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Abstract: In recent decades, an increase in the earth’s atmospheric temperature has been noticed
due to the augmentation of the volume of gases with the greenhouse effect (GHG) released into the
atmosphere. To reduce this effect, the European Union’s directives indicate the action directions
for reducing these emissions, among which carbon dioxide (CO2) recorded the highest amount. In
this context, the article analyzes the CO2 series reported in 1990–2021 by 30 European countries.
The Kruskal-Wallis test rejected the hypothesis that the series comes from the same underlying
distribution. The Anderson-Darling test rejected the normality hypothesis for seven series out of
thirty, and Sen’s procedure found a decreasing trend slope only for 17 series. ARIMA models have
been built for all individual series. Grouping the series (by the k-means and hierarchical clustering)
provided the base for building the Regional series (RegS), which describes the CO2 pollution evolution
over Europe. The advantage of this approach is to provide the synthetic image of the regional
evolution of the CO2 emission volume (mt), incorporating information from 30 series (one for each
country) in only one—RegS. It is also shown that selecting the number of clusters involved in building
RegS and assessing their stability is essential for the model’s goodness of fit.
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1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) [1] shows that the GHG
emissions from human activities reached the highest levels compared to the previous
800,000 years. The US Inventory [2] indicates that in 2021, in the USA, the GHG volume
exceeded 6340.2 mil mt of CO2 equivalents, higher by 6% than in 2020 but lower by 17%
than in 2005. The GHG emissions from the EU economy rose to 941 mt CO2 equivalents in
the first quarter of 2023 [3].

Carbon dioxide, the GHG with the highest weight in the total GHG (followed by CO2,
NH4, and N2H), results from natural and anthropic sources. The first category includes
respiration, ocean release, and decomposition. The second is represented by burning fossil
fuels, deforestation, industrial production (like the cement industry), and agricultural
activities [4–6]. Transportation emitted about a quarter of the EU’s CO2 volume in 2019, of
which more than two-thirds were produced by road transportation [4,5]. CO2 emissions
from transportation have increased by 33.5% from 1990 to 2019 in UE [4].

According to the Intergovernmental Panel on Climate Change (IPCC) document [1],
the main cause of temperature augmentation from the middle of the twentieth century has
been the enormous amount of GHG emitted into the atmosphere. The Sixth Assessment
Report of IPCC shows that to limit this increase, immediate measures must be imple-
mented [7–10]. According to [11,12], natural sinks contribute to removing some GHG from
the atmosphere. However, when the GHG volume is high, these gases remain and accumu-
late for decades or even hundreds of years (like in the case of CO2). Therefore, conditions to
stimulate the natural sinks’ activity must be created, and artificial sinks should be designed
to balance the GHG’s effect [12–14].
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The experimental results show that people’s constant exposure to CO2 may harm
their health [15–19]. The review of Jacobson et al. [20] and the articles on which it is
based also highlight some effects of chronic exposure to CO2, for example, oxidative
stress, diminishing cognitive abilities, kidney calcification, bone demineralization, etc. [21].
Moreover, the adverse effects of the CO2 excess on the ecosystems, plants, and animals are
presented in [22,23]. In this context, Hadipoor et al. [24] indicate some measures to control
and reduce CO2 emissions.

Despite the necessity of emissions’ reduction being understood [25–30], there exist
differences among countries related to carbon emissions’ responsibility [31,32]. So, most
studies in the field discuss the responsibility for embodied CO2 emissions in interna-
tional trade [25,31]. Some scientists analyzed the results of the international conventions’
implementation [33], while others focused on the source attribution of GHG emissions [34].

Techniques like ARIMA for modeling the CO2 series from 1972 to 2013 in Bangladesh [35],
exponential smoothing and MLP for forecasting the CO2 series in Pakistan [36], and the
use of the Cobb-Douglas function to estimate the CO2 sectorial amount in the total CO2
emission in Indonesia [37] proved to be efficient for this purpose. A review of the methods
utilized for emphasizing the correlations between the emissions of CO2, the consumption
of energy, and economic growth is presented in [38]. A survey on approaches utilized for
modeling the CO2 emissions from stationary sources, GIS, and economic assessment can be
found in [39]. An overview of the CO2 globally averaged concentrations series since 1830
is performed in [40].

