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Abstract: In this paper, we apply Bayesian averaging of classical estimates (BACE) and Bayesian model
averaging (BMA) as an automatic modeling procedures for two well-known macroeconometric models:
UK demand for narrow money and long-term inflation. Empirical results verify the correctness of
BACE and BMA selection and exhibit similar or better forecasting performance compared with a
non-pooling approach. As a benchmark, we use Autometrics—an algorithm for automatic model
selection. Our study is implemented in the easy-to-use gretl packages, which support parallel
processing, automates numerical calculations, and allows for efficient computations.
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1. Introduction

In this paper we consider two procedures of variable selection and forecasting for linear
dynamic single-equation models: Bayesian averaging of classical estimates (BACE), introduced
by Sala-i-Martin et al. (2004) and Bayesian model averaging (BMA) (see Raftery et al. 1997). The BACE
and BMA methods are natural extension of the standard Bayesian inference methods in which
one does not only make inference using single model, but also allowing pooling approach with
combined estimation and prediction. As a benchmark we use Autometrics procedure which is
non-pooling method based on general-to-specific approach with multiple path of searching algorithm
implemented in OxMetrics software (see Doornik 2009; Doornik and Hendry 2013). We present
empirical results for two non-trivial UK macroeconometric models: demand for narrow money
(see Krolzig and Hendry 2001), and long-term inflation (see Hendry 2001).

In the last two decades we can observe a growing number of publications related to Bayesian
model averaging in many fields of science like engineering, medicine, biology, sociology and
others (see Fragoso et al. 2018). Not surprisingly, this type of approach has also been long-used
in economics and it is still important, especially for identification of the sources of economic growth
(Fernández et al. 2001a, 2001b; Błażejowski et al. 2019). The ideas stated in this paper were reviewed,
among others, by Hoeting et al. (1999) and Wasserman (2000). A comprehensive study on the use of
model averaging in economics, both from the frequentist and Bayesian approaches, was discussed in
Steel (2019).

The BACE approach is an approximation of BMA and it is not purely Bayesian but relies on
Schwarz approximation to compute the Bayes factor (see Ley and Steel 2009). Nevertheless, both the
BACE and BMA approaches account for model uncertainty, which often requires the consideration
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of many possible linear combinations of variables and lead to a large model space that needs to
be explored and then demands intensive computational effort. As an approximation, BACE is
usually faster than the standard BMA approach; nevertheless, obtaining the output in a reasonable
amount of time still remains a significant challenge, especially in time-series modeling and forecasting.
Raftery et al. (1997) showed that standard variable selection procedures lead to different estimates
and conflicting conclusions about the main questions of interest. Moreover, econometric models
that are firmly based on economic theory do not always work for forecasting. The BACE and BMA
approaches combine the knowledge obtained from many possible models and accounts for uncertainty
by averaging the parameter estimates from different specifications. Consequently, both methods can
better identify significant determinants of a dependent variable and generate more accurate forecasts
without any specific knowledge.

In BACE and BMA we can penalize large dynamic models using different model prior
assumptions putting higher probabilities for more parsimonious models. This type of approach does
not cover all possible solutions. One of the potential alternative is assigning lower prior probabilities
over lags length, such as Minnesota Prior (see Doan et al. 1984). We also assume stability of the
relation between dependent and independent variables over time and, as a consequence, all slope
parameters and other posterior characteristics in our BACE and BMA packages are time invariant.
In the case of time-varying parameters, it is possible to employ dynamic model averaging presented in
Drachal (2018); Raftery et al. (2010).

The remainder of this paper is structured as follows. In Section 2, we discuss some aspects of
BACE. Section 3 briefly outlines Bayesian model averaging for dynamic linear regression models along
with short information about implementation of both packages in the gretl. In Section 4 we provide
basic information about Autometrics—a PcGive module for automatic model selection. Section 5
presents empirical results for two selected UK macroeconometric models: demand for narrow money
and long-term inflation. In this section, we also compare the variable selection strategies and forecasting
performance of BACE and BMA with those of Autometrics. Additionally, in Section 6 we analyze
the robustness and computational run-times of BACE and BMA. Finally, we conclude the paper in
Section 7.

2. The BACE Method

In Sala-i-Martin et al. (2004), the authors proposed averaging parameter estimates using a
technique—Bayesian averaging of classical estimates—that enabled the measurement of the importance
of particular potential regressors. In this method, parameter estimates are obtained by applying
ordinary least squares (OLS) and then averaged across all possible combinations of models. The BACE
approach is not purely Bayesian but relies on Schwarz approximation to compute the Bayes factor.
This approach is an alternative to the familiar and earlier-applied BMA technique, from which it differs
i.e., by using non-informative prior assumptions of regression parameters1. A full discussion that
compares BACE and BMA is presented in Ley and Steel (2009).

Among the many articles that have applied the BACE technique are van Dijk (2004) for US
inflation and Białowolski et al. (2014) for gross domestic product, inflation, and unemployment in
Poland. Jones and Schneider (2006) used BACE analysis to verify the human capital effect on economic
growth, while Mapa and Briones (2007) and Simo-Kengne (2016) used BACE analysis to obtain
variables associated with economic growth. Cuaresma and Doppelhofer (2007) extended the BACE
approach by allowing for the uncertainty of nonlinear threshold effects to identify determinants of
long-term economic growth. Bergh and Karlsson (2010) applied BACE to investigate the relation
between government size and the control of economic freedom and globalization for a panel of rich
countries. In an empirical investigation of industrial production forecasting, Feldkircher (2012) focused

1 BACE is implicitly based on fixed Zellner’s g-prior, whereas, in the BMA framework, g-prior can be set explicitly.
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on the forecasting performance resulting from model averaging by measuring the root-mean-square
error (RMSE). Albis and Mapa (2014) used BACE to verify misspecification issues in vector
autoregressive models for artificial data.

Let us consider the following dynamic linear regression model Mj (j = 1, 2, . . . , K):

y = Xjβ j + ε (1)

where y is a (Tx1) vector of observations, Xj is a (Txk j) matrix, where Xj = [Yj− Zj] and Yj− is a
(T × ky

j ) matrix containing ky
j lagged values of dependent variable, while Zj is (T × kz

j ) matrix of

exogenous variables, β j = [β
y
j βz

j ]
′

is a vector of unknown parameters, where β
y
j ∈ Rky

j , βz
j ∈ Rkz

j ,

ε is an (Tx1) vector of errors that are assumed to be normally distributed (i.e., ε ∼ N(0T , σ2 IT)) and
N(µ, Σ) denotes a normal distribution with location µ and covariance Σ.

From OLS estimates (see Sala-i-Martin et al. 2004), we can calculate the approximation of the
posterior probability of model Mj (i.e., Pr(Mj | y)) using the following formula:

Pr(Mj | y) ≈
Pr(Mj)T

−kj/2SSE−T/2
j

∑2K
i=1 Pr(Mi)T−ki/2SSE−T/2

i

, (2)

where SSEj and SSEi are the OLS sum of squared errors, 2K denotes the total number of potential
combinations of K independent variables, and k j and ki are the number of regression parameters β j

and βi. In T−kj/2SSE−T/2
j ≈ p(y | Mj), p(y | Mj) denotes the density of the marginal distribution of y

conditional on model Mj.
Prior probabilities Pr(Mj) and Pr(Mi) of models Mj and Mi are binomially distributed; that is,

Pr(Mj) = θki (1− θ)K−ki , θ ∈ [0, 1]. (3)

The binomial distribution implies that we only need to specify a prior expected model size
E(Ξ) = Kθ, where E(Ξ) ∈ (0, K]. For example, if we define the value of E(Ξ), then our BACE package
will automatically produce a value of prior inclusion probability for all competitive models. If θ = 0.5,
then the prior expected model size is equal to the average of the number of potential regressors, and the
model prior distribution is uniform

(
Pr(Mi) = 2−K) and reflects a lack of previous knowledge about

the models.
Using BACE, we can also easily evaluate the mean and variance of the posterior distribution of

regression parameters β for the whole model space (see Leamer 1978; Sala-i-Martin et al. 2004):

E(β | y) ≈
2K

∑
i=1

Pr(Mi | y)β̂i, (4)

Var(β | y) ≈
2K

∑
i=1

Pr(Mi | y)Var(βi | y, Mi) +
2K

∑
i=1

Pr(Mi | y)
(

β̂i − E(β | y)
)2

, (5)

where β̂i = E(βi | y, Mi) and Var(βi | y, Mi) are the OLS estimates of βi from model Mi.
Another useful and popular characteristic of the BACE approach is posterior inclusion probability

(PIP), which is defined as the posterior probability that the variable xi is relevant in the explanation
of the dependent variable (see Leamer 1978; Mitchell and Beauchamp 1988). In our case, the PIP
is calculated as the sum of the posterior model probabilities for all of the models that include a
specific variable:

Pr (βi 6= 0 | y) =
2K

∑
i=1

Pr (Mi | βi 6= 0, y) . (6)
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For model averaging, a Bayesian pooling strategy can also provide useful information about
future observations of the dependent variable on the basis of the whole model space:

E(y f | y) ≈
2K

∑
i=1

Pr(Mi | y)E(y f | y, Mi), (7)

Var(y f | y) ≈
2K

∑
i=1

Pr(Mi | y)Var(y f | y, Mi) +
2K

∑
i=1

Pr(Mi | y)
(

E(y f | y, Mi)− E(y f | y)
)2

, (8)

where E(y f | y) and Var(y f | y) denote the mean and variance of future observations y f .

3. The BMA Method

Another model building strategy is Bayesian model averaging wherein we can make an inference
based on full posterior distribution. From Bayesian perspective uncertainty is a natural way
of decision making process and therefore it can be easily included in the model selection rules
(Koop 2003; Zellner 1971). Among the many seminal papers about Bayesian model averaging are
Hoeting et al. (1999) and Fernández et al. (2001a,2001b). The most recent detailed overview is
presented in Steel (2019).

