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Abstract: We generalize the Gaussian Mixture Autoregressive (GMAR) model to the Fisher’s z
Mixture Autoregressive (ZMAR) model for modeling nonlinear time series. The model consists of a
mixture of K-component Fisher’s z autoregressive models with the mixing proportions changing over
time. This model can capture time series with both heteroskedasticity and multimodal conditional
distribution, using Fisher’s z distribution as an innovation in the MAR model. The ZMAR model is
classified as nonlinearity in the level (or mode) model because the mode of the Fisher’s z distribution
is stable in its location parameter, whether symmetric or asymmetric. Using the Markov Chain
Monte Carlo (MCMC) algorithm, e.g., the No-U-Turn Sampler (NUTS), we conducted a simulation
study to investigate the model performance compared to the GMAR model and Student t Mixture
Autoregressive (TMAR) model. The models are applied to the daily IBM stock prices and the
monthly Brent crude oil prices. The results show that the proposed model outperforms the existing
ones, as indicated by the Pareto-Smoothed Important Sampling Leave-One-Out cross-validation
(PSIS-LOO) minimum criterion.

Keywords: Fisher’s z distribution; mixture autoregressive model; the IBM stock prices; the Brent
crude oil prices; Bayesian analysis; no-U-turn sampler; Stan program

1. Introduction

Many time series indicate non-Gaussian characteristics, such as outliers, flat stretches,
bursts of activity, and change points (Le et al. 1996). Several methods have been proposed to
deal with the presence of bursts and outliers such as applying robust or resistant estimation
procedures (Martin and Yohai 1986) or omitting the outliers based on the use of diagnostics
(Bruce and Martin 1989). Le et al. (1996) introduced a Mixture Transition Distribution
(MTD) model to capture non-Gaussian and nonlinear patterns, using the Expectation–
Maximization (EM) algorithm as its estimation method. The model was applied to two
real datasets, i.e., the daily International Business Machines (IBM) common stock closing
price from 17 May 1961 to 2 November 1962 and the series of consecutive hourly viscosity
readings from a chemical process. The MTD model appears to capture the features of the
data better than the Autoregressive Integrated Moving Average (ARIMA) models.

The Gaussian Mixture Transition Distribution (GMTD), which is a special form of
MTD, was generalized to a Gaussian Mixture Autoregressive (GMAR) model by Wong
and Li (2000). The model consists of a mixture of K Gaussian autoregressive components
and is able to model time series with both heteroscedasticity and multimodal conditional
distribution. It was applied to both the daily IBM common stock closing price from 17 May
1961 to 2 November 1962 and the Canadian lynx data for the period 1821–1934. The results
indicated that the GMAR model was better than the GMTD, ARIMA, and Self-Exciting
Threshold Autoregressive (SETAR) models.

The use of the Gaussian distribution in the GMAR model still leaves problems, be-
cause it is able to capture only short-tailed data patterns. Some methods developed to
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overcome this problem include the use of distributions other than Gaussian, e.g., the Lo-
gistic Mixture Autoregressive with Exogenous Variables (LMARX) model (Wong and Li
2001), Student t-Mixture Autoregressive (TMAR) model (Wong et al. 2009), Laplace MAR
model (Nguyen et al. 2016), and a mixture of autoregressive models based on the scale
mixture of skew-normal distributions (SMSN-MAR) model (Maleki et al. 2020). Maleki
et al. (2020) proposed the finite mixtures of autoregressive processes assuming that the
distribution of innovations belongs to the class of Scale Mixture of Skew-Normal (SMSN)
distributions. This distribution innovation can be employed in data modeling that has
outliers, asymmetry, and fat tails in the distribution simultaneously. However, the SMSN
distribution’s mode was not stable in its location parameters (Azzalini 2014). In this paper,
we propose a new MAR model called the Fisher’s z Mixture Autoregressive (ZMAR) model
which assumes that the distribution of innovations belongs to the Fisher’s z distributions
(Solikhah et al. 2021). The ZMAR model consists of a mixture of K-component Fisher’s
z autoregressive models, where the numbers of components are based on the number of
modes in the marginal density. The Fisher’s z distribution’s mode is stable in its location
parameters, whether it is symmetrical or skewed. Therefore, Fisher’s z uses the errors
in each component of the MAR model to capture the ‘most likely’ mode value—(not the
mean, median, or quantile) of the conditional distribution Yt given the past information.
The conditional mode may be a more useful summary than the conditional mean when
the conditional distribution of Yt given the past information is asymmetric. Other distribu-
tions that also have a stable mode in its location parameter are the MSNBurr distribution
(Iriawan 2000; Choir et al. 2019; Pravitasari et al. 2020), the skewed Studen t distribution
(Fernández and Steel 1998), and the log F-distribution (Brown et al. 2002).

The Bayesian technique using Markov Chain Monte Carlo (MCMC) is proposed to
estimate the model parameters. Among the algorithms in the MCMC, the Gibbs sam-
pling (Geman and Geman 1984) and the Metropolis (Metropolis et al. 1953) algorithms are
widely applied and well-known algorithms. However, these algorithms have slow conver-
gence due to inefficiencies in the MCMC processes, especially in the case of models with
many correlated parameters (Gelman et al. 2014, p. 269). Furthermore, Neal (2011) has
shown that the Hamiltonian Monte Carlo (HMC) algorithm is a more efficient and robust
sampler than Metropolis or Gibbs sampling for models with complex posteriors. However,
the HMC suffers from a computational burden and the tuning process. The HMC can
be tuned in three places (Gelman et al. 2014, p. 303), i.e., the probability distribution for
the momentum variables ϕ, the step size of the leapfrog ε, and the number of leapfrog
steps L per iteration. To overcome the challenges related to computation and tuning, the
Stan program (Gelman et al. 2014, p. 307; Carpenter et al. 2015, 2017) was developed to
automatically apply the HMC. Stan runs HMC using the no-U-turn sampler (NUTS) (Hoff-
man and Gelman 2014). Al Hakmani and Sheng (2017) used NUTS for the two-parameter
mixture IRT (Mix2PL) model and discussed in more detail its performance in estimating
model parameters under eight conditions, i.e., two sample sizes per class (250 and 500),
two test lengths (20 and 30), and two levels of latent classes (2-class and 3-class). The results
indicated that overall, NUTS performs well in retrieving model parameters. Therefore,
this research applies the Bayesian method to estimate the parameters of the ZMAR model,
using MCMC with the NUTS algorithm, as well as simulation studies to examine different
scenarios in order to evaluate whether the proposed mixture model outperforms its coun-
terparts. The models are applied to both the daily IBM common stock closing price from 17
May 1961 to 2 November 1962 (Box et al. 2015, p. 627) and the Brent crude oil price (World
Bank 2020). For model selection, we used cross-validation Leave-One-Out (LOO) coupled
with the Pareto-smoothed important sampling (PSIS), namely PSIS-LOO. This approach
has very efficient computation and was stronger than the Widely Applicable Information
Criterion (WAIC) (Vehtari et al. 2017).

The rest of this study is organized as follows. Section 2 describes the definition and
properties of Fisher’s z distribution in detail. In Section 3, we introduce the ZMAR model.
Section 4 demonstrates the flexibility of the ZMAR model compared with the TMAR and
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GMAR models using simulated datasets. Section 5 contains the application and comparison
of the models using the daily IBM stock prices and the monthly Brent crude oil prices. The
conclusion and discussion are given in Section 6.

2. Four-Parameter Fisher’s z Distribution

Let Y be a random variable distributed as an F distribution with d1 and d2 degrees of
freedom. The density of Z = 1

2 ln Y can be defined as

ζ(d1k ,d2k)
(z) = fZ(z; d1, d2) =

2
(

d2
d1

) 1
2 d2

B
(

1
2 d1, 1

2 d2

) e−d2z(
1 + e

−2z+ln d2
d1

)(d1+d2)/2
, (1)

and the cumulative distribution function (CDF) of Z is expressed as

Z(d1k ,d2k)
(z) = Iz∗

(
1
2

d2,
1
2

d1

)
=

∫ z∗
0 t

1
2 d2−1(1− t)

1
2 d1−1dt

B
(

1
2 d1, 1

2 d2

) , (2)

where e is the exponential constant; z∗ = d2e−2z

d1+d2e−2z , Iz∗(.) is the incomplete beta function
ratio; and B(.) is the beta function, −∞< z< ∞, d1 >0, d2 >0. Equations (1) and (2) are
defined as a probability density function (p.d.f) and a CDF of standardized Fisher’s z
distribution, respectively. Let Z be a random variable distributed as a standardized Fisher’s
z distribution. Let µ be a location parameter, and let σ be a scale parameter. The density of
X = σZ + µ is (Solikhah et al. 2021)

fX(x; d1, d2, µ, σ) =
2
σ

(
d2
d1

) 1
2 d2

B
(

1
2 d1, 1

2 d2

) e−d2(
x−µ

σ )(
1 + e

−2( x−µ
σ )+ln d2

d1

)(d1+d2)/2
, (3)

where −∞ < x < ∞,−∞ < µ < ∞, and σ > 0. Equation (3) is defined as a p.d.f of Fisher’s
z distribution. It is denoted as z(d1, d2, µ, σ). The CDF of the Fisher’s z distribution is
expressed as

FX(x; d1, d2, µ, σ) = Ix∗

(
1
2

d2,
1
2
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)
=

1

B
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1
2 d1, 1
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) x∗∫
0

t
1
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1
2 d1−1dt, (4)

where x∗ = d2e−2( x−µ
σ )

d1+d2e−2( x−µ
σ )

. The quantile function (QF) of the Fisher’s z distribution is

defined as

xp = µ +
σ

2
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where
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/
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xp

(
1
2 d1, 1
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)))
is the QF of the F-distribution

and I−1
xp(.) is the inversion of the incomplete beta function ratio. Let P−1

xp(.) be the
inversion of the incomplete gamma function ratio. The QF of the Fisher’s z distribution
can be expressed as

xp = µ +
σ

2
ln

d2

(
P−1

v1p(d1/2)
)

d1

(
P−1v2p(d2/2)

)
 , (6)
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where 2 P−1
v1p

(
1
2 d1

)
and 2 P−1

v2p

(
1
2 d2

)
are the QF of the chi-square distribution with d1

and d2 degrees of freedom, respectively. The proofs of Equation (1) up to Equation (6) are
postponed to Appendix A. The parameters d1 and d2, known as the shape parameters, are
defined for both skewness (symmetrical if d1 = d2, asymmetrical if d1 6= d2) and fatness
of the tails (large d1 and d2 imply thin tails). The Fisher’s z distribution is also always
unimodal and has the mode at x = µ. Furthermore, a change in the value of the parameter
µ only affects the mean of the distribution. It does not affect the variance, skewness, and
kurtosis of the distribution. The detailed properties of the Fisher’s z distribution are shown
in Appendix B.

A useful tutorial on adding custom function to Stan is provided by Stan Development
Team (2018) and Annis et al. (2017). To add a user-defined function, it is first necessary to
define a block of function code. The function block must precede all other blocks of Stan
code. The code for the random numbers generator function (fisher_z_rng) is shown in
Appendix C.1, and the log probability function (fisher_z_lpdf) is shown in Appendix C.2.
As an illustration, the p.d.f and CDF of the Fisher’s z distribution with various parameter
settings can be seen in Figures 1 and 2, respectively.
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3. Fisher’s z Mixture Autoregressive Model
3.1. Model Specification

Let yt; t = 1, 2, . . . , T be the real-valued time series of interest; let F(t−1) denote the

information set up to time t− 1, let F
(

yt

∣∣∣F(t−1)

)
; k = 1, 2, · · · , K be the conditional CDF

of Yt given the past information, evaluated at yt; and K is the number of components in the
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ZMAR model. Let Z(d1k ,d2k)
(.) be the CDF of the standardized Fisher’s z distribution with

d1k and d2k shape parameters, given by Equation (2); let εk.t be a sequence of independent
standardized Fisher’s z random variables such that εk.t is independent of {yt−i, i > 0};
and let σk is a scale parameter of the kth component. The K-component ZMAR can be
defined as

F
(

yt

∣∣∣F(t−1)

)
=

K

∑
k=1

ηkZ(d1k ,d2k)

(
yt − µk.t

σk

)
, (7)

or

yt =


µ1.t + σ1ε1.t; with probability η1;
µ2.t + σ2ε2.t; with probability η2;
...
µK.t + σKεK.t; with probability ηK,

(8)

with
µk.t = φk.0 + ∑pk

i=1 φk.iyt−i ; k = 1, 2, · · · , K , (9)

where the vector η = (η1, . . . , ηK) is called the weights. η takes a value in the unit simplex

EK, which is a subspace of (<+)
K, defined by the following constraint, ηk > 0 and

K
∑

k=1
ηk = 1.

We use the abbreviation ZMAR(K; p1, p2, . . . , pK) for this model, with the parameter
ϑ = (θ1, θ2, . . . , θK, η); η = (ηk); θk = (d1k, d2k, σk, φk.0, φk); φk =

(
φk.1, φk.2, . . . , φk.pk

)
; to

each value k ∈ {1, 2, . . . , K}; taking values in the parameter space ΘK = ΘK × EK, φk.i
denotes the AR coefficient on the kth component and ith lag; i = 1, 2, . . . , pk; and pk
denotes the autoregressive order of the kth component. Using the parameters θk, we first
define the K auxiliary Fisher’s z AR(pk) processes

fk

(
yt

∣∣∣F(t−1)

)
= φk.0 + ∑pk

i=1 φk.iyt−i + σkεk.t ; k = 1, 2, . . . , K,

where the AR coefficients φk are assumed to satisfy

1−∑pk
i=1 φk.iCi 6= 0 for |C| ≤ 1; k = 1, . . . , K.

