rejected. Hence, this formal analysis enables us to reach the conclusion of r = 1, which supports the
informal analysis of Schreiber (2015).

Table 4. Testing for cointegrating rank.

r = 0 r ≤ 1

PLR{H`(r) |H`(2) } 56.610[0.014]∗ 21.964[0.148]
95% limit quantiles 50.864 26.334

Notes. Figures in square brackets are p-values. ∗ denotes significance at the 5% level.

The estimated cointegrating relationship under some additional restrictions is

tb = 0.259
(0.121)

dulct − 0.726
(0.3)

pppt + 2.34
(0.323)

(y∗t − yt)− 0.019
(0.004)

t1(≥2009:1) + υt, (35)

where a figure in brackets under each coefficient is a standard error and υt is a stationary error.
The signs of the coefficients in (35) are the same as those in Schreiber (2015)’s cointegrating equation
except for y∗t . The German income y∗t was insignificant in her cointegrating relationship and thus
removed from it, while, in (35), y∗t plays a significant role, along with yt. As a result of checking a set
of unrestricted estimates for the cointegrating vector, we have arrived at Equation (35), where the
coefficients of yt and y∗t are restricted to add to zero, while a zero-restriction is placed on the coefficient
for t1(≤2008:2); that is, a linear trend is present only in the second sub-sample period. The PLR test
statistic for these restrictions is 3.571[0.168], in which the figure in square brackets is a p-value according
to χ2(2). Thus, the hypothesis of the overall restrictions cannot be rejected at the 5% level.

There are several interesting aspects of Equation (35) that are worth discussing here. The real
income difference between Germany and the UK, y∗t − yt, has a positive coefficient, implying that
a spread in the income difference leads to an improvement in the UK trade balance with Germany.
This finding is interpretable in the context of an income effect from each of the two countries.
The coefficient for the terms of trade, pppt, should also be noted. It is negative, thus indicating
a relative price effect on the trade balance in a theory-consistent manner; that is, a decrease in exports
prices relative to import prices leads to trade balance improvement, so that the well-known elasticity
approach to trade balance appears to be empirically valid for the two countries. Furthermore, the linear
trend t is significant solely in the second sub-sample period, suggesting long-lasting influences of the
global recession on the two countries’ trade balance and other economic variables.

Finally, we will check that the three variables, yt, y∗t and pppt, are indeed weakly exogenous for
the class of parameters of interest. We follow the testing procedure suggested by Johansen (1992a),
Boswijk (1992) and HJNR. First, the restricted cointegrating combination is added as a regressor to
a marginal system (9) for Zt = (yt, y∗t , pppt)

′. Second, a standard regression analysis is performed to
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test for the significance of the cointegrating combination in each equation. Table 5 reports a class of
LR test statistics for the exclusion of the empirical cointegrating linkage from each equation in the
marginal system. Judging from the reported p-values according to χ2(1), none of the test statistics
indicate evidence against the assumption of weak exogeneity; thus, the preceding partial-system
analysis of cointegrating rank has been justified.

Table 5. Checking weak exogeneity.

yt y∗t pppt

0.004[0.951] 1.183[0.277] 1.954[0.162]

Notes. Figures in square brackets are p-values.

6. Conclusions

This study has explored partial cointegrated vector autoregressive models subject to structural
breaks in deterministic terms, a linear trend and constant. The Granger–Johansen representation of the
full model in JMN has been reexamined, leading to a useful clarification of roles of the initial values in
asymptotic analysis. A class of log likelihood ratio test statistics for cointegrating rank has then been
introduced in the proposed partial-model framework. We have investigated asymptotic theory under
a general class of innovation distributions allowing martingale difference sequences with conditional
heteroscedasticity. The derived limit distributions of the statistics are closely related to those for the
full models investigated by JMN. This relationship allows us to perform a response surface analysis in
a simplified full-system framework, instead of relying on laborious partial-system-based simulations.
The outcomes of the analysis are summarised as a set of two statistical tables providing valuable
information for inference on the underlying cointegrating rank. Lastly, an empirical analysis of real-life
data from the UK and Germany has demonstrated the practicality of these tables in applied economic
research. As a result of this study, the partial cointegrated models have become more flexible and
reliable devices for modelling time series data subject to various structural breaks.

Recently, bootstrap methods have been proposed for cointegration rank testing in full systems
(Cavaliere et al. 2012). It would be interesting to extend those to partial systems with or without breaks.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1146/7/4/42/s1:
A preadsheet for implementing the response surface in Tables A1 and A2, as well as an Ox program for simulating
the asymptotic distributions.
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Appendix A. Tables for Response Surfaces

Table A1. Response surfaces for broken trend models.

log λp−r log δp−r Cov(T1,T2)

const. 4.14 const. 0.5987 const. −1.298
(p− r)−1 −6.301 p− r −0.0538 1(2) 0.03616
(p− r)−2 5.8842 a −1.039 1(4) −0.027
(p− r)−3 −2.32576 b −0.39 (p− r)−3 −2.022
p− r 0.17 (p− r)2 0.00686 a −8.689
a 2.6165 a2 5.547 b 2.225
b 2.5245 ab 2.331 a2 59.77
(p− r)a −0.0572 b2 1.841 ab 24.31
(p− r)b −0.0971 (p− r)3 −0.00033 b2 −5.156
a2 −7.550 a3 −10.42 a3 −133.5
ab −5.323 ab2 −4.325 ab2 −59.05
b2 −7.412 b3 −2.553 a(p− r)−1 −29.55
(p− r)3 −0.000124 a(p− r)−1 9.905 b(p− r)−1 −66.58
(p− r)ab 0.161 b(p− r)−1 1.862 b2(p− r)−1 255.3
(p− r)b2 0.179 a2(p− r)−1 −61.09 a3(p− r)−1 280.5
a3 10.40 ab(p− r)−1 −17.09 ab2(p− r)−1 155.3
ab2 6.096 b2(p− r)−1 −11.48 b3(p− r)−1 −240
b3 5.851 a3(p− r)−1 117.68 a(p− r)−2 21.32
a(p− r)−1 −8.860 ab2(p− r)−1 35.19 b(p− r)−2 71.68
b(p− r)−1 −4.948 b3(p− r)−1 18.6 b2(p− r)−2 −305.7
a2(p− r)−1 46.15 a(p− r)−2 −8.836 a2b(p− r)−2 −321.1
ab(p− r)−1 31.85 b(p− r)−2 1.033 b3(p− r)−2 332.1
b2(p− r)−1 26.12 a2(p− r)−2 66.94 (p− r)1(3) 0.038

