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Abstract: The goal of this work is to assess climate change and its impact on the predictability
of seasonal (i.e., April–July) streamflow in major water supply watersheds in the Sierra Nevada.
The specific objective is threefold: (1) to examine the hydroclimatic impact of climate change on
precipitation and temperature at the watershed scale, as well as the variability and trends in the
predictand (i.e., April–July streamflow runoff) and its operational predictors (including 1 April
snow water equivalent, October–March precipitation and runoff, and April–June precipitation) in
a changing climate; (2) to detect potential changes in the predictability of April–July streamflow
runoff in response to climate change; and (3) to assess the relationship between April–July streamflow
runoff and potential new predictors and the corresponding trend. Historical records (water year
1930–2015) of annual peak snow water equivalent, monthly full natural flow, monthly temperature
and precipitation data from 12 major watersheds in the west side of the Sierra Nevada in California
(which are of great water supply interest) are analyzed. The Mann-Kendall Trend-Free Pre-Whitening
procedure is applied in trend analysis. The results indicate that no significant changes in both the
predictand and predictors are detected. However, their variabilities tend to be increasing in general.
Additionally, the predictability of the April–July runoff contributed from each predictor is generally
increasing. The study further shows that standardized precipitation, runoff, and snow indices
have higher predictability than their raw data counterparts. These findings are meaningful from
both theoretical and practical perspectives, in terms of guiding the development of new forecasting
models and enhancing the current operational forecasting model, respectively, for improved seasonal
streamflow forecasting.
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1. Introduction

Reliable forecasts on seasonal streamflow have tremendous economic and environmental
worth, ranging from more effective water supply planning [1–3], improved flood and drought
management [4–7], and increased hydropower generation [8–10], among others. The worth is
particularly evident in semi-arid areas including the State of California, which largely relies on snow
melt from the Sierra Nevada to supply water in meeting the State’s increasing demand induced from
its growing economy and population. Previous studies reported that climate warms lead to declining
mountain snowpack and earlier peaked snowmelt-driven streamflow in western North American
including the Sierra Nevada region [11–14]. These changes pose unprecedented challenges on regional
water resources planning and management practices, which are typically based on the forecast of
seasonal streamflow (specifically April–July runoff volume, hereinafter AJ runoff) with lead time up
to months. Traditionally statistical regression equations have been applied in operational seasonal
streamflow forecasting for major water supply watersheds across the State since around 1930 [15,16].
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These equations typically relate the predictand (namely AJ runoff) to three categories of operational
predictors, including accumulated precipitation in specific periods (October–March and April–June),
antecedent streamflow (from October to March), and snow information (snow index relative to 1 April
snow water equivalent (A1 SWE)) [16–21]. The predictability of AJ runoff is thus dependent on its
relationship with these predictors. This relationship, however, is susceptible to a changing climate
which alters the timing and volume of these predictors, particularly in temperature-sensitive elevations
of the Sierra Nevada.

A set of studies have been dedicated to investigate the impact of climate change on hydroclimatic
variables in regions containing the State of California. In general, these studies either focus on a point
scale or on a gridded scale. The former ones typically examine historical observations of interested
variables from individual gauges [12,22–26]. The latter ones normally assess gridded data converted
from point measurements or through distributed models [27–30]. To our knowledge, few studies
have explored the impact of climate change on hydroclimatic variables including the AJ runoff and
its operational predictors together (and their relationship) at the (water supply) watershed scale
in California, while water resources planning and management actions are generally made at the
watershed scale (e.g., reservoir inflows contributed from water supply watersheds) [31]. Similarly,
few studies have investigated the impact of climate change on the predictability of seasonal streamflow
in the State.

In addition to operational predictors, much research has devoted to identify and apply new
predictors including standardized (precipitation, runoff, snow) indices and large-scale climate indices
in seasonal streamflow forecasting, due to their potential in reflecting historical or future climate
and weather conditions [32–45]. Yet holding great potential in improving the current forecasting,
these indices’ relationship with seasonal streamflow has not been explicitly explored in major water
supply watersheds in California. The response of this relationship to a changing climate also
remains unexplored.

The goal of this work is to fill the above mentioned gaps by addressing the following science
questions: (1) how is the predictability of seasonal streamflow (from both operational and research
predictors) in major water supply watersheds in the Sierra Nevada impacted by climate change?
(2) what is the implication of this impact to operational seasonal streamflow forecasting practices?
The specific objective is threefold: (1) to examine the hydroclimatic impact of climate change on
precipitation and temperature at the watershed scale, as well as the variability and trends in the
predictand (i.e., April–July streamflow runoff) and its operational predictors in a changing climate;
(2) to detect potential changes in the predictability of April–July streamflow runoff in response to
climate change; and (3) to assess the relationship between April–July streamflow runoff and potential
new predictors and the corresponding trend.