This condition implies that the processes fk

(
yt

∣∣∣F(t−1)

)
are stationary and that each

component model in (7) or (8) satisfies the usual stationarity condition of the linear AR(pk)
model.

Suppose p = max(p1, p2, . . . , pK). Let a univariate time series y = (y1, y2, · · · , yT)
be influenced by a hidden discrete indicator variables Q = (Q1, Q2, · · · , QT), where
Qt takes values in the set {1, 2, . . . , K}. The probability of sampling from the group la-
beled Qt = k is equal to ηk. Suppose that the conditional density of Yt given Qt = k is
fk

(
yt

∣∣∣F(t−1)

)
; (k = 1, 2, . . . , K). Let H = (H1

′, H2
′, . . . , HT

′)′ be the unobserved random

variable, where Ht is a K-dimensional vector with the values h = (h1
′, h2

′, . . . , hT
′)′,

where hk.t = 1 if Qt = k and hk.t = 0, otherwise. Thus, Ht is distributed according
to a multinomial distribution consisting of one draw on K categories with probabilities
η1, η2, . . . , ηK (McLachlan and Peel 2000, p. 7); that is,

P(Ht = ht) = η1
h1.t η2

h2.t . . . ηK
hK.t . (10)

Otherwise, this can be written as Ht ∼ MultK(1, η); where η = (η1, η2, . . . , ηK). The
conditional likelihood for the ZMAR(K; p1, p2, . . . , pK) can be formed by

P(yt |ϑ ) =
K

∏
k=1

T

∏
t=p+1

[ηk∆1∆2]
hk.t , (11)
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where ∆1 = 2( d2k/d1k)
1
2 d2k

σkB( 1
2 d1k , 1

2 d2k)
, ∆2 =

exp(−d2k(ak.t/σk))

[1+exp(−2(ak.t/σk)+ln[d2k/d1k ])]
(d1k+d2k)/2 , and ak.t = yt − µk.t.

Let τt.k be the probability for each t-th observation, t = (p + 1), (p + 2), . . . , T, as
members of the k-th component, k = 1, 2, . . . , K of a mixture distribution. Suppose
yt = (y1, y2, · · · , yt), Bayes’ rule to compute the τt.k can be expressed as (Frühwirth-
Schnatter 2006, p. 26)

P
(
Qt = k

∣∣yt, ϑ
)
= τt.k =

ηk fk

(
yt

∣∣∣F(t−1)

)
∑K

k=1 ηk fk

(
yt

∣∣∣F(t−1)

) . (12)

Let ζ(d1k ,d2k)
(.) be the p.d.f of the standardized Fisher’s z distribution and given by

Equation (1). Then, the mixing weights for the ZMAR model can be expressed as

τt.k =
ηkσk

−1ζ(d1k ,d2k)
(ak.t/σk)

∑K
k=1 ηkσk

−1ζ(d1k ,d2k)
(ak.t/σk)

; k = 1, 2, . . . , K.

Suppose ωk.t and ξk
2 signify the conditional mean and conditional variance of the kth

component, which are defined by

ωk.t = E[Yt| θk] = µk.t +
σk
2

(
ln

d2k
d1k
− ψ

(
1
2

d2k

)
+ ψ

(
1
2

d1k

))
, (13)

and

ξk
2 = Var[Yt| θk] =

(σk
2

)2
(

ψ′
(

1
2

d2k

)
+ ψ′

(
1
2

d1k

))
, (14)

where ψ(.) is the digamma function and ψ′(.) is the trigamma function. The conditional
mean of Yt (Frühwirth-Schnatter 2006, p. 10) is obtained as

ωt = E
[

Yt|F(t−1)

]
=

K

∑
k=1

ηkωk.t, (15)

the conditional variance of Yt (Frühwirth-Schnatter 2006, p. 11) is obtained as

ξ2 = Var
[

Yt|F(t−1)

]
=

K

∑
k=1

ηk

(
ωk.t

2 + ξk
2
)
−ωt

2, (16)

and the higher-order moments around the mean of Yt (Frühwirth-Schnatter 2006, p. 11) are
obtained as

E
(
(Y−ωt)

3
∣∣∣F(t−1)

)
=

K

∑
k=1

(
(ωk.t −ωt)

2 + 3ξk
2
)
(ωk.t −ωt)ηk, (17)

E
(
(Y−ωt)

4
∣∣∣F(t−1)

)
=

K

∑
k=1

(
(ωk.t −ωt)

4 + 6(ωk.t −ωt)
2ξk

2 + 3ξk
4
)

ηk. (18)

These expressions apply to any specification of the mixing weights ηk.

3.2. Bayesian Approach for ZMAR Model

In this paper, we apply a Bayesian method to estimate the parameters ϑ. The Bayesian
analysis requires the joint posterior density π(ϑ|y), which is defined by

π(ϑ|y) ∝ P(yt |ϑ )π(ϑ), (19)
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where P(yt |ϑ ) is the conditional likelihood function given by Equation (11) and π(ϑ) is
the prior of the parameter model, which is defined by

π(ϑ) = π(η)
K

∏
k=1

π(d1k)π(d2k)π(σk)π(φk.0)
pk

∏
i=1

π(φk.i), (20)

where the π(η) is prior for the η parameter, the π(d1k), π(d2k), π(σk), π(φk.0) and
π(φk.i) are prior for the d1, d2, σ, φ0 and φi parameters at the kth component; index i
denotes the ith lag; i = 1, 2, . . . , pk;k = 1, 2, . . . , K.

Various noninformative prior distributions have been suggested for the prior of AR
coefficients, scale parameters, and the selection probabilities in similar models. Huerta and
West (1999) analyzed and used the uniform Dirichlet distribution as the prior distribution
for the latent variables related to the latent components of an autoregressive model. Gel-
man (2006) suggested working within the half-t family of prior distributions for variance
parameters in the hierarchical modelling, which are more flexible and have better behavior
near 0, compared to the inverse-gamma family. Albert and Chib (1993) used the normal
distribution as the prior for the autoregressive coefficient in the Markov switching autore-
gressive model. Based on the findings of the previous studies, we take the singly truncated
Student t distribution (positive values only) (Kim 2008) for the priors of the d1k, d2k,
and σk, with the degrees of freedoms v1k, v2k,ν3k, the location parameters m1k, m2k, m3k,
and the scale parameters s1k

2, s2k
2, s3k

2, respectively. Therefore, it can be written as
d1k ∼ tν1k

(
m1k, s1k

2)I(0, ∞), d2k ∼ tν2k

(
m2k, s2k

2)I(0, ∞), and σk ∼ tν3k

(
m3k, s3k

2)I(0, ∞).
We take the Dirichlet distribution (Kotz et al. 2000, p. 485) for the prior of the η parameter,
thus η1, η2, . . . , ηK−1 ∼ Dir(δ1, δ2, . . . , δK). For the priors of the φk.0 and φk.i, we take
the normal distribution with the location parameters uk.0, uk.i and the scale parameters
gk.0

2, gk.i
2, thus φk.0 ∼ N

(
uk.0, gk.0

2) and φk.i ∼ N
(
uk.i, gk.i

2); i = 1, 2, . . . , pk. Employing
the setup of prior distributions, as shown above, the natural logarithm of the joint posterior
distribution of the model is given by

ln π(ϑ|y) ∝
K

∑
k=1

((
T

∑
t=p+1

hk.t(ln ηk + Λ1 + Λ2)

)
+ Λ3 + Λ4 + Λ5 + Λ6 + Λ7 +

pk

∑
i=1

Λ8

)
, (21)

where Λ1 = d2k ln[d2k/d1k] + ln
[
Γ
(

1
2( d1k + d2k)

)]
− ln

[
Γ
(

1
2 d1k

)]
− ln

[
Γ
(

1
2 d2k

)]
− ln σk,

Λ2 = − d2k

(
ak.t
σk

)
− d1k+ d2k

2 ln
[
1 + exp

[
−2 ak.t

σk
+ ln[d2k/d1k]

]]
, Λ3 = (δK − 1) ln

[
1−

K−1
∑

k=1
ηk

]
+

K−1
∑

k=1
(δk − 1) ln ηk, Λ4 = − 1

2 (ν1k + 1) ln
[

1 + 1
ν1k

(
d1k−m1k

s1k

)2
]

, Λ5 = − 1
2 (ν2k + 1)

ln
[

1 + 1
ν2k

(
d2k−m2k

s2k

)2
]

, Λ6 = − 1
2 (ν3k + 1) ln

[
1 + 1

ν3k

(
σk−m3k

s3k

)2
]

, Λ7 = − 1
2

(
φk.0−uk.0

gk.0

)2
,

and Λ8 = − 1
2

(
φk.i−uk.i

gk.i

)2
.

HMC requires the gradient of the ln-posterior density. In practice, the gradient must
be computed analytically (Gelman et al. 2014, p. 301). The gradient of `(ϑ|y) is

∂

∂ϑ
`(ϑ|y) = ∂

∂ϑ
ln π(ϑ|y)

∂

∂ϑ
`(ϑ|y) =

(
∂`(ϑ|y)

∂ηk
,

∂`(ϑ|y)
∂d1k

,
∂`(ϑ|y)

∂d2k
,

∂`(ϑ|y)
∂σk

,
∂`(ϑ|y)

∂φk.0
,

∂`(ϑ|y)
∂φk.i

)
(22)

where i = 1, 2, . . . , pk; k = 1, 2, . . . , K. The HMC algorithm for estimating the parameters of
the ZMAR model is as follows:

1. Determine the initial value of the parameter ϑ0, the diagonal mass matrix M, the scale
factor of the leapfrog steps ε, the number of leapfrog steps N , and the number of
iterationsR.

2. For each iteration r; r = 1, 2, . . . ,R whereR represents the number of iterations,
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a. Generate the momentum variables ϕ with ϕ ∼ Normal(0, M);
b. For each iteration n = 1, 2, . . . ,N ,

(1) Use the gradient of the ln-posterior density of ϑn to make a half-step of
ϕn

ϕn+0.5 ← ϕn +
1
2 ε

∂ ln π( ϑn |y)
∂ϑn

,
(2) Update the vector ϑn using the vector ϕn+0.5

ϑn+0.5 ← ϑn + εM−1ϕn+0.5
(3) Update the next half-step for ϕ

ϕn+1 ← ϕn+0.5 +
1
2 ε

∂ ln π( ϑn+0.5|y)
∂ϑn+0.5

.

c. Labels ϑ(r−1) and ϕ(r−1) as the value of the parameter and momentum vectors
at the start of the leapfrog process and ϑ#, ϕ# as the value after the N steps.

d. Compute

b =
π( ϑ#|y) f (ϕ#)

π( ϑ(r−1)|y) f (ϕ(r−1))
.

e. Set ϑ(r)

ϑ(r) =

{
ϑ# with probability min(b, 1)

ϑ(r−1) otherwise.
f. Save ϑ(r); r = 1, 2, . . . ,R.

The performance of the HMC is very sensitive to two user-defined parameters, i.e.,
the step size of the leapfrog ε and the number of leapfrog steps L. The No-U-Turn Sampler
(NUTS) could eliminate the need to set the parameter L and could adapt the step size
parameter ε on the fly based on a primal-dual averaging (Hoffman and Gelman 2014). The
NUTS algorithm was implemented in C ++ as part of the open-source Bayesian inference
package, Stan (Gelman et al. 2014, p. 304; Carpenter et al. 2017). Stan is also a platform for
computing log densities and their gradients, so that the densities and gradients are easy to
obtain (Carpenter et al. 2015, 2017). Stan can be called from R using the rstan package. An
example of the Stan code to fit the ZMAR model can be seen in Section 4.

4. Simulation Studies

A simulation study was carried out to evaluate the performance of the ZMAR model
compared to the TMAR and GMAR models. We consider the simulations to accommodate
eight scenarios for the conditional density in the first component of the ZMAR model.
Furthermore, the conditional densities in the second and third components are specified as
the symmetric-fat-tail of the Fisher’s z distributions.