a3(p− r)−1 −86.58 ab(p− r)−2 10.84 b21(3) −0.184
ab2(p− r)−1 −50.50 a3(p− r)−2 −140.88
b3(p− r)−1 −28.78 ab2(p− r)−2 −30.16
a(p− r)−2 5.296 b3(p− r)−2 −10.05
b(p− r)−2 2.386 a1(1) 2.107
a2(p− r)−2 −29.03 b1(1) −1.029
ab(p− r)−2 −19.46 a21(1) −20.63
b2(p− r)−2 −13.42 b21(1) 3.511
a3(p− r)−2 62.00 a31(1) 45.85
a2b(p− r)−2 −5.880 ab21(1) 4.267
ab2(p− r)−2 34.59 (p− r)b21(2) 0.062
b3(p− r)−2 15.93

Note: 1(x) is 1 when p− r = x and zero otherwise.
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Table A2. Response surfaces for broken constant models.

log λp−r log δp−r Cov(T1,T2)

const. 4.95486 const. 0.4472 const. −1.531
(p− r)−1 −9.263 (p− r)−2 1.17564 (p− r)−1 0.9029
(p− r)−2 9.162 (p− r)−3 −1.5294 a 4.164
(p− r)−3 −3.662 b 0.8286 (p− r)2 0.01579
a 3.05 (p− r)b −0.0646 (p− r)b 0.3388
b 0.3315 ab 1.75 ab −27.16
(p− r)2 0.01738 (p− r)b2 0.04051 b2 −14.15
(p− r)a −0.128 a3 −2.084 (p− r)3 −0.0013
a2 −14.61 ab2 −3.698 (p− r)2b −0.0167
ab −4.14 b3 −0.788 a3 −19.65
b2 −2.419 a(p− r)−1 −4.819 a2b 14.03
(p− r)3 −0.00084 b(p− r)−1 −3.897 ab2 42.2
(p− r)a2 0.3264 a2(p− r)−1 30.49 b3 17.43
(p− r)ab 0.1302 ab(p− r)−1 −5.108 a(p− r)−1 −77.72
(p− r)b2 0.0266 b2(p− r)−1 2.273 b(p− r)−1 −20.52
a3 21.56 a3(p− r)−1 −40.9 a2(p− r)−1 278.7
ab2 5.56 ab2(p− r)−1 13.37 ab(p− r)−1 313.6
b3 3.03 a(p− r)−2 16 b2(p− r)−1 169.1
a(p− r)−1 −5.742 b(p− r)−2 3.795 a3(p− r)−1 −461.7
b(p− r)−1 3.339 a2(p− r)−2 −110.5 ab2(p− r)−1 −562.9
a2(p− r)−1 44.2 a3(p− r)−2 184.8 b3(p− r)−1 −221.2
ab(p− r)−1 9.66 ab2(p− r)−2 −4.478 a(p− r)−2 81.64
b2(p− r)−1 −4.44 (p− r)1(1) 0.5014 a2(p− r)−2 −315

a3(p− r)−1 −81.67 a1(1) −9.833 ab(p− r)−2 −384.8
ab2(p− r)−1 −15.2 a21(1) 73.02 b2(p− r)−2 −114.6
a(p− r)−2 2.41 b21(1) −5.835 a3(p− r)−2 804
b(p− r)−2 −3.44 a31(1) −130.2 a2b(p− r)−2 −290
a2(p− r)−2 −24.23 b31(1) 4.743 ab2(p− r)−2 860.7
b2(p− r)−2 9.6 (p− r)2a1(2) −0.2472 b3(p− r)−2 205.2
a3(p− r)−2 47.34 (p− r)2b1(2) 0.06919 b21(2) 0.18
b3(p− r)−2 −7.22 (p− r)a21(2) 3.765 (p− r)31(2) −0.00017

(p− r)b21(2) −0.884 (p− r)a1(3) 1.337
a31(2) −14.06 (p− r)b1(3) −0.0215
b31(2) 1.944 (p− r)2a1(3) −0.408

Note: 1(x) is 1 when p− r = x and zero otherwise.

Appendix B. Proof of the Granger–Johansen Representation

This section provides a proof of Theorem 1, in which the Granger–Johansen representation of the
full model with deterministic breaks is presented.

Proof of Theorem 1. The companion form of the homogenous Equation (13) is

∆X̃t−1 = αβ′X̃t−1 + ιεt,

on the effective sample, see (7). As shown by Hansen (2005, Lemma A.1), rank(α′⊥Ψβ⊥) = p− r stated
in Assumption 1 implies that the above homogenous equation is an I(1) system satisfying

β′X̃t = (Ir + β′α)β′X̃t−1 + β′ιεt with |eigen(Ir + β′α)| < 1,

which is a stable equation (Lai and Wei 1985).
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We then follow Kurita and Nielsen (2009) in the analysis of non-stationary components. Start by
the homogenous Equation (13) for 1 ≤ j ≤ q and Tj−1 + k < t ≤ Tj:

∆X̃t = αβ′X̃t−1 +
k−1

∑
i=1

Γi∆X̃t−i + εt.

Pre-multiplying the above equation by α′⊥ and replacing ∆X̃t−i = ∆X̃t −∑i−1
`=0 ∆2X̃t−`, we collect

repeated terms ∆X̃t on the left-hand side to find

α′⊥Ψ∆X̃t = −α′⊥

k−1

∑
i=1

Γi

i−1

∑
`=0

∆2X̃t−` + α′⊥εt,

by recalling Ψ = Ip −∑k−1
i=1 Γi. Summing α′⊥Ψ∆X̃s over s = Tj−1 + k + 1, . . . , t yields

α′⊥ΨX̃t = α′⊥

t

∑
s=Tj−1
+k+1

εs − α′⊥

k−1

∑
i=1

Γi

i−1

∑
`=0

∆X̃t−` − α′⊥ΨX̃Tj−1+k + α′⊥

k−1

∑
i=1

Γi

i−1

∑
`=0

∆X̃Tj−1+k−`.

