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Abstract: This paper improves a standard Structural Panel Bayesian Vector Autoregression model
in order to jointly deal with issues of endogeneity, because of omitted factors and unobserved
heterogeneity, and volatility, because of policy regime shifts and structural changes. Bayesian
methods are used to select the best model solution for examining if international spillovers come from
multivariate volatility, time variation, or contemporaneous relationship. An empirical application
among Central-Eastern and Western Europe economies is conducted to describe the performance
of the methodology, with particular emphasis on the Great Recession and post-crisis periods. A
simulated example is also addressed to highlight the performance of the estimating procedure.
Findings from evidence-based forecasting are also addressed to evaluate the impact of an ongoing
pandemic crisis on the global economy.
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1. Introduction

Vector Autoregressions (VARs) are widely used when studying macroeconomic–
financial linkages to detect interdependencies and co-movements among multiple economic
time-series. In the simplest form, error terms in the VAR models are assumed to have
constant variances. While convenient, assuming time-invariant coefficients and variances,
it turns out to be highly restrictive in capturing the evolution and thus the dynamics
of multiple economic time-series. When time-varying series are introduced in a VAR to
highlight the evolving relationship between multiple economic–financial variables, its state
space structure need to be modeled and then used in the empirical analysis to estimate
unobserved time variations and volatility. Since allowing time-varying coefficients and/or
volatility introduces too many parameters than data points, the literature have proposed
random processes to time variations or volatility to deal with the curse of dimensionality
(see, for instance, Koop and Korobilis (2016)). The randomness in these time-varying
parameters fits sufficiently well with Bayesian methods because the probability that a
random sequence of events occurs can be interpreted through a reasonable expectation—
representing a state of knowledge—or a quantification of a personal belief. More precisely,
in Bayesian statistics, one assumes to know something about the possible values of the
parameters of interest prior to seeing the data. Thus, the inputs required for estimating
that quantity are prior knowledge (or belief) plus data; contrary to frequentist statistics,
where these inputs are represented by the data only.

In this context, multicountry Bayesian VAR (BVAR) models have given a new im-
pulse to the literature to evaluate macroeconomic–financial linkages, to test specification
hypotheses (see, for instance, Korobilis (2016)), and to conduct policy exercises (see, e.g.,
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Ciccarelli et al. (2018); Canova and Ciccarelli (2009); Canova et al. (2007, 2012); and
Koop (1996)). Nevertheless, although estimation of time-varying structures is feasible
with a large homogeneous cross-section, heterogeneous dynamics due to an unexpected
shock combined with not directly observed or measured factors make it difficult to exploit
cross-sectional information estimating time-series variations in multicountry setups (see,
for instance, Koop and Korobilis (2016)). More precisely, these empirical models tend to
be non-structural and constrained because of time-invariant or exogenous factors in the
system. Thus, when formulating policies or forecasting, it is not possible to identify—for
example—the reasons underlying different cross-country reactions given an unexpected
shock, the causality between real and financial variables, how additional transmission
channels allow shocks to spill over, and how economic and institutional implications
matter in driving shock transmission. Furthermore, many economic–financial issues show
consistent and dramatic structural breaks associated with events such as economic re-
cessions, currency crises, and epidemiology (such as the current COVID-19 pandemic).
Such changes in regime are—even now—the core to some of the most important questions
in macroeconomics. Recent empirical studies on the conduct of monetary policy along
with fiscal consolidation periods have pointed out significant policy paradigm shifts and
their implications over the past decades (see, e.g., Cette et al. (2016); Foerster and Matthes
(2020); Stock and Watson (2012); Coibion and Gorodnichenko (2012); and Daly et al. (
2016)). These shifts seem to have concerned strategy and policy development, monetary
policy shocks, and policy interactions. Parallel to these shifts, both the volatility linkages
between economic–financial data and the uncertainty in financial markets have changed
substantially over time as well. For instance, the Great Recession prompted a renewed
debate concerning objectives and conduct of policy issues due to structural changes that
have taken place. In particular, slower growth led to questions about how the systematic
conduct of policy tools should respond to these shifts. An another issue for changing
fundamental policy instruments due to structural changes is also related to the economy
that tends to shift between periods of high and low growth. These repeated regime changes
may not occur very frequently, but needs to be dealt with when performing forecasting
and policy-making. More precisely, dynamic models should account for the possibility of
future shifts in the growth rate when setting policy. Indeed, if inter-linkages between real
and financial sectors are changing how they react as the economy undergoes structural
shifts, cross-country interdependencies and feedback effects matter and then need to be
accounted for.

Recently, Pacifico (2019b) developed a structural version of the BVAR—labeled as
Structural Panel Bayesian VAR (SPBVAR)—in order to deal with model misspecification
and unobserved heterogeneity problems when jointly modeling and quantifying multi-
country data using the information contained in a large set of endogenous and economic–
financial variables1. The SPBVAR model focuses on a state-space factorization structure,
where the factors driving the coefficients of the multicountry VAR are restricted to evolve
over time as random walks so as to: (i) reduce the number of parameters; (ii) allow for the
evaluation of permanent shifts; (iii) investigate any type of coefficient factors via their in-
teractions; and (iv) replace volatility changes by coefficient changes. This latter turns out to
be highly restrictive to evaluate multiple time-varying change-points (or structural breaks)
when studying macroeconomic and financial time-series. For example, international busi-
ness cycle dynamics, policy interactions, and interdependencies and co-movements among
different sectors and countries have changed substantially during the recent global crisis
and successive consolidation periods. In addition, the increasing volatility and uncertainty
in financial markets have confirmed the close volatility linkage between economic–financial
data and thus the need to investigate shifts in either coefficients or volatility when describ-
ing these changes in a time-varying multicountry framework (see, e.g., Primiceri (2005);
Canova and Gambetti (2009); Clark (2009); Cogley et al. (2010); and Sims and Zha (2006)).

My approach and empirical application aim to contribute to this debate. More pre-
cisely, this paper develops a modified version of the SPBVAR model allowing for multi-



Econometrics 2021, 9, 20 3 of 35

variate time-varying volatility to deal with three issues jointly: structural changes, policy
regime shifts, and endogeneity issues. Specifically, this model takes the name of multicoun-
try SPBVAR with Multivariate Time-varying Volatility (SPBVAR-MTV) and includes two
additional components: a set of lagged endogenous variables to investigate fiscal and mon-
etary policy implications and interactions, and—particularly—time-varying log-volatilities
to deal with multiple structural breaks and policy regime shifts over time. Concerning the
latter, I imply Autoregressive Conditional Heteroskedasticity in Mean (ARCH-M) model
effects in the representation of the outcomes, and it would be an useful way of modeling
time-varying conditional second moments providing an alternative to the stochastic volatil-
ity specification (see, e.g., Cogley and Sargent (2005); Carriero et al. (2019); and Clark (2011)).
In contrast to SPBVAR, in the state-space factorization structure, the variance in error terms
is allowed to be time-variant and volatility changes are not more replaced by coefficient
changes. More precisely, let the framework be multidimensional (panel data analysis), I
model the covariance matrix in time-varying log-volatilities interpreting it as having been
broken into a collection of smaller matrices (blocks). Every collection is then estimated us-
ing a hierarchical (conjugate) prior specification strategy to allow cross-unit interdependent
relationships. The computational costs involved in using that specification are moderate
since the high dimensionality is avoided via Bayesian inference and Monte Carlo Markov
Chain (MCMC) implementations. For instance, Kalman-Filter technique is used to get
appropriate posterior distributions for time-varying coefficients and Metropolis–Hastings
algorithm is used to draw posteriors for log-volatilities evolving over time. A Structural
Normal Linear Regression (SNLR) model is obtained via Bayesian methods to work with
smaller systems in which all the regressors are endogenous, observable, directly measured,
and time-varying linear combinations of the right-hand variables of the SPBVAR-MTV
model. I also account for three more indices2 in order to quantify international spillover
effects and thus evaluate their size (or intensity in terms of volatility) and dynamics (or
spreading) among countries and sectors over time. (i) The Bilateral Net Spillover Effect
(BNSE) is used to account for cross-unit interdependencies, feedback effects from the
impulse variables, and temporary or persistent long-run effects of a potential shock (or
excess spillover effects). (ii) The Systemic Contribution (SC) index is used to evaluate
sequential features associated with systemic events. (iii) The Total Contagion Index (TCI) is
addressed to investigate contagion measures in real economy and financial markets when
dealing with both issues of endogeneity (because of omitted variables and unobserved
heterogeneity) and volatility (because of policy regime shifts and structural changes).

In this paper, the SPBVAR-MTV model incorporates the econometric literature on
standard Time-Varying Parameter Vector Autoregressions (TVP-VARs) with stochastic
volatility, become a benchmark model for analysing and forecasting the evolving inter-
relationships between multiple macroeconomic variables (see, e.g., Koop et al. (2009); Koop
(1996); Liu and Morley (2014); D’Agostino et al. (2013); and Clark and Ravazzolo (2015a)).
Despite the empirical success of these flexible time-varying models, they show a relevant
limit about their potential and feasible over-parametrization. More precisely, on the
methodological side, the literature makes out two popular Bayesian methods for TVP-
VARs with stochastic volatility: Marginal Likelihood (ML), evaluating how likely the
observed data are occurred within the system, and Deviance Information Criterion (DIC),
trading off between model fit and model complexity. As regards ML estimates, they are
usually obtained by using the harmonic mean3 of a conditional likelihood4 that tends to
have a substantial bias selecting the wrong model (see, for instance, Chan and Grant (2015)
and Frühwirth-Schnatter and Wagner (2008)). Concerning DIC procedure, the MCMC
integration based on the conditional likelihood tends to associate higher probability to the
most complex models (overfitting5).

The methodology proposed in this paper overtakes these limits by using analytical
integrations for integrating out the time-varying volatilities. More precisely, integrated like-
lihood evaluation is achieved by integrating out the time-varying parameters analytically
(e.g., Kalman-Filter technique), whereas the log-volatilities are integrated out numerically
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via importance sampling. The latter consists of two steps: (i) the Metropolis–Hastings algo-
rithm is used to draw posteriors for time-varying log-volatilities from the proposal density
distribution, and then (ii) the Newton–Raphson (N-R) method6 algorithm is involved to
find the maximum of the (log) conditional density. In this way, the computational costs are
further reduced focusing on band and sparse matrix algorithms instead of the conventional
Kalman filter.

An empirical application is developed by accounting for the Central, Eastern, and
Western European (CEWE) countries in order to include a large pool of advanced and
emerging economies, with particular emphasis to the Great Recession and successive post-
crisis periods. The United States (US) are included in the analysis to assess international
spillover effects and possible contagion measures among financial markets. In this study,
I focus on the latest two alternative monetary policy regimes that have been in place
since the 1990 (see, for instance, Kallianiotis (2019)): (1) the Inflation Stabilization Era
(ISE) from 1994 to 2008 and (2) the Zero Interest Rate Era (ZIRE) from 2008 to 2015. I
also consider two more additional periods: (1) 2006q1–2009q4 to investigate possible
commonality between financial markets and real economy during the Great Recession and
(2) 2010q1–2018q4 to evaluate fiscal implications and policy perspectives during post-crisis
consolidation. Moreover, since most of countries joined in with Euro Area (EA), one is also
able to investigate how policy regime shifts and endogeneity issues matter when studying
macroeconomic–financial linkages. The analysis focuses on five main questions. First, I
investigate how different economic–institutional characteristics affect the transmission of
fiscal and monetary policy shocks among countries and sectors. Second, I investigate how
policy interactions affect the benefits of consolidation among countries. Third, I evaluate
how endogeneity and volatility issues affect inter-sector and inter-country linkages in
panel setups. Fourth, I evaluate the role of policy regime shifts and their interactions when
structural changes and contagion effects matter.

A simulated experiment—compared to related works—is also addressed to highlight
the performance of the estimating procedure developed in this study using some Monte
Carlo simulations. The findings prove that the hierarchical structural framework with time-
varying log-volatilities perform better conditional forecasts when studying macroeconomic–
financial linkages with structural breaks and volatility changes.

The remainder of this paper is organized as follows. Section 2 introduces the econo-
metric model, its features, and the estimation procedure. Section 3 describes the dynamic
analysis focusing on prior assumptions strategy, posterior distributions, and MCMC imple-
mentations. Section 4 presents the data and the empirical analysis. Section 5 addresses a
counterfactual assessment on macroeconomic–financial linkages in multicountry dynamic
setups by investigating in depth how structural changes and policy regime shifts affect the
spreading and the evolution of international spillover effects, with particular attention on
triggering events and policy recommendations for decision makers. Section 6 provides a
simulated example through Monte Carlo simulations to demonstrate the performance of
the estimation method compared to some related existing approaches. The final section
contains some concluding remarks.

2. Econometric Model

Compared to Pacifico (2019b), I extend and improve the standard version of the
multicountry SPBVAR model in order to jointly account for time-varying parameters and
multivariate volatility evolving over time.

Thus, the SPBVAR-MTV model developed in this study includes two additional
components: (i) a set of lagged endogenous variables in order to assess different policy
regimes and their interactions and (ii) time-varying log-volatilities to capture further
evolving inter-relationships between multiple economic–financial data. The model has
the form:
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Yim,t = aim,0 +
l

∑
λ=1

[
Aim,j$(L)Yim,t−λ + Biq,jv(L)Wiq,t−λ + B̈iq̃,jv̈(L)Ẅiq̃,t−λ + Ciξ,jϕ̈(L)Ziξ,t−λ

]
+ εim,t (1)

where the subscripts i, j = 1, 2, . . . , N are country indices, t = 1, 2, . . . , T denotes time, L
stands for the lag operator, aim,0 is an NM · 1 vector of intercepts for each i, the subscripts
(m, q, q̃, ξ) denote the endogenous variables in each equation within the system observed
for i, with ($, v, v̈, ϕ̈) referring to the ones observed for j and independent of i, and
εim,t ∼ i.i.d.N(0, Σt) is an NM · 1 vector of disturbance terms.

Given the SPBVAR-MTV in (1), all variables within the system are so defined. (i)
Yim,t is an NM · 1 vector of outcomes to be predicted for each i for a given m. (ii) Aim,j$
is an NM · NM matrix of coefficients for each pair of countries (i, j) for a given m, with
m = 1, . . . , M, and Yim,t−λ is an NM · 1 vector of observed lagged variables for each i for a
given m to address economic–financial issues. More precisely, stacking for m, I decompose it

in Yi,t−λ =
[
Yo′

i,t−λ, Yc′
i,t−λ

]′
, with Yo′

i,t−λ denoting lagged outcomes to capture the persistence

and Yc′
i,t−λ including lagged control variables such as general economic–financial conditions.