We conducted a Bayesian analysis on the eight simulated datasets, whose datasets
were generated by the following steps:

• Step 1: Specify the ZMAR model with three components as ZMAR(3; 1, 1, 1) where

f
(

yt

∣∣∣F(t−1)

)
=

3
∑

k=1
ηk fk

(
yt

∣∣∣F(t−1)

)
=

3
∑

k=1
ηk(φk.0 + φk.1yt−1 + ek.t); η1 = η2 = η3 =

1
3 ; φ1.1 = −0.6; φ2.1 = 0.2; φ3.1 = 0.7 with ek.t ∼ z(d1.k, d2.k, 0, σk); k = 1, 2,3 are
the innovations in the first, second, and third components. The scenarios for the
simulation are as follows:

# Scenario 1: represent a mixture of a highly skewed (Bulmer 1967, p. 63) to the
left and two symmetrical distributions, where φ1.0 = φ2.0 = φ3.0 = 0, excess
unconditional kurtosis is 5.73, e1.t ∼ z(0.2, 10, 0, 5), e2.t ∼ z(1, 1, 0, 8), and
e3.t ∼ z(30, 30, 0, 10);

# Scenario 2: represent a mixture of a highly skewed to the right and two symmet-
rical distributions, where φ1.0 = φ2.0 = φ3.0 = 0, excess unconditional kurtosis
is 2.23, e1.t ∼ z(20, 1, 0, 5), e2.t ∼ z(1, 1, 0, 8), and e3.t ∼ z(30, 30, 0, 10);

# Scenario 3: represent a mixture of three symmetrical distributions, where φ1.0 =
φ2.0 = φ3.0 = 0, excess unconditional kurtosis is 1.67, e1.t ∼ z(0.5, 0.5, 0, 5),
e2.t ∼ z(1, 1, 0, 8), and e3.t ∼ z(30, 30, 0, 10);
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# Scenario 4: represent a mixture of moderately skewed (Bulmer 1967, p. 63)
distributions, where φ1.0 = φ2.0 = φ3.0 = 0, excess unconditional kurtosis is
2.12, e1.t ∼ z(3, 10, 0, 8), e2.t ∼ z(1, 1, 0, 5), and e3.t ∼ z(30, 30, 0, 10);

# Scenario 5: represent a mixture of three fairly symmetrical distributions
(Bulmer 1967, p. 63), where φ1.0 = φ2.0 = φ3.0 = 0, excess unconditional kurto-
sis is 4.25, e1.t ∼ z(7, 10, 0, 8), e2.t ∼ z(1, 1, 0, 5), and e3.t ∼ z(30, 30, 0, 10);

# Scenario 6: represent a mixture of three symmetrical distributions, where φ1.0 =
φ2.0 = φ3.0 = 0, excess unconditional kurtosis is 4.47, e1.t ∼ z(10, 10, 0, 8),
e2.t ∼ z(1, 1, 0, 5), and e3.t ∼ z(30, 30, 0, 10);

# Scenario 7: represent a mixture of three symmetrical distributions, where
φ1.0 = −1, φ2.0 = φ3.0 = 0, excess unconditional kurtosis is 1.63, e1.t ∼
z(0.5, 0.5, 0, 5), e2.t ∼ z(1, 1, 0, 8), and e3.t ∼ z(30, 30, 0, 10);

# Scenario 8: represent a mixture of three symmetrical distributions, where
φ1.0 = −20, φ2.0 = φ3.0 = 0, excess unconditional kurtosis is 0.67, e1.t ∼
z(0.5, 0.5, 0, 5), e2.t ∼ z(1, 1, 0, 8), and e3.t ∼ z(30, 30, 0, 10);

The innovations of Scenario 7 and Scenario 8 are the same as those of Scenario 3. The
comparison of graph visualizations for the innovations in the first component in Scenario 1
to Scenario 6 represented specifically for the Fisher’s z distribution can be seen in Figures 1
and 2;

• Step 2: Generate e1.t, e2.t, and e3.t;

• Step 3: Generate Ht ∼ Mult3(1, η); where η =
(

1
3 , 1

3 , 1
3

)
;

• Step 4: Compute fk

(
yt

∣∣∣F(t−1)

)
= φk.0 + φk.1yt−1 + ek.t; k = 1, 2,3;

• Step 5: Compute yt = f1

(
yt

∣∣∣F(t−1)

)h1.t
f2

(
yt

∣∣∣F(t−1)

)h2.t
f3

(
yt

∣∣∣F(t−1)

)h3.t
.

Furthermore, we generated 600 datasets and fit all of the models for each simu-
lated dataset, respectively, to find the best performance in terms of model comparisons.
Figure 3 shows the simulated datasets for Scenario 1 to Scenario 8. We implemented the
models using the rstan package (Stan Development Team 2020), the R interface to Stan
developed by the Stan Development Team in the R software. Suppose pk = pk; con_eta =
c(1, 1, 1); tau[t, k] = τt.k; eta[k] = ηk; sigma[k] = σk; d1[k] = d1k; d2[k] = d2k; phik[1] =
φk.1; k = 1, 2, 3. Here is an example of the Stan code to fit the ZMAR model in Scenario 1:

fitMAR1 = "
functions{
real fisher_z_lpdf(real x,real d1,real d2,real mu,real sigma){
return (log(2)+0.5*d2*(log(d2)-log(d1))-d2*(x-mu)/sigma-log(sigma)-lbeta(0.5*d1,0.5*d2)-

(d1+d2)/2*log1p_exp((-2*(x-mu)/sigma)+log(d2)-log(d1)));
}
}
data {
int<lower=0> p1;
int<lower=0> p2;
int<lower=0> p3;
int T;
vector[T] y;
vector[3] con_eta;
}
parameters {
simplex[3] eta; //mixing proportions
vector<lower = 0>[3] sigma;
vector<lower = 0>[3] d1;
vector<lower = 0>[3] d2;
real phi1[p1];
real phi2[p2];
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real phi3[p3];
}
model {
matrix[T,3] tau;
real lf[T];
eta ~ dirichlet(con_eta);
//priors
sigma[1] ~ student_t(3,5,0.1);
sigma[2] ~ student_t(3,8,0.1);
sigma[3] ~ student_t(3,10,0.1);
d1[1] ~ student_t(3,0.2,0.1);
d1[2] ~ student_t(3,1,0.1);
d1[3] ~ student_t(3,30,0.1);
d2[1] ~ student_t(3,10,0.1);
d2[2] ~ student_t(3,1,0.1);
d2[3] ~ student_t(3,30,0.1);
phi1[1] ~ normal(-0.6,0.1);
phi2[1] ~ normal(0.2,0.1);
phi3[1] ~ normal(0.7,0.1);
//ZMAR model
for(t in 1:T) {
if(t==1) {
tau[t,1] = log(eta[1])+fisher_z_lpdf(y[t]/sigma[1]|d1[1], d2[1],0,1)-log(sigma[1]);
tau[t,2] = log(eta[2])+fisher_z_lpdf(y[t]/sigma[2]|d1[2], d2[2],0,1)-log(sigma[2]);
tau[t,3] = log(eta[3])+fisher_z_lpdf(y[t]/sigma[3]|d1[3], d2[3],0,1)-log(sigma[3]);
} else {
real mu1 = 0;
real mu2 = 0;
real mu3 = 0;
for (i in 1:p1)
mu1 += phi1[i] * y[t-i];
for (i in 1:p2)
mu2 += phi2[i] * y[t-i];
for (i in 1:p3)
mu3 += phi3[i] * y[t-i];
tau[t,1] = log(eta[1])+fisher_z_lpdf((y[t]-mu1)/sigma[1]|d1[1],d2[1],0,1)-log(sigma[1]);
tau[t,2] = log(eta[2])+fisher_z_lpdf((y[t]-mu2)/sigma[2]|d1[2],d2[2],0,1)-log(sigma[2]);
tau[t,3] = log(eta[3])+fisher_z_lpdf((y[t]-mu3)/sigma[3]|d1[3],d2[3],0,1)-log(sigma[3]);
}
lf[t] = log_sum_exp(tau[t,]);
}
target += sum(lf);
} "
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The warm-up stage in these simulation studies was set to 1500 iterations, 3 chains with
5000 sampling iterations, and 1 thin. The adapt_delta parameter was set to 0.99, and the
max_treedepth was set to 15. For all scenarios, the parameter priors of the ZMAR, TMAR,
and GMAR models are shown in Appendix D, and their posterior inferences are presented
in Appendix E. There are a variety of convergence diagnoses, such as the potential scale
reduction factor R̂ (Gelman and Rubin 1992; Susanto et al. 2018; Gelman et al. 2014, p. 285;
Vehtari et al. 2020) and the effective sample size neff (Gelman et al. 2014, p. 266; Vehtari et al.
2020). If the MCMC chain has reached convergence, the R̂ statistic is less than 1.01, and
the neff statistic is greater than 400 (Vehtari et al. 2020). To compare the performance of the
models, we use the PSIS-LOO.

Table 1 shows the summary simulation result for all scenarios, which indicates that the
ZMAR model performs the best when the datasets are generated from the ZMAR model,
in which one of the components is asymmetric. When all the components are symmetric,
the ZMAR model also performs better than TMAR and GMAR, as long as the excess
unconditional kurtosis is large enough or the intercept distances between the components
are far apart. However, when all of the mixture components are symmetric, the excess
unconditional kurtosis is small and the intercept distances between the components are
close enough or the intercepts are the same, then the GMAR model plays the best. Let us
now focus on the results of Scenario 3 and Scenario 6.

In the third and sixth scenarios, the datasets are generated from three symmetrical
distributions. The two scenarios have the same intercepts and are generated with different
unconditional kurtosis. Scenario 3 has a smaller unconditional kurtosis than Scenario
6. The best ZMAR, TMAR, and GMAR models for the two scenarios are ZMAR(3;1,1,1),
TMAR(3;1,1,1), and GMAR(3;1,1,1), where the values of PSIS-LOO are 4483.30, 4483.10,
and 4481.10, for the third scenario and 3490.10, 3496.20, and 3494.60, for the sixth scenario.
Clearly, the PSIS-LOO value for the GMAR model is smaller than for the ZMAR and TMAR
models in the third scenario, and the ZMAR model has the smallest PSIS-LOO value in
the sixth scenario. When the intercepts in Scenario 3 are varied and determined as in
Scenario 7, the GMAR model is also the best. However, when the intercepts in Scenario
3 are varied and determined as in Scenario 8, the ZMAR model is the best. For other
scenarios, in datasets generated from asymmetric components (the first, second, fourth,
and fifth scenarios), the ZMAR model is the best.
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Table 1. Model comparison using pareto-smoothed important sampling leave-one-out cross-
validation (PSIS-LOO) in several scenarios.

Scenarios
ZMAR TMAR GMAR

Model PSIS-LOO Model PSIS-LOO Model PSIS-LOO

1 ZMAR(3;1,1,1) 4563.6 * TMAR(3;1,1,1) 4639.1 GMAR(4;1,1,1,1) 4646.6
2 ZMAR(3;1,1,1) 4120.0 * TMAR(3;1,1,1) 4139.0 GMAR(3;1,1,1) 4130.8
3 ZMAR(3;1,1,1) 4483.3 TMAR(3;1,1,1) 4483.1 GMAR(3;1,1,1) 4481.1 *
4 ZMAR(3;1,1,1) 3639.7 * TMAR(3;1,1,1) 3652.7 GMAR(3;1,1,1) 3660.9
5 ZMAR(3;1,1,1) 3523.9 * TMAR(3;1,1,1) 3534.1 GMAR(4;1,1,1,1) 3539.5
6 ZMAR(3;1,1,1) 3490.1 * TMAR(3;1,1,1) 3496.2 GMAR(3;1,1,1) 3494.6
7 ZMAR(3;1,1,1) 4483.6 TMAR(3;1,1,1) 4481.5 GMAR(3;1,1,1) 4478.0 *
8 ZMAR(3;1,1,1) 4549.1 * TMAR(3;1,1,1) 4579.4 GMAR(3;1,1,1) 4575.1

Simulation Model: f
(

yt

∣∣∣F(t−1)

)
= 1

3 (φ1.0 +−0.6 yt−1 + e1.t) + 1
3 (φ2.0 + 0.2 yt−1 + e2.t) +

1
3 (φ3.0 + 0.7 yt−1 + e3.t); Scenario 1: φ1.0 = φ2.0 = φ3.0 = 0, e1.t ∼ z(0.2, 10, 0, 5), e2.t ∼
z(1, 1, 0, 8), e3.t ∼ z(30, 30, 0, 10); Scenario 2: φ1.0 = φ2.0 = φ3.0 = 0, e1.t ∼ z(20, 1, 0, 5),
e2.t ∼ z(1, 1, 0, 8), e3.t ∼ z(30, 30, 0, 10); Scenario 3: φ1.0 = φ2.0 = φ3.0 = 0, e1.t ∼ z(0.5, 0.5, 0, 5),
e2.t ∼ z(1, 1, 0, 8), e3.t ∼ z(30, 30, 0, 10); Scenario 4: φ1.0 = φ2.0 = φ3.0 = 0, e1.t ∼ z(3, 10, 0, 8),
e2.t ∼ z(1, 1, 0, 5), e3.t ∼ z(30, 30, 0, 10); Scenario 5: φ1.0 = φ2.0 = φ3.0 = 0, e1.t ∼ z(7, 10, 0, 8),
e2.t ∼ z(1, 1, 0, 5), e3.t ∼ z(30, 30, 0, 10); Scenario 6: φ1.0 = φ2.0 = φ3.0 = 0, e1.t ∼ z(10, 10, 0, 8),
e2.t ∼ z(1, 1, 0, 5), e3.t ∼ z(30, 30, 0, 10); Scenario 7: φ1.0 = −1, φ2.0 = φ3.0 = 0, e1.t ∼ z(0.5, 0.5, 0, 5),
e2.t ∼ z(1, 1, 0, 8), e3.t ∼ z(30, 30, 0, 10); Scenario 8: φ1.0 = −20, φ2.0 = φ3.0 = 0, e1.t ∼ z(0.5, 0.5, 0, 5),
e2.t ∼ z(1, 1, 0, 8), e3.t ∼ z(30, 30, 0, 10); * indicates the smallest value.

5. Application for Real Data
5.1. IBM Stock Prices

To illustrate the potential of the ZMAR model, we consider the daily IBM common
stock closing price from 17 May 1961 to 2 November 1962 (Box et al. 2015, p. 627). This
time series has been analyzed by many researchers such as Le et al. (1996) and Wong and
Li (2000). Wong and Li (2000) used the EM algorithm to estimate the parameters model
and has been identified that the best GMAR model for the series was a GMAR(3;1,1,0).

Figure 4 shows that the IBM stock prices series has a trimodal marginal distribu-
tion, where the estimated locations of the modes are at 377.48, 481.78, and 547.90 points.
Therefore, we choose the three-component ZMAR model for the differenced series. The
orders of the autoregressive components are chosen by the minimum PSIS-LOO. The
best three-component ZMAR model is ZMAR(3;0,1,1) without intercept and the value of
PSIS-LOO is 2424.40. The warm-up stage for the ZMAR, TMAR, and GMAR models was
set to 1500 iterations followed by 3 chains with 5000 sampling iterations and 1 thin; the
adapt_delta parameter was set to 0.99, and the max_treedepth was set to 15. Table 2 shows
the summary of posterior inferences for all models. The prior distributions and posterior
density plots for the parameters of the ZMAR model are presented in Appendices F.1
and G.1.1, respectively. For all the parameters of the ZMAR model, the MCMC chain has
reached convergence, which is shown by the R̂ statistic being less than 1.01 and the ne f f
statistic being greater than 400. The three-component ZMAR model for the differenced
series was then transformed into a three-component ZMAR model for the original series,
namely

F
(

yt

∣∣∣F(t−1)

)
= 0.01 Z(1.95,3.90)

(
yt−yt−1

28.28

)
+ 0.46 Z(1.87,6.41)

(
yt−1.61 yt−1+0.61 yt−2

9.77

)
+0.53 Z(4.91,1.70)

(
yt−0.72 yt−1−0.28 yt−2

6.34

)
.

