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Abstract: Most existing drought forecast systems rely only on observed or forecast rainfall, losing
valuable context gained from considering both. The lack of a direct link between observed and
forecast rainfall reduces the physical consistency of a system, motivating the development of a
methodology that can directly link the two. The methodology developed in this study allows the
comparison of the calibrated ensemble forecasts of rainfall totals from a dynamical climate model to
observed rainfall deficiencies from a gridded rainfall analysis. The methodology is used to create a
probabilistic product that forecasts the chance of entering meteorological drought, with lead times
of one month (monthly forecast) and three months (seasonal forecast). Existing deficiency areas
are included to facilitate analysis of how these areas are forecast to change. The performance of
the developed methodology was verified using Percent Correct (PC), Brier Score (BS), and Relative
Operating Characteristic (ROC) statistics. Analysis of the forecast plots was also completed visually.
Forecast performance for areas with existing deficiencies as well as for non-deficiency areas was
promising (PC rates of >79% and >97%, respectively). Although PC rates for observed deficiencies
were low across most months, the mean forecast probability for these areas was 36%, indicating the
system had value and outperformed climatology. A calibrated, coupled product like the one scoped
in this study has not been explored and we note that it could be an invaluable tool for quantifying
meteorological drought onset and persistence in Australia.

Keywords: drought monitoring; drought forecasting; rainfall analysis

1. Introduction

Drought refers to a natural hazard where a shortage of water leads to adverse impacts
on the environment and society. There is no single definition for drought given the complex
nature of its impacts and drivers [1]. As a result, drought can be characterized into
numerous types, including meteorological drought, which is based on the evaluation of
rainfall deficiency [2]. This study will focus on meteorological drought as it typically serves
as the precursor for other drought types.

Even after categorizing drought into different types, there is not “a precise and ob-
jective definition of drought” [2]. Meteorological drought is a physical interpretation of
drought, defined as when rainfall is below average for a sustained period [2]. There is a
multitude of interpretations for the degree and length of dryness needed for meteorological
drought to be defined [3].

Given the complex nature of drought, a universal system for monitoring or forecasting
drought also does not exist [4]. The Australian Bureau of Meteorology (BOM) has an
operational drought-monitoring update that highlights areas with observed rainfall in the
lowest decile of the historical record, in addition to the provision of other hydrological
information like soil moisture, evapotranspiration, and water storage levels. The decile
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system is based on a concept developed by [5], where a distribution of observed rainfall
is formed by ranking rainfall over a given period in relation to corresponding historical
periods. The first decile contains the periods where rainfall was in the lowest 10% of the
distribution and is given the definition ‘serious rainfall deficiency’. Other examples of
drought monitoring or forecast systems that have been developed over Australia (albeit
only reliant on historical observational data) include a flash drought warning system
derived from evapotranspiration data [6] and a drought early warning system based on the
Normalized Difference Vegetation Index (NDVI) [7]. Given there are multiple definitions
for meteorological drought, this study will specifically refer to the term ‘rainfall deficiency’
(or ‘deficiency’), which can be interpreted as a possible measure of meteorological drought.

The aforementioned systems do not couple observed conditions with forecast infor-
mation, which results in a gap in the understanding of how existing drought conditions
may change in the future. Additionally, this lack of coupling also overlooks any exist-
ing non-drought areas that might be susceptible to drought in the future. Knowledge of
drought development and persistence areas, and how they may change, would provide
useful context for decision-makers in understanding which areas are the most critical to
focus on. The inclusion of forecast information shifts the management approach from
being reactive to being proactive, assisting in the level of early warning and action that can
be achieved [8,9]. Note that in Australia, the declaration of drought for relief and crisis
management purposes is reserved for the state governments, which each have their own
protocols for doing so and are actioned in a crisis state when drought peaks.

A drought early warning system (DEWS) for Papua New Guinea that combined
forecast and observed rainfall was developed as part of the World Meteorological Organiza-
tion’s (WMO) Climate Risk and Early Warning Systems (CREWS) initiative. However, this
system used separate and subjective thresholds for observed and forecast rainfall [10], as
well as subjective methods for combining all the datasets. Furthermore, the forecast rainfall
dataset used was the ‘Chance of Above-Median (CAM) rainfall forecast’, meaning the sys-
tem was not forming a direct linkage between observed and forecast rainfall amounts. This
indirect linkage could create misleading scenarios. For example, in a high-CAM-rainfall
forecast, the actual rainfall being forecast may only be slightly above the median, which
would not have as much of an impact on historical deficiencies as what would be assumed
from the CAM rainfall forecast.