Apply the orthogonal projection identity α′⊥ΨX̃t = α′⊥Ψβ⊥ β̄′⊥X̃t + α′⊥Ψβ̄β′X̃t to the left-hand
side and then pre-multiply both sides by β⊥(α

′
⊥Ψβ⊥)

−1 to find the C matrix. Shifting CΨβ̄β′X̃t to the
right hand side, we arrive at

β⊥ β̄′⊥X̃t = C ∑t
s=Tj−1+k+1 εs − CΨβ̄β′X̃t − C ∑k−1

i=1 Γi ∑i−1
`=0 ∆X̃t−`

−CΨX̃Tj−1+k + C ∑k−1
i=1 Γi ∑i−1

`=0 ∆X̃Tj−1+k−`.

Adding β̄β′X̃t on both sides results in

X̃t = C ∑t
s=Tj−1+k+1 εs + (I − CΨ)β̄β′X̃t − C ∑k−1

i=1 Γi ∑i−1
`=0 ∆X̃t−`

−CΨX̃Tj−1+k + C ∑k−1
i=1 Γi ∑i−1

`=0 ∆X̃Tj−1+k−`.
(A1)

Using the notation Υi = −Γi − · · · − Γk−1 for 1 ≤ i ≤ k− 1 as well as the matrix Λ defined in (14)
leads to the first desired result (17).

Next, we move on to the non-homogenous formulation (12), in which µj and γj are distinct from
zero. Replace Xt in (12) with X̃t + τc,j + τl,jt and refer to the proof of Theorem 2.1 in JMN to find

Ψτl,j = αβ′(τc,j − τl,j) + µj and β′τl,j + γ′j = 0. (A2)

Applying (A2) to (12) recovers the homogenous Equation (13), so the above results derived for (13)
are all applicable to (12) under (A2). Substituting X̃t = Xt − τc,j − τl,jt into (A1) yields the desired
representation (18).

Appendix C. Proofs of Asymptotic Results

In this section, we present a high-level assumption which overrides Assumptions 2 and 3 in
the subsequent arguments. We then provide some specific lemmas required for proofs of the limit
theorems in Section 3. Finally, we proceed to the proofs of Theorems 2 and 3.

We introduce some notation. For a vector v, let the outer product be v⊗2 = vv′. For a matrix m,
the spectral norm is ||m||2 = max eigen(m′m). Note that ||m||2 ≤ tr(m′m).

Appendix C.1. A High Level Assumption

In order to give proofs of the theorems introduced in this paper, we need a Law of Large Numbers
for the approximately stationary components of the full model, while we require a Functional Central
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Limit Theorem and a convergence to a stochastic integral for the non-stationary components of the full
model. We formulate these as a the following high level assumption and then prove that it is satisfied
under Assumptions 1 and 2.

Assumption A1. Let εt be a p-dimensional random variables and suppose that Assumption 1 is satisfied.
Let X̃t satisfy the homogenous Equation (13) and define Ut−1 as

Ut−1 =


β′X̃t−1

∆X̃t−1
...

∆X̃t−k+1

 .

Suppose that

T−1/2 max
1≤t≤T

|Ut| = oP(1) (A3)

and

T−1
T

∑
t=1

 εt

Ut−1

1


⊗2

P→

 Ω 0 0
0 Σu 0
0 0 1

 , (A4)

where Ω and Σu are positive definite matrices. Furthermore, let Wu be a p-dimensional Brownian motion with
variance Ω. Suppose that, for 0 ≤ u ≤ 1,

T−1/2
int(Tu)

∑
t=1

εt
D→Wu, (A5)

as a process on (D[0, 1])p endowed with the Skorokhod metric with common distortion. Finally,

T−1
T

∑
t=1

t−1

∑
s=1

εsε′t
D→
∫ 1

0
WudW ′u. (A6)

The next result explores the conditions of Brown (1971). Subsequently, we use this to show that
Assumptions 1 and 2 imply Assumption A1.

Lemma A1. Suppose Assumption 2 is satisfied. Then,

(a) T−1 ∑T
t=1 εtε

′
t

P→ Ω;

(b) T−1 ∑T
t=1 E{ε′tεt1(ε′tεt>δT)|Ft−1}

P→ 0 for all δ > 0;
(c) T−1 ∑T

t=1 E{ε′tεt1(ε′tεt>δT)} → 0 for all δ > 0;

(d) max1≤t≤T |ε2
t |/T P→ 0.

Proof of Lemma A1. (b, c) Brown (1971, Lemma 2) shows that the conditional Lindeberg condition (b)
and the marginal Lindeberg condition (c) are equivalent under Assumption 2(i, ii).

First, suppose Assumption 2(iii.a), so that supt∈N E{ε′tεt1(ε′tεt>a)|Ft−1} = oP(1) as a→ ∞. Thus,
∀ξ > 0, ∃a0 and ∀a ≥ a0, it follows that

P[supt∈N E{ε′tεt1(ε′tεt>a)|Ft−1} > ξ] < ξ.
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Thus, given δ > 0 and for ∀T > a0/δ, we find

E{ε′tεt1(ε′tεt>δT)|Ft−1} ≤ E{ε′tεt1(ε′tεt>a0)
|Ft−1} < ξ,

so that the conditional Lindeberg condition (b) follows.
Second, suppose Assumption 2(iii.b), so that supt∈N E|εt|4 < ∞. Chebychev’s inequality gives

E{1(ε′tεt>δT)} = P(ε′tεt > δT) ≤ 1
δ2T2E|εt|4.

Next, by the Cauchy–Schwarz inequality and Assumption 2(iii.b), we get

E{ε′tεt1(ε′tεt>δT)} ≤ [E|εt|4E{1(ε′tεt>δT)}]1/2 ≤ δ−1T−1E|εt|4 ≤ δ−1T−1 sup
t∈N

E|εt|4 ≤ δ−1T−1C.