Once again, we are dealing with a problem which model and variables are the most appropriate
in the analysis of the dependencies, but in this case we use a natural and explicit way of combining
prior information with data, without any approximation of marginal data density and Bayes factors.
We consider two variants of BMA framework. The first one where we impose stationary conditions for
autoregressive parameters, and the second one without restrictions.

Now let us consider the first one:
y = Xjβ j + ε, (9)

where y is a vector of T observations, Xj is (T× k j) matrix, and β j is a (k j × 1) vector of parameters, ε is
a vector of dimensions (T× 1) with a normal distribution N(0, σ2 IT), where σ2 is a variance of random
error ε and IT is an identity matrix of size T. Moreover Xj = [Yj− Zj], where Yj− is a (T × ky

j ) matrix

containing ky
j lagged values of dependent variable, while Zj is (T × kz

j ) matrix of exogenous variables.

Furthermore, β j = [β
y
j βz

j ]
′

is a vector of unknown parameters, where β
y
j ∈ Γ ⊆ Rky

j , βz
j ∈ Rkz

j , and Γ is
stationary region for the parameters of autoregressive processes. We also assume that we observe initial
values y(0).

Let us consider a prior density of the following form:

p
(

β j, h | Mj
)
= p

(
β j | h, Mj

)
p (h) , (10)

where:
p
(

β j | h, Mj
)

∝ fN

(
β j | β

j
, h−1V j

)
I
(

β
y
j ∈ Γ

)
(11)

and fN(β j | µ, Σ) denotes the multivariate normal density with mean µ and covariance matrix Σ, I(A)

is the indicator function, β
j

is k j-vector of prior means for regression coefficients and V j is a k j × k j

positive definite prior covariance matrix of the form:

V j =
(

gjX′jXj

)−1
. (12)

For the error precision h which is defined as h = 1/σ2 we use noninformative prior:

p (h) ∝ h−1, h > 0. (13)
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The factor of proportionality gj (j = 1, 2, . . . , K) is part of the so-called g-prior, as introduced
in Zellner (1986). In our research we use Benchmark prior, recommended by Fernández et al. (2001a):

gj =

{
1/K2 for T ≤ K2

1/T for T > K2 (14)

Assuming the prior structure in Equation (10) we obtain the following joint posterior density:

p
(

β j, h | y, Mj
)
= cj · fNG

(
β j, h | βj, V j, s−2

j , vj

)
I
(

β
y
j ∈ Γ

)
, (15)

where cj is normalizing constant and fNG is normal-gamma density (see Koop et al. 2007). In our case
constant cj plays important role to obtain the Bayes factor between competitive models and can be
obtained by Monte Carlo simulations.

Using the properties of normal-gamma density, Equation (15) leads to:

p
(

β j | h, y, Mj
)

∝ fN

(
βj, h−1V j

)
I
(

β
y
j ∈ Γ

)
, (16)

p (h | y) = fG

(
sj
−2, vj

)
, (17)

where

V j =
(

V−1
j + X′jXj

)−1
, (18)

βj = V j

(
V−1

j β
j
+ X′jXj β̂ j

)
, (19)

and vj = T. We also have:

β̂ j =
(

X′jXj

)−1
X′jy, (20)

s2
j =

(
y− Xj β̂ j

)′ (
y− Xj β̂ j

)
vj

, (21)

vjs2
j = vjs2

j +
(

β̂ j − β
j

)′ [
V j +

(
X′jXj

)−1
]−1 (

β̂ j − β
j

)
, (22)

where vj = T − k j.
The marginal data density p(y | Mj) as well as posterior means and standard deviations of

regression coefficients can be calculated numerically using Monte Carlo integration by sampling
from the posterior distribution in Equation (15). In our case, we first draw error precision h from
Equation (17) and then we draw β j from Equation (16). We only accept those candidate values which
lie in stationary region for the parameters of autoregressive processes. The constant cj can be calculated
as an inverse of the acceptance ratio i.e., inverse of the fraction of random numbers accepted in Monte
Carlo simulation.

The posterior probability of any variant of regression model Mj can be calculated by the following
formula, which is crucial for Bayesian model averaging:

Pr
(

Mj | y
)
=

Pr
(

Mj
)

p
(
y | Mj

)
∑2K

i=1 Pr (Mi) p (y | Mi)
, (23)

where Pr(M1), Pr(M2), . . . , Pr(MK) denote the prior probabilities of competitive models (see Equation (3)).
Other characteristics, like posterior model probabilities (PIP) as well as the mean and variance of the
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posterior distribution of regression parameters β for the whole model space can be calculated in the same
manner as described for BACE method.

In case of BMA variant without stationary restrictions for the parameters of autoregressive

processes, we assume that β
y
j ∈ Rky

j and Equations (11), (15) and (16) takes the following form,
while the other equations remain unchanged:

p
(

β j | h, Mj
)
= fN

(
β j | β

j
, h−1V j

)
, (24)

p
(

β j, h | y, Mj
)
= fNG

(
β j, h | βj, V j, s−2

j , vj

)
, (25)

p
(

β j | h, y, Mj
)
= fN

(
βj, V j

)
. (26)

BACE and BMA in Gretl

In order to perform Bayesian averaging of classical estimates, we used the BACE 2.0 package2.
This code implements an automatic BACE procedure that is available in the gretl3 program as
an open-source software. In the procedure’s main window, we can specify e.g., the following
parameters: the list of independent variables, the prior distribution over the model space, the number of
out-of-sample forecasts, and general parameters for the Monte Carlo simulation. As a result, the BACE
package prints basic posterior characteristics, such as PIP, and the posterior means of coefficients,
together with their standard errors. In addition, the package presents rankings of the most probable
specifications according to their explanatory power and generates forecasts of the dependent variable.

In this paper we also use a software package that implements Bayesian model averaging for
Autoregressive Distributed Lag models BMA_ADL ver. 0.9 in gretl4. The BMA_ADL package as
well as the output is similar to BACE package. Although these two packages are similar there is a
principle difference between them. In BMA_ADL we draw samples from posterior distribution of
slope parameters β and we check roots of characteristic polynomial of the autoregressive process,
although this feature can be explicitly switched off by user. Detailed information about the package
can be found in Błażejowski and Kwiatkowski (2020).

Since exploration of many possible models demands intensive computational effort, we run BACE
and BMA_ADL through the Message Passing Interface (MPI)5. It is especially useful for a large number
of explanatory variables, which results in a computational complexity that exceeds the computing
power of modern PCs, because it performs parallel computations through MPI.

Both packages are written in gretl’s internal scripting language Hansl (see Cottrell and Lucchetti 2019b)
with an easy-to-use graphical user interface (GUI). Therefore, they can be treated as an automatic model
selection procedure and would be a useful for users who are not familiar with model averaging.

4. Autometrics

Autometrics procedure of variables model selection is built on the basis of PcGets
module implemented in OxMetrics software and is is fully described in Doornik (2009) and
Doornik and Hendry (2013). This conception is based on general-to-specific approach with multiple
path of searching (reducing) algorithm. The assumption underlying empirical model selection is
discovering the local data generating process (LDGP), which is tend to explain the relations which
occur in real world in the space of available variables. One needs to select the model from the set of

2 The BACE 2.0 package is available at http://ricardo.ecn.wfu.edu/gretl/cgi-bin/gretldata.cgi?opt=SHOW_FUNCS and was
developed by co-authors (see Błażejowski and Kwiatkowski 2018).

3 Gretl is an open-source software for econometric analysis and is available at http://gretl.sf.net.
4 The BMA_ADL package for gretl is available in Supplementary Materials along with scripts to replicate all analysis.
5 MPI is a standard that supports running a given program simultaneously on several CPU cores, so it supports a very flexible

type of parallelism of Monte Carlo integration see (Cottrell and Lucchetti 2020, 2019a).

http://ricardo.ecn.wfu.edu/gretl/cgi-bin/gretldata.cgi?opt=SHOW_FUNCS
http://gretl.sf.net


Econometrics 2020, 8, 21 7 of 29

potential specifications ensuring that model is congruent and encompasses LDGP. The crucial issue
here is test-based reduction strategy (see Desboulets 2018).

The procedure of selecting variables in Autometrics is proceed in following stages. The starting
point for automatic procedure is general unrestricted model (GUM), which should remain congruent
and include all potentially relevant variables according to sample size, theoretical, or empirical
considerations. This solution increases chance that LDGP is nested in GUM and can be discovered.
The variables, which have strong importance and influence should remain in model and the less
significant ones should not be retained. The mis-specification test is applied to ensure the congruence
postulate and to avoid badly-specified GUM. Additionally, encompassing test is used to evaluate if
small model can explain larger one, which is encompassed within. Such a procedure can be treated as
progressive research strategy of reduction and defines partial order of considered model specifications
(see Hendry et al. 2008).

Autometrics ensures the tree-search approach for examining the whole model space using three
strategies of path evaluation: pruning, bunching and chopping (see Hendry and Doornik 2014).
Before the main multi-path reduction of variables is launched, the pre-search is initiated to eliminate
most insignificant and irrelevant variables. During reductions and simplifications diagnostic tests are
employed to ensure the congruence and to find valid specification. The terminal model is received at
the end of each branch of the tree-search algorithm. Moreover, Autometrics also take into consideration
following modeling issues: cointegration, functional form, economic theory or data accuracy.

Application of Autometrics or PcGets can be found in works, for example: Clements and Hendry (2008);
Hendry (2001) for UK inflation, Hendry (2011) for consumers’ expenditures, Castle et al. (2012) for US real
interest rates, Ericsson and Kamin (2009) for Argentine broad money demand, Marczak and Proietti (2016)
for industrial production, Kamarudin and Ismail (2016) for water quality index, or Ackah and Asomani (2015)
for renewable energy.