More recently, [11] improved on the methods applied in PNG by implementing the
use of Principle Component Analysis (PCA) to combine the monitoring datasets. However,
the forecast information was not part of this objective combination and was used as
an overlay on top of the monitoring maps. Again, the monitoring and forecast rainfall
variables utilized were not the same (Standardized Precipitation Index and CAM rainfall,
respectively), meaning a direct link between the two was not possible. This meant the
forecast was not able to properly account for the magnitude of the observed rainfall,
which led to the occurrence of transitions between drought statuses that were too rapid.
Other notable operational drought tools like the U.S. Drought Monitor (USDM) [12] and
the European Drought Observatory’s Combined Drought Indicator (CDI) [13] also face
challenges in coupling forecast and monitoring information. In these systems, outlooks are
encouraged to be used in tandem with the monitoring maps but are not explicitly coupled
to the monitoring datasets. As mentioned earlier, the indirect linkage between the forecast
and observed datasets hinders the implementation of objective combinations, as well as
mismatches in the severity of the forecast and observed states.

In their research study, [14] explored a method of overcoming this objective combina-
tion problem by using an ordinal regression model to combine monthly and seasonal rainfall
and temperature forecasts from the North American Multi-Model Ensemble (NMME) with
observed USDM drought classes to predict future USDM classes. Though objective in
nature, the forecast and observed datasets were still not physically linked, necessitating the
use of a statistical model rather than a method that had a physical basis. The skill of the
system was inferred to be limited by the number of predictor variables being linked to the
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USDM classes, as well as the skill of the seasonal forecasts, which varied with region and
season. This second factor is relevant to all systems which possess a forecast component
based on dynamical model output.

In a review of drought prediction systems over the Mediterranean, [15] noted that
the majority were based on statistical models, which had a tendency to be limited by
assumptions of stationarity, as well as overfitting, especially if the input variables were not
independent of each other. The two methods that used dynamical model forecasts as inputs
were based on forecasting an index only using forecast information [16] or on using the
forecasts in a statistical model [17]. The use of dynamical models generally improved the
accuracy and reliability of drought predictions, due to their ability to represent non-linear
interactions, but they struggled with capturing drought evolution driven by stochastic
variability. The addition of statistical modeling helped to address this issue.

It is clear from the literature that directly coupling observed and forecast rainfall data
is a rarity and has not occurred before to the best of the authors’ knowledge. This is likely
due to the challenge of matching different datasets, which often also involves the expression
of rainfall information as different variables. Even if the same variable (e.g., rainfall totals)
is used, if the datasets are not calibrated to each other, their biases are usually significant,
meaning the rainfall amounts are effectively being estimated in different spaces and thus
cannot be directly compared to each other.

This study was motivated by the absence of a methodology that could directly compare
forecast rainfall to an observed serious rainfall deficiency (shortened to ‘deficiency’ for
brevity). Based on this methodology, a product that offers an objective evaluation of the
likelihood of the creation or removal of deficiency areas could be developed. It addresses
the limitation of current systems, which are unable to provide drought forecasts that
objectively consider the historical context through a physically consistent method. This
study aims to answer two research questions:

1. Is it possible to develop a methodology that directly links observed and forecast rainfall?
2. Can the product generated using this methodology provide operational value in

forecasting and monitoring meteorological drought?

2. Materials and Methods

In this study, members of the forecast rainfall ensemble are combined with observed
rainfall deficiencies to produce the deficiency forecast product. This methodology was then
verified from June 2022 to May 2023.

2.1. Inputs

The deficiency forecast product is created through the combination of three inputs.
These inputs are summarized in Table 1.

A deficiency refers to observed rainfall being in the lowest decile of the rainfall record
for a particular period (this period is referred to as the ‘[observed] deficiency period’).
The rainfall record began in 1900. The period used in the naming of the product does
not include the forecast period. For example, 3-month deficiency monthly and seasonal
forecasts have a total period of 4 months and 6 months, respectively, as the monthly and
seasonal forecast periods extend the 3-month observed period by 1 month and 3 months,
respectively.

AGCD is a gridded rainfall dataset formed using the Optimal Interpolation (OI)
algorithm and in situ rain gauge data [18]. Rain gauge data are used to make adjustments
to a background field created from interpolated station climatology to minimize the error
variance of the resultant analysis. AGCD contains an error-checking routine where stations
are excluded if an intermediate analysis formed from their exclusion is exceptionally
different to one formed from their inclusion [19]. Its reliability severely decreases over
gauge-sparse regions such as large parts of the interior of Australia [19], and it likely
overestimates rainfall during the dry season over northern Australia [20]. The version
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of AGCD used in this study had a spatial resolution of 0.05◦ × 0.05◦ and is formed on a
monthly timescale.

Table 1. Summary of datasets used to create the deficiency forecast product.

Dataset Source and Description Purpose

Example Start and End
Dates for January 2022

3-Month Deficiency Forecast
(Total of 4 and 6 Months

after Forecast Is Included)

Existing deficiency grid

AGCD. The observed rainfall grid for a
period was compared to grids from the

corresponding historical period to
determine the percentile of the observed

rainfall. From this, a grid was created
where cells were classified as being in
deficiency if their percentile was below

the 10th percentile.