(23)
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Table 2. Summary of posterior inferences for ZMAR, TMAR, and GMAR models in the IBM stock prices (first-differenced
series).

Parameters
ZMAR Model TMAR Model GMAR Model

mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat

d1[1] 1.95 1.65 2.26 7185 1 - - - - - - - - - -
d1[2] 1.87 1.65 2.21 6655 1 - - - - - - - - - -
d1[3] 4.91 4.58 5.23 6008 1 - - - - - - - - - -
d2[1] 3.90 3.60 4.23 5905 1 - - - - - - - - - -
d2[2] 6.41 6.09 6.75 2798 1 - - - - - - - - - -
d2[3] 1.70 1.50 1.95 8370 1 - - - - - - - - - -
nu[1] - - - - - 12.52 12.21 12.84 7072 1 - - - - -
nu[2] - - - - - 10.77 10.46 11.09 6020 1 - - - - -
nu[3] - - - - - 14.03 13.72 14.36 5384 1 - - - - -
eta[1] 0.01 0.00 0.05 13945 1 0.58 0.44 0.71 6826 1 0.54 0.41 0.67 5941 1
eta[2] 0.46 0.34 0.58 10248 1 0.40 0.27 0.54 6713 1 0.42 0.29 0.55 5853 1
eta[3] 0.53 0.41 0.64 10235 1 0.02 0.00 0.05 10685 1 0.04 0.01 0.09 9810 1

sigma[1] 28.28 27.97 28.58 4083 1 4.97 4.65 5.21 5145 1 4.82 4.56 5.08 7747 1
sigma[2] 9.77 9.40 10.05 2413 1 5.80 5.50 6.07 7715 1 6.01 5.72 6.29 7369 1
sigma[3] 6.34 6.05 6.63 9774 1 25.02 24.69 25.35 7061 1 19.04 18.71 19.36 4525 1
phi1[1] - - - - - −0.29 −0.41 −0.17 8124 1 −0.32 −0.43 −0.21 6681 1
phi2[1] 0.61 0.47 0.76 11354 1 0.68 0.52 0.84 8061 1 0.67 0.52 0.82 7592 1
phi3[1] −0.28 −0.39 −0.17 10868 1 - - - - - - - - - -

PSIS-LOO 2424.40 2431.30 2431.70

Note: eta[1] = η1; eta[2] = η2; eta[3] = η3; sigma[1] = σ1; sigma[2] = σ2; sigma[3] = σ3; d1[1] = d11; d1[2] = d12; d1[3] = d13; d2[1] =
d21; d2[2] = d22; d2[3] = d23; nu[1] = ν1; nu[2] = ν2; nu[3] = ν3; phi1[1] = φ1.1; phi2[1] = φ2.1; phi3[1] = φ3.1.

We compared the ZMAR model with the TMAR and GMAR models. The best three-
component TMAR and GMAR models are TMAR(3;1,1,0) and GMAR(3;1,1,0), without
intercept. The PSIS-LOO values of the TMAR and GMAR models are 2431.30 and 2431.70,
respectively. The prior distributions and posterior density plots for the parameters of the
TMAR and GMAR models are presented in Appendices F.1 and G.1. Here is the result of
the summary posterior inferences for all models

The MCMC chains for the TMAR parameter model and the GMAR parameter model
have also reached convergence, which is shown by the R̂ statistic being less than 1.01 and
the ne f f statistic being greater than 400. Let Φ(.), and let Tνk(.) be the CDF of the standard
normal distribution and the standardized Student t distribution with νk; k = 1, 2, 3 degrees
of freedom. The three-component TMAR model for the original series, namely

F
(

yt

∣∣∣F(t−1)

)
= 0.58 T12.52

(
yt−0.71 yt−1−0.29 yt−2

4.97

)
+0.40 T10.77

(
yt−1.68 yt−1+0.68 yt−2

5.80

)
+ 0.02 T14.03

(
yt−yt−1

25.02

)
.

(24)
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and a three-component GMAR for the original series, namely

F
(

yt

∣∣∣F(t−1)

)
= 0.54 Φ

(
yt−0.68 yt−1−0.32 yt−2

4.82

)
+0.42 Φ

(
yt−1.67 yt−1+0.67 yt−2

6.01

)
+ 0.04 Φ

(
yt−yt−1

19.04

)
.

(25)

Therefore, the ZMAR model is preferred over the TMAR and GMAR models, which
are indicated by the PSIS-LOO value of the ZMAR model being the smallest.

5.2. Brent Crude Oil Prices

In December 1988, the Organization of Petroleum Exporting Countries (OPEC) de-
cided to adopt Brent as a new benchmark, rather than the value of the Arabian light (Carollo
2012, p. 10). Since then, Brent has been one of the main benchmarks for oil purchases in
the world, the other being West Texas Intermediate (WTI). Figure 5a shows the monthly
Brent crude oil price from January 1989 to June 2020 (in U.S. dollars per barrel), taken from
the World Bank (2020). Figure 5b shows the first-differenced series. Figure 6 shows the
marginal distribution of the original series as being trimodal, where the estimated locations
of the modes are at 18.57, 61.64, and 110.15 points. Therefore, we also decided to choose
a three-component mixture model for the ZMAR, TMAR, and GMAR models applied
to the differenced series. The best three-component mixture model estimates for each of
the ZMAR, TMAR, and GMAR models are ZMAR (3;1,2,2), TMAR (3;2,1,3), and GMAR
(3;3,3,3), without intercept.
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The warm-up steps for all the models were set to 1500 iterations with 5000 sampling
iterations and 1 thin, followed by 3 chains; the adapt_delta parameters were set to 0.99,
and the max_treedepths were set to 15. Table 3 shows the summary of posterior inferences
for all models. The prior distributions and posterior density plots for the parameters of
the ZMAR model, the TMAR model, and the GMAR model are presented, respectively, in
Appendices F.2 and G.2.

Table 3. Summary of posterior inferences for ZMAR, TMAR, and GMAR models in the Brent monthly crude oil prices
(first-differenced series).

Parameters
ZMAR Model TMAR Model GMAR Model

mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat

d1[1] 13.22 12.89 13.57 1136 1 - - - - - - - - - -
d1[2] 0.99 0.78 1.16 7606 1 - - - - - - - - - -
d1[3] 10.09 9.76 10.43 783 1 - - - - - - - - - -
d2[1] 4.49 4.19 4.83 6163 1 - - - - - - - - - -
d2[2] 1.91 1.64 2.21 8505 1 - - - - - - - - - -
d2[3] 4.37 4.06 4.80 786 1 - - - - - - - - - -
nu[1] - - - - - 14.98 14.64 15.30 5742 1 - - - - -
nu[2] - - - - - 12.08 11.77 12.39 6135 1 - - - - -
nu[3] - - - - - 4.34 4.01 4.68 4090 1 - - - - -
eta[1] 0.40 0.30 0.51 7598 1 0.34 0.25 0.44 7002 1 0.45 0.35 0.55 8395 1
eta[2] 0.39 0.28 0.50 8658 1 0.40 0.29 0.49 7202 1 0.28 0.18 0.39 7317 1
eta[3] 0.21 0.12 0.31 8287 1 0.26 0.17 0.36 7343 1 0.27 0.18 0.36 9667 1

sigma[1] 5.14 4.78 5.40 5164 1 4.93 4.23 5.23 1419 1 4.18 3.96 4.52 5266 1
sigma[2] 2.82 2.57 3.08 9271 1 1.62 1.39 1.86 7816 1 1.66 1.37 1.88 6374 1
sigma[3] 7.12 6.03 7.46 674 1 1.80 1.42 2.03 4462 1 1.92 1.69 2.15 10687 1
phi1[1] −0.37 −0.49 −0.26 8682 1 0.61 0.45 0.77 8641 1 0.14 0.01 0.28 7866 1
phi1[2] - - - - - −0.42 −0.56 −0.27 7932 1 −0.35 −0.48 −0.22 8284 1
phi1[3] - - - - - - - - - - −0.19 −0.31 −0.07 8919 1
phi2[1] 0.68 0.55 0.81 8187 1 −0.28 −0.42 −0.15 7045 1 0.48 0.36 0.60 7799 1
phi2[2] −0.34 −0.48 −0.21 8060 1 - - - - - −0.17 −0.28 −0.06 9453 1
phi2[3] - - - - - - - - - - 0.38 0.24 0.54 7424 1
phi3[1] 0.69 0.55 0.84 9548 1 0.54 0.44 0.64 7735 1 0.57 0.47 0.67 6397 1
phi3[2] 0.72 0.57 0.86 9333 1 0.86 0.75 0.97 6974 1 0.91 0.81 1.02 7326 1
phi3[3] - - - - - −0.28 −0.41 −0.14 7427 1 −0.29 −0.41 −0.16 7545 1

PSIS-LOO 2024.50 2034.10 2048.70

Note: eta[1] = η1; eta[2] = η2; eta[3] = η3; sigma[1] = σ1; sigma[2] = σ2; sigma[3] = σ3; d1[1] = d11; d1[2] = d12; d1[3] = d13; d2[1] =
d21; d2[2] = d22; d2[3] = d23; nu[1] = ν1; nu[2] = ν2; nu[3] = ν3; phi1[1] = φ1.1; phi1[2] = φ1.2; phi1[3] = φ1.3; phi2[1] = φ2.1; phi2[2] =
φ2.2; phi2[3] = φ2.3; phi3[1] = φ3.1; phi3[2] = φ3.2; phi3[3] = φ3.3.

For all the parameter models, the MCMC chains reached convergence, which was
shown by the R̂ statistic being less than 1.01 and the ne f f statistic being greater than 400.

The three-component ZMAR model for the original series, namely

F
(

yt

∣∣∣F(t−1)

)
= 0.40 Z(13.22,4.49)

(
yt−0.63 yt−1−0.37 yt−2

5.14

)
+0.39 Z(0.99,1.91)

(
yt−1.68 yt−1+1.02 yt−2−0.34yt−3

2.82

)
+0.21 Z(10.09,4.37)

(
yt−1.69 yt−1−0.03 yt−2+0.72yt−3

7.12

)
.

(26)

a three-component TMAR model for the original series, namely

F
(

yt

∣∣∣F(t−1)

)
= 0.34 T14.98

(
yt−1.61 yt−1+1.03yt−2−0.42yt−3

4.93

)
+0.40 T12.08

(
yt−0.72 yt−1−0.28 yt−2

1.62

)
+0.26 T4.34

(
yt−1.54 yt−1−0.32 yt−2+1.14 yt−3−0.28 yt−4

1.80

)
.

(27)
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and a three-component GMAR for the original series, namely

F
(

yt

∣∣∣F(t−1)

)
= 0.45 Φ

(
yt−1.14 yt−1+0.49 yt−2−0.16 yt−3−0.19 yt−4

4.18

)
+0.28 Φ

(
yt−1.48 yt−1+0.65 yt−2−0.55 yt−3+0.38 yt−4

1.66

)
+0.27 Φ

(
yt−1.57 yt−1−0.34 yt−2+1.20 yt−3−0.29 yt−4

1.92

)
.

(28)

The PSIS-LOO values of the ZMAR, TMAR, and GMAR models are 2024.40, 2034.10,
and 2048.70, respectively. Therefore, the ZMAR model is preferred over the TMAR and
GMAR models, which is indicated by the PSIS-LOO value of the ZMAR model being the
smallest.

6. Conclusions

We have discussed the definition and properties of the four-parameter Fisher’s z
distribution. The four-parameters of the Fisher’s z distribution are µ, σ, d1, and d2. The µ
is a location parameter, the σ is a scale parameter, and the d1,d2 are known as the shape
parameters, defined for both skewness (symmetric if d1 = d2, asymmetric if d1 6= d2)
and fatness of the tails (large d1 and d2 imply thin tails). The Fisher’s z distribution is
always unimodal and has the mode at x = µ. The value of µ only affects the mean of the
distribution. It does not affect the variance, skewness, and kurtosis of the distribution.
Furthermore, if d1 = d2, then the mean is equal to µ; if d1 < d2, then the mean is less
than µ; and if d1 > d2, then the mean is greater than µ. The excess kurtosis value for this
distribution is always positive.

We also discussed a new class of nonlinearity in the level (or mode) model for cap-
turing time series with heteroskedasticity and with multimodal conditional distribution,
using Fisher’s z distribution as an innovation in the MAR model. The model offers great
flexibility that other models, such as the TMAR and GMAR models, do not. The MCMC
algorithm, using NUTS, allows for the easy estimation of the parameters in the model.
The paper provides a simulation study using eight scenarios to indicate the flexibility
and superiority of the ZMAR model compared with the TMAR and GMAR models. The
simulation result shows that the ZMAR model is the best for representing the datasets
generated from asymmetric components. When all the components are symmetrical, the
ZMAR model also performs the best, as long as the excess unconditional kurtosis is large
enough or the intercept distances between the components are far apart. However, when
the datasets are generated from symmetrical components with small excess unconditional
kurtosis and close intercept distances between the components, the GMAR model is the
best. Furthermore, we compared the proposed model with the GMAR and TMAR models
using two real data, namely the daily IBM stock prices and the monthly Brent crude oil
prices. The results show that the proposed model outperforms the existing ones.