5. Empirical Results

In this section, we analyze the BACE and BMA results for data used in two well-known dynamic
macroeconometric models: model for M1 money demand in UK (UKM1), which was proposed
in Hendry and Ericsson (1991), and the long-term UK inflation model, as introduced in Hendry (2001).
We focus on the modeling and forecasting of narrow money and inflation in the UK using the BACE
and BMA methods along with the Autometrics program6. We analyze the estimation results using
standard posterior characteristics, such as posterior inclusion probabilities, the posterior means of
regression parameters, and the posterior standard deviations, as defined in Section 2. We compare
forecasting accuracies using three measures, namely, root-mean-square error (RMSE), mean average
percentage error (MAPE), and Theil’s U coefficient (see Theil 1966, pp. 33–36) divided into three
factors: bias proportion UM (measures differences between averages of actual and predicted values),
regression proportion UR (evaluates the slope coefficient from a regression of changes in actual values
on changes in predicted values), and disturbance proportion UD (measures proportion of forecast error
associated with random disturbance). Two first factors stand for systematic error and should be 0,
while disturbance proportion is an unsystematic element and should equal 1.

Based on the methods discussed here, we also consider two additional models associated with
BACE and BMA output. Barbieri and Berger (2004) introduced median probability model, which is
defined as the model consisting of those variables which have an overall posterior probability greater
than or equal to 0.5 of being in a model. According to the authors, median probability model
considerably outperforms the most probable model in terms of predictive accuracy. Therefore it
seems reasonable to include this model in our analysis and compare its forecasting performance.

6 We used gretl version 2019d-git and PcGive version 14.2 with Ox Professional version 7.20 on a PC machine running under
Debian GNU/Linux 64 bits.
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5.1. Modeling and Forecasting Demand for Narrow Money in the UK: UKM1

We based the first empirical illustration on the UKM1 model proposed in Hendry and Ericsson (1991)
in the following form:

∆(m− p)t = −0.69∆pt − 0.17∆(m− p− y)t−1 − 0.63Rnt − 0.093(m− p− y)t−1 + 0.023 (27)

where small letters indicate the log-transformed variables defined as follows7:

• Mt: nominal narrow money, M1 aggregate in million £,
• Yt: real total final expenditure (TFE) for 1985 prices in million £,
• Pt: deflator of TFE,
• Rnt: net interest rate of the cost of holding money (calculated as the difference between the

three-month interest rate and learning-adjusted own interest rate).

The data for the UK narrow money M1 aggregate are quarterly and span from 1964:3 to 1989:28.
Figure 1 presents plots of the time series used in the analysis.

1963:1 1969:3 1976:1 1982:4 1982:2

9

10

11

(a) M1 aggregate (logs)

1963:1 1969:3 1976:1 1982:4 1982:2
11

11.2

11.4

11.6

11.8

(b) TFE in 1985 prices (logs)

1963:1 1969:3 1976:1 1982:4 1982:2

−2

−1

0

(c) Deflator of TFE (logs)

1963:1 1969:3 1976:1 1982:4 1982:2

0.05

0.10

0.15

(d) Net interest rate

Figure 1. Times-series used in the model for M1 money demand in UK (UKM1).

7 Exogeneity of variables used in UKM1 model is discussed in (Hendry and Nielsen 2012, pp. 266–67; Hendry 1995, pp. 605–6;
Hendry 2015, pp. 127–33) and the results show that modeling demand for narrow money in UK as a single equation is valid
in general.

8 All data were retrieved from https://www.nuffield.ox.ac.uk/media/2502/dynects.zip.

https://www.nuffield.ox.ac.uk/media/2502/dynects.zip
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Model (27) was later replicated as an unrestricted autoregressive distributed lag (ADL) model in
PcGets (see Krolzig and Hendry 2001, p. 29). In their paper, narrow money was measured in nominal
terms instead of real terms, so the ADL representation of the general unrestricted model (GUM) was
defined as follows:

mt =
4

∑
s=1

αsmt−s +
4

∑
s=0

βs pt−s +
4

∑
s=0

γsyt−s +
4

∑
s=0

δsRnt−s + const + εt. (28)

After reduction9, they obtained the following empirical model:

m̂t = 0.67mt−1 + 0.21mt−4 + 0.33pt − 0.20pt−3 + 0.13yt − 0.58Rnt − 0.34Rnt−2. (29)

In our research, following Krolzig and Hendry (2001), we estimated the GUM in the form shown
in Equation (28) using the sample 1964:1–1985:2 (T = 86) and used the last 4 years (1985:3–1989:2)
for forecasting purposes. We compared the variable selection and forecasting accuracy of BACE and
BMA with those of Autometrics, which is an alternative automatic model selection procedure. Table 1
presents the estimation and variable selection results for UKM1 in the ADL form, Equation (28). Model
space consists of 220 = 1,048,576 specifications that must be considered. The total number of variables
is 20, including current values of an explanatory variables and their lags (up to order 4), lagged values
of the dependent variable (up to order 4) and constant.

According to the results in Table 1, the variables used in the BACE analysis can be divided into
three groups: high-probability determinants (mt−1, Rnt, pt) with PIP ≥ 2/3, medium-probability
determinants (mt−2, mt−4, pt−1, yt−1) with 1/3 ≤ PIP < 2/3, and low-probability determinants
(the remaining variables) with PIP < 1/3. The top four most probable variables are the same as those
selected by Autometrics, although only three of them are classified as highly probable determinants
(one variable, i.e., yt−1 is close to being highly probable). This discrepancy between the two selections
can be explained by the fact that the Autometrics model, which is the most probable one in BACE,
has only 1.53% of the total posterior probability mass (see Table 2).

In case of BMA with stationarity restrictions, we get similar results although there are some slight
changes. Again the top four most probable variables are the same as those selected by BACE and
Autometrics, however the only two them (mt−1, Rnt) can be classified as highly probable, while in
the group of medium-probability determinants we can include: pt, pt−1, yt−1. The most likely model
is again the model selected by Autometrics, although in this case the posterior probability for the
top model is higher than in BACE and equals to 8.09% (see Table 3). The BMA procedure without
stationarity restrictions points the mt−1 and Rnt as highly probable variables, while pt and yt−1 are
medium probable. The most probable model is still the same as indicated in BMA with stationarity
restrictions, but models (M2) and (M3) have changed the order in the list (see Table 4). In the vast
majority of cases, BMA PIP coefficients take lower values than in the case of BACE. As a consequence,
we find little difference in posterior mean and variance of regression parameters comparing BACE
to BMA. Nevertheless, it is difficult to state clearly which point estimates are closer to the results
obtained by Autometrics, however, the BACE ranking is more consistent with the Autometrics output.
It seems that the both BMA methods prefer a more parsimonious specifications that do not include
some variables found to be important in the BACE and Autometrics.

9 Authors understand ‘reduction’ as a structured path of elimination insignificant variables based on t-statistics together with
pre-search analysis and encompassing tests.
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In the next step, we decided to compare the accuracy of forecasts. Table 5 presents the BACE, B A
(with and without stationarity restriction) and Autometrics forecasts of nominal narrow money in the
UK for the period from 1985:3 to 1989:2, which covers 16 quarters. The second column includes the
logs of the actual values of the dependent variable. The next columns contain the weighted averages
of individual model forecasts and errors for BACE, BMA, and Autometrics, respectively. Additionally,
we include results for so-called median probability models introduced by Barbieri and Berger (2004).
Moreover, the five bottom rows of the table contain well-known measures of forecast error: RMSE,
MAPE, and Theil’s U coefficients.

Two accuracy measures indicate that the BACE forecasts are relatively close to the real values of
nominal narrow money in the UK. For BACE, RMSE is 0.0224 and MAPE is 0.17%, while RMSE and
MAPE for BMA with stationarity restrictions are 0.0592 and 0.43%, respectively. Forecast generated
by BMA without stationarity restrictions have slightly lower forecast errors then forecasts from BMA
with stationarity restrictions. In the other cases, i.e., for Autometrics and median probability models
the results are in the range of 0.0994–0.1018 and 0.72–0.74%, respectively, while both median BMA
approaches give exact equal results. It means that the RMSE calculated for BACE is two and a half times
smaller than the RMSE resulting from BMA and almost five times smaller than for Autometrics. We can
see almost the same scenario for MAPE measure where BACE measure returns the smallest errors.
As the last conclusion about these results is that the median probability models do not outperform the
mixture of models in terms of predictive performance.

For all methods, the largest factor of forecast error is bias proportion, which has a considerable
impact on forecast accuracy, although for BACE is the smallest one. This is clearly reflected in Figure 2,
which shows the actual and forecasted values of nominal narrow money. In this figure, the bias in the
forecasts generated by BMA, Autometrics and two other methods substantially grows as the forecast
horizon increases.

One potential explanation of this observation is that the forecasts in Autometrics and median
probability models are generated by only one model. According to the BACE and BMA with
stationarity restrictions results, the use of a single model (M1) leaves 98.5% and 91.9% of the total
posterior probability mass. On the other hand, BACE and BMA calculates forecasts from the whole
model space and accounts for the mixture of all considered specifications, which are weighted by their
posterior probabilities.
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Figure 2. Actual values and forecasts of the logs of M1 for the period from 1985:3 to 1989:2.
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Table 1. Bayesian averaging of classical estimates (BACE), Bayesian model averaging (BMA), and Autometrics estimates for narrow money demand model (28).