Indicates which grid points are already in
deficiency. This allows analysis of how

existing deficiency areas will change. The
end date of this grid is the end of the

month before the starting month of the
forecast. The start date is based on how

long of a deficiency period is
being considered.

Monthly and seasonal start
date: October 2021

Monthly and seasonal end
date: December 2021

Rainfall deficiency grid

AGCD. The observed rainfall for a period
was subtracted from the climatological
lowest decile for a period that covers

both the observed period and the forecast
period (referred to as the total period).
This produced a grid where positive
values indicate the amount of rainfall

needed over the forecast period to ensure
a deficiency is not present at the end of

the total period. Negative values indicate
that a grid cell is not at risk of being in

deficiency (even if no rain is forecast, the
area will not be in a deficiency at the end

of the total period as the observed
rainfall is more than enough to keep the

total period out of deficiency)

Indicates how much rainfall is needed
over a period to ensure a grid point is not
in deficiency. The end date of this grid is
the end of the month, which matches the
ending month of the forecast. The start

date is based on how long of a deficiency
period is being considered.

Monthly and seasonal start
date: October 2021
Monthly end date:

January 2022
Seasonal end date:

March 2022

Ensemble forecast
of rainfall

A total of 99 calibrated ACCESS-S2
rainfall ensemble members were

processed to form a single
‘super-ensemble’ file. Each ensemble
member is a grid that indicates how

much rainfall is forecast for the monthly
or seasonal forecast period.

The forecast of each member is compared
to the rainfall deficiency amount at each
grid point. The proportion of forecasts

that do not reach the threshold is used to
define the forecast chance of being

in a deficiency.

Monthly and seasonal start
date: January 2022
Monthly end date:

January 2022
Seasonal end date:

March 2022

ACCESS-S rainfall forecasts are derived from the BOM Australian Community Climate
and Earth-System Simulator-Seasonal version 2 (ACCESS-S2) model, a coupled dynamical
ocean–atmosphere climate model that became operational in October 2021 ([21]. This study
uses the operational forecasts, which contain 99 ensemble members produced using a time-
lagged approach. The forecast for each period is an aggregate of daily forecasts. This study
was limited to post-October 2021 because the ACCESS-S2 model was only operationalized
then. The hindcast period of the model is from 1981 to 2018 but the ensemble size of these
hindcasts is limited to 27 members. This makes the prediction of extremes less reliable and
limits the usefulness of the hindcasts as a useful indication of the operational performance
of this tool.

Calibrated ACCESS-S forecasts refer to ACCESS-S rainfall forecasts that have been
corrected using a quantile-to-quantile correction to AGCD over a hindcast period. Distri-
butions for the forecast and observational data from 1981 to 2018 are created, across an
11-day window centered on the forecast target date. The forecast values are then adjusted
to the observational values that have the same ranking in the observational distribution as
the forecast values had in the forecast distribution. This procedure cannot be applied to
extremes in the forecast distribution, or the forecast values would be limited to the extremes
of the observational record. Thus, for extreme values, a ratio of the observed and forecast
value from the 2nd-lowest or 2nd-highest percentile is applied to the forecast value to
adjust it. A cap is also applied so that the forecast value does not exceed the 1 in 100-year
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observed daily rainfall value. For additional detail on the calibration process, readers are
referred to Griffiths et al. (2023) [22].

The utilization of forecasts calibrated to the same dataset used for determining the ob-
served deficiencies and the deficiency thresholds is important to enable a direct comparison
between the two datasets. Like AGCD, the accuracy of the calibrated forecast also degrades
over gauge-sparse regions of Australia, with the lack of observations affecting both the
amount of information available for the model to assimilate, as well as for calibration.
It is not uncommon for the uncalibrated forecast to match or exceed the performance of
the calibrated forecast over extremely gauge-sparse regions such as the northern interior
of Western Australia. The resolution of the calibrated forecasts used was 0.05◦ × 0.05◦,
matching that of the observed rainfall dataset.

2.2. Creation of the Deficiency Forecast Grid and Plot

Python was used to process the rainfall deficiency and forecast grids into the probabil-
ity of deficiency grids, as well as to visualize these probabilities as maps. The input data
exist in NetCDF format, and, thus, Xarray was used for processing [23], with Matplotlib
being used for visualization [24].

The deficiency forecast was computed for each grid point. If the rainfall deficiency
amount was less than or equal to zero, the grid point was classified as not at risk of being at
a deficiency. For grid points where the rainfall deficiency amount was positive, the forecast
rainfall from each member of the ensemble (from a total of 99 members) was compared to
the rainfall deficiency amount (which acted as a threshold). The proportion of members
that did not exceed this threshold thus provided the chance of that grid point being in
deficiency at the end of the total period (a period spanning the observed deficiency period
and the forecast period). Mathematically, this can be expressed as Equation (1).