In the context of the climate change negotiations, which started with the adoption of
the Convention on Climate Change in 1992, followed by the Kyoto Protocol in 1997, and
the launching of the EU’s Emissions Trading System in 2005, the European Union has been
a key player in the fight against climate change. Investigating the CO2 series evolution is
essential for assessing the results of implementing the measures for reducing climate change
and diminishing its environmental effects [40,41]. Therefore, different articles studied the
CO2 series’ temporal [35,40,42] or spatial [43,44] evolution in different countries, but fewer
performed spatiotemporal [45] analyses, mostly for countries in Asia. In this study, we
propose such an approach for investigating the trend of the CO2 series recorded in thirty
European countries in Europe. First, we perform a deep statistical analysis, then build
models (utilizing the Box–Jenkins methodology) for the series recorded in each country,
and test the hypothesis that all series have the same underlying distribution. The rest
of this study is dedicated to concisely presenting the regional and temporal evolution of
the CO2 emission series in Europe and incorporating the information collected into one
representative series—the Regional series (RegS) — significant from a spatial viewpoint.
RegS is constructed using a selection from the 30 series recorded in the studied countries
based on two clustering algorithms—k-means and hierarchical clustering [46,47]. Based on
our knowledge, this approach is new in the study field.

It is also shown that finding the optimal number of clusters using different selection
algorithms and testing the clusters’ stability is essential for obtaining the best RegS. So,
even if it appears at a superficial analysis that clustering is the research goal, it is only one
of the most critical steps in the proposed algorithm.

2. Materials and Methods
2.1. Data Series

The analyzed data set consists of the CO2 net emissions (in mt) series recorded from
1990 to 2021 in the EU—27 countries, Iceland, Norway, and Switzerland. The data se-
ries was downloaded in an .xlxs form from the official site of the European Union [48]
and represents the series sent by the 30 countries to UNFCCC and the EU GHG Moni-
toring Mechanism. The series has no gaps. The series was processed and represented in
Figure 1 on a logarithmic scale for clarity of representation. The international abbreviations
of the countries’ names are utilized in this work: AT—Austria, BE—Belgium, BG—Bulgaria,
CH—Switzerland, CY—Cyprus, CZ—Czechia, DE—Germany, DK—Denmark, EE—Estonia,
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EL—Greece, ES—Spain, FI—Finland, FR—France, HR—Croatia, HU—Hungary,
IE—Ireland, IS—Island, IT—Italy, LT—Lithuania, LU—Luxembourg, LV—Latvia, MT—Malta,
NL—Netherland, NO—Norway, PL—Poland, PT—Portugal, RO—Romania, SE—Sweden,
SI—Slovenia, and SK—Slovakia.
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2.2. Methodology

The study is split into two parts. The first focuses on evaluating the evolution of
the time series recorded in each country and yearly CO2 series. The second one concerns
building RegS.

2.2.1. Study the Time Series Recorded in Each Country

The steps in the individual series analysis are the following:

(1) Test the hypothesis that the series is Gaussian against the hypothesis that it is not
Gaussian by using the Anderson–Darling (AD) test [49].

(2) Test the homoskedasticity hypothesis against the heteroskedasticity by the
Fligner–Killeen (KF) test [50] (since it is less sensitive to the normality violation) [51].

(3) Perform the Mann–Kendall (MK) [52] to test the randomness hypothesis against the
existence of a monotonic trend. If the null is rejected, the slope of a linear trend will
be computed by Sen’s [53]. The following series were subject to this analysis:

(a) The CO2 series recorded in each country (30 series);
(b) The total CO2 emissions during 1990–2021.

(4) Perform the Augmented Dickey–Fuller (ADF) test [54] to assess the existence of a unit
root vs. the time series stationarity for the series from (3).

