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Abstract: In this paper the theory on the estimation of vector autoregressive (VAR) models for I(2)
processes is extended to the case of long VAR approximation of more general processes. Hereby the
order of the autoregression is allowed to tend to infinity at a certain rate depending on the sample
size. We deal with unrestricted OLS estimators (in the model formulated in levels as well as in vector
error correction form) as well as with two stage estimation (2SI2) in the vector error correction model
(VECM) formulation. Our main results are analogous to the I(1) case: We show that the long VAR
approximation leads to consistent estimates of the long and short run dynamics. Furthermore, tests
on the autoregressive coefficients follow standard asymptotics. The pseudo likelihood ratio tests
on the cointegrating ranks (using the Gaussian likelihood) used in the 2SI2 algorithm show under
the null hypothesis the same distributions as in the case of data generating processes following
finite order VARs. The same holds true for the asymptotic distribution of the long run dynamics
both in the unrestricted VECM estimation and the reduced rank regression in the 2SI2 algorithm.
Building on these results we show that if the data is generated by an invertible VARMA process,
the VAR approximation can be used in order to derive a consistent initial estimator for subsequent
pseudo likelihood optimization in the VARMA model.

Keywords: vector autoregressions; vector error correction model; integrated processes of order two

1. Introduction

Many macroeconomic variables have been found to exhibit trend-like behaviour that can be
modelled by using vector autoregressions (VARs). Katarina Juselius (2006) states that empirical
modelling led to the development of I(1) and I(2) models since certain features of the datasets
considered required including first and second differences in order to obtain stationary time series.
Additionally cointegrating relations were found in the corresponding analyses. Similar findings have
reoccurred numerous times in the literature for example related to money demand Johansen (1992b);
Juselius (1994), inflation Banerjee et al. (2001); Georgoutsos and Kouretas (2004), interest rates and real
exchange rates Johansen et al. (2007); Juselius and Assenmacher (2017); Juselius and Stillwagon (2018);
Stillwagon (2018) to mention only a few sources.

The predominant methodological approach to model integration and cointegration in the I(1) and
the I(2) case in the vector autoregressive (VAR) framework has been established mainly by Søren Johansen
and Katarina Juselius together with a number of coauthors (see the lists of references in Johansen (1995);
Juselius (2006) for details) building on vector error correction models (see Engle and Granger (1987) for
early comments on the history of using error correction models for co-integrated processes). Extending
the main ideas for cointegration modeling for the I(1) setting Johansen (1997) see, e.g., Johansen (1992a)
suggested a representation for the I(2) case. Johansen (1997) established asymptotic distributions for
the suggested two step I(2) estimator (2SI2) as an approximation to pseudo maximum likelihood
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estimation involving numerical optimization. Asymptotics for the corresponding likelihood ratio tests
has been developed in Paruolo (1994, 1996), its asymptotic equivalence to pseudo likelihood (using
the Gaussian distribution) optimization (and hence in a certain sense statistical efficiency) is shown in
Paruolo (2000). However, Nielsen and Rahbek (2007) shows that in finite samples the likelihood ratio test
has size advantages. The testing of restrictions on the parameters has been investigated by Boswijk and
Doornik (2004); Boswijk and Paruolo (2017); Johansen and Lütkepohl (2005). Due to the implicit vector
error correction (VECM) modeling, deterministic terms in the VECM produce complex deterministic
terms in the solutions processes. In the I(2) context Nielsen and Rahbek (2007); Paruolo (1994, 2006);
Rahbek et al. (1999); Kurita et al. (2011) discuss the impacts of deterministic terms.

As the VECM representation includes the representation of reduced rank matrices by a
product of two matrices, identification conditions are of particular importance, see Juselius (2006);
Mosconi and Paruolo (2013, 2017). In this context also weak exogeneity has been studied Kurita (2012);
Paruolo and Rahbek (1999).

The main idea underlying the VECM approach for estimating VAR models in the I(2) context is to
reparameterize the problem such that integration and cointegration properties relate to the rank of
two matrices. Assuming the data generating process to be a VAR of known finite order, the rank of
matrices can be tested using (pseudo) likelihood ratio tests.

Sometimes the assumption of known order is not justified. For example it is known that a subset
of variables that are generated using a finite order VAR cannot be described by a finite order VAR,
but instead requires a vector autoregressive moving average (VARMA) model. However, the class of
VARs provides flexibility in the sense that a VAR of infinite order can represent a large set of linear
dynamical systems including all invertible VARMA systems. For stationary processes Berk (1974)
and Lewis and Reinsel (1985) show that by letting the order of the VAR tend to infinity at a suitable
function of the sample size, consistent estimation of the underlying transfer function can be achieved
for data generating processes that can be described by a VAR(∞) subject to mild assumptions on the
summability of the VAR coefficients. Additionally Lewis and Reinsel (1985) also establishes asymptotic
normality (in a very specific sense) of linear combinations of the estimated autoregressive coefficients.
Hannan and Deistler (1988) make the concepts operational by showing that in the case of a VARMA
process generating the dataset the required rate of letting the order tend to infinity can be estimated
using BIC model selection.

In the case of I(1) processes the estimation theory for long VAR approximations to VARMA
processes has been extended based on the techniques in the stationary case of Lewis and Reinsel in a
series of papers by Saikkonen and coauthors Saikkonen (1991, 1992); Lütkepohl and Saikkonen (1997);
Saikkonen and Lütkepohl (1996); Saikkonen and Luukkonen (1997). Additionally also the Johansen
framework of rank restricted estimation in the VECM model has been extended to the long VAR
approximations by Saikkonen and Luukkonen (1997). Bauer and Wagner (2004) provide extensions to
the multi frequency I(1) case where unit roots may occur at the seasonal frequencies.

For the I(2) case no such extensions are currently known. This is the research gap this paper tries
to fill: First we establish consistency and asymptotic normality of estimated autoregressive coefficients
(in the sense of Lewis and Reinsel) for unrestricted ordinary least squares (OLS) estimation in the
VECM representation. This can be used in order to derive Wald type tests of linear restrictions on
the autoregressive parameters. Secondly, we extend the rank restricted regression techniques in the
I(2) case to the long VAR approximations showing that the asymptotics (for estimated cointegrating
relations, likelihood ratio tests and the two step estimation procedures) are identical in the case of
long VAR approximations and VARs of finite known order. Third, we show that if the data generating
process is an invertible VARMA process the long VAR system estimator can be used in order to obtain
consistent initial estimators for subsequent pseudo likelihood maximization in the VARMA model
class. In all results we limit ourselves to the case of no deterministic terms being included in the VECM
representation. The inclusion of deterministic terms requires changing the test distribution, compare
the theory contained for example in Rahbek et al. (1999).
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The paper is organized as follows: In the next section the data generating process and the main
assumptions are described. Section 3 then provides the results for the unrestricted estimation. Section 4
deals with rank restricted regression in the 2SI2 procedure, while Section 5 investigates the initial guess
in the VARMA setting for subsequent pseudo likelihood maximization. Finally Section 6 concludes
the paper. Proofs are relegated to an appendix.

Throughout the paper we will use the notation introduced by Johansen (1997): For a matrix
C ∈ Rp×s, s < p, of full column rank we use the notation C̄ = C(C′C)−1. Furthermore, C⊥ denotes a
full column rank matrix of dimension p× (p− s) such that C′⊥C = 0. Whenever this notation is used
the particular choice of C⊥ is not of importance. For a matrix C = (Ci,j) ∈ Rp×s we let ‖C‖ denote the

Frobenius norm ‖C‖ =
√

∑
p
i=1 ∑s

j=1 C2
i,j.

2. Data Generating Process and Assumptions

In this paper we use the following assumptions on the data generating process:

Assumption 1 (DGP). The process (yt)t∈Z, yt ∈ Rp, is generated from the difference equation for t ∈ Z:

∆2yt = αβ′yt−1 + Γ∆yt−1 +
∞

∑
j=1

Πj∆2yt−j + εt (1)

where α, β ∈ Rp×r, 0 ≤ r < p are full column rank matrices, ∆ = (1− L) with L denoting the backward shift
operator such that L(yt)t∈Z = (yt−1)t∈Z. The matrix function A(z) = (1− z)2 Ip − αβ′z− Γz(1− z)−
∑∞

j=1 Πj(1− z)2zj fulfills the special marginal stability condition that

|A(z)| = 0 implies that |z| > 1 or z = 1. (2)

Furthermore, there exists a real δ > 0 such that the power series defining A(z) converges absolutely for
|z| < 1 + δ. Define β2 = β⊥η⊥, α2 = α⊥ζ⊥ where α′⊥Γβ⊥ = ζη′, η, ζ ∈ R(p−r)×s are of full column rank
s < p− r. Then it is assumed that the matrix

α′2(Ip + Γβ̄ᾱ′Γ−
∞

∑
j=1

Πj)β2 (3)

is nonsingular.
Furthermore, the process (εt)t∈Z denotes independent identically distributed (iid) white noise with mean

zero and variance Σε > 0.

It is well known that the conditions (2) and (3) are necessary and sufficient for the existence of
solutions to the difference equation that are I(2) processes, see for example Johansen (1992a). Moreover,
note that the assumption of absolute convergence of A(z) for |z| < 1 + δ implies that ∑∞

j=0 jk‖Πj‖ < ∞
for every k ∈ N. In particular ∑∞

j=0 j2‖Πj‖ < ∞ follows as will be used frequently below.
Every vector autoregressive function A(z) corresponding to the autoregression A(L)yt = εt,

that fulfills Assumption 1, allows a representation as A(z) = (1 − z)2 Ip − αβ′z − Γz(1 − z) −
∑∞

j=1 Πj(1− z)2zj = g̃(z)B̃(z), B̃(z) = (1− z)2 Ip − Π̃z− Γ̃z(1− z), g̃(z) = Ip + ∑∞
j=1 Gjzj. This can be

seen as follows:
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εt = A(L)yt = (A(1)− Ȧ(1)∆ + A∗(L)∆2)yt = (A(1)− Ȧ(1)∆ + A∗(L)∆2)BB′yt

=
(
[−α, 0, 0] + [α, 0, 0]∆− ΓB∆ + A∗(L)B∆2

)
B′yt

=
(
[−α,−Γβ1,−Γβ2] + [α− Γβ, A∗1(L), A∗2(L)]∆ +

[
A∗0(L), 0, 0

]
∆2
) β′

β′1∆
β′2∆

 yt

=
(
[−α,−Γβ1,−Γβ2 + αᾱ′Γβ2] + [α− Γβ, A∗1(L), Ã∗2(L)]∆ +

[
A∗0(L), 0,−A∗0(L)ᾱ′Γβ2

]
∆2
)β′ + ᾱ′Γβ2β′2∆

β′1∆
β′2∆

 yt

=
(
[−α,−Γβ1, Ã∗2(L)] + [α− Γβ, A∗1(L),−A∗0(L)ᾱ′Γβ2]∆ +

[
A∗0(L), 0, 0

]
∆2
)β′ + ᾱ′Γβ2β′2∆

β′1∆
β′2∆2

 yt

= g(L)B(L)yt

where B = [β, β1, β2], β1 = β⊥η, is without restriction of generality assumed to be an orthonormal
matrix, A∗(L)B = [A∗0(L), A∗1(L), A∗2(L)], A(1) = −αβ′, Ȧ(1) = −αβ′ + Γ and where we use that

Γβ2 − αᾱ′Γβ2 = (Ip − αᾱ′)Γβ2 = ᾱ⊥α′⊥Γβ⊥η⊥ = 0.

Here

B(L) =

β′ + ᾱ′Γβ2β′2∆
β′1∆
β′2∆2

 .