2. Materials and Methods

2.1. Study Area and Dataset

This study focuses on 12 snow fed watersheds in the western slope of the Sierra Nevada in the
State of California (Figure 1; Table 1), including four watersheds from each of the three hydrologic
regions located in the Central Valley. These regions are, from north to south, Sacramento Region
(SBB, FTO, YRS, AMF), San Joaquin Region (SNS, TLG, MRC, SJF) and Tulare Region (KGF, KWT,
SCC, KRI). Water from these watersheds is a major source of the State’s water supply. Monthly
full natural flow (FNF) and annual 1 April snow water equivalent (SWE) data of an 86-year period
(water years 1930–2015) for these watersheds are obtained from the California Data Exchange Center
(http://www.cdec.water.ca.gov/) for this study. Monthly precipitation and temperature (including
maximum, minimum and average temperature) data at 4-kilometer resolution were downloaded from
the PRISM (http://www.prism.oregonstate.edu/) and averaged to the watershed scale during the
same period.

http://www.cdec.water.ca.gov/
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Figure 1. Location map showing study watersheds in the State of California.

Table 1. Hydroclimatic characteristics of study watersheds.

Watershed
Name ID Drainage

Area (km4)

Median
Elevation

(m)

Annual
Precipitation

(mm)

Annual
Temperature

(◦C)

Runoff

April-July
(AJ, 109 m3)

Annual
(A, 109 m3)

Ratio
(AJ/A)

Upper
Sacramento at
Bend Bridge

SBB 26210 1357 892 10.1 3.00 10.23 0.29

Feather FTO 9793 1611 1133 9.0 2.20 5.39 0.41
Yuba YRS 3002 1465 1626 10.2 1.25 2.79 0.45

American AMF 4974 1364 1283 11.0 1.55 3.22 0.48

Stanislaus SNS 2596 1640 1134 9.7 0.86 1.38 0.63
Tuolumne TLG 3978 1774 1067 8.5 1.47 2.28 0.64

Merced MRC 2664 1549 1008 9.5 0.75 1.18 0.64
San Joaquin SJF 4192 2345 967 7.1 1.49 2.14 0.70

Kings KGF 4325 2461 937 7.0 1.46 2.01 0.73
Kaweah KWT 1679 1499 868 10.6 0.34 0.53 0.65

Tule SCC 1020 1321 748 12.5 0.08 0.17 0.44
Kern KRI 5264 2182 595 7.8 0.54 0.84 0.65

The study watersheds have similar hydroclimatic characteristics. The Upper Sacramento River
at Bend Bridge (SBB) and the Tule River Watershed (SCC) are the largest and smallest watersheds,
respectively, in terms of size and runoff generation (Table 1). In general the northern watersheds have
lower elevations (Figure 1; Table 1) and are less snow impacted (measured by AJ runoff to annual
runoff ratio; Table 1) in comparison to the southern watersheds except for SCC. Opposite to the Kings
River Watershed (KGF) which has the most significant snow dominance, the SBB is least impacted
by snow. The KGF (SCC) has the highest (lowest) median elevation and lowest (highest) annual
temperature. The Yuba River Watershed (YRS) is the wettest watershed with regards to average annual
precipitation received, while the Kern River Watershed (KRI) is the driest watershed (Table 1).

Despite their differences in hydroclimatic characteristics, these study watersheds share a similar
seasonality in precipitation and temperature (Figure 2). The majority of annual precipitation occurs
in the wet season from November–April, ranging from 81% (SBB) to 89% (SCC). All the watersheds
receive the highest amount of precipitation in December (for SBB and YRS) or January (for other
watersheds). In contrast, the percentage of summer (June–August) precipitation over the annual
precipitation varies from 1.7% (SCC) to 5.1% (SBB). The highest temperature consistently appears
in July, varying from 16.6 ◦C (KGF) to 22.2 ◦C (SCC). The lowest temperature typically occurs in
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January, ranging from −0.2◦C (KGF and San Joaquin, SJF) to 4.8 ◦C (SCC). Overall, the SCC (KGF) is
the warmest (coolest) watershed. The YRS (KRI) is the wettest (driest) watershed. These observations
are consistent with what have been observed on the annual scale (Table 1).
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Figure 2. (a) Mean monthly precipitation; and (b) mean monthly average temperature of the study
watersheds for October (O), November (N), December (D), January (J), February (F), March (M), April
(A), May (M), June (J), July (J), August (A), and September (S).