(5) Perform the Kruskal–Wallis (K-W) test [55] to test whether the series in a group
originates from the same distribution against the alternative that at least one comes
from a different distribution. When the null hypothesis was rejected, the post-hoc
Dunn’s test [56], with the adjustment proposed by Hochberg [57], was run.

(6) Modeling the time series from (3) using the ARIMA technique.

Considering a time process (Xt), t∈Z, denote by ∆dXt the difference of d-th order of
Xt. (Xt) is an autoregressive integrated moving average process, ARIMA (p,d,q), if:

Φ(B)∆dXt = Θ(B)εt, (1)
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where Φ and Θ are polynomials of p and q orders, respectively, with roots higher than 1,
and (εt), t∈Z is white noise [58].

An autoregressive process of order p, AR (p), is a particular case of ARIMA, with
q = d = 0. A moving average process of order q, MA (q), is an ARIMA (0,0,q).

If, after performing the ADF test, the null hypothesis was rejected, then d = 0. Oth-
erwise, one may differentiate the series and perform the ADF test again until the null is
rejected. Otherwise, one may differentiate the series and perform again the ADF test until
the null is rejected. Thus, d will be equal to the number of differences taken on the series
when getting the null rejected. The p and q orders were selected by analyzing the charts
of the autocorrelation and partial autocorrelation functions (ACF and PACF, respectively).
The model with the lowest value of the Akaike criterion [59] was kept. The Ljung–Box [60]
test was used to check that the residuals form white noise.

All tests were performed at a significance level of 0.05. A p-value less than 0.05
computed in a test (except Dunn’s) leads to rejecting the corresponding null hypothesis. In
Dunn’s test, the null hypothesis rejection is performed if the p-value < α/2.

2.2.2. Building RegS

The algorithm run for building RegS from the series recorded in the 30 European
countries has the following steps [61,62]:

1. Determine the optimal number of clusters, k, perform the k-means and hierarchical
clustering, and choose the best clustering.

The k-means and hierarchical clustering [63–65] were utilized to group the series
recorded in the 30 countries. The advantages and disadvantages of these techniques are
presented in [66], shortly.

The silhouette [67], elbow [68], and gap statistics methods [69] were employed to
determine the optimum k for running the k-means algorithm. Sometimes, these techniques
do not provide the same k; thus, the study was performed for each possibility, and the best
one was selected using some criteria that will be presented in the following.

The ratio WSS (the within-cluster sum of squares) and BSS/TSS (the between-clusters
sum of squares by the total sum of squares) were computed to determine the best clustering
in the k-means algorithm. The higher the BSS/TSS is, the better is the clustering. A smaller
WSS indicates better groupings, as well [70].

Hierarchical clustering is a method whose graphical output is a dendrogram that
indicates the series’ hierarchy. The distance between elements is computed in the first
stage, and the distance matrix is built. Different distance functions can be used for this
purpose, including Euclidean, Manhattan, Hamming, Jaccard, etc. In this study, the first
one was utilized.

Hierarchical clustering can be agglomerative or divisive. In the first one utilized
here, a cluster is initially created for each element, then, successively, the groups are
merged until only one cluster is obtained. The selection of the clusters to be merged at an
intermediate step is performed after checking the distances between the couples of clusters.
The most similar clusters (couples with the lowest distances between them) are merged. The
cluster similarity is defined using different linkage methods, among which are “average”,
“complete” ,“median”, “ward.D”, “ward.D2”, etc. [65,71]. In the “average” (“complete”)
method, the average (maximum) distances between pairs of elements (one from a cluster
and the other one from another cluster) are returned. These two methods performed
the best on the CO2 dataset, taking into account the values of the cophenetic correlation
coefficient [72,73]. Values greater than 0.9 (between 0.8 and 0.9) indicate a very good (good)
clustering quality, whereas less than 0.8 show poor clustering results. After obtaining
the clusters, the average Jaccard (AvgJaggard) measures and associated instabilities are
computed to verify whether the algorithm (k-means and hierarchical clustering, in this
case) provided a satisfactory representation in different groups of the studied dataset.
AvgJaggard > 0.85 indicates a high stability of the cluster. AvgJaggard in [0.6, 0.85) (lower
than 0.6) shows that the cluster is stable (unstable) [74].
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2. Select the cluster with the highest number of elements, Clmax. When at least two
clusters have this property, Clmax is the one with the smallest WSS.