DFi (%) =
∑99

m=1(Fi,m > Di

)
99

× 100 (1)

DFi refers to a rainfall deficiency forecast, Fi,m refers to a forecast ensemble member,
and Di refers to a deficiency amount, while subscript i refers to a particular grid point and
subscript m refers to a particular ensemble member. The inequality is taken to return a
Boolean value (i.e., 1 if Fi,m is greater than Di, 0 if Fi,m is not greater than Di).

A schematic showing the workflow of how the final deficiency forecast is produced
from the inputs is shown in Figure 1.
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Figure 1. Schematic depicting the workflow of the deficiency forecast and its inputs.

Both the monthly and seasonal forecasts are used while the deficiency period can
be selected. Changing the deficiency period changes the length of the observed period
analyzed; this is combined with the forecast period, which remains as one month or three
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months. Deficiency periods much longer than the forecast period (e.g., over 9 months)
become less useful because forecast rainfall over one month or three months is less able
to have an impact on deficiencies that have developed over a longer period. Without a
loss of generality (as the skill of the deficiency forecast is largely determined by the skill
of the rainfall forecasts, which are the same regardless of the deficiency period chosen),
total periods of 4 months and 6 months were chosen for verification. These represent
the monthly and seasonal forecast, respectively, combined with an observed deficiency
period of 3 months, which is representative of the development of drought on a shorter
timescale [25].

This grid could then be visualized spatially through a contour plot. The existing
deficiency grid is overlain to facilitate analysis of the expected change in the extent of
existing deficiency areas. An example of a deficiency forecast map is shown in Figure 2.
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Figure 2. Example of a deficiency forecast. This example is the forecast for the chance of a 6-month
deficiency existing at the end of August 2022. The rainfall forecast from June to August 2022 is
combined with observed rainfall data from March to May 2022.

2.3. Verification Method for the Quantitative Metrics

The deficiency forecast grids were verified over 12 months from June 2022 to July
2023. The length of this verification period was limited by the availability of the forecast
grids, which only allowed the deficiency forecast to be generated back to June 2022. The
12 months after this earliest date were chosen for verification to provide an analysis over a
full year.

Three verification routines (Percent Correct, Brier Score, and Relative Operating Curve)
were employed. These metrics were selected as they are common validation metrics for
ensemble rainfall forecast verification [26] and are used operationally at the BOM.

The Percent Correct (PC) is a simple metric that calculates the hit rate of the forecast.
A forecast ‘hit’ refers to when the outcome was predicted successfully by the majority of
the ensemble members (i.e., no deficiency was observed for a forecast chance of less than
50% and a deficiency was observed for a forecast chance greater than or equal to 50%).
The perfect PC value is 100%. Four different PC metrics were computed to evaluate the
performance of the overall forecast, as well as six sub-sets. These scenarios (along with
acronyms used hereafter for them) were as follows:
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1. Overall PC (PC-O). All grid points were evaluated.
2. Deficiency PC (PC-D). Grid points where a deficiency eventuated were evaluated

(how well were drought areas forecast).
3. No-deficiency PC (PC-ND). Grid points where a deficiency did not eventuate were

evaluated (how well were non-drought areas forecast).
4. Existing deficiency PC (PC-ED). Grid points where there was an existing deficiency

were evaluated (how well were changes to existing drought areas forecast).
5. Non-zero forecast PC (PC-NZF). Grid points where the forecast probability was non-zero

were evaluated (how well were areas forecast to have a chance of drought verified).
6. Forecast deficiency PC (PC-FD). Grid points where the forecast probability was greater

than 50% were evaluated (how well were areas forecast to be in drought verified).

The Brier Score (BS) is designed for evaluating probabilistic forecasts of a categorical
outcome. It is equivalent to the mean squared difference between the forecast probabilities
and the outcome (which is converted to a 1 or 0 for having occurred or not, respectively).
The perfect BS value is 0. It is represented by Equation (2).

BS =
1
N

N

∑
i=1

( fi − oi)
2 (2)

N is the number of grid points, f is the forecast probability, and o is the outcome
(0 if there was not a deficiency, 1 if there was), with subscript i referring to the values at a
grid point.

The Area Under Curve (AUC) metric is related to the Relative Operating Characteristic
curve (ROC curve) of the forecast. The ROC curve is a plot of the true positive rate of
the forecast against its false positive rate at various forecast probabilities. The AUC is a
statistic that quantifies the ROC curve and indicates how well the forecast has distinguished
between deficiency and no-deficiency outcomes. A value of 1 is perfect, while a value of
0.5 indicates that the forecast has performed as well as a random classifier.

3. Results
3.1. Quantitative Metrics

The mean of the statistics across the study period is shown in Table 2.

Table 2. Summary of the Percent Correct (PC) statistics from the monthly and seasonal forecasts.