In this representation
g(1) =

[
−α,−Γβ1, Ã∗2(1)

]
is nonsingular due to assumption (3). Furthermore, g(z) = ∑∞

j=0 Gjzj is a transfer function with

∑∞
j=0 ‖Gj‖j2 < ∞ since ∑∞

j=1 ‖Πj‖j2 < ∞ and thus the same holds for the power series coefficients
A∗(L). Since |B(z)| 6= 0, z 6= 1 it follows that |g(z)| 6= 0, |z| ≤ 1. Therefore

B(L)yt = ut, g(L)ut = εt (4)

is a VAR process. Note, however, that g(0) = G0 6= Ip in general. This constitutes a triangular
representation of the process denoting y1,t = β′yt ∈ Rp1 , y2,t = β′1yt ∈ Rp2 , y3,t = β′2yt ∈ Rp3 such that

y1,t = −ᾱ′Γβ2∆y3,t + u1,t = A∆y3,t + u1,t A : p1 × p3

∆y2,t = u2,t,

∆2y3,t = u3,t

where ut = [u′1,t, u′2,t, u′3,t]
′ has a VAR(∞) representation. Furthermore, defining

B̃(L) = B

Ip1 0 −ᾱ′Γβ2

0 Ip2 0
0 0 Ip3

 B(L) = ∆2 Ip + ββ′L + (ββ′ + βᾱ′Γβ2β′2 + β1β′1)L∆,

g̃(L) = g(L)

B
Ip1 0 −ᾱ′Γβ2

0 Ip2 0
0 0 Ip3



−1

we obtain A(L) = g(L)B(L) = g̃(L)B̃(L) such that

B̃(L)yt = ∆2yt + Π̃yt−1 + Γ̃∆yt−1 = vt, g̃(L)vt = εt



Econometrics 2020, 8, 38 5 of 28

is another representation of the process (yt)t∈Z with B̃(0) = Ip. It follows that the triangular
representation can be seen as a special case where one has partial information on the matrices β, β1, β2.
For estimation the VECM representation is approximated using a finite order h:

∆2yt = Φyt−1 + Ψ∆yt−1 +
h−2

∑
j=1

Πj∆2yt−j + et

where et = εt + e1t, e1t = ∑∞
j=h−1 Πj∆2yt−j. As in the VECM representation the dimensions of β, β1, β2

are linked to the rank of the matrices Φ and α′⊥Ψβ⊥. Restricting these matrices to be of particular rank
is simpler than imposing the equivalent restrictions in the VAR(h) representation directly.

In the following we will first investigate the unrestricted ordinary least squares estimator in
the VECM representation without taking rank restrictions into account. In the second step the 2SI2
procedure as presented in Paruolo (2000) for imposing the two rank restrictions in two steps is
investigated.

For both procedures the selection of the order h is of importance. In this respect the following
assumption will be used:

Assumption 2 (Lag order h). The order h is chosen subject to the following restrictions:

1. h = o(T1/5).
2. T1/2 ∑∞

j=h+1 ‖Πj‖ → 0 as T, h→ ∞.

This condition defines an upper bound for the order which is usually directly assured during
order selection using for example information criteria. The upper bound is smaller than the usual rate
T1/3 for technical reasons. The stronger bound is not needed for all results. However, the implications
for practical applications are minor as for example in the range 1 ≤ T ≤ 950 we have 2.5T1/5 > T1/3.
The second condition of Assumption 2 implies a lower bound for the increase of h as a function of
the sample size. Clearly ∑∞

j=h+1 ‖Πj‖ → 0 for h → ∞. The bound implies that for h = h(T) this

convergence needs to be fast enough such that T1/2 ∑∞
j=h(T)+1 ‖Πj‖ still converges to zero. The lower

bound depends on the underlying true parameters. For invertible VARMA processes – which can be
seen as the leading case – ‖Πj‖ ≤ Cρ

j
0 for some 0 ≤ ρ0 < 1. Hannan and Deistler (1988) show that

for an invertible stationary VARMA process the lower bound (in this case proportional to log T) can
be achieved asymptotically by using BIC as the order selection procedure. Thus in this case also the
stronger condition (h = o(T1/5)) is satisfied. Bauer and Wagner (2004) extend this result to the multi
frequency I(1) setting. For the I(2) case no analogous result is known, although the developments of
Bauer and Wagner (2004) suggest that a similar result holds also there. This is left for future research.

Therefore the difference between the ’usual’ rates and the ones assumed above are deemed to be
of minor practical consequences. Thus we are not explicit in the main text as to which results hold true
under the less restrictive set of results and which do not. In the appendix, we will comment on this
point, however.

3. Unrestricted Estimation

In this section the results of Lewis and Reinsel (1985) and Saikkonen and Lütkepohl (1996) are
extended to the I(2) case. To simplify notation define 〈at, bt〉 = ∑T

t=h+1 atb′t for sequences at, bt, t =
1, . . . , T.1 Then the unrestricted least squares estimator in the finite VECM model uses the regressor
vector Zt,h = [y′t−1, ∆y′t−1, ∆2y′t−1, . . . , ∆2y′t−h+2]

′ ∈ Rph. The corresponding ordinary least squares
estimator is given as

1 Here somewhat sloppily we use the same symbols for processes and their realizations.
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[
Φ̂, Ψ̂, Π̂1, . . . , Π̂h−2

]
=
[
〈∆2yt, yt−1〉, 〈∆2yt, ∆yt−1〉, 〈∆2yt, ∆2yt−1〉, . . . , 〈∆2yt, ∆2yt−h+2〉

]
〈Zt,h, Zt,h〉−1

= 〈∆2yt, Zt,h〉〈Zt,h, Zt,h〉−1.

The noise covariance is estimated from the residuals as usual as

Σ̂ε = N−1〈êt, êt〉, êt = ∆2yt − Φ̂yt−1 − Ψ̂∆yt−1 −
h−2

∑
j=1

Π̂j∆2yt−j (5)

where N = T − h denotes the effective sample size.

3.1. Estimation in the Triangular VECM Representation

As typical for the cointegration framework, analysis is easier in the triangular representation
which separates stationary components from I(1) and I(2) processes: Let yt = [y′1,t, y′2,t, y′3,t]

′ ∈ Rp

where yi,t ∈ Rpi is such that

y1,t = A∆y3,t + u1,t,

∆y2,t = u2,t,

∆2y3,t = u3,t

where ut = [u′1,t, u′2,t, u′3,t]
′ has a VAR(∞) representation g(L)ut = εt where

g(0) =

 I 0 A
0 I 0
0 0 I

 .

Note, however, that using the triangular representation implies that the matrix B(L) is known up
the value of the matrix A. For applications this is the case only seldom.

Thus letting g(z) = g(1) + g∗(z)∆ we obtain

εt = g(L)

y1,t − A∆y3,t
∆y2,t
∆2y3,t

 = g(L)

∆2y1,t + ∆y1,t−1 + y1,t−1 − A∆2y3,t − A∆y3,t−1

∆2y2,t + ∆y2,t−1

∆2y3,t


= g(L)

 I 0 −A
0 I 0
0 0 I

∆2yt + g(L)

y1,t−1

0
0

+ g(L)

∆y1,t−1 − A∆y3,t−1

∆y2,t−1

0


= g̃(L)∆2yt + [g(1) + g∗(L)∆]

y1,t−1

0
0

+ g(1)

∆y1,t−1 − A∆y3,t−1

∆y2,t−1

0


= π(L)∆2yt + g(1)

y1,t−1

0
0

+
[
G1 + G∗1 G2 −G1 A

]∆y1,t−1

∆y2,t−1

∆y3,t−1


= π(L)∆2yt +

[
G1 0 0

]
yt−1 +

[
G1 + G∗1 G2 −G1 A

]
∆yt−1

with π(L) = Ip −∑∞
j=1 ΠjLj leads to the corresponding VECM representation:

∆2yt = Φyt−1 + Ψ∆yt−1 +
∞

∑
j=1

Πj∆2yt−j + εt.
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Here G := g(1) = ∑∞
j=0 Gj = [G1,G2,G3], where Gi is p× pi for i = 1, 2, 3: Similarly, G∗ := g∗(1) =

−∑∞
j=0 jGj = [G∗1 ,G∗2 ,G∗3 ], where G∗i is p× pi for i = 1, 2, 3. The sums exists since ∑∞

j=1 ‖Gj‖j2 < ∞ by
assumption. Similarly, we partition Φ, Ψ and Πj into [Φ1, Φ2, Φ3], [Ψ1, Ψ2, Ψ3] and [Πj1, Πj2, Πj3],
respectively. The analogous partitioning is used for estimates.

Then Φ = −[G1, 0, 0], Ψ = [−G∗1 −G1, −G2, G1A]. Therefore Ψ3 = −Φ1A. Note that in this notation
the I(2) components on the right hand side are yt−1,3, the I(1) components are yt−1,1, yt−1,2, ∆yt−1,3, where
yt−1,1 − A∆yt−1,3 is stationary. Thus in order to separate regressors of different integration orders in the
proof (as is usually done in the literature) we use a transformation using the unknown matrix A such
that the regressor yt−1,1 is replaced by yt−1,1 − A∆yt−1,3. Consequently the estimate Ψ̂3 of Ψ3 is replaced
by the estimate Θ̂ = Ψ̂3 + Φ̂1A of Θ = Ψ3 + Φ1A = 0.

Based on the estimates Ψ̂ and Φ̂ then A can be estimated as

Â = −(Φ̂′1Σ̂−1
ε Φ̂1)

−1Φ̂′1Σ̂−1
ε Ψ̂3. (6)

Here the insertion of Σ̂−1
ε appears somewhat arbitrary. A motivation for this choice in the I(1) case

can be found in Saikkonen (1992) equation (12). However, any other positive definite matrix could be
used as well. Currently there is no knowledge on the optimality of the choice suggested above.

In the asymptotic distribution of the estimation error Brownian motions occur relating to the
process (ut)t∈Z: Under Assumption 1 we have

1√
T

brTc

∑
t=1

ut ⇒ B(r) = [B1(r)′, Bc(r)′]′ = [B1(r)′, B2(r)′, B3(r)]′

where B(r), 0 ≤ r ≤ 1, denotes a Brownian motion with corresponding variance

Ω =

[
Ω11 Ω1c

Ωc1 Ωcc

]
=

 Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33

 = g(1)−1 Σε (g(1)′)−1,

where B1.c(r) = B1(r)−Ω1cΩ−1
cc Bc(r) is a p1-dimensional Brownian motion, which is independent of

Bc(r), with covariance
Ω1.c = Ω11 −Ω1cΩ−1

cc Ωc1.

An estimator of Ω1.c is given by2

Ω̂1.c = (Φ̂′1Σ̂−1
ε Φ̂1)

−1. (7)

With these definitions we can state our first result of the paper (which is proved in Appendix B):

Theorem 1. Under Assumptions 1 and 2 for the triangular VECM representation we have:
(A) Consistency:

(i) Φ̂
p−→ Φ ; (ii) Σ̂ε

p−→ Σε ; (iii) Ω̂1.c
p−→ Ω1.c; (iv) Ψ̂

p−→ Ψ; (v) Θ̂
p−→ 0; (vi) Â

p−→ A .

(B) Asymptotic distribution of coefficients to nonstationary regressors: Under Assumptions 1 and 2 we have
(N = T − h):

(i)[NΦ̂2, NΘ̂, N2Φ̂3]
d→ g(1)

∫ 1

0
dBF′

(∫ 1

0
FF′
)−1

, (ii) N(Â− A)
d→
∫ 1

0
dB1.cL′

(∫ 1

0
LL′
)−1

(8)

2 Note that α = [Ip1 , 0]′, and thus Ω1.c = ([Ω−1]11)
−1 = (α′Ω−1α)−1 =

(
α′g(1)′Σ−1

ε g(1)α
)−1

= (Φ′1Σ−1
ε Φ1)

−1.
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where F(u) =

[
Bc(u)∫ u

0 B3(v)dv

]
, Fa(u) =

[
B2(u)∫ u

0 B3(v)dv

]
and L(u) = B3(u)−

∫ 1
0 B3F′a(

∫ 1
0 FaF′a)−1Fa(u).