(iii) Biq,jv is an NQ · NQ matrix of coefficients for each pair of countries (i, j) for a
given q, with q = 1, . . . , Q, and Wiq,t−λ is an NQ · 1 vector including a set of (directly)
observed lagged variables for each i for a given q to evaluate economic–institutional
interdependencies (such as additional transmission channels). (iv) B̈iq̃,jv̈ is an NQ̃ · NQ̃
matrix of coefficients for each pair of countries (i, j) for a given q̃, with q̃ = 1, . . . , Q̃, and
Ẅiq̃,t−λ is an NQ̃ · 1 vector including a set of additional (directly) observed lagged variables
for each i for a given q̃ to evaluate policy implications and interactions (such as policy
tools). (v) Ciξ,jϕ̈ is an NΞ · NΞ matrix of coefficients for each pair of countries (i, j) for a
given ξ, with ξ = 1, . . . , Ξ, and Ziξ,t−λ is an NΞ · 1 vector including a set of observed lagged
proxy7 variables for each i for a given ξ to address further economic–financial linkages
(e.g., territorial competitiveness and infrastructural system) and economic–institutional
implications (e.g., competitiveness developments and macroeconomic imbalances). Here,
all variables in the system are endogenous and time-varying.

The two main differences with respect to a standard SPBVAR lie in the additional
component B̈iq̃,jv̈Ẅiq̃,t−λ and – particularly – in the variance-covariance matrix of the vector

of innovations (εim,t). More precisely, Σt = diag
(

exp(h1t), exp(h2t), . . . , exp(hNt)
)

, where

ht = (h1t, h2t, . . . , hNt)
′

denotes the time-varying log-volatilities stacked for i and following
a random walk process:

ht = ht−1 + vt where vt ∼ N(0, Σht) (2)

where Σht = diag(σ2
h,1t, σ2

h,2t, . . . , σ2
h,Nt) is a block diagonal covariance matrix and h0 denotes

the initial conditions to be estimated. More precisely, the matrix Σht is broken into a collec-
tion of smaller matrices (blocks). Such a specification implies Autoregressive Conditional
Heteroskedasticity in Mean (ARCH-M) model effects in the representation of Yt, and it
would be an useful way of modeling time-varying conditional second moments providing
an alternative to the stochastic volatility specification. The main novelty in this study is
that, in the state-transition Equation (2), the variance in vt and then volatility changes are
allowed to be time-variant. The random-walk assumption in (2) is very common in the
time-varying VAR literature, having the advantage of focusing on permanent shifts and
reducing the number of parameters in the estimation procedure. In addition, the block di-
agonality of Σht guarantees the identifiability of the log-volatilities (ht). The computational
costs involved in using that specification are then moderate using hierarchical (conjugate)
priors through Bayesian inference and obtain posterior distributions via MCMC algorithms.

In Equation (1), the dynamic relationships are allowed to be unit-specific and all the
(potential) structural changes are allowed to vary over time. In addition, whenever the
matrices Aim,j$(L), Biq,jv(L), B̈iq̃,jv̈(L), and Ciξ,jϕ̈(L) differ8 for some L, cross-unit lagged
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interdependencies and structural time variations matter, and then dynamic feedback and
interactions among countries and variables are possible. Thus, the framework of the model
(1) makes it able to connect the empirical results to the existing literature and contempo-
raneous developments when quantifying international business cycles, evaluating policy
interactions, and performing conditional forecasting. Nevertheless, even if these features
add flexibility to the specification, it is very costly making the number of coefficients of (1)
very large. Indeed, they are increased by N(M + Q + Q̃ + Ξ)l factors.

Let k = N[M + Q + Q̃ + Ξ]l be the number of all matrix coefficients in each equa-
tion of the SPBVAR-MTV model for each pair of countries (i, j), a 1 · k vector Xt =

(I, Y
′
im,t−1, Y

′
im,t−2, . . . , Y

′
im,t−l , W

′
iq,t−1, W

′
iq,t−2, . . . , W

′
iq,t−l , Ẅ

′
iq̃,t−1, Ẅ

′
iq̃,t−2, . . . , Ẅ

′
iq̃,t−l , Z

′
iξ,t−1,

Z
′
iξ,t−2, . . . , Z

′
iξ,t−l)

′
can be defined containing all lagged (endogenous) variables in the sys-

tem for each i. Then, I define an NMk · 1 vector γk
it,j = vec(gk

it,j) containing all columns,

stacked into a vector9, of the matrices A(L), B(L), B̈(L), and C(L) for each pair of countries
(i, j) for a given k, with gk

it,j = (A
′
i1,j$, A

′
i2,j$, . . . , A

′
iM,j$, B

′
i1,jv , B

′
i2,jv , . . . , B

′
iQ,jv , B̈

′
i1,jv̈ , B̈

′
i2,jv̈ ,

. . . , B̈
′
iQ̃,jv̈ , C

′
i1,jϕ̈, C

′
i2,jϕ̈, . . . , C

′
iΞ,jϕ̈)

′
, and γt = (γ

′
1t, γ

′
2t, . . . , γ

′
Nt)

′
denoting the time-varying

coefficient vectors, stacked for i, for each country–variable pair. With these specifications, I
can express the model (1) in a simultaneous-equation form:

Yt = X̃tγt + Et (3)

where Yt = (Y
′
1m,t, . . . , Y

′
Nm,t)

′
and Et = (ε

′
1m,t, . . . , ε

′
Nm,t)

′
are NM · 1 vector containing the

observable variables of interest and the random disturbances of the model for each i for
a given m, respectively, and X̃t = (INM ⊗ Xt) contains all lagged time-varying variables
within the system stacked in Xt.

Now, because the coefficient vectors in γt vary in different time periods for each
country–variable pair and there are more coefficients than data, it is impossible to eliminate
γt. Thus, to avoid the curse of dimensionality, I adapt the framework in Pacifico (2019b) us-
ing a hierarchical factor structure to effectively transform the overparametrized multicoun-
try Structural VAR in (1) into a parsimonious SNLR model. More precisely, I take a flexible
Bayesian viewpoint to weakly restrict the coefficients to depend on a low-dimensional
vector of observable and time-varying factors (the loadings), which correspond to linear
combinations of the right-hand variables of (1), where the forecast errors feature a time-
variant heteroskedastic structure. These factors would capture—for example—coefficient
variations that are specific to a variable (variable-specific effects), specific to a country
given a set of observable and directly measured variables (country-specific effects), com-
mon among countries and sectors (common effects), and specific to additional time-varying
effects among countries and sectors directly affecting the outcomes in Yt (misspecified
effects due to endogeneity issues). Such a reparametrization has three appealing features.
(i) First, it reduces the problem of estimating high dimensional (potential) combinations
of time-varying coefficients into the problem of estimating a smaller number of loadings
on some linear combinations of the right-hand variables of (1). (ii) Second, since the
loadings of the SNLR model are observable and time-varying linear combinations of the
right-hand variables of (1), an estimable hierarchical structure is feasible and suitable for
policy purposes and strategies. (iii) Third, representing the main thrust of this study,
the parsimonious SNRL is able to identify additional common or heterogeneous effects
between different countries and sectors that vary over time and directly affect the variables
of interest in Yt.

In this study, I assume γt to have the following factor structure:

γt =
F

∑
f=1

G f · β f t + ut with ut ∼ N(0, Σu) (4)

where F � NMk and dim(β f t) � dim(γt) by construction, G f = [G1, G2, . . . , GF] are
NMk · κ f matrices obtained by multiplying the matrix coefficients (gk

it,j), stacked in the
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vector γt, by conformable matrices D f with elements equal to zero and one, with κ f being
a numerical index that depends on the typology of the factorization, ut is an NMk · 1 vector
of unmodeled variations present in γt, and E(utu

′
t) = Σu = Σe ⊗V, with Σe denoting the

covariance matrix of the vector Et that includes time-varying log-volatilities and V = (σ2 Ik)
as in Kadiyala and Karlsson (1997). In this framework, unobserved heterogeneity and
functional forms of misspecification are absorbed in the κ f · 1 time-varying coefficient
vectors β f t. They are observable smooth linear functions of the lagged variables and thus
can be easily estimated with a gain in efficiency and accuracy.

The idea is to shrink γt to a much smaller dimensional vector βt, with βt = (β
′
1t, β

′
2t, . . . ,

β
′
Ft)
′
, containing all the regression coefficients stacked into a vector. In this way, further

investigations (e.g., policy regime shifts and interactions, international business cycles, and
economic–institutional linkages) can be performed. Finally, the factorization of γt becomes
exact as long as σ2 converges to zero.

In Equation (4), all factors are permitted to be time-varying, and thus time-variant
structures can be obtained via implementations of MCMC algorithms. Moreover, time
variations in the variance of shocks ut to the factors β f t are also allowed so that Yt can
capture (potential) structural changes and policy shifts among countries and variables.
Running Equations (3) and (4) for Equation (1), the factorization is:

F

∑
f=1

G f · β f t = G1 · β1t + G2 · β2t + . . . + GF · βFt (5)

Given the factorization in Equation (5), the reduced-form SPBVAR-MTV model in
Equation (3) can be transformed into a Structural Normal Linear Regression10 model with
an error covariance matrix of an Inverse-Wishart (IW) distribution11. By Equations (3) and
(4), the SNLR model can be written as

Yt = X̃t

(
F

∑
f=1

G f β f t + ut

)
+ Et ≡ χ f tβ f t + ηt (6)

where χ f t ≡ X̃tG f is an NM · κ f matrix that stacks all coefficients and their possible
interactions in the SPBVAR-MTV model in (1), with χt = diag(χ

′
1t, χ

′
2t, . . . , χ

′
Ft), and

ηt ≡ X̃tut + Et ∼ N(0, σt · Σu) has a particular heteroskedastic covariance matrix that
needs to accounted for, with σt = (IN + Σht ⊗ X̃

′
tX̃t).

To complete the specification, I suppose the following state-space structure for the
time-varying regression coefficients:

βt = βt−1 + ṽt with ṽt ∼ N(0, Pt) (7)

where βt = (β1t, β2t, . . .)
′
, Pt = diag(P̄1t, P̄2t, . . . , P̄Ft) is a block diagonal matrix, and P̄f t =

(p f t · Ik), where p f t controls the tightness (stringent conditions) of the factorization ( f ) of
the time-varying coefficient parameters (βt) in order to make them estimable. Moreover, the
computational costs involved in using this specification are moderate since the dimension
of βt is considerably smaller than the dimensionality of Yt, and the block diagonality
of Pt guarantees the identifiability of the factors (βt). Here, some considerations on the
innovations are in order: (i) the errors Et, ut, and vt are mutually independent; (ii) the
error terms ηt and ṽt are allowed to be correlated between them; and (iii) vt and ηt are
correlated between them by construction.

Finally, if the factorization in Equation (5) is exact, σ2 → 0 and one has to act on three
competing models:

• Model I (MI): A benchmark model with no change-points, denoting the ‘General Case’.
Here, ηt ∼ N(0, Σ̇) and depends on the only disturbances contained in ut, with
Σ̇ = diag(Σ

′
e, Σ

′
e, . . . , Σ

′
e). The MI would corresponds to the standard SPBVAR, with

h0 = 0, ht = ht−1, and Σt = Σ.
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• Model II (MI I): A benchmark model with change-points in the only log-volatilities,
denoting the ’Special Case’.
Here, ηt ∼ N(0, Σ̃) and depends on the only disturbances contained in Et, with Σ̃ = σt.
The MI I refers to the case of structural breaks because of (potential) unmodeled
dynamics12 in γt, with h0 6= 0, ht evolving over time, Σt 6= Σ, and uncorrelatedness
between the innovations ηt and ṽt.

• Model III (MI I I): A benchmark model with change-points in either time-varying
parameters or log-volatilities, denoting the ’Full Case’.
Here, ηt ∼ N(0, Σ̈) and depends on the disturbances contained in vt and ut, with
Σ̈ = σt · diag(Σ

′
e, Σ

′
e, . . . , Σ

′
e). The MI I I refers to the case of structural breaks because

of both unmodeled dynamics and policy regime shifts, with h0 6= 0, Σt 6= Σ, and ht
evolving over time.

Finally, once the (conditional) marginal likelihood13 is obtained for any model, the
exact and final solution can be obtained via MCMC integrations, corresponding to the
best14 model solution with higher log Bayes factor (lBF):

lBFk,k∗ = log
(

L(YT |Mk)

L(YT |Mk∗)

)
(8)

where Mk denotes all possible model solutions accounting for the ’General Case’ (MI)
with no change-points and Mk∗ refers to all possible model solutions according to the
’Special Case’ (MI I) or the ’Full Case’ (MI I I). The higher lBF denotes the final solution
having higher Posterior Model Probabilities (PMPs)15 according to a generalized version
of the Kass and Raftery (1995)’s scale of evidence:


0 < lBξ,l < 2 no evidence for submodel Mξ

2 < lBξ,l < 6 moderate evidence for submodel Mξ

6 < lBξ,l < 10 strong evidence for submodel Mξ

lBξ,l > 10 very strong evidence for submodel Mξ

(9)

The methodology does not include studies focused on Markov-switching dynamics,
modeling covariance matrices of country-specific Markov chains16, because of this paper
aims to extend and improve recent works developed when studying macroeconomic–
financial linkages in multicountry dynamic panel setups. Nevertheless, to solve potential
overfitting problems and cross-unit unobserved heterogeneity, Markov-switching models
follow similar hierarchical prior specification strategy proposed in those works, where
their empirical results met with positive feedback in the empirical analysis.