Fong et al. (2007) extended univariate the GMAR models to a Gaussian Mixture Vector
Autoregressive (GMVAR) model. The ZMAR model can also be extended to a multivariate
time-series context. Jones (2002) extended the standard multivariate F distribution to the
multivariate skew t distribution and the multivariate Beta distribution. Likewise, the F
distributed can also be extended to multivariate Fisher’s z distribution.
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Appendix A. Proofs of the Equations (1)–(6)

Appendix A.1. Proof of the Equation (1)

Solikhah et al. (2021) described transforming a random variable with the F distribution
to the Fisher’s z distribution. Let Y be a random variable distributed as an F distribution
with two parameters d1 and d2. The density of Z = 1

2 ln Y is (Fisher 1924; Aroian 1941)

fZ(z; d1, d2) =
2d1

1
2 d1 d2

1
2 d2

B
(

1
2 d1, 1

2 d2

) ed1z

(d1e2z + d2)
(d1+d2)/2

, (A1)

where −∞ < z < ∞, d1 > 0, d2 > 0 and B(.) is the beta function. Interchanging d1 and d2
is equivalent to replacing z with −z (Fisher 1924; Aroian 1941), thus Equation (A1) can also
be defined as

fZ(z; d1, d2) =
2d1

1
2 d1 d2

1
2 d2

B
(

1
2 d1, 1

2 d2

) e−d2z

(d2e−2z + d1)
(d1+d2)/2

. (A2)

If the denominator and numerator of Equation (A2) are divided by d1
(d1+d2)/2 then

we get

fZ(z; d1, d2) =
2
(

d2
d1

) 1
2 d2

B
(

1
2 d1, 1

2 d2

) e−d2z(
1 + d2

d1
e−2z

)(d1+d2)/2
. (A3)

Equation (A3) can also be defined as

fZ(z; d1, d2) =
2
(

d2
d1

) 1
2 d2

B
(

1
2 d1, 1

2 d2

) e−d2z(
1 + e

−2z+ln d2
d1

)(d1+d2)/2

�

Appendix A.2. Proof of the Equation (2)

Let Y be a random variable distributed as an F distribution with d1 and d2 degrees of
freedom, let Iy∗(.) be the incomplete beta function ratio, and let B(.) be the beta function.
The cumulative distribution function (CDF) of the Y = e2z be defined as follows (Johnson
et al. 1995, vol. 2, p. 327)

FY(y; d1, d2) = Iy∗

(
1
2

d1,
1
2

d2

)
=

∫ y∗
0 t

1
2 d1−1(1− t)

1
2 d2−1dt

B
(

1
2 d1, 1

2 d2

) ,

where y∗ = d1y
d2+d1y . If Z = 1

2 ln Y then Y = e2z, thus the CDF of Z is

FZ(z; d1, d2) = Iz∗

(
1
2

d1,
1
2

d2

)
=

∫ z∗
0 t

1
2 d1−1(1− t)

1
2 d2−1dt

B
(

1
2 d1, 1

2 d2

) , (A4)

where z∗ = d1e2z

d2+d1e2z . Equation (A4) can also be defined as

FZ(z; d1, d2) = Iz∗

(
1
2

d2,
1
2

d1

)
=

∫ z∗
0 t

1
2 d2−1(1− t)

1
2 d1−1dt

B
(

1
2 d1, 1

2 d2

) ,

where z∗ = d2e−2z

d1+d2e−2z . �
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Appendix A.3. Proof of the Equation (3)

Let Z be a random variable distributed as a standardized Fisher’s z distribution with
the p.d.f given by Equation (1), let µ be a location parameter, and let σ be a scale parameter.
The density of X = σZ + µ can be defined as

fX(x; d1, d2, µ, σ) = fZ

(
x− µ

σ

)
|J(x)|, (A5)

where J(x) is the Jacobian of the transformation and is defined as

J(x) =
∂z
∂x

=
1
σ

.

Therefore, the p.d.f of the Fisher’s z distribution can be expressed as

fX(x; d1, d2, µ, σ) =
2
σ

(
d2
d1

) 1
2 d2

B
(

1
2 d1, 1

2 d2

) e−d2(
x−µ

σ )(
1 + e

−2( x−µ
σ )+ln d2

d1

)(d1+d2)/2

�

Appendix A.4. Proof of the Equation (4)

Let Z be a random variable distributed as a standardized Fisher’s z distribution with
the CDF as in Equation (2), let µ be a location parameter, and let σ be a scale parameter.
The CDF of X = σZ + µ can be defined as

FX(x; d1, d2, µ, σ) = P(X ≤ x) = P(σZ + µ ≤ x) = P
(

Z ≤ x− µ

σ

)
,

Therefore, the CDF of the Fisher’s z distribution can be expressed as

FX(x; d1, d2, µ, σ) =
1

B
(

1
2 d1, 1

2 d2

) x∗∫
0

t
1
2 d2−1(1− t)

1
2 d1−1dt,

where x∗ = d2e−2( x−µ
σ )

d1+d2e−2( x−µ
σ )

. �

Appendix A.5. Proof of the Equation (5)

Let Ix∗(.) be the incomplete beta function ratio; thus, Equation (4) can be expressed as

FX(x; d1, d2, µ, σ) = Ix∗(d2/2, d1/2); x∗ =
d2e−2( x−µ

σ )

d1 + d2e−2( x−µ
σ )

The value xp is called the p-quantile of the population, if P
(
X ≤ xp

)
= p with 0 ≤

p ≤ 1 (Gilchrist 2000, p. 12). Let I−1
xp(.) be the inversion of the incomplete beta function

ratio, then (
I−1

xp (d2/2, d1/2)
)
= d2e−2(

xp−µ
σ )

d1+d2e−2(
xp−µ

σ )
;(

d1 + d2e−2(
xp−µ

σ )
)(

I−1
xp (d2/2, d1/2)

)
= d2e−2(

xp−µ

σ );

(d1)
(

I−1
xp (d2/2, d1/2)

)
= d2e−2(

xp−µ

σ ) − d2e−2(
xp−µ

σ )
(

I−1
xp (d2/2, d1/2)

)
;

(d1)
(

I−1
xp (d2/2, d1/2)

)
=
(

1−
(

I−1
xp (d2/2, d1/2)

))
d2e−2(

xp−µ

σ );
d1(I−1

xp (d2/2,d1/2))
d2(1−(I−1

xp (d2/2,d1/2)))
= e−2(

xp−µ

σ );
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xp = µ− σ

2
ln

 d1

(
I−1

xp(d2/2, d1/2)
)

d2

(
1−

(
I−1

xp(d2/2, d1/2)
))
;

Interchanging d1 and d2 is equivalent to replacing x with −x; thus, the QF can also be
defined as:

xp = µ +
σ

2
ln

 d2

(
I−1

xp(d1/2, d2/2)
)

d1

(
1−

(
I−1

xp(d1/2, d2/2)
))


�

Appendix A.6. Proof of the Equation (6)

Let us denote a chi-square random variables with d1 and d2 degrees of freedom by V2
1

and V2
2 , respectively. Let Pv∗(.) be the incomplete gamma function ratio, and the CDF of

V2
1 and V2

2 can be defined as

FV2
1
(v1; d1) = Pv1

∗(d1/2); v1
∗ =

v1

2
,

FV2
2
(v2; d2) = Pv2

∗(d2/2); v2
∗ =

v2

2
.

Let P−1
vp(.) be the inversion of the incomplete gamma function ratio, and then the

QF of the V2
1 and V2

2 can be defined as

v1p = 2P−1
v1p(d1/2),

v2p = 2P−1
v2p(d2/2),

The Beta distribution arises naturally as the distribution of X = V2
1 /
(
V2

1 + V2
2
)

(Johnson et al. 1995, vol. 2, p. 212); therefore, QF of the Fisher’s z distribution can be ex-
pressed as

xp = µ +
σ

2
ln

 d2
2P−1

v1p (d1/2)

2P−1v1p (d1/2)+2P−1v2p (d2/2)

d1

(
1−

2P−1v1p (d1/2)

2P−1v1p (d1/2)+2P−1v2p (d2/2)

)


xp = µ +
σ

2
ln

d2

(
P−1

v1p(d1/2)
)

d1

(
P−1v2p(d2/2)

)


�

Appendix B. Properties of the Fisher’s z Distribution and the Proofs

Appendix B.1. Properties of the Fisher’s z Distribution

Let X be a random variable distributed as a Fisher’s z distribution and let MX(θ) be
the Moment Generating Function (MGF) of a random variable X. The MGF of the Fisher’s
z distribution be expressed as

MX(θ) = E
(

eθx
)
= eθµ

((
d2

d1

) σθ
2
)

Γ
(

1
2 (d2 − σθ)

)
Γ
(

1
2 (d1 + σθ)

)
Γ
(

1
2 d1

)
Γ
(

1
2 d2

) , (A6)

where Γ(.) is a gamma function. Let KX(θ) be the Cumulant Generating Function (CGF) of
a random variable X. The CGF of the Fisher’s z distribution be given by
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KX(θ) = θµ + θσ
2 ln d2

d1
+ ln Γ

(
1
2 (d1 + σθ)

)
+ ln Γ

(
1
2 (d2 − σθ)

)
− ln Γ

(
1
2 d1

)
− ln Γ

(
1
2 d2

)
.

(A7)

The coefficient of θ!/j! in the Taylor expansion of the CGF is the jth cumulant of X
and be denoted as κj. The jth cumulant, therefore, can be obtained by differentiating the
expansion j times and evaluating the result at zero.

κj =
∂j

∂θ j KX(θ)

∣∣∣∣
θ=0

; j = 1, 2, 3, · · ·

The first cumulant of the Fisher’s z distribution be defined as

κ1 = µ +
σ

2
ln

d2

d1
− σ

2
ψ

(
1
2

d2

)
+

σ

2
ψ

(
1
2

d1

)
, (A8)

and the jth cumulant would be defined in Equation (A9).

κj = (−1)j
(σ

2

)j
ψ(j−1)

(
1
2

d2

)
+
(σ

2

)j
ψ(j−1)

(
1
2

d1

)
; j = 2, 3, 4, · · · , (A9)

where ψ(.) is the digamma function, ψ′(.) is the trigamma function, ψ′′ (.) is the tetragamma
function, and ψ(3)(.) is the pentagamma function. Generally, ψ(j−1)(.) is the (j + 1)-gamma
function (Johnson et al. 2005, p. 9). Let the mean and the variance of a random variable
X be denoted respectively E(X) and Var(X). The mean of the Fisher’s z distribution is
given by

E(X) = κ1 = µ +
σ

2
ln

d2

d1
− σ

2
ψ

(
1
2

d2

)
+

σ

2
ψ

(
1
2

d1

)
, (A10)

and the variance is defined as

Var(X) = κ2 =
(σ

2

)2
(

ψ′
(

1
2

d2

)
+ ψ′

(
1
2

d1

))
. (A11)

On the basis of Equation (A10), it can be concluded that

(d1 = d2) −→ (E(X) = µ);

(d1 < d2) −→ (E(X) < µ);

(d1 > d2) −→ (E(X) > µ).

Let the skewness and the excess kurtosis of a random variable X be denoted, respec-
tively, as γ1 and γ2. The skewness of the Fisher’s z distribution is given by

γ1 =
ψ′′
(

1
2 d1

)
− ψ′′

(
1
2 d2

)
(

ψ′
(

1
2 d1

)
+ ψ′

(
1
2 d2

)) 3
2

, (A12)

and the excess kurtosis is

γ2 =

(
ψ(3)

(
d2
2

)
+ ψ(3)

(
d1
2

))
(

ψ′
(

d2
2

)
+ ψ′

(
d1
2

))2 . (A13)

On the basis of Equation (A13), the excess kurtosis value for this distribution is always
positive, which shows that the distribution has heavier tails than the Gaussian distribution.
Furthermore, based on Equation (A10) through Equation (A13), it can be seen that a change
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in the value of the parameter µ only affects the mean of the distribution. It does not affect
the variance, skewness, and kurtosis of the distribution.

Appendix B.2. Proof of the Properties

Appendix B.2.1. Proof of the Equation (A6)

If Z is random variables distributed as a standardized Fisher’s z, then the MGF of Z is
expressed as (Aroian 1941; Johnson et al. 1995)

MZ(θ) =

((
d2

d1

) θ
2
)

Γ
(

1
2 (d1 + θ)

)
Γ
(

1
2 (d2 − θ)

)
Γ
(

1
2 d1

)
Γ
(

1
2 d2

)
If the random variable Z is transformed to X = σZ + µ, then

MX(θ) = E
(

eθX
)
= E

(
eθ(µ+σZ)

)
= eθµE

(
eθ(σZ)

)
= eθµ MZ(θσ)

MX(θ) = eθµ

((
d2

d1

) θσ
2
)

Γ
(

1
2 (d2 − θσ)

)
Γ
(

1
2 (d1 + θσ)

)
Γ
(

1
2 d1

)
Γ
(

1
2 d2

)
�

Appendix B.2.2. Proof of the Equation (A7)

The CGF of the random variable X is the natural logarithm of the moment generating
function of X (Johnson et al. 2005, p. 54), therefore

KX(θ) = ln MX(θ) = ln

eθµ

((
d2

d1

) θσ
2
)

Γ
(

1
2 (d1 + θσ)

)
Γ
(

1
2 (d2 − θσ)

)
Γ
(

1
2 d1

)
Γ
(

1
2 d2

)


KX(θ) = θµ + θσ
2 ln

(
d2
d1

)
+ ln Γ

(
1
2 (d1 + θσ)

)
+ ln Γ

(
1
2 (d2 − θσ)

)
− ln Γ

(
1
2 d1

)
− ln Γ

(
1
2 d2

)
�

Appendix B.2.3. Proof of the Equations (A8) and (A9)

If the random variable X has the CGF in the Equation (A7), then

∂
∂θ KX(θ) = µ + σ

2 ln
(

d2
d1

)
− σ

2 ψ
(

d2−θσ
2

)
+ σ

2 ψ
(

d1+θσ
2

)
∂2

∂θ2 KX(θ) = (−1)2( σ
2
)2

ψ′
(

d2−θσ
2

)
+
(

σ
2
)2

ψ′
(

d1+θσ
2

)
∂3

∂θ3 KX(θ) = (−1)3( σ
2
)3

ψ′′
(

d2−θσ
2

)
+
(

σ
2
)3

ψ′′
(

d1+θσ
2

)
...