3. Compute RegS, whose elements are the averages of the series from Clmax. More
precisely, the value assigned to year j is the mean of values recorded in the same year
in the countries from Clmax.

4. Evaluate the modeling errors for each series by subtracting the values of RegS from
the recorded values.

5. Estimate the RegS’s goodness-of-fit of by computing the mean absolute percentage
error (MAPE). MAPE was chosen because it is a non-dimensional index that can be
utilized for comparing different models.

The R 4.3.2 software (https://www.r-project.org/) was used to perform the study.

3. Results and Discussion
3.1. Analysis of the CO2 Time Series

The Anderson–Darling test rejected the null hypothesis for the series recorded in BE,
DK, EE, ES, FR, HU, IE, IS, IT, LT, MT, NL, PL, PT, SI, SK, and the total CO2 series. The
homoscedasticity hypothesis was rejected for the IS, IT, LT, LU, NO, and SI series.

The MK trend test applied to the total CO2 series obtained by summing all series values
recorded in each country during 1990–2021 rejected the null hypothesis. The nonparametric
Sen’s procedure provided a negative slope of −2.9589×107 for the period 1990–2021. The
polynomial trend determined for 1990–2002 has the equation:

yt = −766992t3 + 5 × 109t2 − 5 × 109t + 6 × 1011 (R2 = 0.8144) (2)

and after 2003, it has the equation:

yt = −5.3788 × 107t + 1.1127 × 1011 (R2 = 0.9012), (3)

where t is the time and yt is the value of the series at the moment t.
Table 1 presents the p-values computed in the MK test for the CO2 series recorded in

each country during the study period. If the p-value is less than 0.05, it is accompanied by
the sign plus or minus between the brackets, meaning that the slope of the linear trend
computed by Sen’s method is positive or negative, respectively. Out of 30 series, the null
hypothesis was rejected for 20 s. A positive trend was found for the AT, CY, and IS series,
whereas a negative trend was estimated for 17 countries.

Table 1. The p-values in the MK test on the CO2 series reported by the European countries.

Country AT BE BG CH CY CZ DE DK EE EL

MK p−val 0.000 (+) 0.000 (−) 0.007 (−) 0.002 (−) 0.001 (+) 0.000 (−) 0.000 (−) 0.000 (−) 0.5703 0.116

Country ES FI FR HR HU IE IS IT LT LU

p−val 0.783 0.212 0.000 (−) 0.250 0.000 (−) 0.446 0.000 (+) 0.001 (−) 0.003 (−) 0.034 (−)

Country LV MT NL NO PL PT RO SE SI SK

p−val 0.570 0.043 (−) 0.001 (−) 0.884 0.017 (−) 0.910 0.000 (−) 0.000 (−) 0.062 0.000 (−)

The ADF test could not reject the hypothesis of a unit root existence for any series at the
significance level of 5%. Therefore, there is not enough evidence for the series stationarity.
Therefore, to reach stationarity, some transformations must be employed.

Table 2 contains the modeling results, as follows:

- Column 2—the model type;
- Column 3—the model’s coefficients (when a simple differentiation did not lead to the

model) and the corresponding standard error (se) inside the brackets;
- Column 4—the drift, if it exists, and the standard error (se) of its estimation inside

the brackets;

https://www.r-project.org/
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- The p-value computed in the Ljung–Box test applied to the model’s residual series;
- The MAPE of the model.

Table 2. ARIMA-type models for the series recorded in each country.