2.1. Model Features

To illustrate the conformation of the time-varying SPBVAR-MTV in (1), the exact form
and meaning of the β f t’s and D f ’s in (4), and the selection of the conformable matrices D f , I
suppose there are M = 2 endogenous variables and Q = Q̃ = Ξ = 2 additional observable
and proxy variables varying over time for every N = 2 countries. For convenience, I
suppose one lag and no intercept. Thus, the SPBVAR-MTV in (1) assumes the form:
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 Y11,t
Y21,t
Y12,t
Y22,t


(4·1)

=

 A11,11 A11,21 A11,12 A11,22
A21,11 A21,21 A21,12 A21,22
A12,11 A12,21 A12,12 A12,22
A22,11 A22,21 A22,12 A22,22


(4·4)

 Y11,t−1
Y21,t−1
Y12,t−1
Y22,t−1


(4·1)

+

 B11,11 B11,21 B11,12 B11,22
B21,11 B21,21 B21,12 B21,22
B12,11 B12,21 B12,12 B12,22
B22,11 B22,21 B22,12 B22,22


(4·4)

W11,t−1
W21,t−1
W12,t−1
W22,t−1


(4·1)

+

+

 B̈11,11 B̈11,21 B̈11,12 B̈11,22
B̈21,11 B̈21,21 B̈21,12 B̈21,22
B̈12,11 B̈12,21 B̈12,12 B̈12,22
B̈22,11 B̈22,21 B̈22,12 B̈22,22


(4·4)

 Ẅ11,t−1
Ẅ21,t−1
Ẅ12,t−1
Ẅ22,t−1


(4·1)

+

 C11,11 C11,21 C11,12 C11,22
C21,11 C21,21 C21,12 C21,22
C12,11 C12,21 C12,12 C12,22
C22,11 C22,21 C22,12 C22,22


(4·4)

 Z11,t−1
Z21,t−1
Z12,t−1
Z22,t−1


(4·1)

+

+

( ε11,t
ε21,t
ε12,t
ε22,t

)
(4·1)

(10)

Let γk
it,j =

(
vec(A

′
im,j$), vec(B

′
iq,jv), vec(B̈

′
iq̃,jv̈), vec(C

′
iξ,jϕ̈)

)
be the 64 · 1 vector contain-

ing all columns (stacked) of the matrices A(L), B(L), B̈(L), and C(L) for each pair of coun-
tries (i, j), with ($, v, v̈, ϕ̈) denoting the variables in each equation observed for j and inde-
pendent of i, and let Xt = (Y

′
im,t−1, W

′
iq,t−1, Ẅ

′
iq̃,t−1, Z

′
iξ,t−1)

′
= (Y

′
11,t−1, Y

′
21,t−1, Y

′
12,t−1, Y

′
22,t−1,

W
′
11,t−1, W

′
21,t−1, W

′
12,t−1, W

′
22,t−1, Ẅ

′
11,t−1, Ẅ

′
21,t−1, Ẅ

′
12,t−1, Ẅ

′
22,t−1, Z

′
11,t−1, Z

′
21,t−1, Z

′
12,t−1,

Z
′
22,t−1)

′
be the 1 · 16 vector containing all lagged variables in the system for each i for a

given k, with k = 2[2 + 2 + 2 + 2].
Concerning the more recent studies of international business cycles and spillover

effects (see, e.g., Ciccarelli et al. (2018), Canova et al. (2012), Pacifico (2019a, 2020a), it is
typical for authors to define a country-specific indicator for Yt for each i, a variable-specific
indicator for Yt for each m, and a common indicator for Yt for each pair of countries and
variables (i, m).

According to the empirical implementation addressed in this study, I assess three
additional terms in the factorization assuming time-varying log-volatilities in εim,t: (i)
an indicator to account for the role of additional transmission channels (e.g., in Wiq,t−1)
affecting spillover effects, the impact of macroeconomic-institutional interdependencies
(e.g., in Ziξ,t−1) in driving the transmission of country-specific shocks, and policy in-
teractions (e.g., in Ẅiq̃,t−1) when dealing with policy regime shifts; (ii) an indicator to
investigate heterogeneity, interdependence and commonality among all lagged variables
(Ym,t−1, Wq,t−1, Ẅq̃,t−1, Zξ,t−1) affecting shock transmission; and (iii) an indicator to high-
light different reactions and co-movements among countries and sectors (Yim,t−1, Wiq,t−1,
Ẅiq̃,t−1, Ziξ,t−1) due to an unexpected common shock.

The factorization is:

γt =
5

∑
f=1

G f β f t + ut =
5

∑
f=1

(
gk

it,j · D f

)
β f t + ut (11)

where ut is a 64× 1 vector capturing unaccounted features, gk
it,j is a 64× 1 vector containing

all matrix coefficients, stacked in the vector γt, for each pair of countries (i, j) for a given k,
and, stacking for t, β f = (β

′
1, β

′
2, β

′
3, β

′
4, β

′
5) is a 15× 1 vector containing all time-varying

coefficient vectors to be estimated. To be more precise: the factors β1t = (β1t,1, β1t,2),
β2t = (β2t,1, β2t,2), and β3t = (β3t,1, β3t,2) are NM · 1 mutually orthogonal vectors capturing
movements in γt that are country-specific; the factor β4t = (β4t,1, β4t,2, β4t,3, β4t,4, β4t,5, β4t,6)
is an NM ·Mv mutually orthogonal vector capturing movements in γt that are variable-
specific, where Mv = (Mv1, Mv2, Mv3, Mv4, Mv5, Mv6) = 6 denotes the number of variable
groups; the factor β5t = (β5t,1, β5t,2, β5t,3) is an NM · Mc mutually orthogonal vector
capturing movements in γt that are common among countries and variables, where Mc =
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(Mc1, Mc2, Mc3) = 3 denotes the number of common groups. Letting i1 = (1, 0, 1, 0)
′
,

i2 = (0, 1, 0, 1)
′
, i3 = (1, 1, 1, 1)

′
, i4 = (0, 0, 0, 0)

′
, i5 = (1, 1, 0, 0)

′
, and i6 = (0, 0, 1, 1)

′
, the

conformable matrices D f in equation (11) can be constructed in this way:

D1
(64·2)

=



i1 i2
i1 i2
i1 i2
i1 i2
i4 i4
i4 i4
i4 i4
i4 i4
i4 i4
i4 i4
i4 i4
i4 i4
i4 i4
i4 i4
i4 i4
i4 i4


; D2
(64·2)

=



i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i4 i4
i4 i4
i4 i4
i4 i4
i1 i2
i1 i2
i1 i2
i1 i2


; D3
(64·2)

=



i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2
i1 i2


; D4
(64·6)

=



i5 i6 i5 i6 i5 i6
i5 i6 i5 i6 i5 i6
i5 i6 i5 i6 i5 i6
i5 i6 i5 i6 i5 i6
i4 i4 i5 i6 i5 i6
i4 i4 i5 i6 i5 i6
i4 i4 i5 i6 i5 i6
i4 i4 i5 i6 i5 i6
i4 i4 i4 i4 i5 i6
i4 i4 i4 i4 i5 i6
i4 i4 i4 i4 i5 i6
i4 i4 i4 i4 i5 i6
i4 i4 i5 i6 i5 i6
i4 i4 i5 i6 i5 i6
i4 i4 i5 i6 i5 i6
i4 i4 i5 i6 i5 i6


;

D5
(64·3)

=



i3 i3 i3
i3 i3 i3
i3 i3 i3
i3 i3 i3
i4 i3 i3
i4 i3 i3
i4 i3 i3
i4 i3 i3
i4 i4 i3
i4 i4 i3
i4 i4 i3
i4 i4 i3
i4 i3 i3
i4 i3 i3
i4 i3 i3
i4 i3 i3


(12)

Thus, following some arrangements, the SNLR model is:

 Y11,t
Y21,t
Y12,t
Y22,t


(4·1)

=

 χ1t,1 0
0 χ1t,2

χ1t,1 0
0 χ1t,2


(4·2)

(
β1t,1
β1t,2

)
(2·1)

+

 χ2t,1 0
0 χ2t,2

χ2t,1 0
0 χ2t,2


(4·2)

(
β2t,1
β2t,2

)
(2·1)

+

 χ3t,1 0
0 χ3t,2

χ3t,1 0
0 χ3t,2


(4·2)

(
β3t,1
β3t,2

)
(2·1)

+

+

 χ4t,1 0 χ4t,3 0 χ4t,5 0
0 χ4t,2 0 χ4t,4 0 χ4t,6

χ4t,1 0 χ4t,3 0 χ4t,5 0
0 χ4t,2 0 χ4t,4 0 χ4t,6


(4·6)


β4t,1
β4t,2
β4t,3
β4t,4
β4t,5
β4t,6


(6·1)

+

( χ5t,1 χ5t,2 χ5t,3
χ5t,1 χ5t,2 χ5t,3
χ5t,1 χ5t,2 χ5t,3
χ5t,1 χ5t,2 χ5t,3

)
(4·3)

( β5t,1
β5t,2
β5t,3

)
(3·1)

+ ηt
(4·1)

(13)

Therefore, I obtain five matrices χ f t containing all coefficients (stacked) and their
possible interactions.

(i) χ1t = (χ1t,1, χ1t,2) is an observable country-specific indicator for Yt that captures
the information contained in the lags of variable M for country 1 (χ1t,1) and country 2
(χ1t,2), with χ1t,1 = ∑m y1mt−1 and χ1t,2 = ∑m y2mt−1.

(ii) χ2t = (χ2t,1, χ2t,2) is an observable country-specific indicator for Yt that captures
the information contained in a set of lagged variables M1 for country 1 (χ2t,1) and country
2 (χ2t,2), with χ2t,1 = ∑M1

y1M1t−1 and χ2t,2 = ∑M1
y2M1t−1, with M1 denoting all possible

interactions between the lags of variables M, Q, and Ξ.
(iii) χ3t = (χ3t,1, χ3t,2) is an observable country-specific indicator for Yt that captures

the information contained in a set of lagged variables M2 for country 1 (χ3t,1) and country
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2 (χ3t,2), with χ3t,1 = ∑M2
y1M2t−1 and χ3t,2 = ∑M2

y2M2t−1, with M2 denoting all possible
interactions between the lags of variables M, Q, Q̃, and Ξ.

(iv) χ4t = (χ4t,1, χ4t,2, χ4t,3, χ4t,4, χ4t,5, χ4t,6) is an observable cross-country variable-
specific indicator for Yt that captures, stacked for six groups (Mv), the information contained
in the lags of variable m = 1 (χ4t,1, χ4t,3, χ4t,5) and variable m = 2 (χ4t,2, χ4t,4, χ4t,6). Here:
χ4t,1 = ∑i ∑Mv1

yiMv1t−1 and χ4t,2 = ∑i ∑Mv2
yiMv2t−1 capture movements between the lags

of the only variables M that are specific for variable m = 1 and variable m = 2, respectively;
χ4t,3 = ∑i ∑Mv3

yiMv3t−1 and χ4t,4 = ∑i ∑Mv4
yiMv4t−1 capture movements between the

lags of all variables M, Q, and Ξ that are specific for variable m = 1 and variable m = 2,
respectively; and χ4t,5 = ∑i ∑Mv5

yiMv5t−1 and χ4t,6 = ∑i ∑Mv6
yiMv6t−1 capture movements

between the lags of all variables M, Q, Q̃, and Ξ that are specific for variable m = 1 and
variable m = 2, respectively.

(v) χ5t = (χ5t,1, χ5t,2, χ5t,3) is an observable common indicator for Yt that captures,
stacked for three groups (Mc), the information contained among countries and variable
M (χ5t,1), among countries and variables M, Q, and Ξ (χ5t,2), and among countries and
variables M, Q, Q̃, and Ξ (χ5t,3), with χ5t,1 = ∑i ∑Mc1

yiMc1t−1, χ5t,2 = ∑i ∑Mc2
yiMc2t−1,

and χ5t,3 = ∑i ∑Mc3
yiMc3t−1.

3. Dynamic Analysis

Before specifying prior assumptions and posterior distributions, I recall the state-space
structure of the reparametrized SPBVAR-MTV model in (6):

Yt =
(

X̃t · G
)

βt + ηt

(
’Measurement Equation’

)
(14)

βt = βt−1 + ṽt

(
’State-Transition Equation’

)
(15)

3.1. Hierarchical Prior Setups and Assumptions

Supposing exact factorization in (5), in order to complete the model, I need to define
prior moments on (Σ−1

e , Σ−1
ht , p f 0, h0, β0). Thus, collecting them in a vector φ0, with φ0 =

(Σ−1
e , Σ−1

ht , p f 0, h0, β0) being prior densities, the conditional likelihood function can be
derived from the sampling density p(Y|φ0) by using a mixture hierarchical distribution.
In other words, (i) a Normal distribution for factors β and log-volatilities h; (ii) a Wishart
distribution for Σ−1

e ; and (iii) an Inverse-Gamma distribution for Σht and p f , where p f =
vec(Pt). That is,

β|Σ−1
e , Σ−1

ht , Y ∼ N
(

β̂, ¨̃Σ−1 ⊗ (χ
′
χ)−1

)
(16)

Σ−1
e |Y ∼W

(
S−1

p , T − k− 1
)

(17)

h|Σ−1
ht , Y ∼ N

(
αh, Vh

)
(18)

Σ−1
ht |Y ∼ G

{
ωh
2

,
Sh
2

}
(19)

p−1
f |Y ∼ G

{
ωp

2
,

Sp

2

}
(20)

with ¨̃Σ depending on the benchmark model: (i) ¨̃Σ = Σ̇ = Σe in Model I; (ii) ¨̃Σ = Σ̃ in
Model II; and (iii) ¨̃Σ = Σ̈ in Model III.

Here, αh, Vh, ωh, and ωp are hyperparamenters, Sp = (Yt − β̂χt)
′
(Yt − β̂χt) is the

sum of the squared errors, with β̂ = (Σtχ
′
tχt)−1 · (Σtχ

′
tYt) referring to the OLS estimate

of β, and Sh denotes the least squares estimate of σh based on the (satured) model, with
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σh = vec(Σht). Finally, the Equation (18) corresponds to the proposal distribution obtained
by MCMC integration (such as Metropolis–Hastings algorithm17).

Since the above-mentioned hierarchical prior specification strategy is affected by
common or subjective beliefs because of the marginal effect of economic–financial variables,
I assume Independent Normal-Wishart Prior so as to allow cross-equation independence
of the coefficients distributions and remove the dependence of β on Σe.