Monthly Seasonal

PC-O 0.98 0.96

PC-D 0.44 0.21

PC-ND 0.99 0.97

PC-ED 0.80 0.79

PC-NZF 0.85 0.99

PC-FD 0.47 0.15

BS 0.0095 0.028

AUC 0.99 0.95

All the metrics except PC-D suggest that the forecast, on average, is skillful. The
forecasts perform well when forecasting the eventual state of no deficiency, including for
areas that have existing deficiencies.

The poorer results for PC-D suggest that the forecasts struggle with predicting the
eventuation of deficiencies. The number of observed deficiency cells was lower than the
number of forecast deficiency cells for 10 out of the 12 months, indicating that the poor
performance was not due to underpredicting the occurrence of drought cells, but due to
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mismatches in the positioning of observed and forecast cells. For observed deficiency
cells, the system was still able to provide some indication of the possibility of deficiencies
eventuating, with the mean forecast probability being 36% for cells over the period. This
is better than a system based on climatological probabilities, where the mean forecast
probabilities for deficiencies eventuating would be 10%.

Furthermore, PC-FD was below 50%, indicating low skill when the forecast was
predicting drought. The calculation of the signed difference indicated that in all 7 months
where the forecast hit rate for this category was lower than 50%, low skill was due to
the overprediction of drought probabilities. In the remaining months, there was also an
overprediction of drought probabilities with only one month out of the five having a
positive signed difference.

Given that the majority of grid points did not experience drought during this period,
the other PC metrics did not reveal the seemingly poor skill of the forecasts in predicting
eventual deficiency areas.

To analyze the presence of temporal trends, the time series of the metrics for the
monthly forecast is presented in Figure 3.
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The time series for PC-D and AUC was discontinuous in November 2022 because
there were no deficiency grid cells for that month. Similarly, PC-FD was discontinuous
from August 2022 to December 2022 as there were no forecast grid cells for those months.

The PC-D hit rate was low from August 2022 to October 2022. The time series of
metrics for the seasonal forecast is shown in Figure 4.
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grid cells), PC hit rates, Brier Score, and AUC for seasonal forecasts from June 2022 to May 2023.

The PC-D and PC-FD hit rates were noticeably low from July 2022 to February 2023.
The seasonal results are slightly worse than the monthly statistics, with this reduction in
performance being particularly marked for the PC-D and PC-FD hit rates. A reduction
in performance on the seasonal timescale would be natural given its inclusion of longer
forecast lead times.

3.2. Visual Analysis

The forecast plots from two months are displayed to enable a visual analysis. A visual
analysis facilitates the identification of spatial patterns and other aspects of performance
that cannot be elucidated by quantitative metrics. It also helps readers to better understand
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the product and how it can be used. August 2022 was chosen because of its relatively
good performance, while December 2022 was chosen as an example of a poorly performing
month. The seasonal forecast plots are displayed alongside the observed deficiency that
eventuated for those forecasts in Figure 5.
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Figure 5. Six-month deficiency forecast plots for August 2022 and December 2022, alongside the
eventual observed deficiencies.

The value of the August 2022 forecast is evident from Figure 5. Over the Northern
Territory (NT), much of the state was already in a deficiency on a 3-month timescale at
the end of May. The forecast indicated that at the end of August, it was more likely than
not that deficiency areas over southern and central NT would cease to exist. The observed
deficiencies demonstrate this was largely the case. Additionally, the deficiency area that
remained over the Top End of the NT corresponded with an area of high forecast probability
(greater than 80%). There were some small areas of low forecast probabilities over south-
west Western Australia and south-west Tasmania. These low probabilities are consistent
with the fact that these areas did not end up observing deficiencies.

The December 2022 forecast highlights a key reason why the forecast performed
poorly in terms of PC-FD. There are areas of very high forecast probabilities over the
interior of Western Australia which are in stark contrast to the lower probabilities forecast
over the remaining areas of northern and south-west Western Australia and south-west
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Tasmania. These unrealistic forecast areas are a result of the model struggling to represent
threshold-based forecasts when the threshold is a very small number.

In this scenario, these areas are affected by the northern Australian dry season, which
typically receives very little rainfall over the 6 months of July to December. As the amount
of rainfall received over this period is very small, the threshold for being in deficiency
is also very low. Many of the forecast ensemble members will forecast very low or zero
rainfall, thus resulting in these areas technically falling into deficiency. These scenarios
should be viewed with lower significance given the very small amounts of rainfall involved.
This issue is compounded by the very low gauge density over some interior parts of the
country (including areas with artifacts in the December 2022 forecast), which leads to
a significant deterioration in the quality of both the observed and forecast rainfall over
these areas. Note that over these areas, artifacts are evident when the risk of deficiency
is non-zero; when it is zero, the deficiency forecast is not applicable and correspondingly
masked on the maps (such as in the August 2022 forecast).