∂j

∂θ j KX(θ) = (−1)j( σ
2
)j

ψ(j−1)
(

d2−θσ
2

)
+
(

σ
2
)j

ψ(j−1)
(

d1+θσ
2

)
.

The first cumulant be defined as

κ1 = ∂
∂θ KX(θ)

∣∣∣
θ=0

= µ + σ
2 ln

(
d2
d1

)
− σ

2 ψ
(

d2−θσ
2

)
+ σ

2 ψ
(

d1+θσ
2

)∣∣∣
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= µ + σ
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(
d2
d1

)
− σ

2 ψ
(
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2

)
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2

)
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and the jth cumulant be defined as

κj = ∂j

∂θ j KX(θ)
∣∣∣
θ=0

= (−1)j( σ
2
)j

ψ(j−1)
(

d2−θσ
2

)
+
(

σ
2
)j

ψ(j−1)
(

d1+θσ
2

)∣∣∣
θ=0

= (−1)j( σ
2
)j

ψ(j−1)
(

1
2 d2

)
+
(

σ
2
)j

ψ(j−1)
(

1
2 d1

)
; j = 2, 3, 4, . . .

�

Appendix B.2.4. Proof of the Equation (A10)

The mean of the random variable X is the first cumulant (Zelen and Severo 1970),
therefore

E(X) = κ1

E(X) = µ +
σ

2
ln
(

d2

d1

)
− σ

2
ψ

(
d2

2

)
+

σ

2
ψ

(
d1

2

)
�

Appendix B.2.5. Proof of the Equation (A11)

The variance of the random variable X is the second cumulant (Zelen and Severo
1970), therefore

Var(X) = κ2

Var(X) =
(σ

2

)2
ψ′
(

d2

2

)
+
(σ

2

)2
ψ′
(

d1

2

)
=
(σ

2

)2
(

ψ′
(

d2

2

)
+ ψ′

(
d1

2

))
�

Appendix B.2.6. Proof of the Equation (A12)

The skewness is formed from the second and third cumulants (Zelen and Severo 1970),
namely

γ1 =
κ3

(κ2)
3/2 =

(
σ
2
)3
(
−ψ′′

(
d2
2

)
+ ψ′′

(
d1
2

))
(

σ
2
)3
(

ψ′
(

d2
2

)
+ ψ′

(
d1
2

)) 3
2

;

γ1 =
ψ′′
(

1
2 d1

)
− ψ′′

(
1
2 d2

)
(

ψ′
(

1
2 d1

)
+ ψ′

(
1
2 d2

)) 3
2

�

Appendix B.2.7. Proof of the Equation (A13)

The excess kurtosis can be formed from the second and fourth cumulants (Zelen and
Severo 1970), namely

γ2 =
κ4

(κ2)
2 =

(
σ
2
)4
(

ψ(3)
(

d2
2

)
+ ψ(3)

(
d1
2

))
(

σ
2
)4
(

ψ′
(

d2
2

)
+ ψ′

(
d1
2

))2 ;

γ2 =

(
ψ(3)

(
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2

)
+ ψ(3)

(
d1
2

))
(

ψ′
(

d2
2

)
+ ψ′

(
d1
2

))2
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Appendix C. Adding the Fisher’s z Distribution Functions in Stan

Appendix C.1. Random Numbers Generator Function

We can add the random numbers generator function of Fisher’s z distribution
(fisher_z_rng) in Stan using the following code,

functions{
real fisher_z_rng(real d1, real d2, real mu, real sigma){
return(mu+sigma*0.5*log((chi_square_rng(d1)*d2)/(chi_square_rng(d2)*d1)));
}

}

where chi_square_rng(d1) and chi_square_rng(d2) are the chi-square random numbers
generator with d1 and d2 degrees of freedoms.

Appendix C.2. Log Probability Density Function

We can also add the log probability function of the Fisher’s z distribution (fisher_z_lpdf)
in Stan using the following code,

functions{
real fisher_z_lpdf(real x, real d1, real d2, real mu, real sigma){
return (log(2)+0.5*d2*(log(d2)-log(d1))-d2*(x-mu)/sigma-log(sigma)-
lbeta(0.5*d1,0.5*d2)-(d1+d2)/2*log1p_exp((-2*(x-mu)/sigma)+log(d2)-log(d1)));
}

}

where lbeta(0.5*d1,0.5*d2) is the natural logarithm of the beta function applied to 1
2 d1 and

1
2 d2, and log1p_exp((-2*(x-mu)/sigma)+log(d2)-log(d1))) is the natural logarithm of one

plus the natural exponentiation of −2
(

x−µ
σ

)
+ ln d2 − ln d1.

Appendix D. Priors of Parameters on the ZMAR, TMAR, and GMAR Models in the
Simulation Study

Appendix D.1. Scenario 1

Table A1. Priors of parameters on the ZMAR, TMAR, and GMAR models in the Scenario 1.

ZMAR TMAR GMAR

d11 ∼ t3(0.2, 0.1)I(0, ∞);
d21 ∼ t3(10, 0.1)I(0, ∞);

σ1 ∼ t3(5, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.6, 0.1)

d12 ∼ t3(1, 0.1)I(0, ∞);
d22 ∼ t3(1, 0.1)I(0, ∞);
σ2 ∼ t3(8, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
d13 ∼ t3(30, 0.1)I(0, ∞);
d23 ∼ t3(30, 0.1)I(0, ∞);
σ3 ∼ t3(10, 0.1)I(0, ∞)

φ3.1 ∼ N(0.7, 0.1)
η ∼ Dir(1, 1, 1)

ν1 ∼ t3(2.1, 0.1)I(0, ∞);
σ1 ∼ t3(14.6, 0.1)I(0, ∞)

φ1.1 ∼ N(−0.62, 0.1)
ν2 ∼ t3(3.94, 0.1)I(0, ∞);
σ2 ∼ t3(8.1, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
ν3 ∼ t3(9.66, 0.1)I(0, ∞);
σ3 ∼ t3(1.62, 0.1)I(0, ∞)

φ3.1 ∼ N(0.84, 0.1)
η ∼ Dir(1, 1, 1)

σ1 ∼ t3(23, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.07, 0.1)

σ2 ∼ t3(33, 0.1)I(0, ∞)
φ2.1 ∼ N(−0.47, 0.1)

σ3 ∼ t3(11, 0.1)I(0, ∞)
φ3.1 ∼ N(0.6, 0.1)

σ4 ∼ t3(2, 0.1)I(0, ∞)
φ4.1 ∼ N(0.8, 0.1)
η ∼ Dir(1, 1, 1, 1)
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Appendix D.2. Scenario 2

Table A2. Priors of parameters on the ZMAR, TMAR, and GMAR models in the Scenario 2.

ZMAR TMAR GMAR

d11 ∼ t3(20, 0.1)I(0, ∞);
d21 ∼ t3(1, 0.1)I(0, ∞);
σ1 ∼ t3(5, 0.1)I(0, ∞)

φ1.1 ∼ N(−0.6, 0.1)
d12 ∼ t3(1, 0.1)I(0, ∞);
d22 ∼ t3(1, 0.1)I(0, ∞);
σ2 ∼ t3(8, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
d13 ∼ t3(30, 0.1)I(0, ∞);
d23 ∼ t3(30, 0.1)I(0, ∞);
σ3 ∼ t3(10, 0.1)I(0, ∞)

φ3.1 ∼ N(0.7, 0.1)
η ∼ Dir(1, 1, 1)

ν1 ∼ t3(2.19, 0.1)I(0, ∞);
σ1 ∼ t3(8, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.62, 0.1)

ν2 ∼ t3(3.94, 0.1)I(0, ∞);
σ2 ∼ t3(8.12, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
ν3 ∼ t3(9.66, 0.1)I(0, ∞);
σ3 ∼ t3(1.62, 0.1)I(0, ∞)

φ3.1 ∼ N(0.84, 0.1)
η ∼ Dir(1, 1, 1)

σ1 ∼ t3(5.01, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.59, 0.1)

σ2 ∼ t3(2.69, 0.1)I(0, ∞)
φ2.1 ∼ N(0.64, 0.1)

σ3 ∼ t3(14.49, 0.1)I(0, ∞)
φ3.1 ∼ N(0.57, 0.1)
η ∼ Dir(1, 1, 1)

Appendix D.3. Scenario 3

Table A3. Priors of parameters on the ZMAR, TMAR, and GMAR models in the Scenario 3.

ZMAR TMAR GMAR

d11 ∼ t3(0.5, 0.1)I(0, ∞);
d21 ∼ t3(0.5, 0.1)I(0, ∞);

σ1 ∼ t3(5, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.6, 0.1)

d12 ∼ t3(1, 0.1)I(0, ∞);
d22 ∼ t3(1, 0.1)I(0, ∞);
σ2 ∼ t3(8, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
d13 ∼ t3(30, 0.1)I(0, ∞);
d23 ∼ t3(30, 0.1)I(0, ∞);
σ3 ∼ t3(10, 0.1)I(0, ∞)

φ3.1 ∼ N(0.7, 0.1)
η ∼ Dir(1, 1, 1)

ν1 ∼ t3(2.1, 0.1)I(0, ∞);
σ1 ∼ t3(14.6, 0.1)I(0, ∞)

φ1.1 ∼ N(−0.62, 0.1)
ν2 ∼ t3(3.94, 0.1)I(0, ∞);
σ2 ∼ t3(8.1, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
ν3 ∼ t3(9.66, 0.1)I(0, ∞);
σ3 ∼ t3(1.62, 0.1)I(0, ∞)

φ3.1 ∼ N(0.84, 0.1)
η ∼ Dir(1, 1, 1)

σ1 ∼ t3(10, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.6, 0.1)

σ2 ∼ t3(8, 0.1)I(0, ∞)
φ2.1 ∼ N(0.24, 0.1)

σ3 ∼ t3(2, 0.1)I(0, ∞)
φ3.1 ∼ N(0.74, 0.1)
η ∼ Dir(1, 1, 1)

Appendix D.4. Scenario 4

Table A4. Priors of parameters on the ZMAR, TMAR, and GMAR models in the Scenario 4.

ZMAR TMAR GMAR

d11 ∼ t3(3, 0.1)I(0, ∞);
d21 ∼ t3(10, 0.1)I(0, ∞);

σ1 ∼ t3(8, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.6, 0.1)

d12 ∼ t3(1, 0.1)I(0, ∞);
d22 ∼ t3(1, 0.1)I(0, ∞);
σ2 ∼ t3(5, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
d13 ∼ t3(30, 0.1)I(0, ∞);
d23 ∼ t3(30, 0.1)I(0, ∞);
σ3 ∼ t3(10, 0.1)I(0, ∞)

φ3.1 ∼ N(0.7, 0.1)
η ∼ Dir(1, 1, 1)

ν1 ∼ t3(2.19, 0.1)I(0, ∞);
σ1 ∼ t3(3, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.62, 0.1)

ν2 ∼ t3(3.94, 0.1)I(0, ∞);
σ2 ∼ t3(6.8, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
ν3 ∼ t3(9.66, 0.1)I(0, ∞);
σ3 ∼ t3(1.62, 0.1)I(0, ∞)

φ3.1 ∼ N(0.84, 0.1)
η ∼ Dir(1, 1, 1)

σ1 ∼ t3(10, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.6, 0.1)

σ2 ∼ t3(11.95, 0.1)I(0, ∞)
φ2.1 ∼ N(0.24, 0.1)

σ3 ∼ t3(31, 0.1)I(0, ∞)
φ3.1 ∼ N(0.74, 0.1)
η ∼ Dir(1, 1, 1)
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Appendix D.5. Scenario 5

Table A5. Priors of parameters on the ZMAR, TMAR, and GMAR models in the Scenario 5.

ZMAR TMAR GMAR

d11 ∼ t3(7, 0.1)I(0, ∞);
d21 ∼ t3(10.04, 0.5)I(0, ∞);

σ1 ∼ t3(7.99, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.6, 0.1)

d12 ∼ t3(1.01, 0.1)I(0, ∞);
d22 ∼ t3(1.26, 0.5)I(0, ∞);
σ2 ∼ t3(4.93, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
d13 ∼ t3(30, 0.1)I(0, ∞);
d23 ∼ t3(30, 0.5)I(0, ∞);

σ3 ∼ t3(10.07, 0.1)I(0, ∞)
φ3.1 ∼ N(0.7, 0.1)
η ∼ Dir(1, 1, 1)

ν1 ∼ t3(2.22, 0.1)I(0, ∞);
σ1 ∼ t3(2.38, 0.1)I(0, ∞)

φ1.1 ∼ N(−0.62, 0.1)
ν2 ∼ t3(3.94, 0.1)I(0, ∞);
σ2 ∼ t3(6.64, 0.1)I(0, ∞)

φ2.1 ∼ N(0.20, 0.1)
ν3 ∼ t3(9.66, 0.1)I(0, ∞);
σ3 ∼ t3(1.7, 0.1)I(0, ∞)

φ3.1 ∼ N(0.74, 0.1)
η ∼ Dir(1, 1, 1)

σ1 ∼ t3(2.86, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.47, 0.1)

σ2 ∼ t3(3.49, 0.1)I(0, ∞)
φ2.1 ∼ N(−0.55, 0.1)

σ3 ∼ t3(10.94, 0.1)I(0, ∞)
φ3.1 ∼ N(0.6, 0.1)

σ4 ∼ t3(2, 0.1)I(0, ∞)
φ4.1 ∼ N(0.8, 0.1)
η ∼ Dir(1, 1, 1, 1)

Appendix D.6. Scenario 6

Table A6. Priors of parameters on the ZMAR, TMAR, and GMAR models in the Scenario 6.