Given the state-space structure in Equations (14) and (15), MCMC methods and imple-
mentations (such as Gibbs sampling, Kalman Filter algorithm, and Metropolis–Hastings
algorithm) can be computed numerically and joint distributions characterised analytically.
The first step is to suppose that data run from (t = 0) to (t = T) in order to obtain a
training sample (−τ, 0) and then to estimate the features of the priors. When such a sample
is unavailable, it is just sufficient to modify the expressions for the prior moments in
Equations (16)–(20) as:

p
(

Σ−1
e , Σ−1

ht , p f 0, h0, β0

)
= p

(
Σ−1

e

)
· p
(

Σ−1
ht

)
·∏

f
p
(

p f 0

)
· p
(

h0

)
· p
(

β0

)
(21)

where

p
(

Σe

)
= iW(z1, β1) (22)

p
(

Σht

)
= IG

(
ω̄0

2
,

S̄0

2

)
(23)

p
(

p f 0

)
= IG

(
ω̄0

2
,

S̃0

2

)
(24)

p
(

h0

)
= N(α0, V0) (25)

p
(

β0|F−1

)
= N(β̄0, R0) (26)

Here, N() stands for a Normal distribution, iW() denotes an Inverse-Wishart distri-
bution, IG() indicates an Inverse-Gamma distribution, and F−1 refers to the information
available at time−1. The prior for β0 in (26) and the law of motion for the factors imply that:

p
(

βt|F−1

)
= N

(
β̄t−1|t−1, Rt−1|t−1 + Pt

)
(27)

where β̄t−1|t−1 and Rt−1|t−1 denote mean and variance-covariance matrix of the conditional
distribution of β̄t|t, respectively.

All hyperparameters are known. More precisely, collecting them in a vector δ, where
δ = (z1, β1, ω̄0, S̄0, S̃0, α0, V0, β̄0, R0), they are treated as fixed and are either obtained from
the data to tune the prior to the specific applications (such as z1, ω̄0, α0, and β̄0) or selected
a priori to produce relatively loose priors (such as β1, S̄0, S̃0, V0, and R0). In this context,
the only fully Bayesian approach that leads to analytical results requires the use of a natural
conjugate prior. According to Equations (16), (17), and (19), the natural conjugate prior has
the form18:

βt|Σ−1
e , Σ−1

ht , YT ∼ N
(

β̄t|t, Rt|t + Pt

)
or p

(
βt|Σ−1

e , Σ−1
ht , YT

)
= N

(
β̄t|t, Rt|t + Pt

)
(28)

Σe|YT ∼ iW(z1, β1) or p
(

Σe|YT , β
)
= iW(z1, β1) (29)
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Σht|YT ∼ IG
(

ωα

2
,

SV
2

)
or p

(
Σht|YT , β

)
= IG

(
ωα

2
,

SV
2

)
(30)

where β̄t|t and Rt|t are hyperparameters collected in the vector δ, and ωα and SV are
parameters to be estimated.

If Pt = 0, allowing for time-variant factors and volatilities, draws of p f t and σ2
hi can be

taken from Normal-Inverse-Gamma distributions.
According to the natural conjugate prior (28), βt depends on Σe and Σht. Thus, βt, Σe,

and Σht are not independent of one another. To allow different equations in the VAR to
have different explanatory variables, previous specifications have to be modified. More
precisely, given the SNLR model in (14), general priors that do not involve the restrictions
inherent in the natural conjugate prior are the Independent Normal-Wishart (INW) and
the Independent Inverted Gamma (IIG) distributions. The latter has different scale and
shape parameters with respect to p f t and is obtained by maximum likelihood estimates.
Thus, the natural conjugate priors (28)–(30) can be re-written as:

p
(

βt, Σ−1
e , Σ−1

ht |YT
)
= p

(
βt|YT

)
· p
(

Σ−1
e |YT

)
· p
(

Σ−1
ht |YT

)
(31)

where

βt|YT ∼ N
(

β̄t|t, Rt|t
)

or p
(

βt|YT
)
= N

(
β̄t|t, Rt|t

)
(32)

Σe|YT ∼ iW(z1, β1) or p
(

Σe|YT , β
)
= iW(z1, β1) (33)

Σht|YT ∼ IG
(

ω̂α

2
,

ŜV
2

)
or p

(
Σht|YT , β

)
= IG

(
ω̂α

2
,

ŜV
2

)
(34)

Here, the hyperparameters ω̂α and ŜV denotes scale and shape parameters, respec-
tively, collected in the vector δ. Moreover, the prior (32), with Pt = 0, allows for the prior
covariance matrix Rt|t to be anything the researcher chooses, rather than the restrictive
(Σe|YT ⊗ Rt|t + Σht) form of the natural conjugate prior.

3.2. Posterior Distributions and MCMC Implementations
3.2.1. Conditional Likelihood and Kalman Filter Technique for Time-Varying Parameters

The posterior distributions for φ = (Σ−1
e , Σ−1

ht , p f t, ht, {βt}T
t=1) are calculated by com-

bining the prior with the (conditional) likelihood for the initial conditions of the data. The
resulting function is then proportional to

L
(

YT |φ
)

∝
(

¨̃Σ
)− T

2 · exp
{
− 1

2

[
Σt

(
Yt − (X̃tG)βt

)′]
· ¨̃Σ−1 ·

[
Σt

(
Yt − (X̃tG)βt

)]}
(35)

where YT = (Y1, . . . , YT) denotes the data and φ = (Σ−1
e , Σ−1

ht , p f t, ht, {βt}T
t=1) refers to the

unknowns whose joint distribution needs to be found, with φ−k standing the vector φ,
excluding the parameter k.

Despite the dramatic parameter reduction obtained with Equation (14), the analytical
computation of posterior distributions (φ|YT) is unfeasible. Thus, a variant of the Gibbs
sampler approach—such as Kalman-Filter technique—can be used through MCMC inte-
grations. More precisely, for the conditional posterior distribution of (β1, . . . , βT |YT , φ−βt),
it gives the following forward recursions for posterior means and the covariance matrix, re-
spectively:

β̄t|t = β̄t−1|t−1 +
[

Rt|t−1(X̃tG)F−1
t|t−1

][
Yt − (X̃tG)

′
β̄t−1|t−1

]
(36)
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Rt|t =
[

Ik −
(

Rt|t−1 · (X̃tG) · F−1
t|t−1 · (X̃tG)

′)] · (Rt|t−1) (37)

where

Ft|t−1 =
[
(X̃tG)

′ · Rt|t−1 · (X̃tG)
]
+ Σe (38)

Rt|t−1 = Rt−1|t−1 + Σht (39)

Starting from βT|T and RT|T , the marginal distributions of βt can be computed by
averaging over draws in the nuisance dimensions, and the Kalman filter backward can be
run to characterise posterior distributions for φ:

βt|βt−1, YT , φ−βt ∼ N(β̄t|t+1, Rt|t+1) or p(βt|βt−1, YT , φ−βt) = N(β̄t|t+1, Rt|t+1) (40)

where

β̄t|t+1 = R̃t|t+1

[(
R−1

t|t+1 · β̄t|t
)
+

( T

∑
t=1

(X̃tG)
′ · Σ−1

e · (X̃tG)β̂

)]
(41)

Rt|t+1 =
[

Ik −
(

Rt|t · R−1
t+1|t

)]
· (Rt|t) (42)

with

R̃t|t+1 =

[(
R−1

t|t+1 + Σht

)
+

( T

∑
t=1

(X̃tG)
′ · Σ−1

e · (X̃tG)

)]−1

(43)

β̂ =
[
(X̃tG)

′ · Σ−1
e · (X̃tG)

]−1
·
[
(X̃tG)

′ · Σ−1
e ·Yt

]
(44)

The Equations (42) and (44) refer to the variance-covariance matrix of the conditional
distribution of β̄t|t+1 and the Generalized Least Square (GLS) estimator, respectively. By
rearranging the terms, Equation (41) can be rewritten as

β̄t|t+1 = R̃t|t+1 ·
[(

R−1
t|t+1 β̄t|t

)
+

( T

∑
t=1

(X̃tG)
′ · Σ−1

e ·Yt

)]
(45)

where β̄t|t+1 and Rt|t+1 denote the smoothed one-period-ahead forecasts of βt and of the
variance–covariance matrix of the forecast error, respectively.

The above output of the Kalman filter is used to generate a random trajectory for {βt}
by using the backward recursion starting with a draw of {βt} from N(β̄T|T , RT|T)19. Given
(40), the other posterior distributions can be defined as:

Σe|YT , φ−Σe ∼ iW(ẑ1, β̂1) or p
(

Σe|YT , φ−Σe

)
= iW(ẑ1, β̂1) (46)

Σh|YT , φ−Σht ∼ IG(ω̄α, S̄V) or p
(

Σh|YT , φ−Σht

)
= IG(ω̄α, S̄V) (47)

ht|YT , φ−ht ∼ N(ãh,m̄, Ṽh,m̄) or p
(

ht|YT , φ−ht

)
= N(ãh,m̄, Ṽh,m̄) (48)

p f t|YT , φ−p f t ∼ IG
(

ω̄p

2
,

S̃p

2

)
or p

(
p f t|YT , φ−p f t

)
= IG

(
ω̄p

2
,

S̃p

2

)
(49)

Here, some considerations are in order.
In Equation (46), ẑ1 = z1 + T and β̂1 = β1 + Σtu

′
tut, with z1 and β1 denoting the arbi-

trary degree of freedom and the arbitrary scale parameter, respectively. In this analysis20,
z1
∼= N(M + Mv + Mc) and β1

∼= 1.0.
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In Equation (47), ω̄α = ω̄0 + ω̂α and S̄V = S̄0 + ŜV , with ω̄0 and S̄0 denoting the arbi-
trary degree of freedom (sufficiently small) and the arbitrary scale parameter, respectively,

ω̂α =
(

∑T
t=1 log(τt)/t

)
+ log

(
∑T

t=1(1/τt)
)
− log(t) and ŜV = (t · ω̂α)/

(
∑T

t=1(1/τt)
)

re-

ferring to the Maximum Likelihood Estimates (MLEs). In this analysis, τt = {τ1, . . . , τT} is
the random sample from the data {0, T}, ω̄0 ∼= 0.1 · exp(M + Mv + Mc), S̄0 ∼= 0.01, and ŜV
is obtained by numerically computing ω̂α.

In Equation (48), ãh,m̄ = α0 · ω̄ is obtained by Metropolis–Hastings algorithm21 and
Ṽh,m̄ = V0 + Σ̂h∗ is computed by MCMC-based EM algorithm22, with α0 and V0 denoting
the arbitrary degree of freedom and the arbitrary scale parameter, respectively, and Σ̂h∗ =
(Σ̂1T , . . . , Σ̂NT) referring to the estimated covariance matrix for each i in a regime m̄ given
t. In this analysis, ãh,m̄ is constructed to be close to zero, with ω̄ ∼= 0.1 · exp(NM), and h∗ is
an arbitrary vector given m̄ regimes according to the state-transition Equations (2) and (15).

In Equation (49), ω̄p = ω̄0 + k and S̃p = S̃0 + Σt(β
f
t − β

f
t−1)

−1 · (β
f
t − β

f
t−1), with S̃0

and β
f
t denoting the arbitrary scale parameter and the f th subvector of βt, respectively. In

this analysis, S̃0 ∼= 0.1, f refers to the factors described in Equation (5), and k denotes the
number of all matrix coefficients in each equation of the SPBVAR-MTV model in (1).

Finally, the last two hyperparameters to be defined in the vector δ are β̄0 = β̂0, with
β̂0 denoting the Ordinary Least Squares (OLS) estimates of Equation (14), and R0 = Ik.

3.2.2. Metropolis–Hastings Algorithm for hit

Suppose m̄ regimes, with m̄ = 0, 1, . . . , s, and use Metropolis–Hastings algorithm to
draw posteriors for hit from the proposal density distribution δ∗(hit), with probability αm̄
equals:

αm̄ =
p
(

hm̄
it |hm̄

it−1, hm̄−1
it+1 , YT , {βt}, Σht

)
· δ∗(hm̄−1

it )

p
(

hm̄−1
it |hm̄

it−1, hm̄−1
it+1 , YT , {βt}, Σht

)
· δ∗(hm̄

it )
(50)

According to the SNLR described in Equation (14), let β∗t denote the time-varying
coefficient vectors when m̄ 6= 0 (some forms of break occur), the probability function takes
the form:

p
(

βt|YT
)
· δ∗(β∗t |βt) · α(β∗t , βt) = p

(
β∗t |YT

)
· δ∗(βt|β∗t ) (51)

where

α(β∗t , βt) = min
[
p(β∗t |YT) · δ∗(βt|β∗t )
p(βt|YT) · δ∗(β∗t |βt)

, 1
]
∼= αm̄ (52)

In (52), α(β∗t , βt) is the probability to accept or reject a draw23. In addition, since the
posterior distribution corresponds – by construction – to a multivariate normal distribution,
the Optimal Acceptance Rates (OARs)24 are:

m̄ = 1 with OAR = 44%
1 < m̄ ≤ 5 with OAR = 28%

m̄ > 5
(large dimension)

with OAR = 23.4%
(53)

3.3. Analytical Integration for Integrating out the Time-Varying Volatilities

Given the proposal density distribution δ∗(β∗t , βt) in Section 3.2.2, with probability
α(β∗t , βt) in (52), one needs to integrate out hit using importance sampling. More precisely,
in this study, I approximate the log conditional marginal density log[p(h|Y, Pt, Σht, β0, h0)]
by using a Gaussian density, which is then used as the importance sampling density. Thus,
the Expectation-Maximization (EM) algorithm is used to find the maximum of the log
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conditional marginal density and consists of two steps: the Expectation step (E-step) and
the Maximization step (M-step)25.

3.3.1. Expectation Step (E-Step)

The E-step is implemented by computing the following conditional expectation:

Ψ(h|h∗) = Eβ|h∗
[

log
(
p(h, β|Y, Pt, Σht, β0, h0)

)]
(54)

where the expectation is taken with respect to p(β|Y, h∗, Pt, Σht, β0, h0) for an arbitrary
vector h∗ as Kroese and Chan (2014). More precisely, given the SNLR described in (14)
and let P̃β denote the first difference matrix, the state-transition Equation (15) can be
rewritten as:

P̃β · β = ᾱβ + η̃ with η̃ ∼ N(0, Υβ) (55)

where ᾱβ = (β
′
0, 0, . . . , 0)

′
, Υβ = IT ⊗ Pt, and P̃β is a lower triangular matrix of dimension

k. Thus, the conditional marginal density for β would be distributed normally according to
standard linear regression results:

p(β|Y, h∗, Pt, Σht, β0, h0) ∼ N(β̃, Φ−1
β ) (56)

where

β̃ = Φ−1
β · ϕβ (57)

Φβ =
(

P̃
′
β · Υ−1

β · P̃β

)
+
[
(X̃tG)

′ · ¨̃Σ−1 · (X̃tG)
]

(58)

ϕβ =
(

P̃
′
β · Υ−1

β · P̃β

)
β̄0 +

[
(X̃tG)

′ · ¨̃Σ−1 ·Y
]

(59)

Here, the precision sampler of Chan and Jeliazkov (2009) can be used to sample from
N(β̃, Φ−1

β ) efficiently. In other words, the mean vector β̃ and the precision matrix Φβ are
computed using h∗.