2.2. Potential Predictors

It has been long recognized in the research community that large-scale teleconnection indices
have non-negligible relationship with precipitation and streamflow in the Western US [32], given the
fact that future climate and weather conditions are often connected with those indices. Particularly,
four teleconnection indices (with long record since at least early last century) were shown to have
notable relationship with streamflow and thus have been commonly applied in climate monitoring in
this region [34,46–49]. These indices include the Niño 3.4 Sea Surface Temperature Index (Niño 3.4),
the Trans-Niño Index (TNI), the Southern Oscillation Index (SOI) and the Pacific Decadal Oscillation
(PDO) index. This study examines the predictability of AJ runoff coming from these indices and
compares it with the existing operational predictors. Monthly time series of these indices are obtained
from the website of the Earth System Research Laboratory (ESRL) of the U.S. National Oceanic and
Atmospheric Administration (NOAA) (http://www.esrl.noaa.gov/). A detailed description on these
indices is also available on the website.

A large number of standardized indices have been developed in water resources planning and
management practices including drought monitoring, assessment and prediction [50–52]. Among
these indices, the Standardized Precipitation Index (SPI) [53] and Standardized Runoff Index (SRI) [54]
are widely employed as indicators of meteorological and hydrologic dryness (or wetness), respectively.

http://www.esrl.noaa.gov/
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These indices are typically developed by fitting a preset probability distribution function (e.g., Gamma
distribution) to precipitation and streamflow data. The cumulative distribution obtained is then
transformed to the Cumulative Distribution Function (CDF) of the standard normal distribution to
drive a standardized index. A positive (negative) index value indicates wet (dry) conditions. In spite
of their advantageous standardized nature and their flexibility of use across different spatial and
temporal scales [5], there is no consensus on which distribution function fits the data best [55,56].
For a specific distribution function, its parameters need to be estimated based on the data fed and tend
to be impacted by the length of the data record period. In light of these observations, a generalized
framework in deriving nonparametric standardized indices entitled Standardized Drought Analysis
Toolbox (SDAT) is developed [57]. This approach uses the empirical Gringorten plotting position in
deriving the marginal distribution of the target variable. The empirical probability of the variable is
then transformed into a standardized value. This method requires no assumption on a parametric
distribution function and thus no parameter estimation. For a detailed description on the SDAT,
the readers are referred to [57]. This study adopts SDAT in calculating nonparametric standardized
indices for precipitation, runoff, and snow at designated time scales (e.g., October–March, April–June,
April–July, 1 April).

2.3. Trend Analysis

This study employs the widely used non-parametric Mann–Kendall test (MKT) [58,59] in assessing
the significance of a trend. The MKT first calculates the sign of each possible pair of observations
and then determine the corresponding test statistic δ. The null hypothesis H0 of no trend is rejected
if |δ| > δ1−α/2, where δ1−α/2 is the probability of the standard normal distribution at a significance
level of α. A value of 0.05 for α is applied throughout the study. The alternative hypothesis that a
monotonic trend exists is favored under this condition. A positive (negative) value of δ indicates an
increasing (decreasing) trend. The non-parametric Theil–Sen approach (TSA) [60,61] is used in the
study to identify the slope of significant trends determined via the MKT.

Some previous studies [62–64] noticed that the presence of positive serial correlation increases
the probability of false rejection of the null hypothesis of no trends. To obtain more robust trend
analysis results, this study employs a trend-free pre-whitening procedure (TFPW) [65–67] to address
the serial correlation. The original time series with a significant trend (determined via the MKT with a
significance level of 0.05) is first de-trended. A lag-one auto-regressive process is then removed from
the de-trended time series to generate a new time series. The trend determined from the original time
series is added to the new one, yielding a combined time series. For a detailed explanation on the
TFPW procedure, the readers are referred to [65].