Other BOM long-range forecasts also show unrealistic artifacts over these areas during
this time of the year. Inspection of other months revealed that this scenario was also
resulting in the low performance of the PC-FD in months where the northern Australia dry
season was relevant.

3.3. Comparison to the Unusually Dry Forecast

The closest BOM operational product to the forecast deficiency forecast detailed in
this study is the ‘Chance of Unusually Dry rainfall forecast’. This forecast predicts the
likelihood that rainfall over the forecast period will be in the lowest quintile of the hindcast
period (from 1981 to 2018). Consequently, it is also known as a Quintile 1 (Q1) rainfall
forecast.

Although both products provide an indication of where rainfall will be significantly
below average, the two products are notably different in nature. The most obvious differ-
ence is that the threshold for dryness in the Q1 forecast is easier to satisfy, as it is based on
the lowest quintile, compared to the lowest decile in the deficiency forecast. The Q1 rainfall
forecast does not consider any past information and is, therefore, unable to contextualize
where unusually low rainfall may be most significant.

There is also a fundamental difference in their algorithms. The Q1 forecast is based on
determining the lowest quintile threshold for the forecast period (based on the historical
hindcast record) and comparing this threshold against individual ensemble members to
calculate the proportion of the ensemble that is below this threshold.

In the deficiency forecast, the threshold is based on actual observed data from a recent
preceding period. It is not the lowest decile threshold of the forecast period that is relevant,
but rather the threshold needed to be exceeded so that the rainfall total across both the
observed and forecast period is not in the lowest decile. As such, it does not rely on a
comparison to hindcast climatology like the Q1 forecast.

Quantitative metrics were recalculated for the Q1 forecast over the same period
and using the same methodology used in Section 3.1. The observational quintile dataset
provided by the BOM was created at a lower resolution of 0.25◦ × 0.25◦. Consequently,
the Q1 forecast was re-gridded to this resolution using bilinear interpolation. The number
of observed deficiencies, overall PC BS, and AUC of the Q1 forecast compared to the
deficiency forecast are shown in Figure 6.
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Figure 6. Time series of (from top to bottom) number of deficiency grid cells (expressed as % of total
grid cells), overall PC hit rate, Brier Score, and AUC for seasonal forecasts from June 2022 to May
2023. The black line refers to the deficiency forecast, while the green line refers to the lowest quintile
(Q1) forecast.

For most of the period, the Q1 forecast had poorer performance than the deficiency
forecast with the exception of September 2022. The performance of the Q1 forecast also
seemed to be lower when there was a greater number of observed Q1 cells, an opposite
trend to that observed for the deficiency forecast. The trend of observed Q1 was somewhat
different to that of the observed serious deficiencies, with a peak in observed Q1 occurring
in March 2023. This highlighted the difference that can exist due to the varying definitions
of what is considered a deficiency (the lowest quintile for the forecast period in the Q1
forecast, the lowest decile over the total period for the deficiency forecast) as rainfall may be
in Q1 but not in the lowest decile. Nonetheless, for both the Q1 forecast and the deficiency
forecast, the proportion of deficiency cells was low across the study period (less than 1%),
with very few cells observed from October to December 2022.

The Q1 forecast had poor performance for the prediction of observed deficiencies,
worse than the deficiency forecast which demonstrated value. The mean forecast probability
for cells that eventually observed deficiencies was 23% for the Q1 forecast, compared to 36%
for the deficiency forecast. Note that a system based on climatology would be expected to
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have a mean forecast probability of 20% for the Q1 forecast, compared to 10% for predicting
the lowest decile areas in the deficiency forecast. Over this study period, the Q1 forecast
was only marginally better than climatology at predicting observed Q1, while the deficiency
forecast was significantly better than climatology.

Special discussion will be given to the low hit rates for observed and forecast deficien-
cies, as these results stand out from the set of otherwise well-performing metrics.

3.4. Low Hit Rates for Observed and Forecast Drought

This result suggests that the product is not very good at predicting the development of
deficiencies, but there are important subtleties to explore. As noted in Section 3.1, PC-FD is
low due to a general overprediction of deficiencies. Combining these two findings suggests
that the PC-FD and PC-D of the product are low not because the product is unable to repre-
sent the development of deficiencies, but rather because there is a mismatch in locations
between the predicted deficiency cells and the observed deficiency cells. Calculation of the
difference between the number of forecast and observed deficiency cells shows that for the
period of low performance from July 2022 to February 2023, all months except February
2023 had more forecast deficiency cells than observed deficiency cells. These numerical
statistics also do not consider the spatial performance of the forecast. It is possible that
the forecast plots could provide valuable information on the trend of deficiency areas
developing, even if the exact cells are not forecast correctly.