The expectation in (54) can then be written in terms of an explicit expression:

Ψ(h|h∗) = −1
2

{
(h− α0)

′ ·
[
Π
′
h · (IT ⊗ Σ−1

h ) ·Πh

]
· (h− α0)

}
+

− 1
2
(1
′
NT · h)−

1
2

tr
{

diag(e−h) ·
[(

(X̃tG) ·Φ−1
β · (X̃tG)

′)
+

+
(

Y− (X̃tG)β̃
)(

Y− (X̃tG)β̃
)′]}

+ c (60)

where tr() is the trace operator, c is a constant independent of h, 1
′
NT is a vector of ones, Πh

is a lower triangular matrix of dimension N, α0 ∼= Π−1
h · α̃0, with α̃0 = (h

′
0, 0, . . . , 0), and

εi =
(

Y− (X̃tG)β̃
)

is the error term.

3.3.2. Maximization Step (M-step)

The M-step consists of maximizing the function Ψ(h|h∗) with respect to h by us-
ing the Newton–Raphson method26. Thus, the gradient (gΨ) and the Hessian (HΨ) are,
respectively:
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gΨ = −
[

Π
′
h

(
IT ⊗ Σ−1

h

)
Πh · (h− α0)

]
− 1

2
(1nT − e−h � θ̄) (61)

HΨ = −
[

Π
′
h

(
IT ⊗ Σ−1

h

)
Πh

]
− 1

2
(e−h � θ̄) (62)

where ’�’ refers to the entry-wise product and θ̄ = (s2
1T + ε̂2

1T , . . . , s2
NT + ε̂2

NT)
′
, with s2

iT

denoting the i− th diagonal element of
[
(X̃tG) ·Φ−1

β · (X̃tG)
′] ∼= V0 and ε̂2

iT denoting the

i− th element of
[
Y− (X̃tG)β̃

]
∼= Σ̂h∗ .

Here,HΨ is negative definite for all h, ensuring fast convergence of the N-R method,
and Φβ, since it is a band matrix, guarantees that its Cholesky factor Lβ can be obtained
without further effort. More precisely, given Φβ = Lβ · L

′
β, with Lβ denoting a lower

triangular matrix, G = L
′
β · (X̃tG) can be obtained by solving the linear system LβG = (X̃tG)

for G. Thus, the diagonal elements of
[
(X̃tG) ·Φ−1

β · (X̃tG)
′]

will be the row sums of the
squares of G.

Finally, the MCMC Expectation-Maximization (MCMC-EM) algorithm can be sum-
marised in this way:

A. E-step: Compute Φβ, β̃, and θ̄ given the current value hν−1
it , with ν denoting the

ν− th iteration.
B. M-step: Maximise Ψ(h|hν−1) with respect to h by the N-R method. That is,

hν = argmax
h

Ψ(h|hν−1).

C. Compute gΨ andHΨ from Ψβ, β̃, and θ̄ obtained in (A), and set h = h(m̄−1,ν−1).

D. Update h(m̄,ν−1) = h(m̄−1,ν−1) −
(
H−1

Ψ · gΨ

)
.

E. Repeat steps (A)–(D) until some convergence criterion is met at the OARs in (53).
Thus, terminate the iteration and set hν = h(m̄,ν−1), denoting that a certain change-
point among time-varying coefficient vectors and log-volatilities has been assessed cor-
rectly.

4. Data Description and Empirical Model

The SPBVAR-MTV model in (1) contains 17 country-specific models, including the
United States, 8 Central-Eastern Europe (CEE) economies27 and eight Western Europe (WE)
economies28. The CEE and WE countries—except for SL—also refer to European emerging
and advanced economies, respectively. Moreover, all the European countries are Eurozone
members, with the exception of CZ, HU, and PO, and thus inter-sector and inter-country
linkages can be investigated in depth.

The dataset contains the following collection of variables (Table A1). (i) Six endoge-
nous variables are involved to describe real economy (realit,j) and financial markets ( f init,j):
three real variables to capture real business cycles (general government spending, gross
fixed capital formation, GDP growth rate) and three financial variables to highlight the
situation in the lending markets (bank leverage, flow of credit into economy, inflation
rate). (ii) Bilateral flows of trade (rweightsit,j) and financial transactions ( f weightsit,j) are
used to deal with endogeneity issues when studying international spillover effects among
countries and variables. (iii) Three policy variables (policyit,j) are used to investigate
monetary and fiscal policy implications and interactions among countries and sectors
(international interest policy rate, general government debt, and current account balance).
(iv) Five (directly) observed variables are used as proxy variables (structuresit,j) to evaluate
economic–institutional implications in driving the evolution of international spillovers and
transmission of shocks over time among countries and variables: three indicators to deal
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with internal imbalances (financial consumption expenditure, private sector consumption,
change in unemployment rate); one indicator to capture competitiveness developments and
catching-up effects (nominal labour cost); and one indicator to monitor the probabilities of
transitions between expansion/recession phases in business cycles and potential macroe-
conomic imbalances (house price indices). (v) The real GDP per capita in logarithmic
form (productivity) is used to evaluate the size and the spreading of international spillover
effects over time among countries and sectors given an unexpected shock. The weightsit,j
29, the policyit,j, and the structuresit,j components are treated endogenously and used to
jointly deal with endogeneity issues, structural changes, and policy regime shifts.

The series are expressed in standard deviations with respect to the same quarter of
the previous year (qt/qt−1), and seasonally and calendar adjusted. All variables are used
in year-on-year growth rates and all data comes from OECD data source.

The estimation sample covers the period from December 1994 to December 2018.
It amounts, without restrictions, to 26, 384 regression parameters. More precisely, each
equation of the time-varying SPBVAR-MTV in (1) has k = [17(6 + 2 + 3 + 5)]× 1 = 272
coefficients, and there are 97 equations in the system. Given the structural conformation of
the model and a sufficiently large number of quarters describing economic–institutional
and policy implications, it is able to capture: (i) endogeneity issues because of unobserved
heterogeneity and misspecified dynamics across the sample; (ii) interdependency, com-
monality, and homogeneity because of potential international macroeconomic–financial
linkages among countries and sectors; and (iii) relevant monetary and fiscal policy interac-
tions, and contagion measures.

Given the factor structure in (4), I assume that the coefficient vector γt depends
on 10 factors in order to investigate sufficient macroeconomic–financial linkages and
economic–institutional implications when performing conditional forecasting and policy-
making. Thus,

G f β f t = G1β1t + G2β2t + G3β3t + G4β4t + G5β5t + G6β6t + G7β7t + G8β8t +

+ G9β9t + G10β10t + ut (63)

where, stacking for t, β f = (β1, β2, β3, β4, β5, β6, β7, β8, β9, β10)
′

contains all time-varying
coefficient vectors to be estimated. Given the factorization in (63), the SNLR model in (14)
can be written as:

Yt = X̃t

(
10

∑
f=1

G f β f t + ut

)
+ Et ≡

10

∑
f=1

χ f tβ f t + ηt with X̃t =
(

INM ⊗ Xt

)
(64)

According to diagnostic tests (Table 1), the marginal (conditional) likelihood estimation
confirms the exact γt’s factorization in (63) and the estimates are asymptotically consistent
given the absence of serial correlations across the residuals. Thus, the specified factors in
(64) can be made clearer and estimated in terms of posterior means.

The indicators χ1tβ1t and χ2tβ2t are NM · 1 vectors of observable country-specific
indicators for Yt, and account for the only realit,j and f init,j components, respectively, in
order to evaluate international spillover effects and transmission of shocks among countries
in real economy and financial markets.

The indicators χ3tβ3t and χ4tβ4t are NM · 1 vectors of observable country-specific
effects for Yt, and account for one additional component: (1) realit,j with policyit,j and (2)
f init,j with policyit,j. They are able to investigate monetary and fiscal policy implications
and interactions among countries in the real and the financial dimensions, respectively.

The indicators χ5tβ5t and χ6tβ6t are NM · 1 vectors of observable country-specific effects
for Yt, and account for two components further: (1) realit,j with rweightsit,j and policyit,j,
and (2) f init,j with f weightsit,j and policyit,j. They are able to jointly evaluate how interna-
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tional transmission channels and policy issues affect the size and spreading of spillover
effects given an unexpected shock among countries in real economy and financial markets,
respectively.

The indicators χ7tβ7t and χ8tβ8t are NM · 1 vectors of observable country-specific
effects for Yt, and account for one component further: (1) realit,j with rweightsit,j, policyit,j,
and structuresit,j, and (2) f init,j with f weightsit,j, policyit,j, and structuresit,j. They are able
to assess the role that international transmission channels, macroeconomic–institutional im-
plications, potential macroeconomic imbalances, and policy implications play in allowing
shocks to spill over among countries in real and financial sectors, respectively.

The indicator χ9tβ9t is a NM ·Mv vector of observable cross-country variable-specific
effects for Yt, where Mv = (Mv1, Mv2, Mv3, Mv4) denotes the number of variable groups: (i)
Mv1 = realit,j and policyit,j; (ii) Mv2 = f init,j and policyit,j; (iii) Mv3 = realit,j, rweightsit,j,
policyit,j, and structuresit,j; and (iv) Mv4 = f init,j, f weightsit,j, policyit,j, and structuresit,j.
The variable-specific factor is able to investigate endogeneity issues, policy regime shifts,
and multivariate structural breaks among variables in real economy and financial markets.

Finally, the indicator χ10tβ10t is a NM ·Mc vector of observable common effects for
Yt, where Mc = (Mc1, Mc2) denotes the number of common groups: (i) Mc1 = realit,j,
f init,j, and policyit,j and (ii) Mc2 = realit,j, f init,j, weightsit,j, policyit,j, and structuresit,j.
The common factor is able to assess idiosyncratic spillover effects due to different reactions
or co-movements among countries and variables for a given common unexpected shock
in the real and financial dimensions. This latter (Mc2) is also used to investigate and then
quantify contagion measures during triggering events and policy regime shifts.

Table 1. Diagnostic Tests.

Test Test Statistics Degrees of Freedom p-Value

LGBπ 16573 1649 0.00
Pπ 837.3 1261 0.30

MLE f 67.44 10 0.00
Here, LGBπ stands for a Multivariate Ljung-Box Test of the series, with lags π = 30; Pπ refers to the Portmanteau
(Asymptotic) Test on the residuals, with lags π = 30; MLE f is the Marginal (Conditional) Likelihood Estimation
Test obtained through the Schwartz approximation, with f = 10.

Dynamic analyses have been conducted via accurate MCMC implementations. The
total number of draws was 5000 + 1000 = 6000, which corresponds to the sum of the final
number of draws to discard and draws to save, respectively. A total of 1000 draws has been
used to conduct posterior inference at each t. The outcomes absorb the conditional forecasts
computed for a time frame of 9 quarters (2 years and a quarter) in order to also address
potential findings concerning the impact of an ongoing pandemic crisis on the global
economy. The natural conjugate prior refers to four subsamples: (i) 1994q4–2008q3 and
(ii) 2008q4–2015q4 in order to evaluate how monetary policy regimes affect the dynamics
of the GDP growth; and (iii) 2006q1–2009q4 and (iv) 2010q1–2018q4 in order to highlight
the impact of the most recent financial crisis and fiscal consolidation when investigating
international spillover effects.

According to the log Bayes Factor in (8) and the exact factorization in (63), most of
the time-varying estimated coefficient vectors (β̂ f t) embrace the ’Full Case’ (MI I I), where
structural changes and policy regime shifts hold in either time-varying parameters or
log-volatilities (see Table 2). It accounts for: two of the country-specific factors (χ7t β̂7t and
χ8t β̂8t); the cross-country variable-specific factor (χ9t β̂9t) belonging to the variable groups
Mv3 and Mv4; and the common factor (χ10t β̂10t) belonging to the common group Mc2.
All remaining empirical results embrace the ’Special Case’ (MI I), except for two factors
concerning the ’General Case’ (MI). They correspond to the first two country-specific
indicators (χ1t β̂1t and χ2t β̂2t). These findings highlight the performance and then the
potential of the SPBVAR-MTV model pointing out that: (i) change-points and policy regime
shifts need to be taken into account when dealing with macroeconomic–financial linkages
in multicountry dynamic panel setups; (ii) multiple structural changes in time-varying
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log-volatilities occur when evaluating international transmission channels and policy
implications among countries and sectors in both the real and the financial dimensions;
and (iii) change-points and policy regime shifts in either time-varying coefficients or log-
volatilities occur when accounting for economic–institutional implications to investigate
unobserved heterogeneity and misspecified dynamics among country- and variable-specific
factors and common features.

Table 2. Empirical results on the benchmark model.

Time-Varying Factors ‘General Case’ (MI) ‘Special Case’ (MI I) ‘Full Case’ (MI I I)

χ1t β̂1t , χ2t β̂2t lBF >10 2 ≤ lBF ≤ 6 0 ≤ lBF ≤ 2
χ3t β̂3t , χ4t β̂4t 6 ≤ lBF ≤ 10 lBF >10 2 ≤ lBF ≤ 6
χ5t β̂5t , χ6t β̂6t 0 ≤ lBF ≤ 2 lBF >10 6 ≤ lBF ≤ 10
χ7t β̂7t , χ8t β̂8t 0 ≤ lBF ≤ 2 6 ≤ lBF ≤ 10 lBF >10

χ9,1t β̂9,1t , χ9,2t β̂9,2t 6 ≤ lBF ≤ 10 lBF >10 2 ≤ lBF ≤ 6
χ9,3t β̂9,3t , χ9,4t β̂9,4t 0 ≤ lBF ≤ 2 6 ≤ lBF ≤ 10 lBF >10

χ10,1t β̂10,1t 6 ≤ lBF ≤ 10 lBF >10 2 ≤ lBF ≤ 6
χ10,2t β̂10,2t 0 ≤ lBF ≤ 2 6 ≤ lBF ≤ 10 lBF >10

The first column denotes the time-varying factors and the other three columns refer to all three (potential) best
benchmark models. The best model solution is highlithed in bold and corresponds to the highest log Bayes Factor
according to the generalized version of the Kass and Raftery (1995)’s scale of evidence in (53).