ZMAR TMAR GMAR

d11 ∼ t3(10, 0.1)I(0, ∞);
d21 ∼ t3(10, 0.1)I(0, ∞);

σ1 ∼ t3(8, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.6, 0.1)

d12 ∼ t3(1, 0.1)I(0, ∞);
d22 ∼ t3(1, 0.1)I(0, ∞);
σ2 ∼ t3(5, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
d13 ∼ t3(29.96, 0.1)I(0, ∞);
d23 ∼ t3(29.83, 0.1)I(0, ∞);

σ3 ∼ t3(10, 0.1)I(0, ∞)
φ3.1 ∼ N(0.7, 0.1)
η ∼ Dir(1, 1, 1)

ν1 ∼ t3(2.3, 0.1)I(0, ∞);
σ1 ∼ t3(2.38, 0.1)I(0, ∞)

φ1.1 ∼ N(−0.62, 0.1)
ν2 ∼ t3(3.94, 0.1)I(0, ∞);
σ2 ∼ t3(6.64, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
ν3 ∼ t3(9.66, 0.1)I(0, ∞);
σ3 ∼ t3(1.7, 0.1)I(0, ∞)

φ3.1 ∼ N(0.74, 0.1)
η ∼ Dir(1, 1, 1)

σ1 ∼ t3(2.9, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.54, 0.1)

σ2 ∼ t3(1.98, 0.1)I(0, ∞)
φ2.1 ∼ N(0.66, 0.1)

σ3 ∼ t3(9.53, 0.1)I(0, ∞)
φ3.1 ∼ N(0.61, 0.1)
η ∼ Dir(1, 1, 1)

Appendix D.7. Scenario 7

Table A7. Priors of parameters on the ZMAR, TMAR, and GMAR models in the Scenario 7.

ZMAR TMAR GMAR

d11 ∼ t3(0.5, 0.1)I(0, ∞);
d21 ∼ t3(0.5, 0.1)I(0, ∞);

σ1 ∼ t3(5, 0.1)I(0, ∞)
φ1.0 ∼ N(−1, 0.1)

φ1.1 ∼ N(−0.6, 0.1)
d12 ∼ t3(1, 0.1)I(0, ∞);
d22 ∼ t3(1, 0.1)I(0, ∞);
σ2 ∼ t3(8, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
d13 ∼ t3(30, 0.1)I(0, ∞);
d23 ∼ t3(30, 0.1)I(0, ∞);
σ3 ∼ t3(10, 0.1)I(0, ∞)

φ3.1 ∼ N(0.7, 0.1)
η ∼ Dir(1, 1, 1)

ν1 ∼ t3(2.1, 0.1)I(0, ∞);
σ1 ∼ t3(14.6, 0.1)I(0, ∞)

φ1.0 ∼ N(−1, 0.1)
φ1.1 ∼ N(−0.62, 0.1)

ν2 ∼ t3(3.94, 0.1)I(0, ∞);
σ2 ∼ t3(8.1, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
ν3 ∼ t3(9.66, 0.1)I(0, ∞);
σ3 ∼ t3(1.62, 0.1)I(0, ∞)

φ3.1 ∼ N(0.84, 0.1)
η ∼ Dir(1, 1, 1)

σ1 ∼ t3(15.96, 0.1)I(0, ∞)
φ1.0 ∼ N(−1, 0.1)

φ1.1 ∼ N(−0.58, 0.1)
σ2 ∼ t3(8.05, 0.1)I(0, ∞)

φ2.1 ∼ N(0.18, 0.1)
σ3 ∼ t3(1.9, 0.1)I(0, ∞)

φ3.1 ∼ N(0.7, 0.1)
η ∼ Dir(1, 1, 1)
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Appendix D.8. Scenario 8

Table A8. Priors of parameters on the ZMAR, TMAR, and GMAR models in the Scenario 8.

ZMAR TMAR GMAR

d11 ∼ t3(0.5, 0.1)I(0, ∞);
d21 ∼ t3(0.5, 0.1)I(0, ∞);

σ1 ∼ t3(5, 0.1)I(0, ∞)
φ1.0 ∼ N(−20, 0.1)
φ1.1 ∼ N(−0.6, 0.1)

d12 ∼ t3(1, 0.1)I(0, ∞);
d22 ∼ t3(1, 0.1)I(0, ∞);
σ2 ∼ t3(8, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
d13 ∼ t3(30, 0.1)I(0, ∞);
d23 ∼ t3(30, 0.1)I(0, ∞);
σ3 ∼ t3(10, 0.1)I(0, ∞)

φ3.1 ∼ N(0.7, 0.1)
η ∼ Dir(1, 1, 1)

ν1 ∼ t3(2.1, 0.1)I(0, ∞);
σ1 ∼ t3(14.57, 0.1)I(0, ∞)

φ1.0 ∼ N(−20, 0.1)
φ1.1 ∼ N(−0.62, 0.1)

ν2 ∼ t3(3.94, 0.1)I(0, ∞);
σ2 ∼ t3(8.1, 0.1)I(0, ∞)

φ2.1 ∼ N(0.2, 0.1)
ν3 ∼ t3(9.66, 0.1)I(0, ∞);
σ3 ∼ t3(1.62, 0.1)I(0, ∞)

φ3.1 ∼ N(0.84, 0.1)
η ∼ Dir(1, 1, 1)

σ1 ∼ t3(15.96, 0.1)I(0, ∞)
φ1.0 ∼ N(−20, 0.1)

φ1.1 ∼ N(−0.58, 0.1)
σ2 ∼ t3(8.05, 0.1)I(0, ∞)

φ2.1 ∼ N(0.18, 0.1)
σ3 ∼ t3(1.9, 0.1)I(0, ∞)

φ3.1 ∼ N(0.7, 0.1)
η ∼ Dir(1, 1, 1)

Appendix E. Summary of Posterior Inferences for the Simulation Study

Appendix E.1. ZMAR Model

Table A9. Summary of posterior inferences for the ZMAR model, Scenario 1 to Scenario 8.

Parameters
Scenario 1 Scenario 2 Scenario 3

mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat

eta[1] 0.30 0.22 0.37 7191 1 0.30 0.23 0.37 3014 1 0.37 0.26 0.47 5026 1
eta[2] 0.35 0.28 0.44 6327 1 0.35 0.27 0.43 2580 1 0.25 0.14 0.37 5112 1
eta[3] 0.35 0.30 0.40 13068 1 0.35 0.30 0.41 4751 1 0.38 0.33 0.43 12941 1

sigma[1] 4.99 4.68 5.28 5655 1 5.01 4.73 5.34 3009 1 5.03 4.76 5.39 4640 1
sigma[2] 8.01 7.73 8.33 3849 1 8.00 7.70 8.28 3630 1 8.01 7.72 8.32 2937 1
sigma[3] 9.87 8.86 10.19 1171 1 10.11 9.81 10.86 606 1 9.98 9.65 10.28 7578 1

d1[1] 0.24 0.20 0.29 8498 1 20.00 19.70 20.33 3898 1 0.46 0.37 0.56 10341 1
d1[2] 1.00 0.75 1.27 7829 1 1.00 0.84 1.16 3979 1 0.97 0.77 1.19 9542 1
d1[3] 30.01 29.71 30.37 1180 1 30.00 29.71 30.31 3380 1 30.00 29.67 30.34 7281 1
d2[1] 10.00 9.67 10.35 2476 1 0.99 0.80 1.19 4081 1 0.47 0.38 0.58 9300 1
d2[2] 0.97 0.82 1.13 10248 1 1.04 0.87 1.25 3578 1 1.02 0.80 1.29 7985 1
d2[3] 30.01 29.70 30.35 6690 1 29.99 29.65 30.28 2935 1 30.00 29.68 30.31 4824 1

phi1[1] −0.58 −0.69 −0.49 8111 1 −0.61 −0.67 −0.54 4283 1 −0.65 −0.79 −0.51 8638 1
phi2[1] 0.20 0.12 0.28 9659 1 0.24 0.10 0.39 3885 1 0.17 0.04 0.31 10220 1
phi3[1] 0.70 0.69 0.72 11783 1 0.69 0.65 0.73 4633 1 0.70 0.68 0.72 15160 1

Parameters
Scenario 4 Scenario 5 Scenario 6

mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat

eta[1] 0.29 0.19 0.38 3374 1 0.33 0.25 0.41 9017 1 0.35 0.28 0.42 10507 1
eta[2] 0.34 0.24 0.45 3208 1 0.32 0.23 0.41 7678 1 0.27 0.20 0.35 8527 1
eta[3] 0.37 0.30 0.44 6006 1 0.35 0.28 0.41 14769 1 0.38 0.31 0.44 13451 1

sigma[1] 8.00 7.71 8.31 2661 1 7.95 7.56 8.24 3108 1 7.98 7.64 8.26 4814 1
sigma[2] 4.99 4.71 5.25 5046 1 4.94 4.64 5.28 5420 1 5.03 4.76 5.37 4642 1
sigma[3] 9.99 9.69 10.28 3622 1 10.06 9.74 10.34 4557 1 10.00 9.69 10.30 7130 1

d1[1] 3.00 2.68 3.30 3017 1 7.01 6.71 7.37 2621 1 10.00 9.67 10.34 3430 1
d1[2] 0.99 0.82 1.16 4244 1 0.99 0.82 1.16 9146 1 0.94 0.75 1.12 9040 1
d1[3] 30.01 29.70 30.36 1772 1 30.00 29.68 30.34 4481 1 29.96 29.65 30.27 3118 1
d2[1] 10.00 9.69 10.31 1204 1 10.19 8.69 12.11 2936 1 10.13 8.71 11.93 5848 1
d2[2] 1.16 0.98 1.40 4328 1 1.29 0.98 1.64 9659 1 1.13 0.84 1.45 9806 1
d2[3] 30.01 29.70 30.37 2704 1 30.03 28.47 31.65 6035 1 29.81 28.13 31.41 6694 1

phi1[1] −0.61 −0.72 −0.51 4860 1 −0.59 −0.68 −0.50 12297 1 −0.58 −0.66 −0.50 11226 1
phi2[1] 0.16 0.00 0.33 4725 1 0.19 0.04 0.34 13526 1 0.21 0.04 0.37 11801 1
phi3[1] 0.70 0.64 0.75 4788 1 0.74 0.69 0.79 13276 1 0.70 0.66 0.75 12584 1
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Table A9. Cont.

Parameters
Scenario 7 Scenario 8

mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat

eta[1] 0.37 0.26 0.48 6313 1 0.26 0.18 0.35 5531 1
eta[2] 0.24 0.13 0.36 6050 1 0.36 0.27 0.46 5302 1
eta[3] 0.38 0.33 0.43 14608 1 0.37 0.32 0.42 15821 1

sigma[1] 5.03 4.76 5.39 5870 1 5.01 4.71 5.34 5182 1
sigma[2] 8.02 7.71 8.38 4889 1 8.04 7.75 8.44 3010 1
sigma[3] 9.98 9.66 10.25 8727 1 9.98 9.62 10.27 4889 1

d1[1] 0.46 0.38 0.56 9767 1 0.64 0.49 0.84 7428 1
d1[2] 0.97 0.75 1.19 11033 1 0.97 0.76 1.19 8864 1
d1[3] 30.00 29.69 30.32 6325 1 30.00 29.68 30.32 6680 1
d2[1] 0.47 0.38 0.58 8485 1 0.36 0.26 0.53 5370 1
d2[2] 1.02 0.79 1.30 8732 1 0.96 0.77 1.16 7925 1
d2[3] 30.00 29.70 30.31 9132 1 30.00 29.68 30.34 3818 1
phi10 −1.00 −1.20 −0.80 13066 1 −19.99 −20.18 −19.80 9972 1

phi1[1] −0.64 −0.78 −0.50 8240 1 −0.61 −0.77 −0.45 9056 1
phi2[1] 0.17 0.04 0.31 9302 1 −0.01 −0.15 0.14 7869 1
phi3[1] 0.70 0.68 0.72 12524 1 0.70 0.68 0.71 10541 1

Note: eta[1] = η1; eta[2] = η2; eta[3] = η3; sigma[1] = σ1; sigma[2] = σ2; sigma[3] = σ3; d1[1] = d11; d1[2] = d12; d1[3] = d13; d2[1] =
d21; d2[2] = d22; d2[3] = d23; phi10 = φ1.0; phi1[1] = φ1.1; phi2[1] = φ2.1; phi3[1] = φ3.1.

Appendix E.2. TMAR Model

Table A10. Summary of posterior inferences for the TMAR model, Scenario 1 to Scenario 8.