Furthermore, on average, the system still computed a non-trivial forecast probability
(around 36%) for observed deficiencies. The PC-D only registered a hit if the probability
of a forecast cell was greater than 50%. The low PC-D was not due to complete forecast
misses but instead due to the forecast probabilities not being confident enough. The
months with the poorest performance were also the months with the lowest proportion
of deficiencies (October 2022 to February 2023), with the mean forecast probability for
observed deficiencies improving to 42% when these months were excluded. The system
performed better than climatology, where the mean forecast probability for deficiencies
would be expected to be 10%.

On a related note, even though areas with elevated deficiency forecast probabilities
might not have ended up in serious deficiency, they may still have experienced dry condi-
tions and drought impacts. To highlight a case of this, the August 2022 forecast is shown
alongside a map from Aussie GRASS (Australian Grassland and Rangeland Assessment by
Spatial Simulation) [27], a pasture growth model, in Figure 7.
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Aussie GRASS simulates pasture growth by accounting for its biophysical processes,
with the Aussie GRASS map revealing areas where pasture growth is below average.
Pasture growth is moderately correlated to rainfall and a significant reduction in pasture
growth can be an indication of drought [29]. It is evident from Figure 7 that there is a large
overlap in deficiency forecast areas and reduced pasture growth, indicating the value the
deficiency forecast can have in indicating areas of potential drought concern, which may
not be identifiable through solely using observed rainfall data.

Importantly, an inspection of the visual plots in Section 3.2 revealed that the low PC-
FD rates for some of the months were occurring over areas that had climatologically low
rainfall over those periods. The small amounts of rainfall involved meant that the threshold
for falling into deficiency was very small. The forecast amounts were also very small
or zero, resulting in the forecast suggesting that there was a high chance of deficiencies
occurring, even if the small amounts of rainfall involved meant these deficiencies were not
particularly significant.

The accuracy of the forecast rainfall is a critical part of the system and is expanded
upon in Section 4. Areas that have poorly performing rainfall forecasts would very likely
perform poorly in the deficiency forecast too. A possible improvement could be to mask
areas where the ensemble spread is large, as this indicates high model uncertainty and low
confidence in the individual ensemble members. The rainfall forecast in these areas (and
subsequently, the deficiency forecast) should be considered unreliable. A mask could also
be considered for areas where the deficiency amount is very low and hence not meaningful;
this is already employed in some BOM forecasts.

3.5. Does Performance Change When Drought Areas Are Increasing?

In this study, the forecast data were limited to existing data only from June 2022. Apart
from resulting in only a short period of data for verification, the number of deficiency grid
cells is very low in this period (less than 1% as seen in Figures 3 and 4). This 12-month
period followed three successive La Niña years, resulting in the small number of deficiency
grid cells observed. The performance of the product was better when there was a larger
number of deficiency cells (such as June 2022 and March 2023 for the monthly forecast, and
August 2022 for the seasonal forecast), which is promising. Verifying the product for a
period with a much larger number of deficiency cells would be of high value to properly
assess this link, especially given that the product has an increased value when deficiencies
are prevalent.

The presence of a correlation of performance with the trend of drought areas was also
considered. Both PC-D and PC-FD had correlations greater than 0.7 with the number of
deficiency grid cells, which suggests the performance of the product may be better when
the number of deficiency grid cells is increasing. However, again, a longer study period
with more variability would be required to more confidently assess this.

4. Discussion

This section will focus on placing the results of this study within the context of existing
literature, as well as outlining possible future research directions.

As mentioned in Section 1, other drought forecast systems exist and have been val-
idated, with the majority performing well (e.g., [10,11,14,30]). However, these systems
provided forecasts that were deterministic and categorical or index-based, in contrast to the
probabilistic forecasts produced by this system. This study is novel because of its direct use
of rainfall totals (both observed and forecast) to determine the probability of an area being
in meteorological drought. This allows an objective and physically consistent forecast to be
made, which increases robustness and intelligibility.

Additionally, some of these studies [10,30] utilized a past drought event as a case study
to demonstrate the value of their system. Such validations are effective at proving a system’s
ability to forecast the occurrence of drought but performance during non-drought periods
is often not well analyzed, if at all. The product produced in this study was probabilistic,
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allowing verification to be completed objectively across both non-drought and drought
conditions. By being probabilistic, its utility for making risk management decisions is
increased, compared to a deterministic forecast [15]. The data can also be visualized as
probabilistic risk maps, allowing drought risk to be more easily communicated [15].

The use of the lowest decile as a characterization of drought has commonly been used
and has historical pertinence [5], though this system could easily be modified to utilize
a different percentile. Previous studies have found the use of deciles to be one of the
most valuable indicators of meteorological drought (e.g., [3]), though an evaluation of the
effectiveness of deciles as an indicator of drought is not the purpose of this study. The BOM
drought-monitoring tool also monitors ‘severe rainfall deficiencies’, which are defined
as observed rainfall being less than or equal to the lowest 5th percentile. It is important
to be conscious of how the use of long-term historical rainfall deficiencies can mean the
non-stationary effects of climate change on drought are not properly assessed.