Model Coefficient (se) Drift (se) Ljung–Box MAPE

AT ARIMA (0,1,0) 0.068 9.540

BE ARIMA (1,1,0) ar1 = −0.5379 (0.1541) −823,323.2
(434,892.5) 0.585 2.528

BG ARIMA (0,1,0) 0.696 10.242

CH ARIMA (0,1,0) 0.163 3.565

CY ARIMA (1,2,0) ar1 = −0.4796 (0.1660) 0.872 3.118

CZ ARIMA (0,1,0) −1,672,886.6
(912,138.5) 0.721 3.382

DE ARIMA (0,1,0) −13,175,314
(5,529,230) 0.663 2.801

DK ARIMA (0,1,1) ma1 = −0.3653 (0.1724) −1,071,914.1
(530,997.1) 0.863 5.936

EE ARIMA (1,0,0),mean = 18,424,007 (5,355,966) ar1 = 0.9194 (0.0809) 0.978 15.576

EL ARIMA (0,2,1) ma1 = −0.7087 (0.1233) 0.578 3.755

ES ARIMA (0,0,0), mean = 240,898,858 (7,123,938) 0.000 13.679

FI ARIMA (0,0,1) with mean = 30,004,148 (1,645,259) ma1 = 0.4819 (0.2230) 0.662 19.416

FR ARIMA (0,1,1) ma1 = −0.4832 (0.1950) −3,180,106
(1,285,215) 0.575 2.903

HR ARIMA (1,0,0), mean = 12,922,689 (1,229,364) ar1 = 0.7948 (0.0809) 0.889 8.736

HU ARIMA (0,1,0) −923,762.9
(441,331.6) 0.429 3.588

IE ARIMA (1,0,2) with mean = 44,879,052 (2,889,765)
ar1 = 0.8256 (0.0983)
ma1 = 0.2435 (0.1239)
ma2 = 0.6980 (0.1712)

0.997 2.913

IS ARIMA (0,1,0) 37689.71
(24201.84) 0.501 1.227

IT ARIMA (0,1,0) 0.956 3.974

LT ARIMA (0,1,0) 0.256 27.837

LU ARIMA (2,0,0) with mean = 9,754,522.1 (622,592.4) ar1 = 1.1611 (0.1629)
ma1 = −0.3443 (0.1769) 0.626 5.342

LV ARIMA (0,0,1) with mean = 4,189,224.4 (525,627.8) ma1 = 0.5705 (0.1333) 0.586 258.177

MT ARIMA (0,1,0) 0.934 6.524

NL ARIMA (1,2,1) ar1 = −0.2340 (0.1926)
ma1 = 0.8333 (0.1073) 0.567 2.651

NO ARIMA (1,0,0), mean = 24,099,466 (1,405,598) ar1 = 0.6871 (0.1205) 9.482

PL ARIMA (0,1,0) 0.795 3.040

PT ARIMA (1,0,0), mean = 49,480,302 (3,843,606) ar1 = 0.6729 (0.1330) 0.945 10.135

RO ARIMA (0,1,1) ma1 = 0.5272 (0.1465) −4,199,933
(2,188,561) 0.569 10.766

SE ARIMA (0,1,0) 0.714 55.183

SI ARIMA (0,1,0) 0.356 7.363

SK ARIMA (0,1,0) −793,429.1
(483,098) 0.783 6.182

The results from Table 2 indicate that all models except for ES were validated by the
Ljung–Box test. Still, relatively high MAPEs were found in those of LV and SE. Therefore,
we must find a better approach to model the ES, LV, and SE series. It will be the subject
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of another article. The AT, BG, CH, CZ, DE, HU, IS, LT, MT, PL, SE, and SK series are
described by ARIMA (0,1,0), which is obtained by taking the first-order difference of the
raw series. AR(1) models were determined for EE, HR, NO, and PT, AR(2) for LU, and
MA(1) for FI and LV. The rest of the series, excluding ES, have models with d = 1 or 2. These
findings are in concordance with those of the ADF test.