Variable
BACE BMA (Restricted) BMA (Unrestricted) Autometrics

PIP Avg. Avg. PIP Avg. Avg. PIP Avg. Avg. Coeff. Std.
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Error

mt−1 1.0000 0.7656 0.1233 1.0000 0.8334 0.0963 1.0000 0.8286 0.1003 0.8710 0.0221
mt−2 0.3590 0.0712 0.1186 0.1991 0.0357 0.0858 0.2138 0.0389 0.0894
mt−3 0.1511 −0.0101 0.0594 0.0565 −0.0013 0.0284 0.0663 −0.0020 0.0309
mt−4 0.4107 0.0659 0.1003 0.1463 0.0170 0.0539 0.1759 0.0212 0.0601
pt 0.6676 0.1590 0.1624 0.6164 0.1026 0.1164 0.6485 0.1129 0.1217 0.1140 0.0163
pt−1 0.3773 0.0804 0.2056 0.3521 0.0593 0.1490 0.3225 0.0545 0.1487
pt−2 0.2991 −0.0623 0.1754 0.1928 −0.0266 0.1236 0.2009 −0.0296 0.1285
pt−3 0.2995 −0.0559 0.1274 0.1643 −0.0231 0.0823 0.1718 −0.0249 0.0869
pt−4 0.2138 −0.0200 0.0757 0.1085 −0.0081 0.0442 0.1161 −0.0099 0.0488
yt 0.2289 0.0182 0.0582 0.2021 0.0197 0.0523 0.2244 0.0212 0.0548
yt−1 0.6495 0.1174 0.1198 0.5603 0.0866 0.0966 0.5449 0.0839 0.0965 0.1272 0.0203
yt−2 0.2425 −0.0285 0.0896 0.1373 −0.0093 0.0609 0.1447 −0.0075 0.0609
yt−3 0.1693 −0.0048 0.0538 0.1127 0.0040 0.0382 0.1019 0.0031 0.0370
yt−4 0.2150 0.0207 0.0570 0.2164 0.0229 0.0540 0.2061 0.0217 0.0530
Rnt 0.9980 −0.5192 0.1127 0.9975 −0.5063 0.0945 0.9968 −0.5099 0.0965 −0.5053 0.0666
Rnt−1 0.2530 −0.0625 0.1407 0.1018 −0.0191 0.0829 0.1044 −0.0208 0.0856
Rnt−2 0.2798 −0.0669 0.1416 0.1037 −0.0191 0.0782 0.1107 −0.0227 0.0870
Rnt−3 0.1204 0.0045 0.0513 0.0508 0.0015 0.0281 0.0623 0.0021 0.0323
Rnt−4 0.1149 −0.0031 0.0384 0.0605 −0.0034 0.0278 0.0528 −0.0032 0.0274
const 0.2435 −0.1639 0.3790 0.1435 −0.1022 0.3150 0.1482 −0.1042 0.3171

BMA (restricted) indicates variant where we impose stationary conditions for autoregressive parameters, while BMA (unrestricted) denotes variant without stationary restrictions.

Table 2. BACE posterior probabilities and coefficient estimates for the top 10 models of nominal narrow money demand in the UK.

Model Mj M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P(Mj | y) 1.53% 0.64% 0.60% 0.59% 0.46% 0.44% 0.38% 0.37% 0.33% 0.32%

mt−1 0.8710 0.8622 0.6691 0.7224 0.6760 0.8726 0.8689 0.8973 0.7056 0.7169
Rnt −0.5057 −0.4758 −0.5634 −0.5531 −0.5807 −0.4843 −0.4948 −0.5489 −0.5749 −0.6301
pt 0.1140 0.3333 0.1207 0.3983 0.1126 0.1155 0.2208 0.0983 0.2786
yt−1 0.1272 0.1353 0.1275 0.1333 0.1329 0.2699 0.1029 0.1765 0.0996
mt−4 0.2070 0.1941
pt−1 0.1198
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Table 2. Cont.

Model Mj M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P(Mj | y) 1.53% 0.64% 0.60% 0.59% 0.46% 0.44% 0.38% 0.37% 0.33% 0.32%

mt−2 0.1431 0.1761 0.1853
pt−3 −0.2071
pt−2 −0.2685 −0.1251 −0.1826
Rnt−2 −0.3563 −0.3143
const −0.6718
yt−2 −0.1408
yt 0.1255

Table 3. BMA (with stationary restrictions) posterior probabilities and coefficient estimates for the top 10 models of nominal narrow money demand in the UK.

Model Mj M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P(Mj | y) 8.09% 3.55% 2.82% 2.06% 1.35% 1.30% 1.19% 1.18% 1.07% 0.91%

mt−1 0.8710 0.8620 0.8725 0.8916 0.7228 0.8687 0.8645 0.8842 0.8861 0.8546
Rnt −0.5059 −0.4756 −0.4843 −0.4912 −0.5527 −0.4955 −0.4530 −0.5132 −0.4635 −0.4463
pt 0.1141 0.1355 0.1126 0.0986 0.1208 0.1157 0.0961 0.1423
yt−1 0.1273 0.1334 0.2695 0.1581
pt−1 0.1200 0.1178 0.1020
mt−2 0.1425
pt−2 0.1249
const −0.4988
yt−2 -0.1402
yt 0.1256 0.1329
yt−4 0.1083 0.1132

Table 4. BMA (without stationary restrictions) posterior probabilities and coefficient estimates for the top 10 models of nominal narrow money demand in the UK.

Model Mj M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P(Mj | y) 7.06% 3.28% 3.14% 2.18% 1.42% 1.16% 0.97% 0.95% 0.88% 0.87%

mt−1 0.8710 0.8725 0.8621 0.8914 0.7229 0.8878 0.8862 0.8991 0.8834 0.8687
Rnt −0.5051 −0.4844 −0.4763 −0.4925 −0.5528 −0.4995 −0.4630 −0.5396 −0.4997 −0.4948
pt 0.1140 0.1126 0.0987 0.1206 0.1018 0.1774 0.1051 0.1157
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Table 4. Cont.

Model Mj M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P(Mj | y) 7.06% 3.28% 3.14% 2.18% 1.42% 1.16% 0.97% 0.95% 0.88% 0.87%

yt−1 0.1273 0.1354 0.1332 0.1012 0.2710
pt−1 0.1199 0.1019
yt 0.1256
mt−2 0.1427
yt−2 0.1158 −0.1418
yt−3 0.1118
yt−4 0.1085 0.1131
pt−3 −0.0831

Table 5. Forecasting results of m in the UK based on BACE, BMA, Autometrics, and median probability models.

Date Actual BACE BMA (Restricted) BMA (Unrestricted) Autometrics Median BACE Median BMA (Restricted) Median BMA (Unrestricted)

Fcast. SE Fcast. SE Fcast. SE Fcast. SE Fcast. SE Fcast. SE Fcast. SE

1985:3 10.966 10.971 0.0167 10.969 0.0159 10.969 0.0160 10.967 0.0140 10.967 0.0140 10.967 0.0151 10.967 0.0151
1985:4 11.006 11.020 0.0185 11.017 0.0235 11.018 0.0237 11.013 0.0186 11.013 0.0186 11.013 0.0218 11.013 0.0218
1986:1 11.070 11.073 0.0212 11.066 0.0309 11.067 0.0312 11.058 0.0214 11.058 0.0214 11.058 0.0274 11.058 0.0274
1986:2 11.123 11.127 0.0247 11.116 0.0383 11.118 0.0387 11.103 0.0233 11.103 0.0233 11.103 0.0326 11.103 0.0326
1986:3 11.186 11.174 0.0288 11.160 0.0456 11.162 0.0464 11.143 0.0247 11.143 0.0247 11.143 0.0372 11.143 0.0372
1986:4 11.216 11.218 0.0340 11.199 0.0533 11.202 0.0546 11.178 0.0256 11.178 0.0256 11.178 0.0412 11.178 0.0412
1987:1 11.281 11.265 0.0403 11.241 0.0620 11.245 0.0638 11.215 0.0264 11.215 0.0264 11.216 0.0452 11.216 0.0452
1987:2 11.340 11.311 0.0468 11.282 0.0707 11.287 0.0732 11.250 0.0269 11.250 0.0269 11.251 0.0491 11.251 0.0491
1987:3 11.377 11.351 0.0534 11.318 0.0790 11.323 0.0823 11.280 0.0273 11.280 0.0273 11.282 0.0526 11.282 0.0526
1987:4 11.421 11.398 0.0600 11.359 0.0875 11.365 0.0917 11.316 0.0276 11.316 0.0276 11.318 0.0559 11.318 0.0559
1988:1 11.471 11.438 0.0662 11.395 0.0957 11.402 0.1009 11.347 0.0278 11.347 0.0278 11.350 0.0591 11.350 0.0591
1988:2 11.512 11.477 0.0730 11.431 0.1041 11.438 0.1104 11.377 0.0280 11.377 0.0280 11.380 0.0619 11.380 0.0619
1988:3 11.538 11.507 0.0801 11.457 0.1124 11.465 0.1198 11.398 0.0281 11.398 0.0281 11.401 0.0642 11.401 0.0642
1988:4 11.555 11.539 0.0872 11.484 0.1208 11.493 0.1294 11.419 0.0282 11.419 0.0282 11.423 0.0661 11.423 0.0661
1989:1 11.602 11.571 0.0937 11.512 0.1287 11.522 0.1387 11.442 0.0283 11.442 0.0283 11.446 0.0680 11.446 0.0680
1989:2 11.640 11.600 0.1003 11.538 0.1364 11.549 0.1478 11.463 0.0283 11.463 0.0283 11.468 0.0697 11.468 0.0697

RMSE 0.0224 0.0592 0.05317 0.1018 0.1018 0.0995 0.0995
MAPE 0.17% 0.43% 0.39% 0.74% 0.74% 0.72% 0.72%
UM (bias) 49.5% 64.4% 63.6% 67.3% 67.3% 67.4% 67.4%
UR (regression) 40.0% 34.0% 34.4% 31.9% 31.8% 31.9% 31.8%
UD (disturbance) 10.5% 1.6% 2.0% 0.8% 0.8% 0.8% 0.8%

BMA (restricted) indicates variant where we impose stationary conditions for autoregressive parameters, while BMA (unrestricted) denotes variant without stationary restrictions.
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5.2. Modeling and Forecasting Long-Term UK Inflation

In the second empirical example, we used the long-term UK inflation model developed
in Hendry (2001) for 1875–1991 years (T = 117). The data set10 used in this research is described in
Table 6, and Figure 3 presents the time-series plots (small letters indicate log-transformed variables).
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10 All series are freely available in the Journal of Applied Econometrics Data Archive at http://qed.econ.queensu.ca/jae/2001-
v16.3/hendry. Exogeneity of variables used in this model is mentioned in (Hendry 2001, p. 261; Hendry 2015, p. 150).

http://qed.econ.queensu.ca/jae/2001-v16.3/hendry
http://qed.econ.queensu.ca/jae/2001-v16.3/hendry
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Figure 3. Time-series used in the long-term UK inflation model.