2.4. Study Metrics

This study employs a parsimonious metric to represent the variability: the normalized variance
of a target variable (precipitation, temperature, streamflow and A1 SWE) over the period of record.
The metric is calculated as the ratio of the sub-period variance of the variable to its corresponding
long-term variance. A ratio above one indicates that the target variable in the sub-period becomes more
variable than usual. This metric has been extensively applied in assessing variability in hydro-climatic
variables. For instance, [15,68] investigated streamflow variability in every 20-year sub-period within
the record period for a large number of watersheds in the Western U.S. They used a jackknife procedure
in verifying the significance of the variability in streamflow. They argued that a 20-year window
provides enough sample size to develop reliable variances and persistence, although a longer period
would be more desirable. Most recently, [31] examined the variability of temperature and precipitation
in seven climatic divisions of California using a 30-year window. The current study has an 86-year
record of period (from water years 1930–2015). A 20-year window (sub-period) is applied.

Following [69–72], this study employs the linear Pearson correlation coefficient as the metric
quantifying the strength of predictability. An increasing (decreasing) tendency in the correlation
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coefficient indicates increasing (decreasing) predictability. Specifically, the study investigates the
predictability of AJ runoff (AJ FNF) derived from A1 SWE, OM runoff (OM FNF), October–March
precipitation (OM Ppt) and April–June precipitation (AJun Ppt), respectively. The predictability of
the standardized AJ FNF index attributed from standardized A1 SWE index, standardized OM FNF
index as well as standardized precipitation indices determined from OM Ppt and AJun Ppt is also
investigated. A 20-year moving window is applied in the analysis, following the concept of [68] in
determining the variability. However, to explore the impact of the window size on the results, a set of
different sizes including 30-, 40-, 50-, and 60-year of moving window are also examined.

3. Results

As stated in Section 1, the specific objective of this study is threefold. The results are accordingly
grouped and presented in three parts. In the first part (Section 3.1), variabilities of the predictand
(AJ FNF) and its operational predictors (i.e., A1 SWE, OM FNF, OM Ppt and AJun Ppt) are first
examined. Furthermore, trends in these variabilities are explored. Trends in those variables along with
precipitation and temperature are also investigated. In the second part (Section 3.2), predictability of
the predictand is first assessed, followed by the trend in the predictability. The third part (Section 3.3)
differs from the second part in that it focuses on the potential predictors including standardized indices
and large-scale climate indices rather than the operational predictors.

3.1. Variability and Trend

A general increasing and then decreasing pattern is evident in the variabilities of AJ FNF,
A1 SWE, OM FNF and OM Ppt for all the study watersheds (Figure 3). The peak variability
value normally occurs within the period from 1980 to 2000. In comparison, a rough cyclic
increasing-decreasing-increasing pattern in the study period is notable for AJun Ppt. The lowest
variability typically occurs in the window 1980–2000. This contrast between the variabilities in AJun
Ppt and other variables likely stem from the fact that the latter (A1 SWE, OM FNF and AJ FNF) heavily
relies on the wet season precipitation (OM Ppt) which is considerably different from AJun Ppt in
amount (Figure 2a). This further implies that the wet season precipitation varies differently from the
AJun Ppt in the study period. It is also worth noting that the variation patterns of the AJ FNF variability,
OM Ppt variability and A1 SWE variability for San Joaquin and Tulare watersheds (Figure 3e–l) are
fairly close to each other, while it is a different case for watershed in the Sacramento region (Figure 3a–d).
This observation indicates that the AJ FNF has a relatively stronger relationship with A1 SWE and OM
Ppt in San Joaquin and Tulare watersheds than with those in the Sacramento watersheds.

Results of the Mann-Kendall Trend-Free Pre-Whitening procedure are presented in Figure 4.
Increasing trend in the variability of OM FNF is observed at all study watersheds, with the highest
(0.247/decade) and lowest (0.039/decade) increasing rates occurring at the most Southern watershed
(KRI) and the most Northern watershed (SBB), respectively. Increasing tendency in the variability
of AJ FNF is also evident for all study watersheds except for KRI. On average, the increasing slope
is milder than that of the variability of OM FNF. Significant trends are observed in the variability of
A1 SWE at seven study watersheds of which two (AMF and SNS) have decreasing trends, while the
remaining watersheds have upward trends. Increasing variability in OM Ppt is also distinct at most
study watersheds except for three most Southern ones (KWT, SCC and KRI). In contrast, an increasing
tendency in the variability of AJun Ppt is noticeable at only five most Southern watersheds (SJF, KGF,
KWT, SCC and KRI). The trends observed in (OM and AJun) precipitation variability have relatively
milder slopes compared to their counterparts in (OM and AJ) flow variability.
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Figure 3. Time series of the 20-year moving window of variability of April–July runoff (AJ FNF),
1 April SWE (A1 SWE), October–March runoff (OM FNF), October–March precipitation (OM Ppt)
and April–June (AJun Ppt) from 1949–2015 for study watersheds (a) SBB; (b) FTO; (c) YRS; (d) AMF;
(e) SNS; (f) TLG; (g) MRC; (h) SJF; (i) KGF; (j) KWT; (k) SCC; (l) KRI. The X-axis and Y-axis show the
end-year of the moving window and the variability value, respectively.
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Figure 4. Trend slope (per year; Y-axis) in variability of April–July runoff (AJ FNF), 1 April SWE
(A1 SWE), October–March runoff (OM FNF), October–March precipitation (OM Ppt) and April–June
precipitation (AJun Ppt) from 1949–2015 for study watersheds (X-axis).