(C) Asymptotic distribution of coefficients to stationary regressors: Let Lh be a sequence of (p2(h − 2) +
p(2p1 + p2))× J matrices such that L′h(Γ

−1
ECM ⊗ Σε)Lh → M > 0 where ΓECM = E(XtX′t) with Xt :=[

u′1,t−1, ∆y′1,t−1, ∆y′2,t−1, ∆2y′t−1, . . . , ∆2y′t−h+2
]′.

Let
Π =

[
Φ1 Ψ1 Ψ2 Π1 . . . Πh−2

]
.

Then
N

1
2 L′hvec(Π̂−Π)

d→ N(0, M).

(D) Asymptotic distribution on Wald type tests: Finally letting

Γ̂ECM = N−1(〈X̃t, X̃t〉 − 〈X̃t, ∆y3,t−1〉〈∆y3,t−1, ∆y3,t−1〉−1〈∆y3,t−1, X̃t〉)

where X̃t =
[
y′1,t−1, ∆y′1,t−1, ∆y′2,t−1, ∆2y′t−1, . . . , ∆2y′t−h+2

]′, the Wald test for the null hypothesis H0 :
L′hvec(Π) = lh is given by

λ̂Wald = N
(

L′hvec(Π̂)− lh
)′
(L′h(Γ̂

−1
ECM ⊗ Σ̂ε)Lh)

−1 (L′hvec(Π̂)− lh
)

.

Then if Lh is such that L′h(Γ
−1
ECM ⊗ Σε)Lh → M > 0, under the null hypothesis λ̂Wald

d→ χ2(J).

The theorem provides the asymptotic distributions of the OLS estimates in the triangular system.
Note that in this somewhat special case the properties of the regressor components (stationary or not)
are known such that for each entry the convergence speed is known. Correspondingly the definition
of the regressor vector X̃t involves only lags of yt but omits all nonstationary regressors except the
ones cointegrated with ∆y3,t−1.

The assumptions on Lh are more restrictive than needed. Lewis and Reinsel (1985) and Saikkonen
and Lütkepohl (1996) only require that Lh has full column rank when deriving the normalized
convergence to normal distribution with unit variance as the limit for

N
1
2 (L′h(Γ

−1
ECM ⊗ Σε)Lh)

−1/2L′hvec(Π̂−Π).

Similar arguments could be used here.

3.2. Estimation in the General VECM Representation

The previous section dealt with the special case that a triangular representation is used and hence
knowledge on the matrices [β, β1, β2] is given. This section provides a result for the general case, which,
however, is limited to the coefficients to the stationary components. Since a general process generated
according to Assumption 1 can be rewritten into a triangular representation using the knowledge
of [β, β1, β2], some asymptotic properties of the unrestricted OLS estimators can be derived from
Theorem 1 for the general case (which is proved in Appendix C):

Theorem 2. Let the regressor vector Zt,h = [y′t−1, ∆y′t−1, ∆2y′t−1, . . . , ∆2y′t−h+2] and define

Λ =
[

Φ Ψ Π1 . . . Πh−2

]
, Λ̃ = 〈∆2yt, Zt,h〉〈Zt,h, Zt,h〉−1, Γ̃ECM = N−1〈Zt,h, Zt,h〉.

Then under Assumptions 1 and 2 it follows that Λ̃−Λ = oP(1).
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Furthermore, let Lh ∈ Rp2(h+2)×J be such that L′h(Γ̃
−1
ECM ⊗ Σε)Lh → M > 0. Then

N
1
2 L′hvec(Λ̃−Λ)

d→ N(0, M).

Beside consistency the theorem implies that linear combination of OLS estimators show
asymptotic normality and hence standard inference, if the asymptotic variance is nonsingular. One
application of such results consists in the so called ’surplus lag’ formulation in the context of Granger
causality testing, see Bauer and Maynard (2012); Dolado and Lütkepohl (1996).

Finally note that this section does not contain results with regard to the cointegrating rank or the
cointegrating space. The theorem above merely allows to test coefficients corresponding to stationary
regressors. Therefore the usage is limited to somewhat special situations like the surplus-lag causality
tests. However, it is also relevant for impulse response analysis, compare Inoue and Kilian (2020).

4. Rank Restricted Regression

The previous sections show that for the estimators discussed in that sections full inference on all
coefficients is only possible when information on the matrices β, β1 and β2 exists. The dimensions of
the matrices relate to the ranks of the matrices Φ = αβ′ and, conditional on this, to the rank of ᾱ′⊥Ψβ̄⊥.
The two rank restrictions make estimation and specification more complex than in the I(1) case.

Johansen (1995) provides the two-step approach 2SI2 that can be used for estimation and
specification of the two integer valued parameters p1 and p2. Paruolo and Rahbek (1999) extend
the 2SI2 procedure suggested in section 8 of Johansen (1997). Paruolo (2000) shows that this 2SI2
procedure achieves the same asymptotic distribution as pseudo maximum likelihood estimation which
could be performed subsequent to 2SI2 estimation. This makes the procedure attractive from a practical
point of view. In this section we show that these approaches extend naturally to the long VAR case.
The main focus here lies on the derivation of the asymptotic properties of the rank tests.

Recall the long VAR approximation given as

∆2yt = Φyt−1 + Ψ∆yt−1 +
h−2

∑
j=1

Πj∆2yt−j + et (9)

where Φ = αβ′ has reduced rank r < p and ᾱ′⊥Ψβ̄⊥ = ζη′ has reduced rank s < p− r. In this notation
the 2SI2 procedure works as follows: In the first step the rank constraint on ᾱ′⊥Ψβ̄⊥ is neglected
estimating α and β by using reduced-rank regression (RRR). Then in the second step the reduced rank
of ᾱ′⊥Ψβ̄⊥ is imposed using RRR in a transformed equation.

In more detail using the Johansen notation we denote with R0t, R1t and R2t the residuals of
regressing ∆2yt, ∆yt−1 and yt−1 on ∆2yt−1, . . . , ∆2yt−h+2, respectively; then we can rewrite (9) as

R0t = αβ′R2t + ΨR1t + ẽt. (10)

Concentrating out R1t and denoting the residuals as R0.1t and R2.1t we obtain with Sij.1 = 〈Rit, Rjt〉−
〈Rit, R1t〉〈R1t, R1t〉−1〈R1t, Rjt〉 the solution to the RRR problem from solving the eigenvalue problem

|λS22.1 − S20.1S−1
00.1S02.1| = 0, (11)

with solutions 1 > λ̂1≥ . . .≥λ̂p > 0 ordered with decreasing size and corresponding vectors
V = (v1, . . . , vp). Then as usual the trace statistic of testing the model Hr with rank(Φ) ≤ r, r < p,
in the model Hp with rank(Φ) ≤ p, is given as

Qr = −2 log Q
(

Hr|Hp
)
= −T

p

∑
i=r+1

log(1− λ̂i). (12)
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The optimizers for α, β are given by

β̂ = (v1, . . . , vr), α̂ = S02.1 β̂, Σ̂ε = S00.1 − α̂α̂′. (13)

In the second step, given α and β known, we can obtain by multiplying (10) by ᾱ′⊥ that

ᾱ′⊥R0t = ᾱ′⊥Ψ(β̄⊥β′⊥ + β̄β′)R1t + ᾱ′⊥ ẽt = ζη′(β′⊥R1t) + C(β′R1t) + ᾱ′⊥ ẽt. (14)

Note that β′R1t is stationary. Thus concentrating out C and denoting the residuals as Rᾱ⊥ .β,t and
Rβ⊥ .β,t, respectively, we can define Sab.β := 〈Ra.β,t, Rb.β,t〉, for a, b = ᾱ⊥ or β⊥. Then the likelihood ratio
test of the model Hr,s with rank(ζη′) ≤ s, s < p− r in the model H0

r with rank(ᾱ′⊥Ψβ̄⊥) = p− r is
given by

Qr,s = −2 log Q
(

Hr,s|H0
r
)
= −T

p−r

∑
i=s+1

log(1− ρ̂i). (15)

where 1 > ρ̂1≥ . . .≥ρ̂p−r > 0 are the solutions of the eigenvalue problem

|ρSβ⊥β⊥ .β − Sβ⊥ ᾱ⊥ .βS−1
ᾱ⊥ ᾱ⊥ .βSᾱ⊥β⊥ .β| = 0, (16)

and the corresponding eigenvectors are W = (w1, . . . , wp−r). Estimators of ζ and η are given by

η̂ = (w1, . . . , ws), ζ̂ = Sᾱ⊥β⊥ .β η̂. (17)

For the 2SI2 procedure in this second step the first step estimates α̂ and β̂ are used in place of
the unknown true quantities. Then we obtain the following analogon to the results in the finite order
VAR framework (the proof is given in Appendix D):

Theorem 3. Let the data be generated according to Assumption 1 and let the VAR order fulfill Assumption 2.
Then the following asymptotic results hold:
(A) The asymptotic distribution of the likelihood ratio statistic Qr under the null hypothesis Hr is given by

Qr
d−→ tr

{∫ 1

0
dW†F′†

(∫ 1

0
F†F′†du

)−1 ∫ 1

0
F†dW ′†

}
. (18)

where W† = (α′⊥Σεα⊥)
−1/2α′⊥W, Fa(u) =

[
B2(u)∫ u

0 B3(v)dv

]
and F†(u) = Fa(u)−

∫ 1
0 FaB′3(

∫ 1
0 B3B′3)

−1B3(u).

This is identical to the distribution achieved in the finite VAR case.
(B) The asymptotic distribution of the likelihood ratio statistic Qr,s under the null hypothesis Hr,s is given by

Qr,s
d−→ tr

{∫ 1

0
dW ′2B′3

(∫ 1

0
B3B′3du

)−1 ∫ 1

0
B3dW ′2

}
. (19)

where W2(u) = (α′2Σεα2)
−1/2α′2W(u).

(C) The asymptotic distribution of the test statistic Sr,s = Qr + Qr,s under the null hypothesis Hr,s is given by

Sr,s
d−→ tr

{∫ 1
0 dW†F′†

(∫ 1
0 F†F′†du

)−1 ∫ 1
0 F†dW ′†

}
+ tr

{∫ 1
0 dW2B′3

(∫ 1
0 B3B′3du

)−1 ∫ 1
0 B3dW ′2

}
. (20)

(D) Using suitable normalizations all estimators are consistent: α̂(c′αα̂)−1 p→ α, β̂(c′β β̂)−1 p→ β, ζ̂(c′ζ ζ̂)−1 p→

ζ, η̂(c′η η̂)−1 p→ η, Ψ̂
p→ Ψ, Π̂j

p→ Πj where for example c′αα = Ir.
(E) The asymptotic distributions of the coefficients to the nonstationary regressors are identical to the ones in the
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finite order VAR case stated in Paruolo (2000). The asymptotic distribution of the coefficients Π̂j are identical to
the ones in Theorem 1.

The main message of the theorem is that the 2SI2 procedure shows the same asymptotic properties
including the rank tests as in the finite order VAR case. As usual also restricting the coefficients for the
non-stationary regressors does not influence the asymptotics for the coefficients corresponding to the
stationary regressors.

Note that Paruolo (2000) shows that in the finite VAR case 2SI2 estimates have the same asymptotic
distribution as pseudo maximum likelihood (pML) estimates maximizing the Gaussian likelihood.
The first order conditions for the pML estimates of the coefficients to the non-stationary regressors
provided in the first display on p. 548 in Paruolo (2000) depend on the data only via the matrices
Sij defined above. These matrices depend on the lag length of the VECM only via the concentration
step. The proof of our Theorem 3 shows that these terms have the same asymptotic distributions
for the finite order VAR and the long VAR. Theorem 4.3 of Paruolo (2000) shows that the asymptotic
distribution of the coefficients due to stationary regressors does not depend on the distribution
of the coefficients corresponding to the non-stationary regressors as long as they are estimated
super-consistently. Thus our results imply that also in the long VAR case the asymptotic distribution
of all estimates for the 2SI2 and the pML approach is identical.