The model of the total CO2 series is of ARIMA (0,1,0) with the drift = −3,481,622
(se = 18,455,798) and MAPE = 2.5848. The p-value in the Ljung–Box test is 0.7458.

3.2. Building RegS

The critical step of the algorithm used for building RegS is to determine the optimal
number of clusters, k. Different values were found for k—two, three, or one—by the
silhouette, the elbow-knee method (Figure 2), and gap statistics, respectively. Since the
result provided by the last method is influenced by the outlier existence (Germany, in this
case—Figure 1) and the small distances between some clusters [61], it was neglected; thus,
the study was performed for the remaining alternatives.
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The clusters resulting after running the k-means algorithm are shown in Figure 3a for
k = 2 and in Figure 3b for k = 3, where the names of the countries are replaced, for simplicity,
by numbers from 1 to 30 assigned from AT to SK (in an alphabetical order).
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WSSs are 86.7687 and 197.9709, respectively, and BSS/TSS = 69.3% for k = 2. WSS
is high for the second cluster that contains DE(7), FR(13), IT(18), and PL(25). WSS has
significantly lower values for k = 3 (0.000, 27.1215, and 34.1752), and BSS/TSS = 93.4%.
Thus, the algorithm provides a significantly higher separation between the clusters when
k = 3. In this case, Germany (7) forms a single cluster, ES(11), FR(13), IT(18), NL(23), and
PL(25) belong to the third cluster, and the rest of the countries form the second one. This
output can be explained by the series’ characteristics, like the average emissions levels or
the existence of a certain type of trend of the time series in the same cluster. Indeed, the
CO2 emissions in Germany are much higher than those of the countries from the third
cluster: ES, FR, IT, NL, and PL. Moreover, the last four mentioned series have a decreasing
trend. Still, the groups’ stability must be verified before selecting the best division of the
countries in different subsets. The average Jaccard values and the instabilities for the two
clusterings are shown in Table 3.

Table 3. The average Jaccard values and instabilities in the k-means clustering.

k = 2 k = 3

Clusters AvgJaccard Instability Clusters AvgJaccard Instability

1 0.7507 0.343 1 0.6445 0.361
2 0.9568 0.000 2 0.9061 0.007

3 0.8511 0.087

When k = 2, the first cluster is stable, and the second one is highly stable. When k = 3,
the first is stable, and the other two are highly stable. In both cases, the highest instability
is that of the first cluster (that contains Germany). Hierarchical clustering was also formed
to cross-validate the above grouping and select the best one.

The cophenetic coefficient was computed to choose the linkage method. The highest
value (0.9723) was obtained when using the “average”, followed by the “complete” (0.9473),
compared to only 0.7474 in the case of “ward.D2”, or 0.7291 in the case of “ward” methods.
Therefore, the “average” and “complete” linkage were utilized. The clustering obtained is
provided in Figure 4a,b for k = 2 and Figure 4c,d for k = 3.
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For k = 2, both methods provided the same clusters. The second cluster contained all
countries but Germany. When k = 3, apart from Germany, which forms a cluster, there is
a slight difference between the other two clusters when using “average” and “complete”
methods (Figure 4c,d). In the first case, ES(11), FR (13), IT(18), and PL(25) belong to a
cluster, while in the second one, NL(23) is added.

The clustering obtained by “complete” linkage, containing 1, 24, and 5 elements,
coincides with that given by the k-means algorithm (Figure 3b). They cross-validate each
other. The average Jaccard indicators computed after bootstrapping are given in Table 4.

Table 4. The average Jaccard values and instabilities in the hierarchical clustering.

k = 2 k = 3

Clusters AvgJaccard Instability Clusters AvgJaccard Instability

1 0.9453 0.000 1 0.9685 0.003
Average 2 0.6320 0.368 2 0.6330 0.367

3 0.8607 0.100

1 0.9479 0.000 1 0.9567 0.002
Complete 2 0.6500 0.350 2 0.6520 0.348

3 0.7994 0.161

Considering the ratio BSS/TSS in the k-means algorithm, the average Jaccard values
and instabilities in the k-means, and hierarchical clustering, the best choice is k = 3. Indeed,
when using “average”, two clusters are highly stable, and one is stable. If “complete” is
employed, two clusters are stable, and one is highly stable. Both linkage methods provide
good results in terms of AvgJaccard and instability.