In addition to the variability, trend analysis is also conducted for precipitation and temperature at
different temporal scales as well as for the predictand and predictors themselves. Increasing trends in
annual average temperature are noticeable across all study watersheds (Figure 5a), with increasing
rates ranging from 0.011◦C/year (SBB) to 0.021 ◦C/year (SCC). The upward trends are also evident in
Summer temperature, with the mildest slope (0.014◦C/year) occurring at the most Northern watershed
(SBB) and the steepest slope (0.021 ◦C/year) at another Southern watershed (KWT). In other three
seasons (Fall, Winter and Spring), three most Southern watersheds (KWT, SCC and KRI) along with
FTO, AMF and MRC exhibit consistent upward trends in average temperature. The tendency is
the most significant at SCC where trend slopes are consistently above 0.020 ◦C/year. In comparison,
four other watersheds including SBB, YRS, TLG and SJF only show increasing trend in Winter. Different
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from the case of average temperature, only two most Southern watersheds (SCC and KRI) have
increasing trends in annual, Spring and Summer maximum temperature (Figure 5b). There is no
significant trend in Fall maximum temperature at any watershed. Additionally, increasing trend in
winter maximum temperature is only observed at SCC. In contrast, increasing trends in minimum
temperature are observed at both annual and seasonal scales at all study watersheds (Figure 5c).
The increases in Summer and Spring are the most and least significant, with mean slopes at 0.030 ◦C
/year and 0.020 ◦C /year (versus 0.025 ◦C /year at the annual scale) across the study watersheds,
respectively. Trends in precipitation at annual and seasonal scales are also investigated. However,
no watersheds show any significant increasing or decreasing tendency with the exception of SCC that
shows a decreasing trend (at a rate of −0.18 mm/yr) in annual precipitation. However, this rate is very
small compared to the annual precipitation the watershed receives on average (Table 1).
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Figure 5. Slope (◦C/year) of significant trends in (a) average annual and seasonal temperature;
(b) maximum annual and seasonal temperature; (c) minimum annual and seasonal temperature
observations in the study period (water years 1930–2015). The white color indicates no statistically
significant trends. The X-axis and Y-axis show the temporal scale and study watersheds, respectively.
“Anu”, “Fal”, ”Win”, ”Spr” and “Sum” stand for Annual, Fall, Winter, Spring and Summer, respectively.

Aside from annual and seasonal scales, the trends of temperature and precipitation are further
examined at the monthly scale (Figure 6). In November, December, and April, monthly average
temperature shows no trends in any study watersheds, while positive (increasing) trends are evident in
January, August and September at all watersheds (Figure 6a). In October and May, only two Southern
watersheds (SCC and KRI) exhibit increasing tendency in average temperature. In comparison, trends
are limited spatially and temporally in monthly maximum temperature (Figure 6b). In five months
(October–December, April and July), maximum temperature shows no upward or downward trend at
any watershed. In May and August, only SCC observes increasing tendency; in March and September,
only SCC and KRI have positive trends. Two watersheds (TLG and MRC) observe no trends in any
month. Differently from average temperature and maximum temperature, minimum temperature
exhibits increasing trends in most months, with the exception being December and April when
only three watersheds (AMF, SNS and SCC) and one watershed (AMF) display significant upward
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trends, respectively (Figure 6c). Comparing three temperature variables, the trends in the minimum
temperature are generally the most significant (with steeper trend slopes). These observations are
consistent with the case at the annual and seasonal scale (Figure 5). Across all months, December
and April tend to have the least amount of watersheds with significant trends in temperatures.
In comparison, the trends in January are generally the most significant. For precipitation, only a
few (three) watersheds exhibit upward trends in July and August. However, the increasing rates are
generally very small compared to the annual precipitation occurring to these watersheds. Moreover,
July and August are dry months when only a small portion (<3%) of the annual precipitation occurs
(Figure 2). These increasing trends thus seemingly have limited implications from water supply’s
perspective. Trend analysis is further conducted for the predictand (AJ FNF) and its operational
predictors (A1 SWE, OM FNF, OM Ppt and AJun Ppt). The results indicate that no statistically
significant changes exist in these variables in the period from water year 1930–2015.
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Figure 6. Slope of significant trends in (a) average temperature (◦C/year); (b) maximum temperature
(◦C/year); (c) minimum temperature (◦C/year); (d) precipitation (mm/year) observations at the
monthly scale in the study period (water years 1930–2015). The X-axis and Y-axis show the months
(explained in Figure 2’s caption) and study watersheds, respectively.