5. Initial Guess for VARMA Estimation

One usage of long VAR approximations is as preliminary estimate for VARMA model estimation.
Hannan and Kavalieris (1986) provide properties of such an approach in the stationary case,
Lütkepohl and Claessen (1997) extend the procedure to the I(1) case. Here we extend this idea to
the I(2) case.

The goal is to provide a consistent initial guess for the estimation of a VARMA model for I(2)
processes. In this respect we assume the following data generating process:

Assumption 3 (VARMA dgp). The process (yt)t∈Z is generated as the solution to the state space equations

yt = Cxt + εt, xt+1 = Axt + Bεt (21)

where (εt)t∈Z denotes white noise subject to the same assumptions as in Assumption 1.
Here xt ∈ Rn is the unobserved state process. The system (A, B, C) is assumed to be minimal and in the

canonical form of Bauer and Wagner (2012), that is

A =


Ic Ic 0 0
0 Ic 0 0
0 0 Id 0
0 0 0 A•

 , B =


B1

B2

B3

B•

 , C =
[
C1 C2 C3 C•

]
,

where |λmax(A•)| < 1 (the matrix A• is stable), C′1C1 = Ic, C′3C3 = Id, C′1C3 = 0, C′1C2 = 0, C′2C3 = 0.
Furthermore, the system is strictly minimum-phase, that is ρ0 = |λmax(A− BC)| < 1. Finally the matrix
Ā = A− BC is nonsingular.

At time t = 0 the state x0 = [x′0,u, x′•]′, x0,u ∈ R2c+d, is such that x0,u is deterministic and x0,• =

∑∞
j=1 Aj−1

• B•ε−j denotes the stationary solution to the stable part of the system.

In this situation it follows that (yt)t∈Z is an I(2) process in the definition of Bauer and Wagner (2012),
that is its second difference is a stationary VARMA process. The integers c and d are connected to
the integers p1, p2, p3 via c = p3, d = p2 such that p1 = p− c− d. It can furthermore be shown that a
process generated using Assumption 3 possesses a VAR(h) approximation:
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yt +
h

∑
j=1

Ajyt−j = εt + C(A− BC)hxt−h

where Aj = −C(A− BC)j−1B, ‖Aj‖ ≤ µρj (0 ≤ ρ0 < ρ < 1) converges to zero exponentially fast for
j → ∞ due to the strict minimum-phase condition. Letting h → ∞ then implies the existence of a
VAR(∞) representation. It follows that for such systems A(z) converges absolutely for |z| < ρ−1 where
1 < ρ−1.

From the autoregressive representation the VECM representation can be obtained:

a(z) = Ip +
∞

∑
j=1

Ajzj = Ip −
∞

∑
j=1

CĀj−1Bzj = (1− z)2 Ip −Φz−Ψz(1− z)− (1− z)2
∞

∑
j=1

Πjzj

where Ā = A− BC such that

∆2yt = Φyt−1 + Ψ∆yt−1 +
∞

∑
j=1

Πj∆2yt−j + εt.

A comparison of power series coefficients provides the identities:

Φ = −Ip + C(I − Ā)−1B,

Ψ = −Ip − C(I − Ā)−2 ĀB,

Πj = [CĀ2(I − Ā)−2]Āj−1B = DĀj−1B, j = 1, 2, . . .

It follows that the coefficients Πj, j = 1, 2, . . . form the impulse response of a rational transfer
function of order smaller or equal to n. If Ā is nonsingular then the order equals n and the system
(Ā, B, D) is minimal. Furthermore, it follows that for arbitrary Φ and Ψ the transfer function

a(z) = (1− z)2 Ip −Φz−Ψz(1− z)− (1− z)2zD(I − zĀ)−1B

is a rational transfer function with the additional property that

a(1) = −Φ = −αβ′, ᾱ′⊥ ȧ(1)β̄⊥ = ᾱ′⊥(−Φ + Ψ)β̄⊥ = −ᾱ′⊥C(I − Ā)−2Bβ̄⊥ = ζη′.

Consequently Φ and Ψ determine the integration properties of processes generated using a(z).
Conversely whenever the constraints

−Ip + C(I − Ā)−1B = αβ′, −ᾱ′⊥C(I − Ā)−2Bβ̄⊥ = ζη′

hold the corresponding triple (A, B, C) corresponds to an I(2) process (if the eigenvalues of A are in
the closed unit disc). Defining C∗ = ᾱ′C, C† = ᾱ′⊥C we obtain

− ᾱ′ + C∗(I − Ā)−1B = β′, −ᾱ′⊥ + C†(I − Ā)−1B = 0, −C†(I − Ā)−2Bβ̄⊥ = ζη′. (22)

The third equation does not have a solution for fixed Bβ̄⊥, ζ, η, if the row space of Bβ̄⊥ does
not contain the space spanned by the rows of η′. In this case row-wise projection of η′ onto the
space spanned by the rows of Bβ̄⊥ allows for (not necessarily unique) solutions in C†. In the limit no
projection is needed. Consequently for large enough T the projected matrix will have full row rank.
The second equation then determines ᾱ⊥ which in turn determines ᾱ up to the choice of the basis such
that ᾱ′ = TC ᾱo

′ for some full row rank matrix ᾱo
′ ∈ Rr×p, ᾱo

′ᾱ⊥ = 0. The first equation then can be
rewritten as
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[TC, C∗]

[
−ᾱo

′

(I − Ā)−1B

]
︸ ︷︷ ︸

R1

= β′.

The second equation shows that the row space of (I − Ā)−1B contains the row space of ᾱ′⊥. Thus
the matrix R1 has full row rank. It follows that this equation has solutions.

Having obtained a solution for C∗, C†, ᾱ, ᾱ⊥ then C is obtained from

C =
[
α α⊥

] [C∗
C†

]
.

A unique solution then can be obtained from adding the restrictions Πj = C(I − Ā)−2 Āj+1B, j =
1, 2, . . . , 2n which for the estimates are to be solved in a least squares sense among all solutions to
equations (22).

It then follows that for the true matrices Φ, Ψ, Πj the only solution for given Ā, B consists in
the corresponding true C. These facts therefore can be used in order to develop an initial guess for
subsequent pseudo likelihood maximization using the parameterization of I(2) processes in state space
representation: Given the integer valued parameters n, c and d:

1. Obtain a long VAR approximation Φ̂, Ψ̂, Π̂j, j = 1, 2, . . ., including Φ̂ = α̂β̂′ and ζ̂ η̂′ = ̂̄α⊥′Ψ̂ ̂̄β⊥
using the 2SI2 approach.

2. Choose the integer f ≥ n. Use the algorithm described in Appendix F to obtain estimates
( ˆ̄A, B̂, D̂) realizing the impulse response Π̂j, j = 1, . . . , 2 f from the Hankel matrix with f block
columns and f block rows.

3. Project rows of η̂′ onto the space spanned by the rows of B̂ ̂̄β⊥ to obtain η̃′.
4. Obtain a unique solution Ĉ solving (22) such that the matrices Π̃j = Ĉ(I − ˆ̄A)−2 ˆ̄Aj+1B̂, j =

1, 2, . . . , 2n have minimal Euclidean distance to Π̂j, j = 1, 2, . . . , 2n.

5. Transform the corresponding system ( ˆ̄A + B̂Ĉ, B̂, Ĉ) to the canonical form of Bauer and Wagner
(2012) to obtain the estimate (Ã, B̃, C̃).

The algorithm obtains a minimal state space system of order n in the canonical form for I(2)
processes given in Bauer and Wagner (2012) and hence can be used as an initial guess for subsequent
pseudo-likelihood optimization in the set Mn(r, s) of all order n rational transfer functions corresponding
to I(2) processes with state space unit root structure ((0, (c, c + d))).

Theorem 4 (Consistent initial guess). Let (yt)t∈Z denote a process generated using the system (A0, B0, C0)

according to Assumption 3 and let the system (Ã, B̃, C̃) be estimated based on the long VAR approximation
with lag order chosen according to Assumption 2. Then (Ã, B̃, C̃) is a weakly consistent estimator of the data
generating system (A0, B0, C0) in the sense that C̃Ãj B̃

p→ C0 Aj
0B0, j = 0, 1, . . . and hence the corresponding

transfer functions converge in pointwise topology.

The proof of this theorem can be found in Appendix E.

6. Conclusions

In this paper the theory on long VAR approximation of general linear dynamical processes is
extended to the case of I(2) processes. We find that we need slightly narrower upper and lower bounds
in the approximations. The tighter bounds are not needed for all results and appear not very restrictive
for applications.

The main results are completely analogous to the I(1) case: The asymptotics in many respects is
identical to the finite order VAR case. Asymptotic distributions for the coefficients to non- stationary
variables are the same as in the finite order VAR case. This holds true both for unrestricted OLS
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estimates as well as the 2SI2 approach in the Johansen framework. Tests on cointegrating ranks show
identical asymptotic distributions under the null as in the finite order VAR case and hence do not
require other tables. In this respect the main conclusion is that the usual procedure of estimating the
lag order in the first step and then applying the Johansen procedure for estimated lag order is justified
also for processes generated from a VAR(∞) that is approximated with a choice of the lag order lying
within the prescribed bounds.

Additionally in the VARMA case the long VAR approximation can be used in order to derive
consistent initial guesses that can be used in subsequent pseudo likelihood estimation.

Thus the paper provides both a full extension of results that have been achieved in the I(1) case as
well as a useful starting point for subsequent VARMA modeling which might be preferable in situations
which require a high VAR order or show a large number of variables to be modeled, a situation where
VARMA models can be more parsimonious than VAR models.
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Appendix A. Preliminaries

The theory in this paper follows closely the arguments in Lewis and Reinsel (1985) and its
extension to the I(1) case in Saikkonen and Lütkepohl (1996). To this end consider the finite order
VECM approximation:

∆2yt = Φyt−1 + Ψ∆yt−1 +
h

∑
j=1

Πj∆2yt−j + et. (A1)

The properties of the various estimators heavily use the following rewriting of the approximation
using the triangular representation of yt:

∆2yt = [Φ1, Φ2, Φ3]

A∆y3,t−1 + u1,t−1

y2,t−1

y3,t−1

+ [Ψ1, Ψ2, Ψ3]

Au3,t−1 + ∆u1,t−1

u2,t−1

∆y3,t−1


+

h

∑
j=1

[Πj,1, Πj,2, Πj,3]

A∆u3,t−j + ∆2u1,t−j
∆u2,t−j
u3,t−j

+ et

= Φ2y2,t−1 + Φ3y3,t−1 + Θ∆y3,t−1 +
h

∑
j=1

Ξjut−j + [Ξh+1,1, Ξh+1,2]

[
u1,t−h−1
u2,t−h−1

]
+ Ξh+2,1ũ1,t−h−2 + et,

(A2)

where ũ1,t−h−2 := u1,t−h−2 − Au3,t−h−1 and Φ2 = Φ3 = 0 , Θ = Φ1 A + Ψ3 = 0 , and

Ξ1 = [Φ1 + Ψ1 + Π1,1 , Ψ2 + Π1,2 , (Ψ1 + Π1,1)A + Π1,3 ],
Ξ2 = [−Ψ1 + Π2,1 − 2Π1,1 , Π2,2 −Π1,2 , (Π2,1 −Π1,1)A + Π2,3],
Ξj = [Πj,1 − 2Πj−1,1 + Πj−2,1 , Πj,2 −Πj−1,2 , (Πj,1 −Πj−1,1)A + Πj,3], j = 3, . . . , h,
Ξh+1,1 = −2Πh,1 + Πh−1,1 , Ξh+1,2 = −Πh,2 , Ξh+2,1 = Πh,1.
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Furthermore, we can see that ∑h+2
j=1 Ξj,1 = Φ1, ∑h+1

j=1 Ξj,2 = Ψ2, and ∑h
j=1 Ξj,3 = Ψ1 A + ∑h

j=1 Πj,3.