Parameters
Scenario 1 Scenario 2 Scenario 3

mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat

eta[1] 0.32 0.24 0.40 7063 1 0.37 0.27 0.45 5915 1 0.41 0.30 0.51 2372 1
eta[2] 0.34 0.25 0.43 6220 1 0.26 0.15 0.37 4889 1 0.21 0.10 0.32 2247 1
eta[3] 0.34 0.29 0.39 13537 1 0.38 0.31 0.45 8252 1 0.38 0.33 0.44 5455 1

sigma[1] 14.61 14.30 14.94 5674 1 5.29 4.90 5.57 2536 1 14.57 14.17 14.87 1277 1
sigma[2] 8.14 7.86 8.51 4161 1 8.13 7.84 8.46 5277 1 8.11 7.80 8.45 825 1
sigma[3] 1.50 1.26 1.69 7778 1 1.96 1.65 2.37 6784 1 1.66 1.51 1.85 3690 1

nu[1] 2.16 1.92 2.49 7307 1 2.24 2.00 2.57 5840 1 6.84 2.47 14.35 1137 1
nu[2] 3.91 3.53 4.22 3185 1 3.94 3.64 4.24 7714 1 3.95 3.66 4.27 3009 1
nu[3] 9.66 9.34 9.97 8297 1 9.66 9.33 9.98 7186 1 9.67 9.33 10.02 3084 1

phi1[1] −0.52 −0.66 −0.37 8479 1 −0.60 −0.68 −0.52 7125 1 −0.61 −0.76 −0.46 3324 1
phi2[1] 0.21 0.14 0.27 10361 1 0.26 0.12 0.41 8110 1 0.18 0.05 0.30 3917 1
phi3[1] 0.71 0.69 0.72 10525 1 0.70 0.66 0.74 8983 1 0.70 0.68 0.72 4471 1

Parameters
Scenario 4 Scenario 5 Scenario 6

mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat

eta[1] 0.31 0.22 0.41 5102 1 0.39 0.30 0.47 4914 1 0.41 0.33 0.49 7570 1
eta[2] 0.29 0.19 0.40 3605 1 0.23 0.14 0.33 3055 1 0.18 0.11 0.26 5985 1
eta[3] 0.40 0.33 0.47 8780 1 0.39 0.32 0.46 6358 1 0.41 0.35 0.48 13283 1

sigma[1] 2.96 2.61 3.22 2891 1 2.36 2.08 2.60 5918 1 2.34 2.05 2.56 6321 1
sigma[2] 6.67 5.75 6.99 1343 1 6.49 5.18 6.85 1166 1 6.62 6.29 6.90 5457 1
sigma[3] 1.68 1.50 1.92 8383 1 1.74 1.56 1.97 6751 1 1.77 1.60 1.99 8093 1

nu[1] 2.27 2.01 2.75 1310 1 2.31 2.04 2.85 1808 1 2.36 2.09 2.80 2908 1
nu[2] 3.99 3.73 4.41 3288 1 3.97 3.69 4.34 4246 1 3.96 3.66 4.30 5643 1
nu[3] 9.66 9.34 9.98 6284 1 9.66 9.33 9.99 4339 1 9.66 9.35 9.97 11682 1

phi1[1] −0.61 −0.70 −0.51 8823 1 −0.60 −0.67 −0.51 9092 1 −0.57 −0.65 −0.50 9497 1
phi2[1] 0.16 0.00 0.32 9719 1 0.20 0.04 0.36 9273 1 0.22 0.05 0.39 10160 1
phi3[1] 0.70 0.65 0.75 10272 1 0.73 0.68 0.78 9758 1 0.70 0.65 0.75 11448 1

Parameters
Scenario 7 Scenario 8

mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat

eta[1] 0.42 0.32 0.52 5019 1 0.23 0.15 0.30 2952 1
eta[2] 0.20 0.09 0.31 4956 1 0.40 0.32 0.49 3629 1
eta[3] 0.38 0.33 0.43 12590 1 0.37 0.32 0.42 12821 1

sigma[1] 14.57 14.20 14.86 4356 1 14.49 13.92 14.80 551 1
sigma[2] 8.11 7.82 8.41 9509 1 9.01 8.00 11.53 1391 1
sigma[3] 1.65 1.48 1.83 10687 1 1.64 1.47 1.82 10546 1

nu[1] 6.99 2.80 14.63 7043 1 2.73 1.99 6.59 1412 1
nu[2] 3.95 3.63 4.28 5590 1 3.96 3.66 4.31 1783 1
nu[3] 9.66 9.35 10.01 8211 1 9.66 9.34 9.97 4064 1
phi10 −1.00 −1.20 −0.81 12088 1 −19.99 −20.18 −19.79 11087 1

phi1[1] −0.60 −0.75 −0.45 7176 1 −0.64 −0.80 −0.47 9946 1
phi2[1] 0.18 0.04 0.31 10476 1 −0.03 −0.16 0.10 7696 1
phi3[1] 0.70 0.68 0.72 11455 1 0.70 0.68 0.71 12521 1

Note: eta[1] = η1; eta[2] = η2; eta[3] = η3; sigma[1] = σ1; sigma[2] = σ2; sigma[3] = σ3; nu[1] = ν1; nu[2] = ν2; nu[3] = ν3; phi10 =
φ1.0; phi1[1] = φ1.1; phi2[1] = φ2.1; phi3[1] = φ3.1.
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Appendix E.3. GMAR Model

Table A11. Summary of posterior inferences for the GMAR model, Scenario 1 to Scenario 8.

Parameters
Scenario 1 Scenario 2 Scenario 3

mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat

eta[1] 0.17 0.03 0.31 2115 1 0.32 0.26 0.39 3938 1 0.45 0.37 0.53 5106 1
eta[2] 0.10 0.02 0.20 2355 1 0.44 0.38 0.50 6055 1 0.16 0.07 0.25 4794 1
eta[3] 0.37 0.27 0.47 2998 1 0.24 0.18 0.30 3828 1 0.39 0.34 0.44 14297 1
eta[4] 0.35 0.29 0.40 4562 1 - - - - - - - - - -

sigma[1] 22.99 22.66 23.30 2544 1 5.02 4.74 5.32 3411 1 16.27 14.82 17.95 7206 1
sigma[2] 33.00 32.71 33.32 4314 1 2.62 2.37 2.83 3843 1 8.01 7.72 8.34 8301 1
sigma[3] 10.98 10.59 11.29 2125 1 14.51 14.23 14.86 2838 1 1.90 1.69 2.09 8779 1
sigma[4] 1.65 1.32 1.97 3881 1 - - - - - - - - - -
phi1[1] −0.10 −0.27 0.07 5071 1 −0.59 −0.67 −0.52 5206 1 −0.58 −0.72 −0.44 7440 1
phi2[1] −0.46 −0.66 −0.27 4691 1 0.68 0.63 0.72 5424 1 0.20 0.07 0.34 9230 1
phi3[1] 0.23 0.14 0.32 4408 1 0.42 0.26 0.58 5452 1 0.70 0.68 0.72 8926 1
phi4[1] 0.70 0.69 0.72 4702 1 - - - - - - - - - -

Parameters
Scenario 4 Scenario 5 Scenario 6

mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat

eta[1] 0.47 0.37 0.56 5580 1 0.20 0.02 0.41 4372 1 0.41 0.35 0.48 4103 1
eta[2] 0.10 0.05 0.17 5157 1 0.25 0.03 0.46 4182 1 0.41 0.35 0.48 4209 1
eta[3] 0.43 0.36 0.51 7119 1 0.14 0.10 0.19 8663 1 0.17 0.13 0.23 4222 1
eta[4] - - - - - 0.40 0.34 0.47 9784 1 - - - - -

sigma[1] 5.17 4.27 6.04 5779 1 2.87 2.58 3.20 7042 1 2.87 2.62 3.09 3711 1
sigma[2] 11.92 11.55 12.22 2196 1 3.50 3.23 3.81 5643 1 1.97 1.78 2.15 4277 1
sigma[3] 2.00 1.64 2.41 6005 1 10.92 10.58 11.19 8724 1 9.54 9.23 9.85 3810 1
sigma[4] - - - - - 2.00 1.80 2.20 9818 1 - - - - -
phi1[1] −0.45 −0.56 −0.33 6510 1 −0.49 −0.65 −0.28 6246 1 −0.54 −0.62 −0.46 5372 1
phi2[1] 0.25 0.06 0.43 7870 1 −0.49 −0.67 −0.30 5778 1 0.69 0.64 0.74 4489 1
phi3[1] 0.68 0.62 0.73 6904 1 0.55 0.36 0.73 9482 1 0.55 0.37 0.72 4960 1
phi4[1] - - - - - 0.73 0.67 0.78 9638 1 - - - - -

Parameters
Scenario 7 Scenario 8

mean 2.5% 97.5% n_eff Rhat mean 2.5% 97.5% n_eff Rhat

eta[1] 0.46 0.38 0.54 5739 1 0.20 0.13 0.27 9210 1
eta[2] 0.15 0.07 0.24 5976 1 0.37 0.32 0.42 13255 1
eta[3] 0.39 0.33 0.44 12235 1 0.43 0.35 0.51 8512 1

sigma[1] 15.99 15.71 16.37 4308 1 15.93 15.55 16.24 2863 1
sigma[2] 8.06 7.76 8.41 9217 1 1.81 1.54 2.12 9746 1
sigma[3] 1.84 1.64 2.00 9968 1 14.75 13.09 16.56 11288 1

phi10 −1.00 −1.20 −0.81 6321 1 −19.98 −20.18 −19.78 11821 1
phi1[1] −0.56 −0.70 −0.43 9013 1 −0.70 −0.85 −0.54 10264 1
phi2[1] 0.18 0.05 0.31 6200 1 0.69 0.67 0.71 11262 1
phi3[1] 0.70 0.68 0.72 10471 1 0.18 0.05 0.32 10450 1

Note:eta[1] = η1; eta[2] = η2; eta[3] = η3; eta[4] = η4; sigma[1] = σ1; sigma[2] = σ2; sigma[3] = σ3; sigma[4] = σ4; phi10 = φ1.0; phi1[1] =
φ1.1; phi2[1] = φ2.1; phi3[1] = φ3.1.

Appendix F. Priors of Some Parameters on the Models in the IBM Stock Prices and the
Brent Crude Oil Prices

Appendix F.1. IBM Stock Prices (First-Differenced Series)
Table A12. Priors of some parameters on the models in the IBM stock prices (first-differenced series).

ZMAR TMAR GMAR

d11 ∼ t3(1.94, 0.1)I(0, ∞);
d21 ∼ t3(3.90, 0.1)I(0, ∞);
σ1 ∼ t3(28.28, 0.1)I(0, ∞)
d12 ∼ t3(1.79, 0.1)I(0, ∞);
d22 ∼ t3(6.40, 0.1)I(0, ∞);
σ2 ∼ t3(9.81, 0.1)I(0, ∞)

φ2.1 ∼ N(0.61, 0.1)
d13 ∼ t3(4.92, 0.1)I(0, ∞);
d23 ∼ t3(1.66, 0.1)I(0, ∞);
σ3 ∼ t3(6.34, 0.1)I(0, ∞)

φ3.1 ∼ N(−0.28, 0.1)
η ∼ Dir(1, 1, 1)

ν1 ∼ t3(12.52, 0.1)I(0, ∞);
σ1 ∼ t3(5.01, 0.1)I(0, ∞)

φ1.1 ∼ N(−0.29, 0.1)
ν2 ∼ t3(10.77, 0.1)I(0, ∞);
σ2 ∼ t3(5.82, 0.1)I(0, ∞)

φ2.1 ∼ N(0.68, 0.1)
ν3 ∼ t3(14.03, 0.1)I(0, ∞);
σ3 ∼ t3(25.02, 0.1)I(0, ∞)

η ∼ Dir(1, 1, 1)

σ1 ∼ t3(4.8227, 0.1)I(0, ∞)
φ1.1 ∼ N(−0.31, 0.1)

σ2 ∼ t3(6.0082, 0.1)I(0, ∞)
φ2.1 ∼ N(0.67, 0.1)

σ3 ∼ t3(19.04 , 0.1)I(0, ∞)
η ∼ Dir(1, 1, 1, 1)
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Appendix F.2. Brent Crude Oil Prices (First-Differenced Series)

Table A13. Priors of some parameters on the models in the Brent crude oil prices (first-differenced series).

ZMAR TMAR GMAR

d11 ∼ t3(13.21, 0.1)I(0, ∞);
d21 ∼ t3(4.47, 0.1)I(0, ∞);
σ1 ∼ t3(5.18, 0.1)I(0, ∞)

φ1.1 ∼ N(−0.33, 0.1)
d12 ∼ t3(1.05, 0.1)I(0, ∞);
d22 ∼ t3(1.90, 0.1)I(0, ∞);
σ2 ∼ t3(2.81, 0.1)I(0, ∞)

φ2.1 ∼ N(0.67, 0.1)
φ2.2 ∼ N(−0.31, 0.1)

d13 ∼ t3(10.07, 0.1)I(0, ∞);
d23 ∼ t3(4.31, 0.1)I(0, ∞);
σ3 ∼ t3(7.24 , 0.1)I(0, ∞)

φ3.1 ∼ N(0.69, 0.1)
φ3.2 ∼ N(0.69, 0.1)
η ∼ Dir(1, 1, 1)

ν1 ∼ t3(14.98, 0.1)I(0, ∞);
σ1 ∼ t3(5.05, 0.1)I(0, ∞)

φ1.1 ∼ N(0.63, 0.1)
φ1.2 ∼ N(−0.39, 0.1)

ν2 ∼ t3(12.08, 0.1)I(0, ∞);
σ2 ∼ t3(1.61, 0.1)I(0, ∞)

φ2.1 ∼ N(−0.26, 0.1)
ν3 ∼ t3(4.33, 0.1)I(0, ∞);
σ3 ∼ t3(1.89, 0.1)I(0, ∞)

φ3.1 ∼ N(0.55, 0.1)
φ3.2 ∼ N(0.85, 0.1)

φ3.3 ∼ N(−0.27, 0.1)
η ∼ Dir(1, 1, 1)

t3(4.11, 0.1)I(0, ∞)
φ1.1 ∼ N(0.18, 0.1)

φ1.2 ∼ N(−0.34, 0.1)
φ1.3 ∼ N(−0.16, 0.1)

σ2 ∼ t3(1.70, 0.1)I(0, ∞)
φ2.1 ∼ N(0.44, 0.1)

φ2.2 ∼ N(−0.16, 0.1)
φ2.3 ∼ N(0.33, 0.1)

σ3 ∼ t3(1.94, 0.1)I(0, ∞)
φ3.1 ∼ N(0.57, 0.1)
φ3.2 ∼ N(0.90, 0.1)

φ3.3 ∼ N(−0.28, 0.1)
η ∼ Dir(1, 1, 1)
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