Hence, T−1 ∑T
t=1 E{ε′tεt1(ε′tεt>δT)} ≤ δ−1T−1C → 0 so that the marginal Lindeberg condition

(c) holds.

(a) We define U2
T = T−1 ∑T

t=1 εtε
′
t and V2

T = T−1 ∑T
t=1 E(εtε

′
t|Ft−1) and show that ||U2

T−V2
T ||

P→ 0.
Since U2

T − V2
T is symmetric, the spectral norm equals the spectral radius, thus it suffices to show

that v′(U2
T − V2

T)v vanishes for any linear combination v. In turn, it suffices to consider univariate
martingale difference sequences εt.

First, suppose Assumption 2(iii.a) holds, so that supt∈N E{ε2
t 1(ε2

t>a)|Ft−1} = oP(1) as a → ∞.
We follow an argument inspired by Anderson and Kunitomo (1992, Theorem 2). Hall and Heyde

(1980, Theorem 2.23) show that U2
T −V2

T
P→ 0 whenever the Lindeberg condition in part (b) holds and

supT∈N P(V2
T > λ)→ 0 as λ→ ∞. To prove the tightness condition, note that

V2
T = T−1

T

∑
t=1

E{ε2
t 1(ε2

t≤λ)|Ft−1}+ E{ε2
t 1(ε2

t>λ)|Ft−1} ≤ λ + sup
t∈N

E{ε2
t 1(ε2

t>λ)|Ft−1}.

Thus, to analyse the tightness probability bound,

P(V2
T > 2λ) ≤ P[λ + sup

t∈N
E{ε2

t 1(ε2
t>λ)|Ft−1} > 2λ] = P[sup

t∈N
E{ε2

t 1(ε2
t>λ)|Ft−1} > λ].

This bound is uniform in T so that supT∈N P(V2
T > λ) ≤ P[supt∈N E{ε2

t 1(ε2
t>λ)|Ft−1} > λ],

which vanishes by Assumption 2(iii.a).
Second, suppose Assumption 2(iii.b) holds, so that supt∈N Eε4

t < C < ∞. Let mt = ε2
t −E(ε2

t |Ft−1).
The Chebychev inequality and the uncorrelatedness of martingale differences gives

P = P(|T−1
T

∑
t=1

mt| > ε) ≤ 1
ε2E|T

−1
T

∑
t=1

mt|2 =
1

T2ε2E
T

∑
t=1

m2
t .

Jensen’s inequality shows E{E(ε2
t |Ft−1)}2 ≤ E{E(ε4

t |Ft−1)} = Eε4
t . Thus, the inequality

(a + b)2 ≤ 2(a2 + b2) shows that Em2
t ≤ 2[Eε4

t + E{E(ε2
t |Ft−1)}2] ≤ 4Eε4

t ≤ 4C < ∞. Thus,
P ≤ (Tε2)−14C → 0.

(d) We show PT = P(max1≤t≤T |εt|2 > δT)→ 0 for all δ > 0. Note that PT =
⋃T

t=1 P(|εt|2 > δT).
Boole’s inequality gives PT ≤ ∑T

t=1 P(|εt|2 > δT) = ∑T
t=1 E1(|εt |2>δT). On the set (|εt|2 > δT), we get

the further bound PT ≤ δ−1T−1 ∑T
t=1 E|εt|21(|εt |2>δT), which vanishes by part (c).

We then prove that Assumption A1 is satisfied under Assumptions 1 and 2.

Lemma A2. Suppose that Xt and εt satisfy Assumptions 1 and 2, respectively, while X̃t solves the homogenous
Equation (13). Then, Assumption A1 is satisfied.
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Proof of Lemma A2. Note that the process Ut equals β′X̃t, which is studied in Theorem 1. It satisfies
Equation (16), which is of the form Ut = ΦUt−1 + Fεt with Φ = (Ir + β′α) for r = r + p (k− 1) and
F = β′ι, where Φ has spectral radius less than unity as verified in Theorem 1.

For (A3), we apply Anderson and Kunitomo (1992, Lemma 1). This requires that max1≤t≤T |εt|2 =

oP(T), which is proved in Lemma A1 using Assumption 2.
For (A4), use Assumption 2(iii.a). We apply Lemma 2 in Anderson and Kunitomo (1992)

to show the convergence of the product moment matrix, which requires Assumption 2(ii, iii.a).
Assumption 2 states that Ω is a positive definite matrix, which results in the positive definiteness of Σu

by Anderson and Kunitomo (1992, Lemma 3).
For (A4) using Assumption 2(iii.b). We follow Anderson and Kunitomo (1992, Lemma 2) but avoid

their truncation argument. We first argue that ∑T
t=1 Ut−1Fε′t = oP(T). Since Ut−1Fε′t is a martingale

difference sequence with second moments due to Assumption 2(ii) and the spectral norm is bounded
by the trace, we obtain

E = E||
T

∑
t=1

Ut−1Fεt||2 ≤ Etr
T

∑
s=1

T

∑
t=1

Ut−1Fε′tεsF′U ′s−1 = Etr
T

∑
t=1

Ut−1Fε′tεtF′U ′t−1.

Applying iterated expectations and using that max1≤t≤T E|εt|2 is bounded by Assumption 2(iii.b)
gives E ≤ C ∑T

t=1 E|Ut−1|2. Noting that Ut = ∑t−1
j=0 ΦjFεt−j + ΦtU0 and using that εt is a martingale

difference array, we arrive at

EU ′t−1Ut−1 = E
t−2

∑
j=0

ε′t−1−jF
′(Φj)′ΦjFεt−1−j =

t−2

∑
j=0

tr{F′(Φj)′ΦjF}E|εt−1−j|2.

Using that max1≤t≤T E|εt|2 is bounded and Φ has spectral radius less than unity,

E|Ut−1|2 ≤
∞

∑
j=0

tr{F′(Φj)′ΦjF} max
1≤t≤T

E|εt|2 ≤ C.