5. Macroeconomic-Financial Linkages with Structural Changes and Policy Regime
Shifts: A Counterfactual Assessment

The aim of this empirical analysis is to improve the existing literature on macroeconomic–
financial linkages in multicountry dynamic panel setups when dealing with either endogeneity
or volatility issues. Thus, the SPBVAR-MTV model is appropriate to be used for investigating
in depth how structural changes and policy regime shifts affect the intensity and the evolution
(or dynamics) of international spillover effects among countries and sectors.

More precisely, intra-CEWE dynamics are assessed in four related contexts. (i) Firstly,
international spillovers and policy issues are evaluated in an international and broader
European setting (Section 5.1). (ii) Then, the empirical results are reevaluated accounting
for additional time-varying factors to address endogeneity issues because of unobserved
heterogeneity and misspecified dynamics (Section 5.2). (iii) A deepened investigation
is further conducted accounting for multivariate change-points and policy regime shifts
during different phases of financial cycles, where many emerging market economies have
experienced a large surge of capital inflow, following the notably expansionary monetary
policies of major advanced countries, and fiscal consolidation adjustments, playing a
central role in the disinflation process (Section 5.3). (iv) Finally, policy implications and
suggestions for decision makers are addressed according to all aforementioned findings
(Section 5.4).

5.1. International Spillovers and Policy Issues among CEWE Economies

In Figure 1, where I consider the first two country-specific indicators (χ1t, χ2t) for
the overall sampled time-series, all CEE economies tend to be net receivers (or inward
spillovers) in the real dimension and thus would be affected by the conditional impulse
responses received from the European advanced countries (net senders). Overall, the
size of the spillover effects is larger in the financial dimension because of highly strong
cross-country interdependencies. These results find confirmation in previous related works
such as Pacifico (2019b, 2019a, 2020a) and Curcio et al. (2020).

However, contrary to them, the findings highlight that a consistent cross-country
heterogeneity across the spillovers’ dynamics would matter more in financial markets
(Figure 1b), while a persistent degree of homogeneity and larger co-movements among
countries tend to occur in the real dimension despite stronger inter-country linkages in the
financial one (Figure 1a). The results confirm the presence of potential functional form of
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misspecifications that need to be investigated thoroughly when studying macroeconomic–
financial linkages.

(a) χ1t β̂1t Factor-Overall period (b) χ2t β̂2t Factor-Overall period

Figure 1. Systemic contributions of the productivity given a 1% shock to real and financial dimensions
are drawn as standard deviations of the variables in the system. They account for χ1t β̂1t (plot a) and
χ2t β̂2t (plot b) cross-country indicators, where β̂1t and β̂2t are posterior means.

In Figure 2, I account for the two country-specific indicators dealing with policy issues
and their interactions (χ3t, χ4t). In contrast to the previous results, most CEE economies
tend to be net senders (outward international spillovers) in their real dimension (Figure 2a).
Cross-country heterogeneity follows to be consistent and stronger in real economy and even
more in financial markets (Figure 2b). In addition, larger commonality and homogeneity
matter across the spreading and the intensity of spillover effects. The findings confirm the
importance to account for either endogeneity and volatility issues.

From a global perspective, the same dynamic behaviour is observed in the trans-
mission of US financial shocks, with outward spillover effects. The results are consistent
and robust with the more recent literature on multicountry dynamic panel setups. More
precisely, they confirm that US seem to be an important driver in allowing unexpected
shocks to spill over and thus affecting European financial markets, mainly regarding CEE
economies with inward spillovers. Then, intra-country shocks directly affect a country’s
own output growth in the real economy because of consistent cross-country interdepen-
dencies.

(a) χ3t β̂3t Factor-Overall period (b) χ4t β̂4t Factor-Overall period

Figure 2. Systemic contributions of the productivity given a 1% shock to real and financial dimensions
are drawn as standard deviations of the variables in the system. They account for χ3t β̂3t (plot a) and
χ4t β̂4t (plot b) cross-country indicators, where β̂3t and β̂4t are posterior means.

Established that structural changes and policy shifts affect macroeconomic–financial
linkages among countries in an international and broader context, I consider the first
two group-variable factors (χ9,1t, χ9,2t) in order to examine in depth how monetary policy
regimes and fiscal implications drive international shocks among real and financial sectors
(Figure 3). Here, the countries are grouped in three clusters: WE, CEE, and BLS30.

During the ISE Regime, most countries tend to be net receivers and net senders in the
real and the financial dimensions, respectively (Figure 3a). Moreover, larger homogeneity
in the spreading and the intensity of international spillovers would matter more among
CEE economies given an unexpected financial shock. From a policy perspective, since
in that period (1994–2008) the only country joined in with EU was Slovenia, the results
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highlight that the transmission of shocks among sectors are mainly affected by highly
strong cross-country interdependencies rather than policy implications (e.g., because of
high persistent inflation among emerging and then CEE countries).

During ZIRE Regime, emerging economies become net senders in real economy
with larger spillover effects than advanced economies (Figure 3b). In financial markets,
international spillovers show higher intensity than real economy due to a deeper state of
severe fiscal reforms. In addition, higher co-movements among sectors in both the real
and the financial dimensions matter than the ISE period because of persistent financial
measures to foster the output stabilization.

From a modeling perspective, inward spillovers during the ISE Regime highlight that
CEE countries are less competitive than WE economies, requiring appropriate emergency
programs in order to be up against triggering events. From a policy perspective, outward
spillovers during the ZIRE Regime in real economy point out that more stringent fiscal
constraints would need to support developing economies in absorbing the effects of
unexpected financial shocks (misspecified dynamics).

(a) χ9t,1 β̂9t,1 and χ9t,2 β̂9t,2 Factors-ISE regime (b) χ9t,1 β̂9t,1 and χ9t,2 β̂9t,2 Factors-ZIRE
regime

Figure 3. Systemic contributions of the productivity given a 1% shock to real and financial dimensions
are drawn as standard deviations of the variables in the system. They account for the variable-specific
indicators χ9t,1 β̂9t,1 and χ9t,2 β̂9t,2 during ISE (plot a) and ZIRE (plot b) regimes, where β̂9t,Mv̇ ’s are
posterior means with v̇ = v1, v2.

5.2. Unobserved Heterogeneity and Misspecified Dynamics Accounting for Additional
Time-Variant Factors

Accounting for additional time-variant factors in order to investigate in depth policy
regime shifts and structural breaks along with endogeneity issues, relevant empirical
results and policy perspectives are derived (Figure 4).

As regards weightsit,j component (standing for omitted factors), most countries follow
to show inward and outward spillovers in the real and the financial dimensions, respec-
tively. Despite a consistent heterogeneity persists in their own output growth responses,
larger co-movements matter accounting for additional shock transmission channels in real
economy and even more in financial markets because of stronger cross-country financial
linkages (Figure 4a,b). From a global perspective, outward spillovers in US confirm the
importance about international spillover effects affecting European financial shocks (see,
for instance, Pacifico (2020a) and Curcio et al. (2020)). From a modeling perspective, capital
flows tend to matter more than trade flows in allowing shocks to spill over among countries
(see, for instance, Pacifico (2019b, 2020a)). However, higher intra-CEWE heterogeneity in
the financial dimension, in terms of spillovers’ intensity and spreading, emphasizes more
consistent difference among financial markets due to tighter monetary policies.

Concerning structuresit,j component (standing for unobserved heterogeneity), the in-
tensity of spillover effects tends to increase confirming that economic–institutional linkages
significantly affect countries’ responses (Figure 4c,d). Cross-country commonality would
be larger in real economy and thus if capital flows tend to matter more in driving shock
transmission among financial markets, trade flows would matter more in affecting the
spreading of spillover effects among countries. Moreover, output responses over time are
larger in WE countries despite catching-up effects in CEE economies due to persistent and
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consistent cross-country heterogeneity. From a policy perspective, the results face a situa-
tion of trade-off. More precisely, if on one hand the adoption of sounder macroeconomic
policies and economic—institutional changes—put in place to foster consolidated policy
actions—have helped to bring inflation in emerging (and then CEE) economies back under
control, on the other hand, in case of a noteworthy unexpected financial shock—without ap-
propriate coordinated structural reforms in trade, product, and labour markets—outward
government benefits will be not able for supporting the process of international financial
integration among countries and boosting the output to potential growth.

(a) χ5t β̂5t Factor-Overall period (b) χ6t β̂6t Factor-Overall period

(c) χ7t β̂7t Factor-Overall period (d) χ8t β̂8t Factor-Overall period

Figure 4. Systemic contributions of the productivity given a 1% shock to real and financial dimensions
are drawn as standard deviations of the variables in the system. They account for the cross-country
indicators χ5t β̂5t (plot a), χ6t β̂6t (plot b), χ7t β̂7t (plot c), and χ8t β̂8t (plot d), where β̂5, β̂6t, β̂7t, and
β̂8t are posterior means.

Established that policy regime shifts and endogeneity issues (both omitted factors via
additional transmission channels and unobserved heterogeneity via economic–institutional
linkages) affect the spreading and the intensity of international spillovers, the same analysis
is conducted by focusing on the last two cross-country variable-specific factors (χ9,3t, χ9,4t
in Figure 5).

In this context, some main considerations are in order. First, during ZIRE Regime,
CEE and BLS countries from net senders become net receivers in the financial dimension. It
highlights that, even if substantial structural reforms in terms of radical fiscal adjustments
were able to absorb unexpected financial shocks (outward spillovers), consistent cross-
country interdependencies among financial sectors—because of EA’s common monetary
policy—brought about ’pseudo-shock’ in the short term to catch up with the economic
growth of the other euro partecipants31 (inward spillovers). Second, structural–institutional
implications along with policy reforms affect the intensity (or volatility) of spillover ef-
fects in CEE and even more in BLS countries—because of larger current account deficits
and lower real economic convergence—via international transmission channels, that al-
low in turn financial shocks to spill over. Third, persistent cross-country heterogeneity
during monetary policy regimes emphasizes that the fairly well synchronized business
cycles among emerging and advanced economies might be unlikely, mainly on account of
triggering events in the long run. Thus, the increasing need of consistent reforms of the
international financial system to accelerate well-suited financial integration in developing
countries. These findings are against existing studies that support similarity across business
cycles in CEWE economies because of dealing with too short periods. For instance, they
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consider up to seven years or less, implying that only a single business cycle would be
covered by the available data.

(a) χ9t,3 β̂9t,3 and χ9t,4 β̂9t,4 Factors-ISE
Regime

(b) χ9t,3 β̂9t,3 and χ9t,4 β̂9t,4 Factors-ZIRE
Regime

Figure 5. Systemic contributions of the productivity given a 1% shock to real and financial dimensions
are drawn as standard deviations of the variables in the system. They account for the variable-specific
indicators χ9t,3 β̂9t,3 and χ9t,4 β̂9t,4 during ISE (plot a) and ZIRE (plot b) regimes, where β̂9t,Mv̈ ’s are
posterior means with v̈ = v3, v4.

5.3. Policy Interactions, Common Features, and Contagion Measures among Countries and Sectors

In the aftermath of the Great Recession and an ongoing postcrisis consolidation, the
intensity of spillover effects becomes larger in real and even more in financial dimension
because of stronger inter-country linkages among financial markets behind stringent fiscal
adjustments (Figure 6a,b). More precisely, the spreading and the size of spillover effects
tend to be higher among CEE and even more among BLS countries—because of extensive
reforms—in real economy due to radical policy actions, and among WE countries in
financial markets due to stronger interdependencies. Despite a consistent homogeneity
holds among CEWE economies, different countries’ responses matter during financial crisis
and even more fiscal consolidation periods due to coordinated but not fairly flexible fiscal
actions, mainly among emerging economies suffering from lower competitiveness.

Finally, according to all aforementioned findings, I compute the Total Contagion Index
(TCI) on the only common indicator χ10t,2 β̂10t,2, so as to investigate in depth commonality
among sectors and countries in real economy and financial markets. To do it, the cumulative
impulse responses are restricted in the interval [0, 1] and the (individual) spillover effects
are restricted in the interval [−1,+1] so that the index will be bound between 0 and 100 (or
between −100 and 0 if negative effects occur). Thus, the TCI is so obtained:

TCIyi,j =
100

N(N − ṽ)
·

N

∑
i=1

IRyi→yj with i = j = 1, . . . , N (65)

where, IRyi→yj denotes individual (out) spillover effects and N − ṽ refers to the degrees
of freedom depending on the needs of the investigation, with ṽ accounting for the terms
chosen in the factorization (63).

Here, some considerations are in order (Figure 6c). During crisis period, emerging
and advanced economies show inward and outward spillovers in the financial dimension,
respectively. Contrary to postcrisis consolidation periods, where CEE and BLS countries
become net senders and WE countries are net receivers. It highlights the presence of
consistent policy interactions: an unexpected shock in financial markets (e.g., because
of inflationary pressures, unsustainable credit boom, stiffening of banking supervision)
affects the real economy through fiscal adjustments (e.g., public expenditure cuts, lowers
increasing tax). Then, stringent economic—institutional linkages cause a ‘pseudo-shock’
among CEE and BLS economies because of larger fiscal adjustments—mainly in the last
two decade—to catch up with the economic growth of the other advanced EA economies
(from net receivers to net senders).
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(a) χ9t,3 β̂9t,3 and χ9t,4 β̂9t,4 Factors-Crisis Pe-
riod

(b) χ9t,3 β̂9t,3 and χ9t,4 β̂9t,4 Factors-Fiscal Pe-
riod

(c) χ10t,2 β̂10t,2 Factors-Common Features
and Contagion Measures

Figure 6. Systemic contributions of the productivity given a 1% shock to real and financial dimensions
are drawn as standard deviations of the variables in the system. They account for the variable-specific
indicators χ9t,3 β̂9t,3 and χ9t,4 β̂9t,4 during crisis (plot a) and post-crisis (plot b) periods, where β̂9t,Mv̈ ’s
are posterior means with v̈ = v3, v4.

Finally, to better highlight additional findings can be drawn because of the hierarchical
structural framework used in this analysis, I address a cross-country spillover analysis
supposing an unexpected volatility change in financial markets (Figure 7a). Let the es-
timation sample cover the period from December 1994 to December 2018, and let the
current coronavirus outbreak have been officially declared a global pandemic crisis in
202032, the aim of this analysis is to emphasize the performance of the estimating proce-
dure of forecasting potential monetary policy strategies—along with fiscal tools—during
(unexpected) dramatic structural breaks. Thus, I use conditional projections to include
forecasts from 2019q1 to 2021q1, and focus on the cross-country indicators dealing with
macroeconomic–financial linkages (χ2t β̂2t), policy shifts and international transmission
channels (χ6t β̂6t), and endogeneity issues and policy shifts (χ8t β̂8t).