Table 6. List of variables and their definitions used in the long-term UK inflation model.

Variable Definition Variable Definition

Yt real GDP, £ million, 1985 prices Pe,t world prices (1985 = 1)
Pt implicit deflator of GDP (1985 = 1) Et annual-average effective exchange rate
Mt nominal broad money, million £ Pnni,t deflator of net national income (1985 = 1)
Rs,t three-month treasury bill rate, fraction p.a. Pcpi,t consumer price index (1985 = 1)
Rl,t long-term bond interest rate, fraction p.a. Po,t commodity price index, $
Rn,t opportunity cost of money measure md

t money excess demand
Nt nominal National Debt, £ million yd

t GDP excess demand
Ut unemployment St short–long spread
W popt working population nd

t excess demand for debt
Ur,t unemployment rate, fraction er,t real exchange rate
Lt employment π∗t profit markup
Kt gross capital stock Ud

t excess demand for labor
Wt wages po,t commodity prices in Sterling
Ht normal hours (from 1920) Ct nominal unit labor costs

The final specification after a number of variable transformations and model pre-reduction was
as follows11 (see Hendry 2001):

∆pt = f (∆pt−1, yd
t−1, md

t−1, nd
t−1, Ud

t−1, St−1, Rl,t−1, ∆pe,t, ∆pe,t−1, ∆Ur,t−1,

∆wt−1, ∆ct−1, ∆mt−1, ∆nt−1, ∆Rs,t−1, ∆Rl,t−1, ∆po,t−1, Id,t, π∗t−1; εt), (30)

where π∗t = 0.25er,t − 0.675(c− p)∗t − 0.075(po − p)t + 0.11I2,t + 0.25, (c− p)∗t = ct − pt + 0.006×
(trend− 69.5) + 2.37, and Id is a combination of year indicator dummies. Model space consists of 220 =
1,048,576 linear combinations that must be considered. After the reduction at a 1% significance level,
specification in Equation (30) was reduced to the following empirical model (see Hendry 2001):

∆ p̂t = 0.18yd
t−1 + 0.19∆mt−1 − 0.83St−1 + 0.62∆Rs,t−1+

− 0.19π∗t−1 + 0.27∆pe,t + 0.04Id,t + 0.04∆po,t−1 + 0.27∆pt−1. (31)

11 The full replication of this model using the BACE approach, together with a detailed discussion on variable selection strategy
and discovering the reduction path, is presented in Błażejowski et al. (2020).



Econometrics 2020, 8, 21 17 of 29

The results in Table 7 show that the BACE, BMA, and Autometrics identify the same set of
significant determinants of UK inflation as in Hendry (2001). Moreover, both BMA procedures,
with and without stationarity restrictions, give exactly the same results. This can be explained by
the fact that dependent variable ∆pt is far away from non-stationary region, so imposing stationarity
restrictions does not result in rejecting any of draws from posterior. Hereafter, we formulate comments
without division into restricted or unrestricted case. BACE and BMA indicate that the following
variables are highly probable: π∗t−1, Id,t, ∆pe,t, St−1, ∆pt−1, yd

t−1, ∆Rs,t−1, ∆mt−1, ∆po,t−1. Autometrics
selects the same set, reducing model (30) at the 1% significance level.

Tables 8–10 present the BACE and BMA posterior probability and coefficient estimates for the
top 10 models. In the case of BACE the most probable model (M1) has a posterior probability of
21.9%, while the second model in the ranking (M2) has a probability of 6.4%. For the other models,
the posterior probability does not exceed 4.7%. Although the posterior probability of the highest-ranked
model (M1) is more than three times larger than that of the second model (M2), an inference that is
based only on M1 leaves 78.1% of the posterior probability mass. As a consequence, estimates of the
average mean of coefficients are slightly different from those in Autometrics. We can meet a similar
situation in the case of BMA, although the highest-ranked model (M1) is even more preferred by the
data with posterior probability equals to 32.66%. The second model in the ranking (M2) is almost two
times less likely.

Table 11 presents detailed information about the predictions for UK inflation resulting from
BACE, BMA, Autometrics, and median probability models. This table includes actual values, forecast
values, and forecast standard errors, as well as accuracy measures, for the period from 1982 to 1991,
which covers 10 years. The actual and forecast values of UK inflation are presented in Figure 4.
For BACE, RMSE is 0.0179 and MAPE is 26.06%, for BMA we have RMSE—0.0175 and MAPE—25.85%,
while RMSE and MAPE in Autometrics are 0.0151 and 25.06%, respectively. Forecast errors of the
median probability models are the largest compared to other methods. As we can see BACE, BMA, and
Autometrics generate forecasts of almost the same quality, but the sources of errors are different.
For BACE and BMA, the greatest factor of forecast error is bias proportion, while the greatest factor for
Autometrics is disturbance proportion.

One explanation of the equivalent forecasting performances is the fact that, according to the
results in Tables 8–10, the top 10 most probable specifications have almost the same set of nine the most
probable variables and cover over 50% of the posterior probability mass, including the second-ranked
model (M2) selected by Autometrics.
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Figure 4. Actual and forecast values (expressed in logs) of differences in UK inflation for the
period 1982–1991.
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Table 7. BACE, BMA, and Autometrics estimates for the long-term UK inflation model (30).

Variable
BACE BMA (Restricted) BMA (Unrestricted) Autometrics

PIP Avg. Avg. PIP Avg. Avg. PIP Avg. Avg. Coeff. Std.
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Error

Hendry’s
model (31)



Id.t 1.00 0.0380 0.0015 1.00 0.0379 0.0014 1.00 0.0379 0.0014 0.0377 0.0015
∆pe.t 1.00 0.2612 0.0248 1.00 0.2617 0.0236 1.00 0.2617 0.0236 0.2608 0.0247
St−1 1.00 −0.9786 0.1060 1.00 −0.9696 0.1024 1.00 −0.9696 0.1024 −0.9234 0.0997
yd

t−1 1.00 0.1898 0.0381 1.00 0.1875 0.0352 1.00 0.1875 0.0352 0.1872 0.0330
∆pt−1 1.00 0.2818 0.0353 1.00 0.2800 0.0322 1.00 0.2800 0.0322 0.2638 0.0264
π∗t−1 0.99 −0.1674 0.0295 1.00 −0.1684 0.0281 1.00 −0.1684 0.0281 −0.1778 0.0273
∆Rs.t−1 0.99 0.6896 0.1273 0.99 0.6903 0.1199 0.99 0.6903 0.1199 0.6723 0.1182
∆po.t−1 0.99 0.0492 0.0111 0.99 0.0489 0.0106 0.99 0.0490 0.0106 0.0487 0.0110
∆mt−1 0.99 0.1531 0.0325 0.99 0.1575 0.0309 0.99 0.1575 0.0309 0.1732 0.0293
Ud

t−1 0.71 −0.0548 0.0443 0.60 −0.0472 0.0449 0.60 −0.0472 0.0449
nd

t−1 0.20 0.0006 0.0016 0.12 0.0004 0.0013 0.12 0.0004 0.0013
Rl.t−1 0.15 0.0060 0.0217 0.09 0.0038 0.0170 0.09 0.0039 0.0170
∆pe.t−1 0.12 0.0030 0.0134 0.07 0.0017 0.0099 0.07 0.0018 0.0100
∆nt−1 0.12 0.0014 0.0063 0.06 0.0007 0.0044 0.06 0.0007 0.0044
const 0.11 0.0001 0.0007 0.07 0.0001 0.0005 0.07 0.0001 0.0005
∆wt−1 0.10 −0.0001 0.0132 0.05 0.0001 0.0083 0.05 0.0001 0.0083
∆Ur.t−1 0.10 −0.0009 0.0230 0.05 −0.0001 0.0164 0.05 −0.0001 0.0164
md

t−1 0.10 −0.0001 0.0043 0.05 −0.0001 0.0028 0.05 0.0000 0.0029
∆ct−1 0.09 0.0003 0.0104 0.05 0.0001 0.0066 0.05 0.0001 0.0066
∆Rl.t−1 0.09 0.0012 0.0839 0.05 0.0017 0.0591 0.05 0.0017 0.0590

BMA (restricted) indicates variant where we impose stationary conditions for autoregressive parameters, while BMA (unrestricted) denotes variant without stationary restrictions.

Table 8. BACE posterior probabilities and coefficient estimates for the top 10 models of UK inflation.

Model Mj M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P(Mj | y) 21.93% 6.42% 4.63% 3.28% 3.06% 3.01% 2.80% 2.57% 2.41% 2.41%

Id.t 0.0382 0.0377 0.0381 0.0383 0.0379 0.0378 0.0379 0.0380 0.0382 0.0382
∆pe.t 0.2639 0.2608 0.2619 0.2610 0.2581 0.2583 0.2623 0.2635 0.2634 0.2635
St−1 −0.9935 −0.9234 −1.0122 −1.0002 −0.9979 −0.9607 −0.9866 −0.9896 −0.9873 −0.9946
yd

t−1 0.1788 0.1872 0.2069 0.1768 0.1858 0.2267 0.1829 0.1856 0.1785 0.1790
∆pt−1 0.2924 0.2638 0.2922 0.2837 0.2835 0.2676 0.2885 0.2930 0.2947 0.2952



Econometrics 2020, 8, 21 20 of 29

Table 8. Cont.