As a consequence E = O(T) and, by the Markov inequality, ∑T
t=1 Ut−1Fε′t = oP(T). Next, we

show T−1 ∑T
t=1 Ut−1U ′t−1 → ΣU in probability. Since Ut−1 = ΦUt−2 + Fεt−1, then

T−1
T

∑
t=1

Ut−1U ′t−1 = ΦT−1
T

∑
t=1

Ut−2U ′t−2Φ′ + T−1
T

∑
t=1

Fεt−1ε′t−1F′

+ΦT−1
T

∑
t=1

Ut−2ε′t−1F′ + T−1
T

∑
t=1

Fεt−1U ′t−2Φ′.

Here, the second term converges to FΩF′ by Assumption 2(i) while the last two terms vanish.
Since max1≤t≤T |Ut| = oP(T1/2), we therefore get

T−1
T

∑
t=1

Ut−1U ′t−1 = ΦT−1
T

∑
t=1

Ut−1U ′t−1Φ′ + FΩF′ + oP(1).

This is a linear equation in T−1 ∑T
t=1 Ut−1U ′t−1 so that T−1 ∑T

t=1 Ut−1U ′t−1 → ΣU in probability
where ΣU solves ΣU = ΦΣUΦ′ + FΩF′. Anderson and Kunitomo (1992, Lemma 3) show invertibility
of ΣU .

For (A5), the Functional Central Limit Theorem follows from the univariate result of
Brown (1971, Theorem 3), equipped with Cramér–Wold device, see Billingsley (1968, Theorem 7.7).
Brown’s result applies under Assumption 2(i, ii) and either of the Lindeberg condition established
in Lemma A1(b, c) under Assumption 2. When using Brown’s result, it is convenient to define the
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univariate variables St = ∑t
s=1 εs and s2

t = ∑t
s=1 Eε2

s . Brown is concerned with the continuously
embedded random walk through the points (s2

t /s2
T), (St/sT), while we are concerned with the right

continuous random walk that is constant (St/T1/2) on the half-open intervals [t/T1/2, (t + 1)/T1/2).
The two embeddings reconcile since s2

t /s2
T = tσ2 for some constant σ2 by Assumption 2(i) and since

max1≤t≤T |ε|/T1/2 vanishes by Lemma A1(d) under Assumption 2.
For (A6), the convergence to a stochastic integral for the univariate case is based on the results of

Jakubowski et al. (1989), which was referred to by Kurtz and Protter (1996), while the convergence
to a stochastic integral for the multivariate case is based on the results of Kurtz and Protter (1991).
For the univariate case, Kurtz and Protter (1996, Theorem 7.1) show that we need to check that the
martingale array MT

t = T−1/2 ∑t
s=1 εs is uniformly tight, as required by Jakubowski et al. (1989) or,

equivalently, it has uniformly controlled variations. We use Kurtz and Protter (1991, Theorem 2.2),
which applies to the multivariate case; see also Hansen (1992, Theorem 2.1). Choose δ = ∞ so that
MT,δ

t = MT
t in Kurtz and Protter’s notation. For each α > 0, T ≥ 1, choose stopping times τT,α = ∞ so

that P(τT,α ≤ α) = 0 ≤ 1/α. Then, we obtain a quadratic variation processes

[MT,δ]t∧τT,α = T−1
t∧τT,α

∑
s=1

εsε′s ≤ T−1
T

∑
t=1

εtε
′
t = [MT,δ]T ,

so that E[MT,δ]t∧τT,α ≤ E[MT,δ]T . From Assumption 2(i), it follows that E[MT,δ]T → Ω. Consequently,
we have supT ||E[MT,δ]T || < ∞. In turn, supT ||E[MT,δ]t∧τT,α || < ∞ for each t, so that MT

t has uniformly
controlled variations.

Proof of Lemma 1. Assumption 3 has E(εtε
′
t|Ft−1) = Ω a.s., so that T−1 ∑T

t=1 E(εtε
′
t|Ft−1) = Ω a.s.

follows and Assumption 2(ii) holds. Taking iterated expectations, we obtain E(εtε
′
t) = Ω, which leads

to T−1 ∑T
t=1 E(εtε

′
t) = Ω and thus Assumption 2(i) is satisfied. Lastly, we show that Assumption 2(iii.a)

is implied by Assumption 3(ii). Using Hölder’s inequality, we find, for η = ξ/2 > 0,

E{ε′tεt1(ε′tεt>a)|Ft−1} ≤ [E(|εt|2+2η |Ft−1)]
1/(1+η)[E{1(1+η)/η

(ε′tεt>a) |Ft−1}]η/(1+η),

in which we note the equality 1(1+η)/η

(ε′tεt>a) = 1(ε′tεt>a). Hence, writing the expectation of the indicator as
a probability, and also using Markov’s inequality, we arrive at

E{1(1+η)/η

(ε′tεt>a) |Ft−1} = P(ε′tεt > a|Ft−1) ≤
1

a1+η
E{(ε′tεt)

1+η |Ft−1}.

In combination, we obtain E{ε′tεt1(ε′tεt>a)|Ft−1} ≤ a−ηE(|εt|2+2η |Ft−1), which vanishes as a→ ∞
uniformly in t, since the E(|εt|2+2η |Ft−1) is uniformly bounded by assumption.

Remark A1. We give an example of a martingale difference sequence (εt,Ft) satisfying supt∈N E|εt|4 <

∞ but violating Assumption 2(iii.a), i.e., supt∈N E{|εt|21(|εt |2>a)|Ft−1} → 0 in probability, which is
from Anderson and Kunitomo (1992). Consider the probability space {(0, 1],F ,P}, where F is the Borel
field on (0, 1] and P is the uniform distribution. Consider also a dyadic sequence with indices n = 1, 2, . . . and
kn = 1, . . . , 2n, so that t = ∑n−1

j=1 2j + kn, and define

εt(ω) = εnkn(ω) =


n if 2kn − 1 < 2n+1ω ≤ 2kn,
−n if 2kn − 2 < 2n+1ω ≤ 2kn − 1,
0 otherwise.

 .