That obtained by the “average” is better since the average instability is slightly lower
than in the care of the “complete” method. Still, since the results are comparable, for
building RegS, both alternatives were used, and the comparison is presented. Table 5
contains the MAPE (%). The MAPEs corresponding to the “complete” and “average” are
denoted by MAPE_c and MAPE_av, respectively.

Table 5. MAPE (%) in the RegS modeling built using the series form the second cluster. The cluster
to which the country belongs is marked inside the bracket, with Roman numerals: I = 1, II = 2, and
III = 3.

Country AT(II) BE(II) BG(II) CH(II) CY(II) CZ(II) DE(I) DK(II) EE(II) EL(II)

MAPE_c 31.37 67.32 10.48 8.98 461.98 68.09 95.61 29.29 162.05 56.28
MAPE_av 22.45 62.46 17.15 7.32 544.39 63.33 94.96 20.99 201.15 49.78

Country ES(III) FI(II) FR(III) HR(II) HU(II) IE(II) IS(II) IT(III) LT(II) LU(II)

MAPE_c 84.30 35.67 89.35 206.68 27.70 20.23 322.71 90.55 460.03 286.51
MAPE_av 81.98 53.32 87.76 252.04 16.87 13.55 384.98 89.14 545.67 343.94

Country LV(II) MT(II) NL * NO(II) PL(III) PT(II) RO(II) SE(II) SI(II) SK(II)

MAPE_c 3479.83 1515.61 78.73 59.12 87.70 24.26 37.91 790.94 267.03 13.25
MAPE_av 3989.87 1756.43 75.58 82.63 85.88 16.69 36.49 926.02 321.11 29.31

* Note: NL belongs to the cluster II (III) when using complete (average) method.

The values of MAPE_c (MAPE_av) are in the following intervals: 20 (20) are lower than
100, one (zero) is between 100 and 200, 3 (2) are between 200 and 300, 3 (3) are between 300
and 500, and the rest are higher than 500. The series values from the first and third clusters
and most from the second cluster are well estimated. The highest values correspond to
the countries with the lowest emissions, among which CY and IS have increasing trends.
Considering the average MAPE for all countries (MAPE_c = 298.88, MAPE_av = 342.44),
and that the lower the MAPE, the better the fitting is, we can conclude that the best result
was obtained using the first linkage method.
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To show that building RegS using the cluster with the highest number of elements is the
best choice, we also built such a series using the series from the first and last clusters. MAPE
was denoted by MAPE_DE (when using the first cluster—DE series), MAPE_c_III (when
using the series from the third cluster with the “complete” method), and MAPE_av_III
(when using the series from the third cluster with the “average” method). Based on the
results from Table 6, the first choice is the worst, as it overestimates all the values from the
other countries.

Table 6. MAPE (%) when building regional series using the cluster I (DE) and III.

Country AT(II) BE(II) BG(II) CH(II) CY(II) CZ(II) DE(I) DK(II) EE(II) EL(II)

MAPE_DE 1470.27 645.88 2185.87 1999.82 12,765.59 628.38 0 1514.20 5862.92 899.55
MAPE_c_III 495.42 183.73 773.61 698.86 4755.16 177.69 61.84 515.07 2191.58 279.10
MAPE_av_III 440.63 157.82 693.56 625.74 4308.59 152.34 65.33 459.30 1981.18 244.53

Country ES(III) FI(II) FR(III) HR(II) HU(II) IE(II) IS(II) IT(III) LT(II) LU(II)

MAPE_DE 259.42 2948.87 143.00 6927.44 1550.89 1771.96 9549.77 116.04 12,757.89 81,008.29
MAPE_c_III 35.95 1054.96 7.64 2560.80 529.14 608.88 3564.49 17.93 4820.68 3261.18
MAPE_av_III 23.53 948.93 15.94 2316.76 471.88 543.93 3227.47 25.40 4376.74 2953.39