Model Mj M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P(Mj | y) 21.93% 6.42% 4.63% 3.28% 3.06% 3.01% 2.80% 2.57% 2.41% 2.41%

π∗t−1 −0.1618 −0.1778 −0.1701 −0.1642 −0.1690 −0.1875 −0.1545 −0.1619 −0.1627 −0.1620
∆Rs.t−1 0.7149 0.6723 0.6605 0.6937 0.7248 0.5996 0.7165 0.7146 0.6998 0.7171
∆po.t−1 0.0482 0.0487 0.0513 0.0479 0.0485 0.0532 0.0487 0.0488 0.0478 0.0480
∆mt−1 0.1555 0.1732 0.1468 0.1485 0.1482 0.1579 0.1470 0.1465 0.1547 0.1562
Ud

t−1 −0.0790 −0.0710 −0.0806 −0.0814 −0.0716 −0.0744 −0.0833 −0.0794
nd

t−1 0.0026 0.0038
∆pe.t−1 0.0254
∆nt−1 0.0123
Rl.t−1 0.0253
const 0.0009
∆Ur.t−1 −0.0262
∆wt−1 −0.0028

Table 9. BMA (with stationarity restrictions) posterior probabilities and coefficient estimates for the top 10 models of UK inflation.

Model Mj M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P(Mj | y) 32.66% 17.63% 3.74% 3.24% 2.95% 2.80% 2.39% 1.94% 1.92% 1.90%

Id.t 0.0381 0.0377 0.0378 0.0381 0.0373 0.0383 0.0379 0.0379 0.0375 0.0380
∆pe.t 0.2638 0.2609 0.2585 0.2616 0.2583 0.2610 0.2580 −0.9864 0.2604 0.2636
St−1 −0.9948 −0.9224 −0.9602 −1.0122 −0.9228 −1.0017 −0.9973 0.2621 −0.9241 −0.9898
yd

t−1 0.1787 0.1874 0.2264 0.2067 0.1942 0.1767 0.1860 0.1825 0.2002 0.1855
∆pt−1 0.2927 0.2638 0.2676 0.2925 0.2614 0.2838 0.2831 0.2888 0.2687 0.2930
π∗t−1 −0.1615 −0.1782 −0.1875 −0.1699 −0.1595 −0.1639 −0.1690 −0.1544 −0.1758 −0.1619
∆Rs.t−1 0.7163 0.6718 0.5991 0.6610 0.6844 0.6944 0.7237 0.7165 0.6779 0.7140
∆po.t−1 0.0482 0.0488 0.0534 0.0514 0.0496 0.0478 0.0486 0.0487 0.0499 0.0488
∆mt−1 0.1554 0.1730 0.1576 0.1466 0.1517 0.1484 0.1484 0.1471 0.1515 0.1466
Ud

t−1 −0.0793 −0.0711 −0.0807 −0.0812 −0.0718 −0.0746
nd

t−1 0.0038 0.0026
∆pe.t−1 0.0254
∆nt−1 0.0124
Rl.t−1 0.0527 0.0251
const 0.0018 0.0008
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Table 10. BMA (without stationarity restrictions) posterior probabilities and coefficient estimates for the top 10 models of UK inflation.

Model Mj M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P(Mj | y) 32.66% 17.63% 3.74% 3.24% 2.95% 2.80% 2.39% 1.94% 1.92% 1.90%

Id.t 0.0381 0.0377 0.0378 0.0381 0.0373 0.0383 0.0379 0.0379 0.0375 0.0380
∆pe.t 0.2638 0.2609 0.2585 0.2616 0.2583 0.2610 0.2580 −0.9864 0.2604 0.2636
St−1 −0.9948 −0.9224 −0.9602 −1.0122 −0.9228 −1.0017 −0.9973 0.2621 −0.9241 −0.9898
yd

t−1 0.1787 0.1874 0.2264 0.2067 0.1942 0.1767 0.1860 0.1825 0.2002 0.1855
∆pt−1 0.2927 0.2638 0.2676 0.2925 0.2614 0.2838 0.2831 0.2888 0.2687 0.2930
π∗t−1 −0.1615 −0.1782 −0.1875 −0.1699 −0.1595 −0.1639 −0.1690 −0.1544 −0.1758 −0.1619
∆Rs.t−1 0.7163 0.6718 0.5991 0.6610 0.6844 0.6944 0.7237 0.7165 0.6779 0.7140
∆po.t−1 0.0482 0.0488 0.0534 0.0514 0.0496 0.0478 0.0486 0.0487 0.0499 0.0488
∆mt−1 0.1554 0.1730 0.1576 0.1466 0.1517 0.1484 0.1484 0.1471 0.1515 0.1466
Ud

t−1 −0.0793 −0.0711 −0.0807 −0.0812 −0.0718 −0.0746
nd

t−1 0.0038 0.0026
∆pe.t−1 0.0254
∆nt−1 0.0124
Rl.t−1 0.0527 0.0251
const 0.0018 0.0008

Table 11. BACE, BMA, Autometrics, and median probability models forecasting results for ∆pt in the UK.

Date Actual BACE BMA (Restricted) BMA Median BMA (Unrestricted) Autometrics Median BACE (Restricted) Median BMA (Unrestricted)

Fcast. SE Fcast. SE Fcast. SE Fcast. SE Fcast. SE Fcast. SE Fcast. SE

1982 0.0681 0.0467 0.0124 0.0469 0.0118 0.0469 0.0118 0.0487 0.0110 0.0457 0.0107 0.0457 0.0116 0.0457 0.0116
1983 0.0551 0.0432 0.0120 0.0438 0.0125 0.0438 0.0125 0.0474 0.0114 0.0412 0.0111 0.0413 0.0121 0.0413 0.0121
1984 0.0527 0.0417 0.0126 0.0423 0.0132 0.0423 0.0132 0.0475 0.0114 0.0386 0.0112 0.0385 0.0125 0.0385 0.0125
1985 0.0529 0.0484 0.0120 0.0489 0.0126 0.0489 0.0126 0.0536 0.0114 0.0456 0.0112 0.0455 0.0120 0.0455 0.0120
1986 0.0259 0.0349 0.0131 0.0357 0.0136 0.0357 0.0136 0.0419 0.0114 0.0314 0.0112 0.0313 0.0127 0.0313 0.0127
1987 0.0495 0.0173 0.0142 0.0183 0.0151 0.0183 0.0151 0.0254 0.0114 0.0140 −0.0112 0.0139 0.0142 0.0139 0.0142
1988 0.0626 0.0637 0.0142 0.0650 0.0154 0.0650 0.0154 0.0735 0.0114 0.0599 0.0112 0.0596 0.0143 0.0596 0.0143
1989 0.0744 0.0740 0.0129 0.0749 0.0141 0.0749 0.0141 0.0821 0.0114 0.0710 0.0112 0.0707 0.0133 0.0707 0.0133
1990 0.0769 0.0484 0.0132 0.0492 0.0141 0.0492 0.0141 0.0550 0.0114 0.0461 0.0112 0.0461 0.0136 0.0461 0.0136
1991 0.0604 0.0366 0.0129 0.0373 0.0139 0.0373 0.0139 0.0418 0.0114 0.0347 0.0112 0.0346 0.0134 0.0346 0.0134

RMSE 0.0179 0.0175 0.0175 0.0151 0.0196 0.0197 0.0197
MAPE 26.06% 25.85% 25.85% 25.06% 28.31% 28.41% 28.41%
UM (bias) 54.5% 51.3% 51.3% 21.9% 65.0% 65.3% 65.3%
UR (regression) 0.3% 0.3% 0.3% 1.2% 0.2% 0.2% 0.2%
UD (disturbance) 45.2% 48.3% 48.3% 76.9% 34.8% 34.5% 34.5%

BMA (restricted) indicates variant where we impose stationary conditions for autoregressive parameters, while BMA (unrestricted) denotes variant without stationary restrictions.



Econometrics 2020, 8, 21 22 of 29

6. Robustness and Run Time Analysis

6.1. Robustness

In order to confirm the empirical findings for variable and model selection obtained by BACE
and BMA, we performed a robustness analysis using different prior model assumptions. We apply
philosophy proposed in Osiewalski and Steel (1993) and we set different variants of the prior average
model size in order to penalize large models. In Section 5, the prior average model size is set to
E(Ξ) = K/2 (where K is the total number of independent variables). This means that we do not prefer
any specification, so all possible models are equally probable. We considered robustness scenario as
different specifications of prior model size, estimating the models in Equations (28) and (30) using
three competitive variants: E(Ξ) = K/4, E(Ξ) = K/5, and E(Ξ) = K/8 (the most restrictive case).
Tables 12 and 13 present the BACE estimates, Tables 14 and 15 show results for BMA with stationarity
restrictions, while Tables 16 and 17 relate to results for BMA without stationarity restrictions.

According to the results concerning BACE method, which are presented in Tables 12 and 13,
there are no substantial differences in the output between E(Ξ) = K/4, E(Ξ) = K/5, and E(Ξ) =

K/8. Similar conclusion can be formulated for BMA outcome included in Tables 14–17. Moreover,
comparing the results in Tables 12–17 with those in Tables 1 and 7 reveals that the observed differences
are negligible.

Table 12. BACE coefficient estimates of the UKM1 model for different average prior model
size assumptions.