We note that Eεt = 0 while Eε4
t = n4/2n is uniformly bounded in n. The natural filtration of εt is

then given by the σ-fields F0 = σ{[0, 1]}, F1 = σ{(0, 1
4 ], (

1
4 , 1

2 ],F0}, F2 = σ{( 1
2 , 3

4 ], (
3
4 , 1],F1}, F3 =
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σ{(0, 1
8 ], (

1
8 , 1

4 ],F2} and so on. We find that E(εt|Ft−1) = 0 while [supt∈N E{|εt|21(|εt |2>a)|Ft−1}](ω) = ∞
for all a and all ω, so that the random variables supt∈N E{|εt|21(|εt |2>a)|Ft−1} cannot vanish in probability.

Appendix C.2. Several Lemmas for the Partial Systems

The asymptotic properties of the product moment matrices,Sij for i, j = 0, 1 defined in (24),
are investigated so as to adapt Lemmas 10.1 and 10.3 of Johansen (1995) to the present model. We do
this by combining various ideas and techniques from HJNR, JMN and Kurita and Nielsen (2009).
These papers assume normal innovations, which we have generalised as Assumptions 2 and 3 in our
study. This means that we have to be careful when defining the limits of product moments of various
non-integrated components. This issue is addressed in the following lemma:

Lemma A3. Suppose that Assumptions 1 and A1 are satisfied. Let

Vt =

 εt

∆Xt

β′Xt−1 + γjt

 , Qt =

 ∆Xt−1
...

∆Xt−k+1

 and Qt =

(
Qt

1

)
.

Let vj = Tj/T be relative break points for j = 0, . . . , q and define the sample product moment matrix of Vt

corrected for Qt and a constant as

MVV ·Q,1 =
q

∑
j=1

1
T

Tj

∑
t=Tj−1+k

Vt −
Tj

∑
s=Tj−1+k

VtQ
′
s

 Tj

∑
s=Tj−1+k

Q⊗2
s

−1

Qt


⊗2

.

Then, as T → ∞ with fixed relative break points vj, we get that MVV ·Q,1 converges in probability to a
positive definite matrix with the structure Ω Ω 0

Ω Σxx Σxβ

0 Σβx Σββ

 , (A7)

where Σxβ = αΣββ and Σxx = αΣβx + Ω hold.

Proof of Lemma A3. We start with the homogenous Equation (16). For 1 ≤ j ≤ q and Tj−1 + k < t ≤ Tj,
this equation can always be solved as

β′X̃t =

t−Tj−1−k

∑
s=1

(Ir + β′α)t−Tj−1−k−sβ′ιεTj−1+k+s + (Ir + β′α)t−Tj−1−kβ′X̃Tj−1+k,

and, in the first sub-sample period or j = 1, the initial value β′X̃T0+k = β′X̃k can be treated as fixed, so
that the process β′X̃t for T0 + k < t ≤ T1 becomes uniformly bounded in probability by noting that it
equals Ut in Assumption A1. Similarly, by iterating over all the other start-up values, the process β′X̃t

for Tj−1 + k < t ≤ Tj and j = 2, . . . , q is also uniformly bounded in probability. Since the number of
breaks is finite, β′X̃t is uniformly bounded in probability jointly for 1 ≤ j ≤ q.

Next, the Granger–Johansen representation (18) implies that, for 1 ≤ j ≤ q and Tj−1 + k < t ≤ Tj,

∆Xt = Cεt + ∆Ut + τ`,j and β′Xt + γjt = β′Ut + β′τc,j,
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where

Ut = (I − CΨ)β̄β′X̃t − C
k−1

∑
i=1

Γi

i−1

∑
`=0

∆X̃t−`.

Since β′X̃t is uniformly bounded in probability, it follows that Ut is also uniformly bounded in
probability. Note that Ut is identical throughout all sub-sample periods. The intercepts τ`,j and β′τc,j
are eliminated from ∆Xt and β′Xt + γjt respectively, when demeaning them within each sub-sample
period. Consequently, we can apply the Law of Large Numbers (A4) in Assumption A1 to

1
Tj − Tj−1 − k

Tj

∑
t=Tj−1+k


(

Vt

Qt

)
− 1

Tj − Tj−1 − k

Tj

∑
s=Tj−1+k

(
Vs

Qs

)
⊗2

, (A8)

which, for 1 ≤ j ≤ q, converges in probability to a positive definite matrix denoted as
N(j)

εε N(j)
εx N(j)

εβ N(j)
εq

N(j)
xε N(j)

xx N(j)
xβ N(j)

xq

N(j)
βε N(j)

βx N(j)
ββ N(j)

βq

N(j)
qε N(j)

qx N(j)
qβ N(j)

qq

 ,

for N(j)
εε = Ω by Assumption A1. Since both Xt−1 and Qt consist of the past values of εt, it follows

from (A4) that N(j)
εβ = 0 and N(j)

εq = 0 hold. Note that the model equation is

εt = ∆Xt − α(β′Xt−1 + γjt)− ΓQt + µj, (A9)

for Γ = (Γ1, . . . , Γk−1). We can derive three properties from this equation. First, we post-multiply (A9)
by ε′t and then exploit N(j)

εβ = 0 and N(j)
εq = 0 to find Ω = N(j)

εε = N(j)
xε − 0− 0 = N(j)

xε , which is the first
property. The next one is

(N(j)
xβ , N(j)

xq )

 N(j)
ββ N(j)

βq

N(j)
qβ N(j)

qq

−1

= (α, Γ), (A10)

where the left-hand side is the limit of the sample regression coefficient for ∆Xt regressed on
β′Xt−1 + γjt, Qt and an intercept. This property is demonstrated by substituting εt + α(β′Xt−1 +

γjt) + ΓQt − µj from (A9) into ∆Xt; we then arrive at the limit result

(N(j)
xβ , N(j)

xq ) = (N(j)
εβ , N(j)

εq ) + (α, Γ)

 N(j)
ββ N(j)

βq

N(j)
qβ N(j)

qq

 ,

from which (A10) follows by noting that N(j)
εβ = 0 and N(j)

εq = 0. The third property is

Ω = N(j)
xx − (α, Γ)

 N(j)
ββ N(j)

βq

N(j)
qβ N(j)

qq

( α′

Γ′

)
. (A11)