The findings highlight three different scenarios (Figure 7). (i) First, without account-
ing for unobserved effects and policy implications, high-income countries (advanced
economies, WE) have better a credit rating than low-income countries (emerging eco-
nomices, CEE and BLS). Let spillover effects among countries be positive (outward
spillovers) and heterogeneous per intensity and spreading (high-income countries’ re-
sponses larger than the low-income ones), the results highlight that a consistent cross-
country heterogeneity across the spillovers’ dynamics persists in financial markets despite
stronger interdependencies (Figure 7a). They confirm the presence of potential functional
form of misspecifications (due to endogeneity and/or volatility issues) that need to be
investigated thoroughly when studying macroeconomic–financial linkages. (ii) Second,
when accounting for fiscal policy tools and not directly observed (omitted) factors, the
results find confirmation with the recent literature33 (Figure 7b). More precisely, advanced
economies have better a credit rating than emerging ones. That is, a country’s credit rating
affects its ability to pursue expansionary fiscal policies (outward spillovers in credit) and
countercyclical fiscal policies are not common in countries with higher credit risk (inward
spillovers in cpi). Compared to Romer and Romer (2018), countries with lower debt-to-
GDP (larger debit sustainability) tend to use fiscal policy more aggressively during crisis
(inward spillovers in mkt per WE). (iii) Third, jointly dealing with endogeneity and policy
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issues, the results contrast the previous findings (Figure 7c). During dramatic structural
breaks, either advanced or emerging economies would address unconventional monetary
policy measures increasing monetary policy space to help central banks meet their output
and inflation goals (inward spillovers in cpi), mitigating limitations to monetary transmis-
sion that may hamper the provision of credit where it is most needed (outward spillovers
in credit), and supporting liquidity in financial markets or expanding fiscal space (inward
spillovers in mkt). Even if low-income countries with more developed capital markets and
effective transmission via interest rates should be more likely to benefit more from uncon-
ventional monetary policy, the results show smaller benefits than in advanced economies
(lower spillover effects). Thus, in emerging economies, countercyclical fiscal policy has
been conducted but with delay. The limit to resort to fiscal policy during recession in
low-income countries is due to their limited ability in using traditional monetary tools.
These findings reflect the recent reports on the conduct of monetary policy during the
coronavirus pandemic crisis (e.g., European Central Bank, 19 October 2020 and Interna-
tional Monetary Fund, 23 September 2020). In the next section, based on the full estimation
sample, I emphasize the results conducting a further analysis on the economic outlook
amid the COVID-19 pandemic shock.

(a) χ2t β̂2t Factor-Overall period (b) χ6t β̂6t Factor-Overall period

(c) χ8t β̂8t Factor-Overall period

Figure 7. Systemic contributions of the productivity given a 1% shock to financial markets are drawn
as standard deviations of the variables in the system. They account for the cross-country indicators
χ2t β̂2t (plot a), χ6t β̂6t (plot b), and χ8t β̂8t (plot c), where β̂2t, β̂6t, and β̂8t are posterior means.

5.4. Lessons and Matters for Future Policy Efforts

In summary, all aforementioned results lead to four important chain-effect findings:
(i) given an unexpected shock in financial markets, countries’ responses show higher het-
erogeneity among real sectors, pointing out non-homogeneous real economic convergence
among countries (endogeneity issues); (ii) the related spillover effects show larger intensity
among developing economies due to sever overheating periods, mainly during the recent
financial crisis due to radical structural fiscal adjustments (policy-regime shifts); (iii) at
the same time, higher intensity in the spreading of spillovers bring about larger volatilities
among either sectors or countries over time (structural changes); and (iv) these volatility
issues highlight an unlikely international business cycle synchronization among emerging
economies and thus a solid but not properly achieved integration within EU, increasing
the cost of partecipation in the European and Monetary Union (EMU).

Since developing countries tend to bear the brunt of triggering events due to their rel-
atively low economic weight (in terms of international trade exposures), ‘quasi-flexible’
policies should be conducted in order to ensure in a not-too-distant future: (i) the restora-
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tion of the confidence in financial systems, still recovering from the recent financial crisis;
(ii) higher homogeneity across countries’ responses in real economy given an unexpected
financial shock so as to safeguard the inter-country real convergence; and (iii) stronger
cross-correlations among CEWE economies when facing international shocks transmission.

In this context, ‘quasi-flexible’ policies stand for coordinated structural policy
actions among foreign and domestic sectors along with more pointed fiscal adjustments
according to country-specific requirements. Furthermore, the analysis highlights that, in
case of a noteworthy unexpected shock in real economy, outward government benefits
would be really beneficial for supporting the European integration and boosting the output
to potential growth. Thus, the need of examining international spillovers accounting for
both model misspecification problems and implied volatility changes.

In Figure 8, I display the generalized Entropy Index from 1994q4 to 2021q1. It cor-
responds to the Theil’s Entropy, calculated by weighing the GDP with the population in
terms of proportions with respect to the total, and can be used to measure the degree
of divergence and economic inequality among countries. Here, forecasts from 2019q1 to
2021q1 correspond to conditional projections of each variable drawn in the SPBVAR-MTV
in (1) and thus are able to point out the impact of an ongoing pandemic crisis on the
global economy.

The coronavirus (or COVID-19) pandemic is a major global crisis negatively affecting
sustainable development, economic growth, and stability and security across the globe. It
constitutes an unprecedented challenge with very severe socio-economic consequences
and highly strong deterioration of already existing humanitarian crises. In this study, the
findings confirm the radical decrease of the economy in the last two quarters of the current
year pursuant to the pandemic of coronavirus disease. However, a hint of the economic
recovery shows up among countries in the next quarter. Thus, some considerations can
be addressed. (i) First, coordinated and radical policy actions are necessary to deal with
health emergency needs, support inter-country economic activity, and face the ground for
the recovery. (ii) These adjustments should be implemented combining short, medium
and long-term initiatives, but taking into account the dynamics of international spillovers
and the cross-country economic—financial linkages so as to preserve confidence, stability,
and financial integration (where highly strong heterogeneity and volatility matter). (iii)
Moreover, even if several measures have already been taken at the national and EU levels,
temporary and targeted discretionary fiscal stimulus have to keep on being adopted in
a coordinated manner. More precisely, public resources and structural reforms in trade,
product, and labour markets have to be directed to strengthen the healthcare sector and
support affected economic–financial sectors. (iv) As regards monetary policy, closed
resolute actions have to be taken by the European Central Bank to support liquidity and
finance conditions to households and banks in order to preserve the smooth provision of
credit to the economy. (v) Finally, to overcome the financing pressures faced by banks and
households, all these policy adjustments need to be implemented by closely monitoring
the evolution of the situation in each country and coordinating country-specific European
and national measures. However, if an increasing degree of divergence should overlook
among countries, further and different actions, including legislative measures, will have to
be taken—where appropriate—to mitigate the impact of COVID-19.
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Figure 8. Generalized Entropy index according to the productivity growth from 1994q4 to 2021q1 is drawn.
It corresponds to the Theil’s Entropy and is computed by weighing the GDP with the population in terms of
proportions with respect to the total. The conditional projections of each variable drawn in the SPBVAR-MTV in
(1) have been used to perform forecasting from 2019q1 to 2021q1.

6. Estimating Procedure through Monte Carlo Simulations

In this analysis, I address a simulated example to highlight the performance of the
estimating procedure of SPBVAR-MTV model in (1) using Monte Carlo simulations. It
is performed accounting for two of the three described competing models in order to
compare the results to related works: MI (’General Case’), with no structural breaks and
volatility changes (hereafter ’unobserved effects’); and MI I I (’Full Case’), with unobserved
effects in either time-varying parameters or log-volatilities. The idea is to highlight the
thrust of the estimation method of performing better conditional forecasts when studying
macroeconomic–financial linkages among countries and sectors with a high dimensional
estimation sample covering—for example—triggering events (unobserved effects). Then, I
compare the estimation method to the following related works: (i) multicountry Bayesian
VAR (BVAR) as in Canova and Ciccarelli (2009); (ii) multicountry Panel Bayesian VAR
(PBVAR) as in Ciccarelli et al. (2018); (iii) Structural Panel Bayesian VAR (SPBVAR) as in
Pacifico (2019b); and (iv) Large Bayesian VAR with Stochastic Volatility (LBVAR-SV) as in
Carriero et al. (2019)34.

According to model features in Section 2.1, I use a simplified version of (1)—supposing
one lag and no intercept—and construct two distinct sets: a training set by simulating
20 variables as independent standard normal vectors (Ms = 2, Qs = 6, Q̃s = 6, and
Ξs = 6), with s stands for ’simulated’, for N = 15 and T = 100 time-series data; and a
prediction set by generating 100 additional observations in the same manner. Then, I sup-
pose two time-varying (theoretical) coefficient factors (βs

f t), with f = 1, 2, so defined. (i)

β
s
1t = (β1t,1, β1t,2, β1t,3, β1t,4, β1t,5, β1t,6)

s denoting variable-specific effects for ms = 1 and
ms = 2 stacked in six (theoretical) variable groups: (Ms

v1,Ms
v2), investigating (theoretical)

macroeconomic–financial linkages given Ms; (Ms
v3,Ms

v4), evaluating (theoretical) economic–
financial issues with policy shifts given Ms and Q̃s; and (Ms

v5,Ms
v6), jointly dealing with

(theoretical) not directly observed and measured factors (hereafter, ’additional factors’)
and policy changes given Ms, Qs, Q̃s, and Ξs. (ii) β

s
2t = (β2t,1, β2t,2, β2t,3)

s denoting
common effects stacked in three (theoretical) common groups: Ms

c1, containing the only
supposed variables Ms given N to address (theoretical) macroeconomic–financial linkages;
Ms

c2, containing the supposed variables Ms and Q̃s given N to investigate (theoretical)
economic–financial issues with policy shifts; and Ms

c3, containing all supposed variables
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Ms, Qs, Q̃s, and Ξs given N to jointly deal with (theoretical) additional factors and policy
changes. Thus, stacking for indices and variables, the supposed SPBVAR-MTV in (1) and
SNLR in (6) assume the form:

Ys
t =

[
As(L)Ys

t−1 + Bs(L)Ws
t−1 + B̈s(L)Ẅs

t−1 + Cs(L)Zs
t−1

]
+ ε

s
t (66)

Ys
t = X̃s

t ·
(

2

∑
f=1

Gs
f · β

s
f t + us

t︸ ︷︷ ︸
(γ

s
t )

)
+ Es

t ≡ χ
s
f tβ

s
f t + η

s
t (67)

Without restrictions, the simulated sample amounts to 30,000 (theoretical) regression
parameters (close to the estimation sample in the empirical analysis). More precisely, each
equation of the supposed SPBVAR-MTV in (66) has ks = [15× 20]× 1 = 300 coefficients,
and there are 100 equations in the system35.

Let the supposed factorization in (67) be exact and the hyperparameters in δ be
all known just as in the empirical application, (theoretical) posterior distributions are
computed according to Equation (40) for β

s
f t, (46)–(49) for moment distributions in the

state-space factorization structure, and (57)–(59) for ε
s
t . To draw projections for β

s
f t as close

as possible to the empirical ones, I simulate random coefficient vectors by using—as initial
value of the random number seed—the standard deviations (on average) of the (observed)
variables36 in (64). I use 1000 until 5000 draws and find that convergence is obtained at
about 3000 draws37. The total number of draws has been 2000 + 3000 = 5000, which
corresponds to the sum of the final number of draws to discard and save, respectively. A
total of 5000 retained replications have been used to conduct posterior inference at each t.

Table 3 displays the (theoretical) posterior estimates obtained simulating all five
supposed Bayesian approaches: BVAR, PBVAR, and SPBVAR for MI ; and LBVAR-SV and
SPBVAR-MTV for MI I I . The best model solution accounts for the only (theoretical) factors
highlighted in bold and corresponds to the highest log Bayes Factor (lBF > 10) according
to the generalized version of the Kass and Raftery (1995)’s scale of evidence in (53). Here,
some considerations are in order. (i) According to absence of unobserved effects (MI),
SPBVAR model performs better (higher significance) because of its structural framework.
(ii) Posterior estimates in LBVAR-SV are close to the ones in SPBVAR-MTV, and would
perform better (higher PMPs although lower significance) when dealing with the only
(theoretical) macroeconomic–financial linkages (β̂s

1t,1 and β̂
s
1t,2). It would be because of its

more general Bayesian procedure in which the estimation algorithm can be easily inserted
into any pre-existing algorithm for sampling the posterior of the VAR’s coefficients and
then constructing coincident and leading indicators. (iii) SPBVAR-MTV would perform
better when dealing with common and additional factors, and policy shifts because of its
hierarchical (structural) prior specification strategy, multivariate time-varying volatility,
and multidimensional data (panel data analysis). (iv) When jointly dealing with endogenity
issues and unobserved effects, volatility changes need to be modeled through appropriate
estimation methods (e.g., MCMC integrations). (v) When investigating unobserved effects,
modeling time-varying log-volatilities as alternative to the stochastic volatility specification,
posterior estimates seem to display either higher significance or consistency fitting the data
(larger PMPs).
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In Figure 9, I draw the corresponding (theoretical) density forecast combinations of the
supposed SNLR model in (67) for the only three indicators that account for additional fac-
tors and policy shifts when dealing with unobserved effects (χs

1t,5 β̂
s
1t,5, χ

s
1t,6 β̂

s
1t,6, χ

s
2t,3 β̂

s
2t,3).

They correspond to the (theoretical) projections of every supposed variables drawn in the
simulated sample. The yellow and red curves denote the 95% confidence bands, and the
blue and purple curves denote the (theoretical) conditional38 and unconditional39 projec-
tion of outcomes Ys

t for each N in the simulated sample, respectively. Here, the training
sample is used to run hierarchical conjugate priors and then obtain posterior distributions,
and the test sample to run forecasting accuracy.

Table 3. Simulated experiments.