Finally Ψ1 = −∑h+2
j=2 (j− 1)Ξj,1.

Note that in the reparametrization (A2), the I(1) components, yc,t := (y′2,t, ∆y′3,t)
′, as well as the

I(2) components, y3,t−1, are isolated from the stationary ones, ut−j, and have coefficients equal to zero,
which facilitates the derivation of the asymptotic properties.

In the reparameterized setting define 3 Ξ := [Ξ1, . . . , Ξh, Ξh+1,1, Ξh+1,2, Ξh+2,1], p× (ph + 2p1 + p2),
Ut := [u′t−1, . . . , u′t−h, u′1,t−h−1, u′2,t−h−1, ũ′1,t−h−2]

′, (ph + 2p1 + p2)× 1,
Λ := [Ξ, Φ2, Θ, Φ3] = [Ξ, 0], p× p(h + 2),
Wt := [U′t , y′c,t−1, y′3,t−1]

′, p(h + 2)× 1.
we have

∆2yt = ΛWt + et, (A3)

and correspondingly,
∆2yt = Λ̂Wt + ẽt

where
Λ̂ = [Ξ̂, Φ̂2, Θ̂, Φ̂3] = 〈∆2yt, Wt〉〈Wt, Wt〉−1

is the OLS estimator of Λ. Here 〈Xt, Zt〉 := ∑T
t=h+3 XtZ′t.

Note that Wt and the regressors in (A1) are in one-one correspondence. In the original Equation (A1)
beside the nonstationary regressors yc,t−1 and y3,t−1 the regressor vector

X̃t = [y′1,t−1, ∆y′1,t−1, u′2,t−1, ∆2y′t−1, . . . , ∆2y′t−h]
′ ∈ R2p1+p2+ph

occurs which cointegrates with ∆y3,t−1 such that

Xt = X̃t − [A′, 0]′∆y3,t−1 = ThUt (A4)

is stationary. Here the nonsingular matrix Th ∈ R(ph+2p1+p2)×(ph+2p1+p2) is defined as:

Ip1
Ip1 A −Ip1

Ip2
Ip1 A −2Ip1 −A Ip1

Ip2 −Ip2
Ip3

Ip1 A −2Ip1 −A Ip1
Ip2 −Ip2

Ip3

. . .
. . .

. . .

Ip1 A −2Ip1 −A Ip1
Ip2 −Ip2

Ip3
Ip1 A −2Ip1 Ip1

Ip2 −Ip2
Ip3


Let Π := [Φ1, Ψ1, Ψ2, : Π1 : Π2 : . . . : Πh], so that we have

Ξ = ΠTh. (A5)

It can be verified that Th is invertible. The asymptotic properties of Λ̂− Λ are clarified in the
next lemma:

Lemma A1. Under the assumptions of Theorem 1 using N = T − h− 2 as the effective sample size

3 In this appendix processes whose dimension depends on the choice of h are denoted using upper case letters neglecting the
dependence on h in the notation otherwise for simplicity.
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N
1
2 (Ξ̂− Ξ) = N

1
2 〈εt, Ut〉(EUtU′t)

−1 + oP(h
1
2 ),

[NΦ̂2, NΘ̂, N2Φ̂3]⇒ g(1)
[ ∫ 1

0 dBB′c
∫ 1

0 dBH′3
] [ ∫ 1

0 BcB′c
∫ 1

0 Bc H′3∫ 1
0 H3B′c

∫ 1
0 H3H′3

]−1

where H3(u) =
∫ u

0 B3(s)ds.

Proof. The proof essentially shows that the coefficients corresponding to the stationary regressors
and the ones corresponding to the integrated regressors asymptotically can be dealt with separately.
Let DT := diag[N−

1
2 Iph+2p1+p2 , N−1 Ip2+p3 , N−2 Ip3 ]. Note that N

1
2 (Ξ̂− Ξ), N[Φ̂2, Θ̂], and N2Φ̂3 are

the 1st, 2nd and 3rd column blocks of (Λ̂−Λ)D−1
T , respectively. Moreover, we have

(Λ̂−Λ)D−1
T = 〈et, Wt〉DT (DT〈Wt, Wt〉DT)

−1 .

Let R̂ := DT〈Wt, Wt〉DT , and define R := diag [Γu, R2] , where Γu = E[UtU′t ] , and

R2 :=

[
N−2〈yc,t−1, yc,t−1〉 N−3〈yc,t−1, y3,t−1〉
N−3〈y3,t−1, yc,t−1〉 N−4〈y3,t−1, y3,t−1〉

]
.

Note that each block of the matrix R2 is of order Op(1), and moreover, both R2 and its limit are
almost surely invertible, as there is no cointegration between yc,t−1 and y3,t−1 (see Lemma 3.1.1 in
Chan and Wei (1988), and Sims et al. (1990)). Note that

(Λ̂−Λ)D−1
T − 〈εt, Wt〉DT R−1 = 〈e1t, Wt〉DT R−1︸ ︷︷ ︸

=:E1

+ 〈e1t, Wt〉DT(R̂−1 − R−1)︸ ︷︷ ︸
=:E2

+ 〈εt, Wt〉DT(R̂−1 − R−1)︸ ︷︷ ︸
=:E3

.

Here 〈εt, Wt〉DT R−1 has the limits stated in the lemma since:

N−1〈εt, yc,t−1〉 ⇒ g(1)
∫ 1

0
dBB′c, N−2〈εt, y3,t−1〉 ⇒ g(1)

∫ 1

0
dBH′3,[

N−2〈yc,t−1, yc,t−1〉 N−3〈yc,t−1, y3,t−1〉
N−3〈y3,t−1, yc,t−1〉 N−4〈y3,t−1, y3,t−1〉

]
⇒
[∫ 1

0 BcB′c
∫ 1

0 BcH′3∫ 1
0 H3B′c

∫ 1
0 H3H′3

]
.

The lemma therefore holds, if E1 = [oP(h1/2), oP(1), oP(1)], E2 = oP(1), E3 = oP(1) can be shown
(where the blocks in E1 correspond to the partitioning of Wt into stationary, I(1) and I(2) components).
For this it is sufficient to show:

(I) ‖R̂−1 − R−1‖1 = OP(h/N
1
2 )

(II) ‖〈e1t, Wt〉DT‖ = oP(h1/2) where N−1〈e1t, yc,t−1〉 = oP(1) and N−2〈e1t, y3,t−1〉 = oP(1)
(III) ‖〈εt, Wt〉DT‖ = OP(h1/2).

Here ‖.‖1 denotes the spectral norm of a matrix while ‖.‖ denotes the Frobenius norm.
(I) To see ‖R̂−1 − R−1‖1 = Op(h/N

1
2 ), according to Lewis and Reinsel (1985), it is sufficient to show

‖R̂− R‖1 = Op(h/N
1
2 ), ‖R−1‖1 = Op(1). Note that

R̂− R =

N−1〈Ut, Ut〉 − Γu N−
3
2 〈Ut, yc,t−1〉 N−

5
2 〈Ut, y3,t−1〉

N−
3
2 〈yc,t−1, Ut〉 0 0

N−
5
2 〈y3,t−1, Ut〉 0 0

 =:

 Q̂ P̂12 P̂13

P̂21 0 0
P̂31 0 0

 ,

then we have E‖R̂− R‖2
1 ≤ E‖R̂− R‖2 = E‖Q̂‖2 + 2(E‖P̂12‖2 +E‖P̂13‖2).
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Now let Uo
t := [u′t−1, . . . , u′t−h−2]

′, then there exists a transformation Tu of full row rank, such
that Ut = TuUo

t , where Tu is a (ph + 2p1 + p2)× p(h + 2) matrix:

Ut︷ ︸︸ ︷

ut−1
...

ut−h
u1,t−h−1
u2,t−h−1
ũ1,t−h−2


(ph+2p1+p2)×1

=

Tu︷ ︸︸ ︷
Iph+p1+p2 0 0 0

0 −A Ip1 0


(ph+2p1+p2)×p(h+2)

Uo
t︷ ︸︸ ︷

ut−1
...

ut−h
u1,t−h−1
u2,t−h−1
u3,t−h−1
u1,t−h−2
u2,t−h−2
u3,t−h−2


p(h+2)×1

.

Then, we have Q̂ = TuQ̂oTu′ , where Q̂o = 1
N 〈Uo

t , Uo
t 〉 − E[Uo

t Uo′
t ]; moreover, P̂1i = Tu P̂o

1i for

i = 2, 3, where P̂o
12 = N−

3
2 〈Uo

t , yc,t−1〉, P̂o
13 = N−

5
2 〈Uo

t , y3,t−1〉. Since ‖Tu‖1 = O(1), Q̂ and P̂1i have the
same rate of convergence as Q̂o and P̂o

1i, respectively. From Saikkonen (1991) Lemma A.2. we know
E‖Q̂o‖2 = O(h2/N) and E‖P̂o

12‖2 = O(h/N) by direct calculation.
For P̂o

13 note that

E‖y3,t−1‖2 = E
∥∥∥ t−1

∑
j=1

j

∑
i=1

u3,i

∥∥∥2
= E

∥∥∥ t−1

∑
i=1

i u3,t−1−i

∥∥∥2
= O(t3).

Then analogous calculation as for P̂o
12 show that E‖P̂o

13‖2 = O(h/N). Concluding we obtain

E‖R̂− R‖2
1 = O(h2/N) such that ‖R̂− R‖1 = OP(h/N

1
2 ).

To show ‖R−1‖1 = OP(1) note that R−1 = diag{Γ−1
u , R−1

2 } where ‖Γ−1
u ‖1 = O(1)

(see Lewis and Reinsel (1985), p. 397) and ‖R−1
2 ‖1 = OP(1), since R2 is a.s. invertible and converges

in distribution to an almost surely nonsingular random matrix.
(II) With respect to ‖〈e1t, Wt〉DT‖ = oP(h1/2) note that

‖〈e1t, Wt〉DT‖ ≤
∥∥∥N−

1
2 〈e1t, Ut〉

∥∥∥+ ∥∥∥N−1〈e1t, yc,t−1〉
∥∥∥+ ∥∥∥N−2〈e1t, y3,t−1〉

∥∥∥ .

From Saikkonen (1991) Lemma A.5 we have
∥∥∥N−

1
2 〈e1t, Ut〉

∥∥∥ = oP(h
1
2 ), and

∥∥∥N−1〈e1t, yc,t−1〉
∥∥∥ =

oP(1). Then E‖y3,t−1‖2 = O(t3) and E‖e1t‖2 = o(N−1) imply

E
∥∥∥N−2〈e1t, y3,t−1〉

∥∥∥ ≤ N−2
T

∑
t=h+3

(
E‖e1t‖2E‖y3,t−1‖2

) 1
2
= o(N−2NN−1/2N3/2) = o(1).

(III) To show ‖〈εt, Wt〉DT‖ = OP(h1/2) note that N−
1
2 〈εt, Ut〉 = OP(h1/2), N−1〈εt, yc,t−1〉 = OP(1)

according to (A.7) of Saikkonen (1992). Moreover N−2 ∑T
t=h+3 εty′3,t−1 ⇒ g(1)

∫ 1
0 dBH′3 implies

N−2〈εt, y3,t−1〉 = OP(1).

Note that for the lemma to hold we only need h3/N → 0 and N1/2 ∑∞
j=h+1 ‖Πj‖ = o(1).