Variable
E(Ξ) = K/8 E(Ξ) = K/5 E(Ξ) = K/4

PIP Avg. Avg. PIP Avg. Avg. PIP Avg. Avg.
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

mt−1 1.00 0.7695 0.1224 1.00 0.7676 0.1224 1.00 0.7734 0.1220
mt−2 0.35 0.0687 0.1161 0.35 0.0681 0.1157 0.34 0.0664 0.1144
mt−3 0.12 −0.0074 0.0506 0.13 −0.0073 0.0512 0.13 −0.0068 0.0510
mt−4 0.39 0.0607 0.0962 0.40 0.0632 0.0976 0.38 0.0584 0.0950
pt 0.67 0.1562 0.1581 0.67 0.1582 0.1607 0.66 0.1541 0.1593
pt−1 0.37 0.0783 0.2002 0.37 0.0793 0.2028 0.37 0.0801 0.2049
pt−2 0.28 −0.0598 0.1657 0.29 −0.0628 0.1711 0.31 −0.0657 0.1752
pt−3 0.29 −0.0548 0.1207 0.29 −0.0547 0.1219 0.27 −0.0491 0.1172
pt−4 0.19 −0.0178 0.0682 0.19 −0.0179 0.0693 0.19 −0.0174 0.0680
yt 0.22 0.0180 0.0555 0.22 0.0183 0.0561 0.23 0.0188 0.0570
yt−1 0.65 0.1155 0.1173 0.64 0.1143 0.1171 0.64 0.1148 0.1178
yt−2 0.22 −0.0269 0.0860 0.22 −0.0259 0.0856 0.23 −0.0269 0.0878
yt−3 0.15 −0.0031 0.0488 0.15 −0.0030 0.0498 0.15 −0.0024 0.0493
yt−4 0.20 0.0195 0.0544 0.20 0.0192 0.0540 0.20 0.0185 0.0534
Rnt 0.99 −0.5208 0.1111 0.99 −0.5187 0.1143 0.99 −0.5195 0.1115
Rnt−1 0.23 −0.0553 0.1334 0.24 −0.0601 0.1395 0.23 −0.0554 0.1334
Rnt−2 0.27 −0.0650 0.1400 0.27 −0.0658 0.1406 0.26 −0.0610 0.1354
Rnt−3 0.10 0.0034 0.0435 0.10 0.0032 0.0436 0.10 0.0040 0.0453
Rnt−4 0.10 −0.0030 0.0341 0.10 −0.0026 0.0346 0.09 −0.0028 0.0340
const 0.23 −0.1519 0.3652 0.22 −0.1503 0.3661 0.22 −0.1487 0.3626
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Table 13. BACE coefficient estimates of UK inflation for different average prior model size assumptions.

Variable
E(Ξ) = K/8 E(Ξ) = K/5 E(Ξ) = K/4

PIP Avg. Avg. PIP Avg. Avg. PIP Avg. Avg.
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Id.t 1.00 0.0380 0.0015 1.00 0.0380 0.0015 1.00 0.0380 0.0015
∆pe.t 1.00 0.2612 0.0248 1.00 0.2612 0.0248 1.00 0.2612 0.0248
St−1 1.00 −0.9786 0.1060 1.00 −0.9786 0.1060 1.00 −0.9786 0.1060
yd

t−1 1.00 0.1898 0.0381 1.00 0.1898 0.0381 1.00 0.1898 0.0381
∆pt−1 1.00 0.2818 0.0352 1.00 0.2818 0.0352 1.00 0.2818 0.0352
π∗t−1 0.99 −0.1674 0.0295 0.99 −0.1673 0.0295 1.00 −0.1674 0.0295
∆Rs.t−1 0.99 0.6896 0.1272 0.99 0.6897 0.1272 0.99 0.6896 0.1273
∆po.t−1 0.99 0.0492 0.0111 0.99 0.0492 0.0111 0.99 0.0492 0.0111
∆mt−1 0.99 0.1532 0.0325 0.99 0.1532 0.0325 0.99 0.1532 0.0325
Ud

t−1 0.71 −0.0549 0.0443 0.71 −0.0549 0.0443 0.71 −0.0549 0.0443
nd

t−1 0.20 0.0006 0.0016 0.20 0.0006 0.0016 0.20 0.0006 0.0016
Rl.t−1 0.15 0.0059 0.0216 0.15 0.0059 0.0216 0.15 0.0059 0.0217
∆pe.t−1 0.12 0.0030 0.0133 0.12 0.0030 0.0133 0.12 0.0030 0.0133
∆nt−1 0.12 0.0014 0.0063 0.12 0.0014 0.0063 0.12 0.0014 0.0063
const 0.11 0.0001 0.0007 0.11 0.0001 0.0007 0.11 0.0001 0.0007
∆wt−1 0.10 −0.0001 0.0130 0.10 −0.0001 0.0130 0.10 −0.0001 0.0130
∆Ur.t−1 0.09 −0.0009 0.0229 0.09 −0.0009 0.0229 0.10 −0.0009 0.0229
md

t−1 0.09 −0.0001 0.0042 0.10 −0.0001 0.0042 0.09 −0.0001 0.0042
∆ct−1 0.09 0.0003 0.0102 0.09 0.0003 0.0102 0.09 0.0003 0.0103
∆Rl.t−1 0.09 0.0011 0.0831 0.09 0.0011 0.0832 0.09 0.0011 0.0833

Table 14. BMA (with stationarity restrictions) coefficient estimates of the UKM1 model for different
average prior model size assumptions.

Variable
E(Ξ) = K/8 E(Ξ) = K/5 E(Ξ) = K/4

PIP Avg. Avg. PIP Avg. Avg. PIP Avg. Avg.
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

mt−1 1.00 0.8318 0.0966 1.00 0.8292 0.0978 1.00 0.8298 0.0980
mt−2 0.20 0.0356 0.0857 0.20 0.0362 0.0865 0.20 0.0364 0.0863
mt−3 0.06 −0.0011 0.0287 0.07 −0.0014 0.0291 0.06 −0.0013 0.0287
mt−4 0.15 0.0178 0.0550 0.16 0.0196 0.0572 0.16 0.0190 0.0570
pt 0.64 0.1069 0.1170 0.65 0.1090 0.1178 0.65 0.1091 0.1184
pt−1 0.33 0.0556 0.1450 0.33 0.0553 0.1483 0.33 0.0529 0.1455
pt−2 0.20 −0.0279 0.1233 0.20 −0.0286 0.1254 0.20 −0.0275 0.1245
pt−3 0.15 −0.0216 0.0789 0.15 −0.0223 0.0797 0.15 −0.0211 0.0783
pt−4 0.11 −0.0083 0.0447 0.10 −0.0082 0.0449 0.10 −0.0085 0.0442
yt 0.18 0.0173 0.0498 0.21 0.0199 0.0526 0.19 0.0178 0.0505
yt−1 0.60 0.0911 0.0951 0.59 0.0906 0.0953 0.59 0.0907 0.0952
yt−2 0.13 −0.0074 0.0585 0.13 −0.0072 0.0592 0.14 −0.0069 0.0594
yt−3 0.12 0.0041 0.0396 0.11 0.0034 0.0377 0.10 0.0030 0.0363
yt−4 0.19 0.0191 0.0497 0.17 0.0176 0.0478 0.19 0.0200 0.0505
Rnt 1.00 −0.5090 0.0925 1.00 −0.5081 0.0944 1.00 −0.5080 0.0945
Rnt−1 0.09 −0.0173 0.0758 0.10 −0.0199 0.0829 0.10 −0.0192 0.0822
Rnt−2 0.11 −0.0212 0.0823 0.12 −0.0220 0.0837 0.12 −0.0224 0.0846
Rnt−3 0.05 0.0012 0.0274 0.05 0.0014 0.0276 0.05 0.0016 0.0287
Rnt−4 0.06 −0.0030 0.0267 0.06 −0.0026 0.0256 0.07 −0.0033 0.0278
const 0.14 −0.0985 0.3076 0.14 −0.0934 0.2985 0.14 −0.0998 0.3097
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Table 15. BMA (with stationarity restrictions) coefficient estimates of UK inflation for different average
prior model size assumptions.

Variable
E(Ξ) = K/8 E(Ξ) = K/5 E(Ξ) = K/4

PIP Avg. Avg. PIP Avg. Avg. PIP Avg. Avg.
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Id.t 1.00 0.0379 0.0014 1.00 0.0379 0.0014 1.00 0.0379 0.0014
∆pe.t 1.00 0.2617 0.0238 1.00 0.1879 0.0354 1.00 0.1879 0.0354
St−1 1.00 −0.9687 0.1024 1.00 −0.9686 0.1024 1.00 −0.9685 0.1024
yd

t−1 1.00 0.1877 0.0353 1.00 0.2617 0.0238 1.00 0.2617 0.0238
∆pt−1 1.00 0.2797 0.0324 1.00 0.2796 0.0324 1.00 0.2794 0.0324
π∗t−1 1.00 −0.1685 0.0280 1.00 −0.1687 0.0281 1.00 −0.1687 0.0281
∆Rs.t−1 0.99 0.6893 0.1196 0.99 0.6889 0.1201 0.99 0.6889 0.1198
∆po.t−1 0.99 0.0490 0.0106 0.99 0.1577 0.0308 0.99 0.1577 0.0308
∆mt−1 0.99 0.1575 0.0310 0.99 0.0489 0.0107 0.99 0.0489 0.0106
Ud

t−1 0.59 −0.0465 0.0449 0.59 −0.0463 0.0449 0.59 −0.0460 0.0449
nd

t−1 0.12 0.0004 0.0013 0.12 0.0004 0.0013 0.12 0.0004 0.0013
Rl.t−1 0.10 0.0042 0.0176 0.09 0.0039 0.0171 0.09 0.0040 0.0172
∆pe.t−1 0.07 0.0016 0.0096 0.07 0.0017 0.0097 0.07 0.0017 0.0097
∆nt−1 0.06 0.0008 0.0045 0.07 0.0008 0.0047 0.07 0.0008 0.0047
const 0.07 0.0001 0.0005 0.07 0.0001 0.0006 0.07 0.0001 0.0006
∆wt−1 0.05 0.0001 0.0086 0.05 −0.0003 0.0165 0.05 −0.0001 0.0163
∆Ur.t−1 0.06 −0.0003 0.0167 0.05 0.0002 0.0070 0.06 0.0001 0.0092
md

t−1 0.05 <0.0000 0.0028 0.05 0.0001 0.0085 0.05 <0.0000 0.0028
∆ct−1 0.05 0.0002 0.0068 0.05 0.0022 0.0619 0.05 0.0023 0.0611
∆Rl.t−1 0.05 0.0016 0.0591 0.05 <0.0001 0.0029 0.05 0.0002 0.0069

Table 16. BMA (without stationarity restrictions) coefficient estimates of the UKM1 model for different
average prior model size assumptions.