Theoretical Factors General Case (MI) Full Case (MI I I)

BVAR PBVAR SPBVAR LBVAR-SV SPBVAR-MTV

β̂
s
1t,1 0.062 * 0.058 * 0.023 ** 0.026 ** 0.022 **

β̂
s
1t,2 0.052 * 0.047 ** 0.022 ** 0.021 ** 0.018 **

β̂
s
1t,3 0.214 0.145 0.057 * 0.015 ** 0.009 ***

β̂
s
1t,4 0.112 0.131 0.044 ** 0.028 ** 0.017 **

β̂
s
1t,5 0.301 0.225 0.051 * 0.015 ** 0.007 ***

β̂
s
1t,6 0.201 0.173 0.057 * 0.031 ** 0.012 **

β̂
s
2t,1 0.034 ** 0.031 ** 0.010 ** 0.006 *** 0.003 ***

β̂
s
2t,2 0.093 * 0.076 * 0.042 ** 0.012 ** 0.008 ***

β̂
s
2t,3 0.307 0.214 0.107 0.092 * 0.021**

The first column denotes the time-varying (theoretical) factors and the remaining columns refer to the (theoretical)
posterior estimates (in p-values) obtained for all five supposed Bayesian approaches according to the competing
models MI and MI I I . The best model solution accounts for the only (theoretical) factors highlighted in bold and
corresponds to the highest log Bayes Factor (lBF > 10) according to the generalized version of the Kass and
Raftery (1995)’s scale of evidence in (53). The significance codes stand for: (*) significance at 10%; (**) significance
at 5%; and (***) significance at 1%.

The results emphasize the findings obtained in Table 3. (i) (Theoretical) conditional
projections lie in the confidence interval; conversely, (theoretical) unconditional projections
tend to diverge over T. Thus, when investigating macroeconomic–financial linkages,
cross-unit lagged interdependencies and structural time variations—along with dynamic
feedback and interactions—have to be accounted for. (ii) Density forecasts in (theoretical)
total economy (third plot) tend to show a similar evolution to the ones according to
(theoretical) financial economy (second plot) because of highly stringent cross-country
interdependencies. (iii) Density forecasts in (theoretical) real economy tend to diverge
(larger projections) because of stronger cross-country heterogeneity (first plot). (iv) Overall,
the persistent divergence (different dynamics) observed in (theoretical) real and financial
dimensions and even more in (theoretical) total economy—along with wide confidence
intervals—highlights the relevant impact of consistent endogeneity and volatility issues.
Thus, the need for forecasters and policymakers to account for additional factors and policy
shifts with time-varying volatilities when formulating policies and forecasting in a large
set of multidimensional data.
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Figure 9. The plot draws (theoretical) density forecast combinations for outcomes Ys
t given N for the indicators that

account for additional factors and policy shifts with unobserved effects. They are: χ
s
1t,5 β̂

s
1t,5 (’theoretical’ real economy);

χ
s
1t,6 β̂

s
1t,6 (’theoretical’ financial markets); and χ

s
2t,3 β̂

s
2t,3 (’theoretical’ total economy). They correspond to (theoretical)

conditional (blue line) and unconditional (purple line) projections of each supposed variable drawn in (67).

7. Concluding Remarks

This paper provides new empirical insights in order to give a relevant contribution to the more recent literature on
international macroeconomic-financial linkages when jointly modeling and quantifying multicountry data using the
information contained in a large set of endogenous and economic–financial variables. A multicountry SPBVAR with
Multivariate Time-varying Volatility is developed to jointly deal with issues of endogeneity, because of omitted factors
and unobserved heterogeneity, and volatility, because of policy regime shifts and structural changes. The two main
differences with respect to a standard SPBVAR lie in an additional component to investigate fiscal and monetary
policy implications and interactions, and in the variance-covariance matrix allowed to be time-variant. The latter is an
useful way of modeling time-varying conditional second moments to provide an alternative to the stochastic volatility
specification. The computational costs involved in using that specification are moderate since the high dimensionality
is avoided via Bayesian inference and Monte Carlo Markov Chain (MCMC) implementations.

An empirical application is developed by accounting for the Central, Eastern, and Western European countries, with
particular emphasis to the Great recession and successive post-crisis periods. The United States are included in the
analysis to assess international spillover effects and possible contagion measures among financial markets. In this
study, I focus on the latest two alternative monetary policy regimes that have been in place since the 1990: (1) the
Inflation Stabilization Era from 1994 to 2008 and (2) the Zero Interest Rate Era from 2008 to 2015. Two more additional
periods are also considered: (1) 2006q1− 2009q4 to investigate possible commonality between financial markets and
real economy during the Great recession and (2) 2010q1− 2018q4 to evaluate fiscal implications and policy perspectives
during post-crisis consolidation.

A simulated experiment – compared to related existing approaches – is also addressed to highlight the performance
of the estimating procedure developed in this study using some Monte Carlo simulations. The findings prove that
the hierarchical structural framework with time-varying log-volatilities perform better conditional forecasts when
studying macroeconomic–financial linkages with structural breaks and volatility changes.

From a global perspective, the same dynamic behaviour is observed in the transmission of US financial shocks,
with outward spillover effects. The findings are consistent and robust with the more recent literature on multicountry
dynamic panel setups. More precisely, they confirm that US seem to be an important driver in allowing unexpected
shocks to spill over and thus affecting European financial markets, mainly concerning CEE economies with inward
spillovers. Then, intra-country shocks directly affect a country’s own output growth in the real economy because of
consistent cross-country interdependencies.

From a modeling perspective, the presence of highly strong intra-CEWE heterogeneity, in terms of intensity and
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7. Concluding Remarks

This paper provides new empirical insights in order to give a relevant contribution to
the more recent literature on international macroeconomic–financial linkages when jointly
modeling and quantifying multicountry data using the information contained in a large set
of endogenous and economic–financial variables. A multicountry SPBVAR with Multivari-
ate Time-varying Volatility is developed to jointly deal with issues of endogeneity, because
of omitted factors and unobserved heterogeneity, and volatility, because of policy regime
shifts and structural changes. The two main differences with respect to a standard SPBVAR
lie in an additional component to investigate fiscal and monetary policy implications and
interactions, and in the variance-covariance matrix allowed to be time-variant. The latter
is an useful way of modeling time-varying conditional second moments to provide an
alternative to the stochastic volatility specification. The computational costs involved in
using that specification are moderate since the high dimensionality is avoided via Bayesian
inference and Monte Carlo Markov Chain (MCMC) implementations.

An empirical application is developed by accounting for the Central, Eastern, and
Western European countries, with particular emphasis to the Great Recession and suc-
cessive post-crisis periods. The United States are included in the analysis to assess inter-
national spillover effects and possible contagion measures among financial markets. In
this study, I focus on the latest two alternative monetary policy regimes that have been in
place since the 1990: (1) the Inflation Stabilization Era from 1994 to 2008 and (2) the Zero
Interest Rate Era from 2008 to 2015. Two more additional periods are also considered: (1)
2006q1–2009q4 to investigate possible commonality between financial markets and real
economy during the Great Recession and (2) 2010q1–2018q4 to evaluate fiscal implications
and policy perspectives during post-crisis consolidation.

A simulated experiment—compared to related existing approaches—is also addressed
to highlight the performance of the estimating procedure developed in this study using
some Monte Carlo simulations. The findings prove that the hierarchical structural frame-
work with time-varying log-volatilities perform better conditional forecasts when studying
macroeconomic–financial linkages with structural breaks and volatility changes.

From a global perspective, the same dynamic behaviour is observed in the transmission
of US financial shocks, with outward spillover effects. The findings are consistent and robust
with the more recent literature on multicountry dynamic panel setups. More precisely, they
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confirm that US seem to be an important driver in allowing unexpected shocks to spill over
and thus affecting European financial markets, mainly concerning CEE economies with
inward spillovers. Then, intra-country shocks directly affect a country’s own output growth
in the real economy because of consistent cross-country interdependencies.

From a modeling perspective, the presence of highly strong intra-CEWE heterogeneity,
in terms of intensity and spreading of spillover effects, emphasize more consistent differ-
ence among financial markets due to tighter monetary policies. In the aftermath of the
Great Recession and an ongoing post-crisis consolidation, despite a consistent homogeneity
holds among CEWE economies, different countries’ responses tend to matter due to coordi-
nated but not fairly flexible fiscal actions, mainly among emerging economies suffering
from lower competitiveness. The findings confirm the need of examining international
spillovers accounting for both misspecification problems and implied volatility changes.

From a policy perspective, the empirical results face a situation of trade-off. More
precisely, if on one hand the adoption of sounder macroeconomic policies and economic–
institutional changes—put in place to foster consolidated policy actions—have helped to
bring inflation in emerging economies back under control, on the other hand, in case of
a noteworthy unexpected financial shock—without appropriate coordinated structural
reforms in trade, product, and labour markets—outward government benefits will be not
able for supporting the process of international financial integration among countries and
boosting the output to potential growth.
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Appendix A. Data Collection

Table A1. Data description.

Variable Data Description

General Government Spending Financial accounts for general government spending.
Gross Fixed Capital Formation Investments of fixed assets at current prices.

GDP Growth Rate It is calculated as: Log
( GDPit,j

GDPit−1,j

)
.

Inflation It is calculated from the Consumer Price Index.
Bank Leverage It is calculated as Loan (L) to Deposit (D) ratio.

Credit Growth It is calculated as: 100 ·
(
(Lt/Pt)−(Lt−4/Pt−4)

Lt−4/Pt−4

)
.

Bilateral Flows of Trade Exports and imports in goods and services.
Financial Transactions Financial Assets on the total economy.
Interest Rate International interest policy rate.
Public Debt Non-financial accounts for general government debt.
Current Account Balance Non-financial accounts for general government net.
Financial Consumption Expenditure Total general government expenditure at current prices.
Private Sector Consumption Private consumption expenditure.
Change of Unemployment Rate Growth rate of the unemployment rate as percentage.
Nominal Labour Cost It is defined as the ratio of labour costs to labour productivity.
Household price index Real household per capita index.
Productivity It corresponds to logarithm of the real GDP per capita.

Here, general government spending, gross fixed capital formation, bilateral flows of trade, financial transactions, public
debt, current account balance, financial consumption, private consumption, and unemployment rate are weighted for
the GDP.
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Notes
1 See, for further correlated studies, Pacifico (2019a, 2020a), and Curcio et al. (2020).
2 The first two indices are a generalized version of the ones constructed in Pacifico (2019b).
3 See, for instance, Gelfand and Dey (1994).
4 It would correspond to the conditional density of the data given the log-volatilities, but marginal of the time-varying

parameters.
5 Overfitting and thus overestimation of effect sizes refers to a common problem in Bayesian Model Averaging

since more complex models will always provide a somewhat better fit to the data than simpler models, where the
’complexity’ stands (for example) for the number of unknown parameters. See, for instance, Pacifico (2020b).

6 See, for instance, Tjalling (1995).
7 A proxy variable is an easily measurable variable used in place of a variable that cannot be directly measured.
8 See, for instance, Pacifico (2019b).
9 The vec operator transforms a matrix into a vector by stacking the columns of the matrix, one underneath the other.

10 Its form would be similar to the parsimonious Seemingly Unrelated Regression (SUR) model (homoskedastic VAR)
developed in the literature (see, for instance, Canova and Ciccarelli (2009) and Ciccarelli et al. (2018)), but adapted to
a hierarchical time-varying multicountry structural setup.

11 The Wishart distribution is a multivariate extension of χ2 distribution and, in Bayesian statistics, corresponds to the
conjugate prior of the inverse covariance-matrix of a multivariate normal random vector.

12 They denote both unobserved heterogeneity and misspecification problems.
13 See Section 3.2 for further detail.
14 Here, best stands for the model solution (or combination of predictors affecting the outcomes) with better prediction

accuracy (see, for instance, Pacifico (2020b)).
15 The PMPs, in Bayesian statistics, are computed by updating the prior probabilities through Bayes’ theorem. See, for

instance, Pacifico (2020b) concerning PMPs’ computations in time-varying high dimensional data.
16 See, for instance, Krolzig (1997, 2000) and Sims and Zha (2006).
17 See, for instance, Levine and Casella (2014).
18 Analytical integration for integrating out the time-varying log-volatilities are explained in depth in Section 3.2.
19 See, for instance, Carter and Kohn (1994).
20 See Section 4 for the form of the Mv’s and the Mc’s.
21 See Section 3.2.2.
22 See Section 3.3.
23 See, for instance, Jacquier et al. (2002).
24 See, for instance, Roberts and Rosenthal (2001).
25 See, for instance, McLachlan and Krishnan (2012) and Steele (1996).
26 See, for instance, Kroese et al. (2011).
27 Czech Republic (CZ), Hungary (HU), Estonia (EE), Latvia (LV), Lithuania (LT), Poland (PO), Slovak Republic (SK), and

Slovenia (SL).
28 Austria (AT), Belgium (BE), France (FR), Germany (DE), Ireland (IE), Italy (IT), Portugal (PT), and Spain (ES).
29 The weightsit,j component corresponds to the sum of rweightsit,j and f weightsit,j.
30 It stands for the Baltic States (EE, LV, and LT).
31 They refer to the advanced and then WE countries.
32 World Health Organization, 11 March 2020.
33 See, e.g., Dell’Ariccia et al. (2018); Guerrieri et al. (2020); Romer and Romer (2018), and Bernanke (2020).
34 See, e.g., Banbura et al. (2010); Carriero et al. (2015); Giannone et al. (2015), and Koop (2013) for recent studies on

LBVAR models and time variation in their volatilities; and Clark (2011); Clark and Ravazzolo (2015a), and Primiceri
(2005) concerning studies on the importance of time variation in the volatilities modeled as stochastic volatility.

35 Monte Carlo simulations would work well up to 35, 000 data. Compared to higher sample (≥35,000), the associated
computational costs seem to become quite expensive. In that case, whether one would be interested to improve
the empirical analysis accounting for larger country indices and sets of variables, but ensuring consistent posterior
estimates, a simple solution would be fixing the time (T) as necessary (e.g., according to the economic–financial and
policy issues to be addressed).

36 The idea is to highlight the performance of the estimation method by conducting a simulated experiment preserving
the empirical findings (such as presence of cross-unit interdependencies, commonality, and dynamic feedback and
interactions related to (theoretical) unobserved effects).
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37 The convergence has been found by amounting to about 1.5 draws per (theoretical) regression parameter.
38 Generally, the conditional projection in density forecasts is the one that the model would have obtained over the

same period conditionally on the actual path of unexpected dynamics for that period.
39 Generally, the unconditional projection in density forecasts is the one that the model would obtain for output growth

for that period only on the basis of historical information, and it is consistent with a model-based forecast path for
the other variables.
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