The left-hand side of (A11) is the limit of the sample product moment of εt regressed on
β′Xt−1 + γjt, Qt and an intercept, due to N(j)

εβ = 0 and N(j)
εq = 0. The right-hand side of (A11)

is the limit of the sample product moment of ∆Xt regressed on β′Xt−1 + γjt, Qt and an intercept,
where we have exploited the identity (A10).
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Now, we return to (A8) and partial out Qt to obtain

1
Tj − Tj−1 − k

Tj

∑
t=Tj−1+k

Vt −
Tj

∑
s=Tj−1+k

VsQ′s

 Tj

∑
s=Tj−1+k

Q⊗2
s

−1

Qt


⊗2

P→


N(j)

εε N(j)
εx N(j)

εβ

N(j)
xε N(j)

xx N(j)
xβ

N(j)
βε N(j)

βx N(j)
ββ

−


N(j)
εq

N(j)
xq

N(j)
βq

(N(j)
qq

)−1 (
N(j)

qε , N(j)
qx , N(j)

qβ

)
, (A12)

for which we have that N(j)
εε = N(j)

εx = Ω while N(j)
εβ = 0 and N(j)

εq = 0. Thus, (A12) is reduced to
Ω Ω 0

Ω Σ(j)
xx Σ(j)

xβ

0 Σ(j)
βx Σ(j)

ββ

 ,

where  Σ(j)
xx Σ(j)

xβ

Σ(j)
βx Σ(j)

ββ

 =

 N(j)
xx N(j)

xβ

N(j)
βx N(j)

ββ

−( N(j)
xq

N(j)
βq

)(
N(j)

qq

)−1 (
N(j)

qx , N(j)
qβ

)
.

Furthermore, noting ∑
q
j=1 ∆vj = 1 and ∑

q
j=1(∆vj)Ω = Ω, we define

Σik =
q

∑
j=1

(∆vj)Σ
(j)
ik and Nlm =

q

∑
j=1

∆vjN
(j)
lm , (A13)

for i, k = x, β and l, m = q, x, β. The use of Slutsky’s theorem then leads to (A7).
It is left to show that Σxβ = αΣββ and Σxx = αΣβx + Ω. For the first expression, we apply the

identities in (A13) to (A10) so as to obtain

(Nxβ, Nxq) = (α, Γ)

(
Nββ Nβq
Nqβ Nqq

)
. (A14)

Taking partitioned inversion in (A14) results in α = Nxβ·qN−1
ββ·q = ΣxβΣ−1

ββ . For the second
expression, we apply the identities in (A13) to (A11) to find

Ω = Nxx − (α, Γ)

(
Nββ Nβq
Nqβ Nqq

)(
α′

Γ′

)
. (A15)

Inserting (A14) into (A15) and taking its partitioned inversion, we arrive at

Ω = Nxx − (Nxβ, Nxq)

(
Nββ Nβq
Nqβ Nqq

)−1(
Nβx
Nqx

)
= Nxx·q − Nxβ·qN−1

ββ·qNβx·q = Σxx − αΣβx,

by noting from (A14) that Nxβ·qN−1
ββ·q = α holds.

Recalling the decomposition ∆Xt = (∆Y′t , ∆Z′t)
′, we find the following equivalence in the

lower-right submatrix of (A7) in Lemma A3:
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(
Σxx Σxβ

Σβx Σββ

)
=

 Σyy Σyz Σyβ

Σzy Σzz Σzβ

Σβy Σβz Σββ

 = Σ.

Under the normality assumption for εt as in HJNR, we could form the conditional variance of
the two elements ∆Yt and β′Xt−1 + tγj given the element ∆Zt. Moving away from normality under
Assumptions 2 and 3, we need to consider instead the limit of a product moment matrix consisting of
linear combinations of these elements, defined in the following manner:(

Σyy·z Σyβ·z
Σβy·z Σββ·z

)
= A′ΣA =

(
Σyy Σyβ

Σβy Σββ

)
−
(

Σyz

Σβz

)
Σ−1

zz
(
Σzy, Σzβ

)
, (A16)

which appears in (A17) in Lemma A6, and where

A′ =

(
I −ΣyzΣ−1

zz 0
0 −ΣβzΣ−1

zz I

)
.

Let us recall the weak exogeneity condition αz = 0, which implies

α =

(
αy

0

)
and α⊥ =

(
αy⊥ 0

0 Ip−m

)
.

Finally, recall from (4) that the limit variance of innovations in the partial equation equals
Ωyy·z = Ωyy −ΩyzΩ−1

zz Ωzy under Assumption A1. Within each sub-sample period, the setup here is
identical to that of HJNR. We therefore obtain the following equation, which adapts Equation (10).6 in
Johansen (1995, Lemma 10.1).

Lemma A4 (HJNR, Lemma 4). Suppose that Assumptions 1 and A1 are satisfied under αz = 0. Then,

αy⊥(α
′
y⊥Ωyy·zαy⊥)

−1α′y⊥ = Σ−1
yy·z − Σ−1

yy·zΣyβ·z(Σβy·zΣ−1
yy·zΣyβ·z)

−1Σβy·zΣ−1
yy·z.

We now explore the limit of the common trends within each sub-sample period. Define

B∗′T =

(
α′⊥Γ 0

0 T−1/2

)(
Ip −τ`,j
0 1

)
and X∗t =

(
Xt−1

t

)
,

and the next lemma is a combination of Lemma A.1 in JMN and Lemma 5 in HJNR.

Lemma A5. Suppose that Assumptions 1 and A1 are satisfied. Consider the (p− r + 1)-dimensional process
T−1/2B∗′T X∗int(Tu) on D[0, 1] endowed with the Skorokhod metric with common distortion across the dimensions.
Let Wu be a (p− r)-dimensional Brownian motion with variance Ω for 0 ≤ u ≤ 1. For υj−1 ≤ u < υj and
1 ≤ j ≤ q, the process X∗int(Tu) satisfies

T−1/2B∗′T (X∗int(Tu) − X∗int(Tυj−1)
)

D→
{

α′⊥(Wu −Wυj−1)

u− υj−1

}
.

The convergence holds jointly for 1 ≤ j ≤ q and 0 ≤ u ≤ 1.