Appendix B. Proof of Theorem 1

Appendix B.1. (A) Consistency

(i) Lemma A1 implies Φ̂2 → 0 = Φ2, Φ̂3 → 0 = Φ3. Furthermore, the reparameterization implies
Φ1 = ∑h+2

j=1 Ξj1 and thus Φ̂1 = ∑h+2
j=1 Ξ̂j,1 leading to
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‖Φ̂1 −Φ1‖ ≤ ‖
h+2

∑
j=1

Ξ̂j,1 −
h+2

∑
j=1

Ξj,1‖

≤
h+2

∑
j=1
‖Ξ̂j,1 − Ξj,1‖ ≤ ‖Ξ̂− Ξ‖ = OP(h3/2/N1/2)

where the last inequality holds due to 〈εt, ut−j〉 = OP(N1/2) in combination with Lemma A1.
(ii) Note that

Σ̂ε = N−1〈∆2yt − Λ̂Wt, ∆2yt − Λ̂Wt〉 = N−1〈et + (Λ− Λ̂)Wt, et + (Λ− Λ̂)Wt〉.

Now
〈(Λ− Λ̂)Wt, (Λ− Λ̂)Wt〉 = (Λ− Λ̂)D−1

T DT〈Wt, Wt〉DT D−1
T (Λ− Λ̂)′

where R̂ = DT〈Wt, Wt〉DT such that ‖R̂‖1 = OP(1) and ‖(Λ− Λ̂)D−1
T ‖ = OP(h1/2). Consequently

N−1〈(Λ− Λ̂)Wt, (Λ− Λ̂)Wt〉 = OP(h/N)→ 0.

Next, from the definition of et, we can show that

N−1〈εt + e1t, εt + e1t〉 = N−1〈εt, εt〉+ oP(1) = Σε + oP(1),

where the last equality follows the law of large numbers and the first equality is implied by the fact
that ‖e1t‖2 = oP(T−1) and ‖εt‖2 = OP(1).
(iii) From (i) and (ii), Ω̂1.c = (Φ̂′1Σ̂−1

ε Φ̂1)
−1 = (Φ′1Σ−1

ε Φ1)
−1 + oP(1) = Ω1.c + oP(1) directly follows.

(iv) With respect to Ψ̂ recall that

Ψ1 = −
h+2

∑
j=2

(j− 1)Ξj,1, Ψ2 =
h+1

∑
j=1

Ξj,2.

Then Lemma A1 shows that each entry of Ξ̂− Ξ is of order OP(h1/2/N1/2). Then

‖Ψ̂1 −Ψ1‖ ≤
h+2

∑
j=2

(j− 1)‖Ξ̂j,1 − Ξj,1‖ = OP(
h+2

∑
j=2

(j− 1)h1/2/N1/2) = OP(h5/2/N1/2)

which converges to zero for h5/T → 0. Similarly Ψ̂2 −Ψ2 = OP(h3/2/N1/2).
For Ψ̂3 note that Θ = Φ1 A+Ψ3. Thus Ψ̂3 = Θ̂− Φ̂1 A such that Ψ̂3 → Ψ3 from (i) and Lemma A1.

(v) is contained in Lemma A1.
(vi) From (6), and the definition Ω̂1.c = (Φ̂′1Σ̂−1

ε Φ̂1)
−1, we have

Â− A = −(Φ̂′1Σ̂−1
ε Φ̂1)

−1Φ̂′1Σ̂−1
ε Ψ̂3 − A

= − Ω̂1.c Φ̂′1Σ̂−1
ε Ψ̂3 − Ω̂1.cΩ̂−1

1.c A = −Ω̂1.cΦ̂′1Σ̂−1
ε Ψ̂3 − Ω̂1.c Φ̂′1Σ̂−1

ε Φ̂1 A

= −Ω̂1.cΦ̂′1Σ̂−1
ε (Ψ̂3 + Φ̂1 A) = −Ω̂1.cΦ̂′1Σ̂−1

ε Θ̂.

Then (i-iii, v) show the result.

Appendix B.2. (B) Asymptotic Distribution of Coefficients to Nonstationary Regressors

(i) The distribution of the coefficients due to the nonstationary components is contained in Lemma A1.
(ii) With respect to the cointegrating relation note that from the proof of Theorem 1 we have

N(Â− A) = −NΩ̂1.cΦ̂′1Σ̂−1
ε Θ̂ = −Ω1.cΦ′1Σ−1

ε · NΘ̂ + oP(1).
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Note that NΘ̂ = [NΦ̂2, NΘ̂, N2Φ̂3]η, where η = [0p3×p2 , Ip3 , 0p3×p3 ]
′. Then by Lemma A1,

we have

N(Â− A)⇒ −Ω1.cΦ′1Σ−1
ε · g(1)

∫ 1

0
dBF′

(∫ 1

0
FF′
)−1

η = −Ω1.cΦ′1Σ−1
ε · g(1)

∫ 1

0
dBL′

(∫ 1

0
LL′
)−1

.

Note that Φ1 = g(1)α, and by definition Ω =

[
Ω11 Ω1c
Ωc1 Ωcc

]
= g(1)−1 Σε g(1)′−1, we have

−Ω1.cΦ′1Σ−1
ε g(1)B = −Ω1.cα′g(1)′Σ−1

ε g(1) B = −Ω1.c [Ip1 0] Ω−1B

= Ω1.c [(Ω−1)11 (Ω−1)1c] B = Ω1.c [ Ω−1
1.c −Ω−1

1.c Ω1cΩ−1
cc ] B

= [Ip1 −Ω1cΩ−1
cc ]

[
B1

Bc

]
= B1 −Ω1cΩ−1

cc Bc = B1.c.

Therefore, we have

N(Â− A)⇒
∫ 1

0
dB1.cL′

(∫ 1

0
LL′
)−1

.

Appendix B.3. (C) Asymptotic Distribution of Coefficients to Stationary Regressors

Since the regressor vector Ut is stationary, the asymptotic distribution of N1/2L′hvec(Ξ̂ − Ξ)
follows from Lewis and Reinsel (1985) in combination with uniform boundedness of the maximal
and the minimal eigenvalue of Γu = EUtU′t , see above. Analogously the result for the coefficients
corresponding to the regressor vector Xt are shown as Xt = ThUt for nonsingular matrix Th.

Appendix B.4. (D) Asymptotic Distribution of Wald Type Tests

For the Wald test in addition to (C) note that the variance ΓECM is replaced by an estimate
Γ̂ECM. For

L′h(Γ
−1
ECM ⊗ Σε)Lh − L′h(Γ̂

−1
ECM ⊗ Σ̂ε)Lh

note that Σ̂ε − Σε = oP(1) due to (A) (ii). The regressor vectors X̃t and Xt differ only in the first block
where y1,t−1 = u1,t−1 + A∆y3,t−1 replaces u1,t−1. Regressing out ∆y3,t−1 eliminates this difference.
Then ‖Γ̂ECM − ΓECM‖1 = OP(h/N1/2) according to (Saikkonen and Lütkepohl 1996, p. 835, l. 3).
There also invertibility of ΓECM is shown. Using Lemma A.2 of Saikkonen and Lütkepohl (1996) this
implies ‖Γ̂−1

ECM − Γ−1
ECM‖1 = OP(h/N1/2).

The rest then follows as the proof of Theorem 4 in Saikkonen and Lütkepohl (1996).

Appendix C. Proof of Theorem 2

Consistency follows directly from Theorem 1 as the general representation can be transformed
into a triangular representation using the matrix B = [β, β1, β2], see (4).

With respect to the asymptotic distribution following the proof of Theorem 1 there exists a
nonsingular transformation matrix Sh such that Wt = ShZt,h. From ‖R̂−1 − R−1‖ = OP(h/N1/2) it
follows that

(N−1〈Wt, Wt〉)−1 =

[
(Γu)−1 0

0 0

]
+ oP(h/N1/2).

Therefore it follows that the blocks corresponding to the nonstationary regressors do not contribute
to the asymptotic distribution. Then standard arguments for the stationary part of the regressor vector
can be used.



Econometrics 2020, 8, 38 20 of 28

Appendix D. Proofs for Theorem 3

The proof combines the ideas of Saikkonen and Luukkonen (1997) (in the following S&L) with the
asymptotics of 2SI2 of Paruolo (2000) (in the following P). In the proof we will work without restriction
of generality with the triangular representation.

The key to the asymptotic properties of the estimators obtained from the 2SI2 algorithm lies
in the results of P Lemma A.4 and Lemma A.5 in the appendix. These lemmas deal with the
limits of various moment matrices of the form N−a〈Rit, Rjt〉 corrected for the stationary components
∆2yt−j, j = 1, . . . , h− 2. The correction involves a regressor vector growing in dimension with sample
size. This is dealt with in S&L.

In this respect let St = [∆2y′t−1, . . . , ∆2y′t−h+2]
′ which according to (A4) is a linear function of

Ut such that St = TsUt. The definition of Ut implies Q̂ = N−1〈Ut, Ut〉 − EUtU′t = OP(h/N1/2).
On p. 543 in P the matrices Σij, i, j ∈ {Y, U, 0} are defined as limits of second moment matrices. Here
′U′ refers to β′1∆yt−1 = u2,t−1 in the triangular representation, ′Y′ refers to β′yt−1 + δβ′2∆yt−1 =

y1,t−1 − A∆y3,t−1 = u1,t−1 and ′0′ refers to ∆2yt. These are all stationary processes and linear functions
of ut, ut−1, ut−2. Additional to St also β′∆yt−1 = ∆u1,t−1 + Au3,t−1 is corrected for in the second stage.

The arguments on p. 114 and 115 of S&L deal with terms of the form

N−1〈u1,t−1, u1,t−1〉 − N−1〈u1,t−1, St〉〈St, St〉−1〈St, u1,t−1〉.

Analogous arguments to S&L(A.12) show that this equals (up to terms of order oP(1))

C11 = Eu1,t−1u′1,t−1 −Eu1,t−1S′t(EStS′t)
−1EStu′1,t−1.

S&L state that this is bounded from above and bounded away from zero. The second claim actually is
wrong. If (u1,t)t∈Z is univariate white noise with unit variance then C11 = 1

h is achieved by predicting
u1,t−1 by

h

∑
j=1

h− j
h

∆u1,t−j = u1,t−1 −
1
h

h

∑
j=1

u1,t−j

including integration of the regressors in the form of the summation. This does not change the
remaining arguments in S&L, it only implies that the separation of the eigenvalues corresponding to
the stationary regressors and the ones corresponding to the non-stationary ones is weaker.

In the current case one can show that for

N−1〈u1,t−1, u1,t−1〉 − N−1〈u1,t−1, St〉〈St, St〉−1〈St, u1,t−1〉

where St contains ∆u1,t−1 and ∆2u1,t−j, j = 1, . . . , h for the corresponding limit C11 the lower bound
hC11 ≥ cI holds for some 0 < c. The order of the lower bound is achieved by including a double
integration of the regressors. For

N−1〈∆u1,t−1, ∆ut,t−1〉 − N−1〈∆u1,t−1, St〉〈St, St〉−1〈St, ∆u1,t−1〉 = C∆∆ + op(1)

we have h3C∆∆ ≥ cI. Here the arguments from above can be applied to the process (∆ut)t∈Z. For a
differenced process the smallest eigenvalue of the matrix

EδUtδU′t , δU′t = [∆u′t, ∆u′t−1, . . . , ∆u′t−h]

is of order h−2, compare Theorem 2 of Palma and Bondon (2003).
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Since N−1〈St, yc,t−1〉 = OP(h1/2) and N−2〈St, y3,t−1〉 = OP(h1/2) it follows that

N−1(〈u1,t−1, yc,t−1〉 − 〈u1,t−1, St〉〈St, St〉−1〈St, yc,t−1〉) = OP(h1/2),

N−2(〈yc,t−1, yc,t−1〉 − 〈yc,t−1, St〉〈St, St〉−1〈St, yc,t−1〉) = N−2〈yc,t−1, yc,t−1〉+ oP((h/N)1/2)

as well as

N−2(〈u1,t−1, y3,t−1〉 − 〈u1,t−1, St〉〈St, St〉−1〈St, y3,t−1〉) = OP(h1/2),

N−3(〈yc,t−1, y3,t−1〉 − 〈yc,t−1, St〉〈St, St〉−1〈St, y3,t−1〉) = N−3〈yc,t−1, y3,t−1〉+ oP((h/N)1/2),

N−4(〈y3,t−1, y3,t−1〉 − 〈y3,t−1, St〉〈St, St〉−1〈St, y3,t−1〉) = N−4〈y3,t−1, y3,t−1〉+ oP((h/N)1/2).