Variable
E(Ξ) = K/8 E(Ξ) = K/5 E(Ξ) = K/4

PIP Avg. Avg. PIP Avg. Avg. PIP Avg. Avg.
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

mt−1 1.00 0.8320 0.0982 1.00 0.8332 0.0973 1.00 0.8315 0.0982
mt−2 0.20 0.0360 0.0861 0.20 0.0363 0.0865 0.21 0.0374 0.0875
mt−3 0.06 −0.0013 0.0281 0.07 −0.0014 0.0292 0.06 −0.0013 0.0277
mt−4 0.16 0.0193 0.0573 0.15 0.0175 0.0545 0.15 0.0181 0.0554
pt 0.64 0.1102 0.1203 0.65 0.1089 0.1180 0.65 0.1112 0.1202
pt−1 0.33 0.0547 0.1486 0.33 0.0521 0.1451 0.33 0.0523 0.1472
pt−2 0.20 −0.0286 0.1258 0.18 −0.0247 0.1176 0.20 −0.0264 0.1243
pt−3 0.16 −0.0231 0.0809 0.16 −0.0229 0.0806 0.17 −0.0240 0.0849
pt−4 0.11 −0.0098 0.0477 0.11 −0.0097 0.0473 0.11 −0.0093 0.0482
yt 0.20 0.0191 0.0517 0.20 0.0195 0.0522 0.20 0.0189 0.0514
yt−1 0.56 0.0857 0.0945 0.57 0.0880 0.0956 0.57 0.0873 0.0952
yt−2 0.13 −0.0066 0.0575 0.14 −0.0070 0.0591 0.13 −0.0071 0.0591
yt−3 0.11 0.0039 0.0376 0.11 0.0030 0.0377 0.11 0.0030 0.0371
yt−4 0.20 0.0205 0.0511 0.19 0.0191 0.0493 0.20 0.0199 0.0500
Rnt 1.00 −0.5099 0.0926 1.00 −0.5087 0.0936 1.00 −0.5089 0.0960
Rnt−1 0.09 −0.0177 0.0773 0.09 −0.0181 0.0792 0.09 −0.0186 0.0814
Rnt−2 0.11 −0.0221 0.0848 0.10 −0.0192 0.0790 0.11 −0.0210 0.0821
Rnt−3 0.05 0.0013 0.0265 0.06 0.0015 0.0287 0.06 0.0016 0.0299
Rnt−4 0.06 −0.0029 0.0267 0.06 −0.0028 0.0258 0.06 −0.0031 0.0268
const 0.14 −0.0996 0.3097 0.14 −0.0956 0.3035 0.13 −0.0898 0.2958
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Table 17. BMA (without stationarity restrictions) coefficient estimates of UK inflation for different
average prior model size assumptions.

Variable
E(Ξ) = K/8 E(Ξ) = K/5 E(Ξ) = K/4

PIP Avg. Avg. PIP Avg. Avg. PIP Avg. Avg.
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Id.t 1.00 0.0379 0.0014 1.00 0.0379 0.0014 1.00 0.0379 0.0014
∆pe.t 1.00 0.2617 0.0238 1.00 0.1879 0.0354 1.00 0.1879 0.0354
St−1 1.00 −0.9687 0.1024 1.00 −0.9686 0.1024 1.00 −0.9685 0.1024
yd

t−1 1.00 0.1877 0.0353 1.00 0.2617 0.0238 1.00 0.2617 0.0238
∆pt−1 1.00 0.2797 0.0324 1.00 0.2796 0.0324 1.00 0.2794 0.0324
π∗t−1 1.00 −0.1685 0.0280 1.00 −0.1687 0.0281 1.00 −0.1687 0.0281
∆Rs.t−1 0.99 0.6893 0.1196 0.99 0.6889 0.1201 0.99 0.6889 0.1198
∆po.t−1 0.99 0.0490 0.0106 0.99 0.1577 0.0308 0.99 0.1577 0.0308
∆mt−1 0.99 0.1575 0.0310 0.99 0.0489 0.0107 0.99 0.0489 0.0106
Ud

t−1 0.59 −0.0465 0.0449 0.59 −0.0463 0.0449 0.59 −0.0460 0.0449
nd

t−1 0.12 0.0004 0.0013 0.12 0.0004 0.0013 0.12 0.0004 0.0013
Rl.t−1 0.10 0.0042 0.0176 0.09 0.0039 0.0171 0.09 0.0040 0.0172
∆pe.t−1 0.07 0.0016 0.0096 0.07 0.0017 0.0097 0.07 0.0017 0.0097
∆nt−1 0.06 0.0008 0.0045 0.07 0.0008 0.0047 0.07 0.0008 0.0047
const 0.07 0.0001 0.0005 0.07 0.0001 0.0006 0.07 0.0001 0.0006
∆wt−1 0.05 0.0001 0.0086 0.05 −0.0003 0.0165 0.05 −0.0001 0.0163
∆Ur.t−1 0.06 −0.0003 0.0167 0.05 0.0002 0.0070 0.06 0.0001 0.0092
md

t−1 0.05 <0.0000 0.0028 0.05 0.0001 0.0085 0.05 <0.0000 0.0028
∆ct−1 0.05 0.0002 0.0068 0.05 0.0022 0.0619 0.05 0.0023 0.0611
∆Rl.t−1 0.05 0.0016 0.0591 0.05 <0.0001 0.0029 0.05 0.0002 0.0069

6.2. BACE and BMA Run Times

Tables 18–20 present computational timings12 of BACE and BMA analysis conducted in two
general variants, with and without forecasting, for two earlier considered empirical examples,
i.e., UKM1 and inflation. In the case of BACE analysis, total number of iterations in MC3 sampling
algorithm equals 500,000, while for BMA is 150,000. The difference in the total number of MC3

iterations in BACE and BMA gretl packages is related with different ways of employing MPI parallel
computations, which results in different pace of convergence.

Table 18. Run times of BACE gretl package.

CPUs

UKM1 UK Inflation

without Forecasts with Forecasts without Forecasts with Forecasts

Nrep Run Time Nrep Run Time Nrep Run Time Nrep Run Time

1 5× 105 147 5× 105 169 5× 105 112 5× 105 128
4 5× 105 128 5× 105 143 5× 105 49 5× 105 54

20 5× 105 23 5× 105 28 5× 105 15 5× 105 17

CPUs denotes the total number of processors used in simulation experiment, Nrep means the total number of
iterations in MC3 sampling algorithm, and Run time denotes computational time (in seconds).

Increasing the number of CPUs decreases run times of both packages more or less linearly.
The highest boost is in the case of BACE for UKM1 with almost equal ratio. Both packages slow
down in forecasting, but again with different ratios. In case of BACE, timings of simulations increase
approximately by 10–20%, no matter how many CPUs are used. In the case of BMA, run times

12 All computations were performed on so-called haavelmo machine (located at Dipartimento di Scienze Economiche e Sociali
(DiSES), Ancona, Italy) which consists on 20 Hyper-Threaded Intel R© Xeon R© CPU E5-2640 v4 @ 2.40GHz with 256 GB
operational memory running under Debian GNU/Linux 64 bits.
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are multiply by a factor ranging from 12.64 to 26.07 for restricted case and from 32.33 to 825.29 for
unrestricted case. Such a big increase of computational timings is related with necessity of generating
predictive distributions step-by-step in order to compute dynamic forecasts. Longer run times for
BMA are also related with stationarity restrictions for autoregressive parameters. We believe that in
the future we will be able to improve speed of BMA computations.

Table 19. Run times of BMA gretl package (with stationary restrictions).

CPUs

UKM1 UK Inflation

without Forecasts with Forecasts without Forecasts with Forecasts

Nrep Run Time Nrep Run Time Nrep Run Time Nrep Run Time

1 1.5× 105 10,554 1.5× 105 275,165 1.5× 105 1457 1.5× 105 35,996
4 1.5× 105 2470 1.5× 105 56,294 1.5× 105 380 1.5× 105 6829

20 1.5× 105 1169 1.5× 105 14,771 1.5× 105 136 1.5× 105 3044

CPUs denotes the total number of processors used in simulation experiment, Nrep means the total number of
iterations in MC3 sampling algorithm and Run time denotes computational time (in seconds).

Table 20. Run times of BMA gretl package (without stationary restrictions).

CPUs

UKM1 UK Inflation

without Forecasts with forecasts without Forecasts with Forecasts

Nrep Run Time Nrep Run Time Nrep Run Time Nrep Run Time

1 1.5× 105 353 1.5× 105 291,328 1.5× 105 81 1.5× 105 32,095
4 1.5× 105 167 1.5× 105 65,862 1.5× 105 54 1.5× 105 6556

20 1.5× 105 103 1.5× 105 16,630 1.5× 105 55 1.5× 105 1778

CPUs denotes the total number of processors used in simulation experiment, Nrep means the total number of
iterations in MC3 sampling algorithm, and Run time denotes computational time (in seconds).

7. Conclusions

In this paper, we discussed the possibility of using the model averaging methods—BACE
and BMA as a tool for selecting variables and forecasting in dynamic econometric modeling.
Empirical examples with known, non-trivial macroeconometric models confirmed that the BACE and
BMA procedures, by calculating a PIP value for each independent variable, correctly indicates the
determinants of the dependent process. Robustness analysis results confirm the stability of variable
selection in our examples.

Moreover, the BACE and BMA take into account model uncertainty and generates reasonably
close or more accurate forecasts compared with Autometrics or median probability model. The UK
inflation forecasts generated by BACE, BMA, and Autometrics have similar RMSE and MAPE values,
but the demand for narrow money forecasts generated by BACE and BMA have several times smaller
errors than those generated by Autometrics. A similar conclusion also applies to median probability
models. Forecasts generated by simple averaging of all predictive models can provide better results
than forecasts from single models. This advantage over the non-pooling inference is particularly
evident when there is no one dominant model but rather many competing specifications with relatively
low explanatory power.
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The following abbreviations are used in this manuscript:

ADL Autoregressive Distributed Lag
BACE Bayesian Averaging of Classical Estimates
BMA Bayesian Model Averaging
DGP Data Generating Process
GDP Gross Domestic Product
GUI Graphical User Interface
GUM General Unrestricted Model
LDGP Local Data Generating Process
MAPE Mean Absolute Percentage Error
MPI Message Passing Interface
MC3 Markov Chain Monte Carlo Model Composition
RMSE Root-Mean-Square Error
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