Country LV(II) MT(II) NL * NO(II) PL(III) PT(II) RO(II) SE(II) SI(II) SK(II)

MAPE_DE 36,791.50 385.23 3523.23 180.29 1632.33 1504.66 19,918.22 8266.20 2465.86 36,791.50
MAPE_c_III 31,259.28 13,915.38 84.61 1283.56 10.63 557.26 511.89 7706.14 3090.75 878.89
MAPE_av_III 28,253.60 12,639.55 67.68 1156.23 10.35 497.13 457.15 6998.47 2796.41 789.56

* Note: NL belongs to the cluster II (III) when using complete (average) method.

Building RegS with the series from the third cluster provides significantly (sometimes
more than ten times) higher MAPE than when using the second cluster for this purpose
(see MAPE_c_III from Table 6 vs. MAPE_c from Table 5, and MAPE_av_III from Table 6 vs.
MAPE_av from Table 5).

The regional series obtained in all cases are depicted in Figure 5, where RegS_c
(RegS_av) is the series obtained by using the elements from the cluster with the high-
est number of elements and the “complete” (“average”) method, DE is the series from the
first cluster, and Reg_III_c (Reg_III_av) is the series obtained by using the elements from the
cluster third cluster and the “complete” (“average”) method.
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Apart from the overall decreasing trend captured by the models, one may note short
augmentation periods followed by abrupt decreases, which could be explained by the
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continuous monitoring and regulations that appeared and were applied to control and
restrict CO2 emissions. Comparing the values from Tables 5 and 6 with the built regional
series (Figure 5), it results a drastic overestimation of the regional evolution of CO2 series
over Europe. So, the best approach is that proposed in the methodology.

Comparing the results from Table 1 with those obtained by the first procedure for the
total GHG series recorded in Europe during the same period [47], the following groups of
countries are determined as follows:

(a) Countries (HR, EE, FI, EL, IE, PT, SI, ES) for which the MK test did not reject H0 for
both CO2 and GHG series, so no significant monotonic trend can be emphasized;

(b) Countries for which H0 was rejected and both CO2 and GHG series have the same
type of trend: negative (BE, BG, CH, CZ, DE, DK, FR, HU, IT, LT, LU, NL, PL, RO, SE,
and SK) or positive (AT, CY, and IS);

(c) Countries for which the CO2 series has a negative slope of the trend, but H0 was not
rejected for the total GHGs series (MT).

(d) Countries for which H0 was not rejected, but the GHGs series have a monotonic
increasing (LV) or decreasing (NO) trend.

So, most CO2 and total GHG series trends have a similar pattern. All series evolution
but one can be described by ARIMA models. For most series, the correlation between
the CO2 and GHG series (reported by the same country) is above 0.973, except for the
Netherlands (0.847) and Norway (0.853).

4. Conclusions

This article studied the CO2 series reported by 30 countries from 1990 to 2021 and built
the RegS using an original algorithm. RegS shows a decreasing trend of CO2 emissions,
whereas, at the individual level, measures should be applied in about half of the countries
to achieve the goal of pollution decrement.

Statistical analysis of big data series from trustworthy sources provides the background
for making scientifically based decisions on implementing measures for reducing the
pollution from anthropic sources and mitigating environmental disasters.

An analogous study will be developed on the CO2 volume per capita or GDP to assess
the relationship between the economy, society, and environment in an interdisciplinary
framework. A probabilistic approach to correlations between such variables will provide an
in-depth analysis of the causality relationships. Other problems to be addressed are (a) the
uncertainty, delays, and inertia in the proposed models; (b) integrating the socio-economic
factors into environmental models; and (c) the risk evaluation.

Future research should answer the questions concerning the most appropriate mea-
sures and best implantation methods for sustainable development, and how to motivate
society members to support actions towards a cleaner production and environment.
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