Therefore the limits of the moment matrices Mij are not affected by the correction using stationary
terms even if h→ ∞ except for the terms involving the orders OP(h1/2). For all stationary terms we
find convergence to the corresponding limits denoted Σij in P.

The first step in the 2SI2 procedure then uses RRR in the equation

∆2yt = Ψ∆yt−1 + αβ′yt−1 + ΠSt + et.

Then R0t denotes ∆2yt corrected for St, R1,t denotes ∆yt−1 corrected for St and R2,t denotes yt−1

corrected for St. Lemma A.4 of P derives the limits of different directions of Mij.k defined as

Mij.k = Mij −Mik M−1
kk Mkj, Mij = N−1〈Ri,t, Rj,t〉

where i, j ∈ {0, 1, 2, ε, β}. Here Rε,t equals et correct for St and Rβ,t = β′R1,t. Further P uses the notation
AT = [β̄1, T−1 β̄2] and β̄2,T = β̄2. Here and below we assume without restriction of generality that
[β, β1, β2] is an orthonormal matrix. Consequently β̄ = β, β̄1 = β1, β̄2 = β2. Then the results above
imply all results of Lemma A.4. of P except that now A′T M20.1 = OP(h1/2).

In particular we obtain the following limits:

A′T M2ε.1
d→
∫ 1

0 F†(dW)′ , A′T M22.1 AT
d→
∫ 1

0 F†F′†,

β′2M1ε.β
d→
∫ 1

0 B3(dW)′ , T−1β′2M11.ββ2
d→
∫ 1

0 B3B′3,

β′2M1ε.b
d→
∫ 1

0 L(dW)′ , T−1β′2M11.bβ2
d→
∫ 1

0 LL′.

Here W = g(1)B denotes the Brownian motion corresponding to (εt)t∈Z, F† denotes the Brownian
motion corresponding to R2t (equaling yt−1 corrected for St) corrected for R1t (∆yt−1 whose only
nonstationary component equals ∆y3,t−1 with corresponding Brownian motion B3). Thus we obtain
the following definitions (where L is as in Theorem 1):

Fa(u) =

[
B2(u)∫ u

0 B3(v)dv

]
, F†(u) = Fa(u)−

∫ 1

0
FaB′3(

∫ 1

0
B3B′3)

−1B3(u),

L(u) = B3(u)−
∫ 1

0
B3F′a(

∫ 1

0
FaF′a)

−1Fa(u).

The above arguments show that in the current setting Ut−1 = u2,t−1 and Yt−1 = u1,t−1 are
contained in the space spanned by St for h→ ∞. Therefore Σij = 0 for i, j ∈ {U, Y}. The subscript ’b’
refers to correcting for β′⊥R2t used in the second stage of 2SI2.

Let Σ̃YY denote the limit of h〈Yt−1, Yt−1〉 and analogously define Σ̃YU , Σ̃UU , Σ̃0Y and Σ̃0U . For the
latter two note that Σ̃0Y denotes the limit of

h〈∆2yt, Yt−1〉 = hα〈Yt−1, Yt−1〉+ h〈ζUt−1, Yt−1〉+ h〈ζ2β′∆yt−1, Yt−1〉+ hΠ〈St, Yt−1〉+ h〈et, Yt−1〉
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corrected for St and β′∆yt−1. Since Yt−1 is stationary the last term is of order OP((h3/N)1/2) = oP(1).
Therefore it follows that Σ̃0Y = αΣ̃YY + ζΣ̃UY. Then the results of Lemma A.5 of P hold where in (A.11)
and (A.14) Σij can be replaced by Σ̃ij.

The asymptotic analysis below will heavily use the Johansen approach of investigating the
solutions to eigenvalue problems in order to maximize the pseudo-likelihood corresponding to the
reduced rank regression problem. In order to use the corresponding local analysis one has to first
clarify consistency for the various estimators as well as rates of convergence.

The main tool in this respect is Theorem A.1 of Johansen (1997) which establishes in the I(2) setting
for the regression yt = θ′Zt + εt (Zt being composed of stationary, I(1) and I(2) components) where
DT〈Zt, Zt〉DT = OP(1) and DT〈Zt, εt〉 = oP(1) that D−1

T (θ̂ − θ) = oP(1) where θ̂ denotes the pseudo
likelihood estimator over some closed parameter set Θ.

It is straightforward to see that analogous results hold in the present setting when first
concentrating out the stationary components: Consider yt = θ′1zt + θ′2Zt + et. Then θ̂2(θ1) is obtained
from the concentration step and the pseudo likelihood involves 〈Rt,y− θ′1Rt,z, Rt,y− θ′1Rt,z〉where again
the processes Rt,y and Rt,z denote the processes yt and zt with the corresponding stationary regressors
Zt regressed out. These concentrated quantities now can be used in the proof of Theorem A.1 of
Johansen (1997) essentially without changes to show consistency for θ̂1. Consistency of θ̂2(θ̂1) then
follows from the unrestricted estimation as contained in Theorem 2. As shown above the rates of
convergence as well as the limits are unchanged for the coefficients corresponding to the non-stationary
components of the regressors for the long VAR case compared to the finite VAR case.

Note that these results hold for general closed parameter space Θ, thus including the unrestricted
as well as the rank-reduced problem. This shows that we can always reduce the asymptotic analysis of
the eigenvalue problems to a neighborhood of the true value as is done in P.

The first step in the proof of Theorem 4.1. of P consists in the investigation of the solutions to the

equation (β̃ = βH + β1H1 + β2H2, letting B′T =

 β′

T−1/2β′1
T−3/2β′2

)

B′T M22.1BT

 H
T1/2H1

T3/2H2

Λ = B′T M20.1M−1
00.1M02.1BT

 H
T1/2H1

T3/2H2

 . (A6)

Now Lemma A.4 implies that the matrix B′T M22.1BT on the left hand side converges to

diag(ΣYY.U ,
∫ 1

0 F†F′†). B′T M20.1 =

[
ΣY0.U

0

]
+ OP(h1/2T−1/2), M00.1 = Σ00.U + OP(T−1/2). Multiplying

the equation by h2 we obtain the limiting eigenvalue problem

[
Σ̃YY.U OP(T−1/2h3/2)

OP(T−1/2h3/2) h
∫ 1

0 F†F′†

]  H
T1/2H1

T3/2H2

 hΛ =

[
Σ̃Y0.UΣ−1

00.UΣ̃0Y.U OP(T−1/2h5/2)

OP(T−1/2h5/2) OP(T−1h3)

]  H
T1/2H1

T3/2H2

 .

equation
Therefore asymptotically the first p − r eigenvalues of hΛ are positive, the remaining ones

tending to zero. Likewise the eigenvectors converge at the same speed as the matrices. Thus H1 =

OP(h5/2/T), H2 = OP(h5/2/T2) from which

β′M22.1βHΛH−1 = β′M20.1M−1
00.1M02.1β + OP(h4/T)

and thus using (A.11)

HΛH−1 = Σ̃−1
YY.UΣ̃Y0.UΣ−1

00.UΣ̃0Y.U/h + OP(hT−1/2) = α′Σ−1
00.UαΣ̃YY.U/h + OP(hT−1/2)
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follows. Then as in P we have4

M22.1 β̃ = M20.1(Σ−1
00.UΣ̃0Y.U(hHΛH−1)−1 + OP(hT−1/2)) = M22.1β + M2ε.1Σ−1

ε α(α′Σ−1
ε α)−1 + a1

where a1 = M20.1OP(h2T−1/2) = oP(1) and β̃ = β̃H−1. Then the remaining arguments on p. 546 of P
show that the asymptotic distribution of (Tβ1, T2β2)

′(β̃− β) is identical for the long VAR case as in
the finite VAR case.

From these arguments the distribution of the likelihood ratio test of Hr versus Hp can be shown:
Define S1(λ) := λM22.1 −M20.1M−1

00.1M02.1 , AT := (β1, T−1β2) and B̃T := (β, AT) = (β, β1, T−1β2).
Note that B̃T is of full rank, (11) is equivalent to |B̃′TS1(λ)B̃T | = 0; that is,∣∣∣∣∣∣∣

 β′

β′1
T−1β′2

 S1(λ)(β, β1, T−1β2)

∣∣∣∣∣∣∣ = |β′S1(λ)β| ·
∣∣∣A′T(S1(λ)− S1(λ)β (β′S1(λ)β)−1 β′S1(λ)

)
AT

∣∣∣ = 0. (A7)

Let δ1 = Tλ, so that for every δ1 we have that λ → 0, as T → ∞. By the above arguments we
have that

h2 ∣∣β′S1(λ)β
∣∣ = ∣∣∣∣δ1

h2

T
β′M22.1β− h2β′M20.1M−1

00.1M02.1β

∣∣∣∣ p−→
∣∣∣−Σ̃Y0.UΣ−1

00.UΣ̃0Y.U

∣∣∣ 6= 0,

which has no zero root. Moreover, we have

hA′TS1(λ)β = hλA′T M22.1β− hA′T M20.1M−1
00.1M02.1β = −A′T M20.1Σ−1

00.UΣ̃0Y.U + oP(1),

which yields that

∣∣∣A′T(S1(λ)− S1(λ)β (β′S1(λ)β)−1 β′S1(λ)
)

AT

∣∣∣
=

∣∣∣∣(δ1
1
T

A′T M22.1 AT − A′T M20.1M−1
00.1M02.1 AT

)
− A′TS1(λ)β

(
β′S1(λ)β

)−1
β′S1(λ)AT

∣∣∣∣
=

∣∣∣∣(δ1
1
T

A′T M22.1 AT

)
− A′T M20.1

(
M−1

00.1 − Σ−1
00.UΣ̃0Y.U

(
Σ̃Y0.UΣ−1

00.UΣ̃0Y.U

)−1
Σ̃Y0.UΣ−1

00.U + oP(1)
)

M02.1 AT

∣∣∣∣
=

∣∣∣∣(δ1
1
T

A′T M22.1 AT

)
− A′T M20.1

(
Σ−1

00.U − Σ−1
00.Uα

(
αΣ−1

ε α
)−1

α′Σ−1
00.U + oP(1)

)
M02.1 AT

∣∣∣∣
d−→
∣∣∣∣δ1

∫ 1

0
F†F′† −

∫ 1

0
F†dW ′α⊥(α′⊥Σεα⊥)

−1α′⊥

∫ 1

0
dWF′†

∣∣∣∣ = ∣∣∣∣δ1

∫ 1

0
F†F′† − (

∫ 1

0
F†dW ′†)(

∫ 1

0
dW†F′†)

∣∣∣∣
where W† = (α′⊥Σεα⊥)

−1/2α′⊥W. Thus, the smallest (p− r) solutions of (11) converge in distribution

to the solutions of
∣∣∣δ1
∫ 1

0 F†F′† − (
∫ 1

0 F†dW ′†)(
∫ 1

0 dW†F′†)
∣∣∣ = 0, which implies that the test statistic Qr

has the following limiting distribution,

Qr =
p

∑
i=r+1

δ1,i + oP(1)
d−→ tr

(
(
∫ 1

0
dW†F′†)

(∫ 1

0
F†F′†

)−1

(
∫ 1

0
F†dW ′†)

)
.