This study highlights the importance of improving the quality of AGCD, as it is not
only a direct input to the deficiency forecasts but also used in the calibration of ACCESS-S
forecasts. The performance of AGCD over gauge-sparse areas is strongly limited by the re-
duction in the availability of in situ data that can be used in the analysis [19]. Consequently,
it is expected that the performance and value of the deficiency forecast are also reduced
over these areas. The inclusion of alternative data sources, such as satellite data, has been
shown to be effective at enhancing performance in these areas [19].

Areas that have poorly performing rainfall forecasts would very likely perform poorly
in the deficiency forecast too. The uncertainty of the real-time forecast skill should be com-
municated to users to promote intelligent usage of the product. A possible improvement
could be to mask areas where the ensemble spread is large, as this indicates high model
uncertainty and low confidence in the individual ensemble members. The rainfall forecast
in these areas (and subsequently, the deficiency forecast) should be considered unreliable.
A mask could also be considered for areas where the deficiency amount is very low and
hence not meaningful; this is already employed in some BOM forecasts.

As noted in earlier literature [15], it is likely that this methodology, being based on
dynamical modeling, would be limited in its ability to capture drought state changes
caused primarily by stochastic and short-term weather variability (e.g., the absence or
presence of extreme rainfall events). This is particularly relevant for Australia, where
drought development and recovery are strongly related to heavy rainfall days associated
with synoptic weather systems [31]. Forecasting this chaotic element of the weather is a
fundamental limitation at longer lead times, and it would be prudent to ensure users are
aware of this limitation.

Future research should consider the use of a longer study period, which would allow
the product to be evaluated for a much greater variety of rainfall contexts, including
deficiency-heavy periods. Promisingly, the results seemed to be better for periods where
there was a greater proportion of deficiency areas. Further analysis on the variance of
skill with region could also be completed. Additionally, consideration of the product over
different study domains would also assist in determining its universality, though it is
essential that the forecasts used in the system have been calibrated to the observed dataset.

5. Conclusions

Drought is a complex natural hazard for which a universal definition does not exist.
Consequently, a ubiquitous monitoring or forecast system also does not exist. To monitor
drought, many existing systems rely on using observed data, with rainfall being a common
variable used. In Australia, the drought-monitoring system of the BOM relies on tracking
areas where serious rainfall deficiencies (i.e., rainfall in the lowest 10% of the historical
record) have been observed over a particular period. Systems such as this do not take into
account the additional context provided by forecast rainfall.

To the best of our knowledge, there is no current drought monitoring or forecast
system in Australia that objectively and directly couples observed and forecast rainfall
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amounts. The methodology outlined in this study is an attempt at addressing this gap
and is formed from comparing the calibrated rainfall forecasts from ACCESS-S ensemble
members to thresholds based on the amount of rainfall required to not be in a serious
rainfall deficiency at the end of the period spanning the observed deficiency period and
the forecast period. This yields a gridded probabilistic forecast of the chance of being in a
serious rainfall deficiency.

Verification of the developed experimental product was completed through the use of
PC, BS, and ROC statistics, as well as visual analysis. A study period from June 2022 to
May 2023 was used, with forecasts on monthly and seasonal timescales being evaluated.
The product appeared to perform well from an overall perspective, as indicated by high
PC, BS, and Area Under the ROC (AUC) scores.

The PC for observed and forecast deficiency (PC-D and PC-FD, respectively) was low,
but there were subtleties involved. The low PC-FD seemed to be due to a mismatch in
the location rather than in the extent of deficiencies being forecast, with the number of
forecast deficiencies cells generally being greater than the observed deficiency cells. Where
deficiencies were eventually observed, the system computed a mean forecast probability
of 36% for these cells. This suggests that the system would still have demonstrated value
as the forecast probabilities for observed deficiencies were generally non-trivial, but just
not confident enough to register as hits for the PC-D. The system performed better than
the ‘Chance of Unusually Dry’ rainfall forecast currently in use at the BOM, as well as a
climatological forecast.

The low PC for forecast deficiencies was at least in part due to difficulties in dealing
with very low rainfall amounts associated with the northern Australia dry season, an issue
afflicting other long-range forecasts from the BOM. The product appeared to generally
perform well in forecasting the state of existing areas of deficiency, as well as eventual
areas of no deficiency. However, the analysis was complicated by the low proportion of
deficiencies in the study period (with less than 1% of the total domain being in deficiency
across each of the months in the study period).

Given the overall positive results, the product could plausibly provide reasonable
value, though it would be important to monitor its performance over a longer period
to achieve a more thorough understanding and evaluation of its nature. The direct link
between the observed and forecast data is novel and ensures a physically consistent system,
as well as improving user comprehension.
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