Proof of Lemma A5. The Granger–Johansen representation (18) implies that, for 1 ≤ j ≤ q and
Tj−1 + k < t ≤ Tj,
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T−1/2α′⊥Γ(Xt − τ`,jt) ≈ T−1/2α′⊥Γ(C
t

∑
s=Tj−1+k+1

εs + Ut + τc,j).

Since α′⊥ΓC = α′⊥ has full row rank and Ut is bounded in probability as shown in the proof
of Lemma A3, the random walk component α′⊥ ∑t

s=Tj−1+k+1 εs dominates α′⊥ΓUt. The initial value
τc,j could be large when j > 1, but it is eliminated when taking differences X∗int(Tu) − X∗int(Tυj−1)

.

Thus, the first element of T−1/2B∗′T (X∗int(Tu) − X∗int(Tυj−1)
) converges to α′⊥(Wu − Wυj−1) by the

Functional Central Limit Theorem (A5) in Assumption A1. The second element also converges
as desired since T−1int(Tu) converges to u. As the number of breaks is finite, the convergence holds
jointly for 1 ≤ j ≤ q.

Decompose Wu =
(
W ′1u, W ′2u

)′, in which the dimensions of W1u and W2u are m and p − m,
respectively. Let us recall the notation X`

t−1 = (X′t−1, tE′t)
′, which was used in reduced rank regression

in Section 3.1. The next lemma establishes the asymptotic theory for the product moment matrices Sij
for i, j = 0, 1 defined in (24).

Lemma A6. Suppose that Assumptions 1 and A1 are satisfied under αz = 0. Define β` = (β′, γ)′,
τ` = (τ`,1, . . . , τ`,q) ∈ Rp×q and

B`′
T =

(
α′⊥Γ 0

0 T−1/2 Iq

)(
Ip −τ`
0 Iq

)
.

It then follows that (
S00 S01β`

β`′S10 β`′S11β`

)
P→

(
Σyy·z Σyβ·z
Σβy·z Σββ·z

)
, (A17)

T−1B`′
T S11B`

T
D→

∫ 1

0
FuF′udu, (A18)

B`′
T

(
S10 − S11β`α′y

)
D→

∫ 1

0
Fud (W1u −ωW2u) , (A19)

B`′
T S11β` = OP(1), (A20)

where

Fu =

(
α′⊥Wu

ueu

)
−
∫ 1

0

(
α′⊥Ws

ses

)
es
′ds
(∫ 1

0
ese′sds

)−1

eu.

Proof of Lemma A6. Recall the decomposition ∆Xt = (∆Y′t , ∆Z′t)
′.

For (A17), we start with the left-hand side of (A12) and further partial out ∆Zt from the process,
to which we then apply the Law of Large Numbers (A4) in Assumption A1. Follow the proof of
Lemma A3 afterwards, supplemented with the definition of the limit expression (A16), in order to
verify (A17).

For (A18), use Lemma A5, the continuous mapping theorem and Johansen (1995, Lemma 10.3).
For (A19), we note B`′

T

(
S10 − S11β`α′y

)
= B`′

T S1ε. The Law of Large Numbers (A4) in

Assumption A1 implies B`′
T S1ε = B`′

T (T − k)−1 ∑T
t=k+1 Z1,t−1ε′y·z,t + oP(1), in which Z1,t is the

demeaned version of X`
t as defined in (23). By (A3) and the Granger–Johansen representation in

Theorem 1, we can replace B`′
TZ1,t with the demeaned version of (∑t

s=k+1 ε′sα⊥, tE′t). The stochastic
integral (A6) in Assumption A1 then gives (A19).

For (A20), we follow the strategy used for (A19); see also Johansen (1995, Lemma 10.3).
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Appendix C.3. Proofs of the Theorems in Section 3

Proof of Theorem 2. Follow the proof of Theorem 11.1 in Johansen (1995) by using Lemmas A4 and A6
given above instead of his Lemmas 10.1 and 10.3, and also utilise invariance properties with respect to
non-singular linear transformations as in the proof of Theorem 1 in HJNR.

Proof of Theorem 3. The proof presented here is based on Doornik (1998, §9). The asymptotic
distribution of the LR test statistic in the partial model in Theorem 2 is rewritten as

tr
{∫ 1

0 dB(m−r)
u G′u

(∫ 1
0 GuG′udu

)−1 ∫ 1
0 GudB(m−r)′

u

}
= ∑m−r

i=1

∫ 1
0 dBi,uG′u

(∫ 1
0 GuG′udu

)−1 ∫ 1
0 GudB′i,u = ∑m−r

i=1 Ti.

The process Ti for i = 1, . . . , m− r is a function of Bi,u and Gu, both of which are functions of the
(p− r)-dimensional standard Brownian motion Bu. Inspection of these functions shows that they are
invariant to the relabelling of the coordinates of Bu, so that T1, . . . ,Tm−r are identically distributed and
any pairs Tj,Tk are also identically distributed. Hence,

E

(
m−r

∑
i=1

Ti

)
=

m−r

∑
i=1

E (Ti) = (m− r)E (T1) ,

Var

(
m−r

∑
i=1

Ti

)
=

m−r

∑
j=1

m−r

∑
k=1

Var
(
Tj,Tk

)
=

m−r

∑
j=1

Var
(
Tj
)
+

m−r

∑
j 6=k

Var
(
Tj,Tk

)
= (m− r)Var (T1) + (m− r)(m− r− 1)Cov(T1,T2).

In order to relate the moments of the limit distributions of the LR test statistics in the partial and
full models, we evaluate the above expressions for m− r in general and for m− r = p− r. For the
means of the limit distributions, we find

E

(
m−r

∑
i=1

Ti

)
= (m− r)E (T1) and E

(
p−r

∑
i=1

Ti

)
= (p− r)E (T1) .

Solving both equations for E (T1) and equating the resulting expressions yield

E

(
m−r

∑
i=1

Ti

)
=

(
m− r
p− r

)
E

(
p−r

∑
i=1

Ti

)
.

For their variances, we obtain a set of equations similarly, which are solved for Var (T1) to find
the desired expression.
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