For the second stage the arguments are very similar. The eigenvalue problem solved here is
the following:

β̃
′
⊥M11.β̃ β̃⊥η̃Y = β̃

′
⊥M1α̃⊥ .β̃ M−1

α̃⊥ α̃⊥ .β̃
Mα̃⊥1.β̃ β̃⊥η̃.

4 Contrary to the usual Johansen notation we use Σε as the noise covariance and Ω as the variance of the Brownian motion
corresponding to (ut)t∈Z. Thus some of the formulas in this part show ’unusual’ form.
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This formula uses α̃⊥, the ortho-complement of

α̃ = M02.1 β̃(β̃′M22.1 β̃)−1

From the above results noting that hβ̃′M22.1 β̃ → Σ̃YY.U and hM02.1 β̃ → αΣ̃YY.U according to
Lemma A.4 we have α̃ → α. Considering the order of convergence we obtain α̃− α = OP(hT−1/2).
As in P this implies α̃⊥ − α⊥ = OP(hT−1/2). Using β̃− β = OP(h5/2/T) from stage 1 one observes
that in the eigenvalue problem estimates can be replaced by true quantities introducing an error of
order oP(hT−1/2):

β
′
⊥M11.β β̃1Y = β

′
⊥M1α⊥ .β M−1

α⊥α⊥ .β Mα⊥1.β β̃1 + oP(hT−1/2).

Then as in P consider β̃1 = βH + β1H1 + β2H2, reusing the symbols H, H1, H2 here for β̃1 in
place of β̃ as before. Identical arguments as around (A6) show that H1 = OP(1) and H2 = OP(h2/T).
Then combining the arguments around (A6) with the developments in P, p. 546 and 547 we obtain
(A.21) of P:

β
′
⊥M11.β(β̃

1
− β1) = β

′
⊥M1ε.βα⊥Σ−1

α⊥α⊥ζ(ζ ′Σ−1
α⊥α⊥ζ)−1 + oP(1).

The rest of the proof of (4.3a) and (4.3b) of P follows as in P.
With respect to the second likelihood ratio test consider

S̃2(ρ) = ρβ̃
′
⊥M11.β̃ β̃⊥ − β̃

′
⊥M1α̃⊥ .β̃ M−1

α̃⊥ α̃⊥ .β̃
Mα̃⊥1.β̃ β̃⊥.

The results above imply that S̃2(ρ) has uniformly in |ρ| < C (for every 0 < C < ∞) distance to
S2(ρ) of order OP(hT−1/2) where

S2(ρ) = ρβ
′
⊥M11.ββ⊥ − β

′
⊥M1α⊥ .β M−1

α⊥α⊥ .β Mα⊥1.ββ⊥.

Note that since (η, η⊥) is of full rank, (16) is equivalent to∣∣∣∣∣
(

η′

η′⊥

)
S2(ρ)(η, η⊥)

∣∣∣∣∣ = ∣∣η′S2(ρ)η
∣∣ · ∣∣∣η′⊥(S2(ρ)− S2(ρ)η (η′S2(ρ)η)

−1 η′S2(ρ)
)

η⊥

∣∣∣ = 0. (A8)

Let δ2 = Tρ, so that ρ→ 0, as T → ∞. As above it can be seen that

h2
∣∣∣η′S2(

δ2
T )η

∣∣∣ = h2
∣∣∣ δ2

T β′1M11.ββ1 − β′1M1ᾱ⊥ .β M−1
ᾱ⊥ ᾱ⊥ .β Mᾱ⊥1.ββ1

∣∣∣ p−→
∣∣−Σ̃U0α⊥(α

′
⊥Σ00α⊥)

−1α′⊥Σ̃0U
∣∣ 6= 0.

This shows that the s larger roots of S2(ρ) tend to zero slower than O(1/T). Moreover, we have

hη′⊥S2(
δ2
T )η = h

(
δ2
T β′2M11.β β1 − β′2M1ᾱ⊥ .β M−1

ᾱ⊥ ᾱ⊥ .β Mᾱ⊥1.ββ1

)
= −β′2M1ᾱ⊥ .β(α

′
⊥Σ00α⊥)

−1α′⊥Σ̃0U + oP(1),

which yields that (using PM := (α′⊥Σ00α⊥)
−1α′⊥Σ̃0U(Σ̃U0α⊥(α

′
⊥Σ00α⊥)

−1α′⊥Σ̃0U)
−1Σ̃U0α⊥(α

′
⊥Σ00α⊥)

−1)∣∣∣∣η′⊥(S2(
δ2

T
)− S2(

δ2

T
)η (η′S2(

δ2

T
)η)−1 η′S2(

δ2

T
)
)

η⊥

∣∣∣∣
=

∣∣∣∣∣
(

δ2
1
T

β′2M11.ββ2 − β′2M1ᾱ⊥ .β M−1
ᾱ⊥ ᾱ⊥ .β Mᾱ⊥1.ββ2

)
− hη′⊥S2(

δ2

T
)η

(
h2η′S2(

δ2

T
)η

)−1
hη′S1(

δ2

T
)η⊥

∣∣∣∣∣
=

∣∣∣∣(δ2
1
T

β′2M11.ββ2 − β′2M1α⊥ .β(α⊥
′Σ00α⊥)

−1Mα⊥1.ββ2

)
+ β′2M1α⊥ .βPM Mα⊥1.ββ2

∣∣∣∣+ oP(1)

d−→
∣∣∣∣δ2

∫ 1

0
B3B′3 −

∫ 1

0
B3dW ′ α2(α

′
2Σεα2)

−1α′2

∫ 1

0
dWB′3

∣∣∣∣ = ∣∣∣∣δ2

∫ 1

0
B3B′3 − (

∫ 1

0
B3dW ′2)(

∫ 1

0
dW2B′3)

∣∣∣∣
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using the results of Lemma A.5 of P. and (A.18) of Paruolo (1996) as an expression for

(α′⊥Σ00α⊥)
−1 − PM

where W2 = (α′2Σεα2)
−1/2α′2W.

Thus, the smallest (p− r− s) solutions of (16) converge in distribution to the solutions of∣∣∣∣δ2

∫ 1

0
B3B′3 − (

∫ 1

0
B3dW ′2)(

∫ 1

0
dW2B′3)

∣∣∣∣ = 0,

which shows that the test statistic Qr,s has the following limiting distribution,

Qr,s =
p−r

∑
i=s+1

δ2,i + oP(1)
d−→ tr

(∫ 1

0
dW2B′3

(∫ 1

0
B3B′3

)−1 ∫ 1

0
B3dW ′2

)
.

It follows also that the sum Sr,s = Qs + Qr,s converges in distribution showing (C).
The rest of the proof of relations (4.3a, b) of P follow exactly as in P. In P (4.4) the order of

convergence is replaced by oP(T−1), in (4.5) the error term can be shown to be oP(T−1/2) and in (4.6)
instead of the term OP(T−2) we achieve oP(1).

These terms show consistency for β̃, η̃. Using the results of Lemma A.4 of P then consistency for
α̃, ζ̃ follow.

Following the proof of Theorem 4.2. on pp. 548+549 of P we can show consistency for ψ̃ of P.
The only changes refer to the orders of convergence where our setting introduces orders of h into
the arguments. Jointly this proves consistency of Ψ̃ and Γ̃. Consistency for the coefficients to the
stationary terms ∆2yt−j follows as usual from the consistency of the estimates for the coefficients to
non-stationary regressors. This completes the proof of (D).

With respect to (E) note that the results above show that the asymptotics for the two eigenvalue
problems to be solved converge to the same quantities as in the finite VAR case. This shows that the
results of P in this respect hold also in the case of long VARs.

Finally for the matrices Πj note that Theorem 4.3. of P shows that the asymptotic distribution for
all quantities corresponding to stationary regressors are identical for every super-consistent estimator
for the coefficients to the non-stationary components.

Appendix E. Proof of Theorem 4

From Theorem 3 it follows that Φ̂ = α̂β̂′ → Φ, Ψ̂→ Ψ, Π̂j → Πj, j = 1, 2, . . . , 2 f − 1. Therefore the
Hankel matrix of impulse response coefficients Π̂j converges to the Hankel matrix corresponding to the
Π′js. As (Ā, B) is controllable, (A, B, C) is minimal and Ā is nonsingular according to the assumptions,
this Hankel matrix has rank n. This implies that the stochastic realisation algorithm of Appendix F
provides consistent estimates ( ˆ̄A, B̂, D̂)→ (Ā, B, D). This implies

â(z) = (1− z)2 Ip − Φ̂z− Ψ̂z(1− z)− (1− z)2zD̂(In − z ˆ̄A)−1B̂→ a(z).

For details see Appendix F.
â(z) does not necessarily correspond to a rational transfer function of order n. It does so, however,

if the additional restrictions (22) hold. Step 3 and 4 of the proposed algorithm achieve this. Here step 3
ascertains that solutions to the third equation exist. The second equation explicitly provides a solution
ᾱ⊥ for given C†. This solution not necessarily is of full row rank. As in the limit this is the case, it
also holds for large enough T. The first equation always admits solutions. Thus for large enough T
the set of all solutions is defined by polynomial restrictions. Adding the least squares distance to the
estimated impulse response sequence then leads to a quadratic problem under non-linear differentiable
constraints, which in the limit has a unique solution. Thus the solution is unique for large enough T.
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Consistency of the estimates in combination with continuity of the solution of step 4 implies
consistency for the system ( ˆ̄A, B̂, Ĉ). This implies consistency for the inverse system (Â, B̂, Ĉ) in the
sense of converging impulse response coefficients and hence consistency for the transfer function
estimator in the pointwise topology. The fulfillment of restrictions (22) ensures the structure of the
corresponding matrix Â according to state space unit root structure ((0, (c, c + d))).

Appendix F. Stochastic Realization Using Overlapping Echelon Forms

This section describes the approximate realization of the first f coefficients Gj, j = 1, . . . , 2 f of an
impulse response sequence using a rational transfer function of order n where f ≥ n. More details can
be found in Section 2.6. of Hannan and Deistler (1988).

Define the Hankel matrix

H f , f =


G1 G2 G3 . . . G f
G2 G3 . . .
G3 . . .
...

...
G f G f+1 . . . G2 f−1

 =



h(1, 1)
h(1, 2)

...
h(1, p)
h(2, 1)

...
h( f , p)


.

Here h(i, j) denotes the j-th row in the i-th block row. Let α = (n1, . . . , np) define a nice selection of
rows5 ofH such thatHα ∈ Rn× f p, the submatrix ofH containing the rows h(i, j), i ≤ nj, is of full row
rank. If the impulse response corresponds to a transfer function of order at least n there exists such a
nice selection α. Finally letHα+1 ∈ Rn× f p denote the matrixHα shifted down one block row (that is in
each row whereHα contains h(i, j),Hα+1 contains h(i + 1, j)).

Then it is derived in Hannan and Deistler (1988), Theorem 2.6.2. that if Gj corresponds to a
transfer function k(z) = ∑∞

j=1 Gjz−j of order exactly n such that the correspondingHα is formed using
a nice selection, then a system (A, B, C) can be defined using the following formulas

AHα = Hα+1, B = Hα

[
Ip

0

]
, CHα =

[
G1 G2 . . . G f

]
(A9)

such that Gj = CAj−1B, j = 1, 2, . . ..
If the order of the transfer function is larger than n, then the equations for A and C can be solved

using least squares. If a sequence of impulse responses Ĝj → Gj, j = 1, . . . , 2 f − 1, and the limit Gj
corresponds to a transfer function where the rank of Hα equals n, it is obvious that the resulting
systems (Â, B̂, Ĉ)→ (A, B, C) since in this case the least squares solution depends continuously on the
matrixH.
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