In general, increasing tendency is detected in the minimum temperature and the average
temperature. The changes in the maximum temperature and precipitation across annual, seasonal
and monthly scales are limited. No changes are identified in the predictand and predictors. However,
their variabilities generally exhibit increasing trends with an exception in the variability in A1 SWE at
two study watersheds.
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3.2. Predictability from Operational Predictors

This sub-section first explores the predictability of the AJ FNF contributed from different
operational predictors. Assessment of potential trends in the predictability is conducted afterwards.
The correlations between AJ FNF and four predictors in a 20-year moving window for all study
watersheds are calculated (Figure 7). Overall, the correlations with A1 SWE and OM Ppt are higher
than that with the remaining two predictors (OM FNF and AJun Ppt), highlighting that A1 SWE and
OM Ppt are the primary predictors. Region-wise, the correlation between AJ FNF and A1 SWE is the
highest for the San Joaquin Region (Figure 7e,f) with the median region-wide (averaged over four
watersheds in the region) correlation value of 0.90. In contrast, the lowest correlation occurs over the
Sacramento Region (Figure 7a–d) with a median value of 0.81. The correlation with OM FNF and the
correlation with OM Ppt over the Sacramento Region are also the lowest, with the median correlation
values at 0.62 and 0.79, respectively. In both cases, the highest correlations occur over the Tulare Region
(Figure 7i–l) with the median correlation values being 0.73 and 0.89, respectively. Looking at predictor
AJun Ppt, however, the correlation over the Tulare Region (Sacramento Region) is generally the lowest
(highest), indicating that AJ runoff over the Tulare Region is more snow dominated and less impacted
by AJun precipitation.
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Figure 7. Time series of the 20-year moving window of correlation between predictand April–July
runoff (AJ FNF) and predictors including 1 April SWE (A1 SWE), October–March runoff (OM FNF),
October–March precipitation (OM Ppt) and April–June (AJun Ppt) for study watersheds (a) SBB;
(b) FTO; (c) YRS; (d) AMF; (e) SNS; (f) TLG; (g) MRC; (h) SJF; (i) KGF; (j) KWT; (k) SCC; (l) KRI.
The X-axis and Y-axis show the end-year of the moving window and the correlation value, respectively.

Figure 7 further shows an evident increasing trend in the correlation between AJ FNF and AJun
Ppt. For other predictors, however, no trends are intuitively notable. The Mann-Kendall Trend-Free
Pre-Whitening procedure is applied to determine if significant trends exist in these predictors.
The slopes of significant trends identified are presented (Figure 8). To explore the impact of
moving window size on the trend, a range of sizes ranging from 20-year to 60-year are investigated.
Predictability from A1 SWE generally shows an increasing tendency for all watersheds with a few
exceptions (Figure 8a). Specifically, the Feather River Watershed (FTO) exhibits a slight increasing
trend (0.005/decade) in the correlation between its AJ FNF and A1 SWE when a 30-year moving
window is applied. The Tule River Watershed (SCC) shows positive trends at all window sizes except
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for the 20-year one. As for the predictability from OM FNF, most watersheds exhibit increasing
trends at most window-sizes (Figure 8b). However, two watersheds in the Tulare Hydrologic Region
(KWT and SCC) exhibit decreasing tendency. These two watersheds also show decreasing trends in the
predictability coming from OM Ppt (Figure 8c). Additionally, no change is identified at any window
size for the Kern River Basin (KRI). Regarding the predictability contributed from AJun Ppt, upward
tendency is evident for all basins at almost all window sizes. In general, the increasing rate is the most
(least) significant at FTO (SBB), in contrast to the case with the predictability coming from A1 SWE.
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Figure 8. Slope (/decade) of significant trends in the predictability attributed from (a) 1 April snow
water equivalent (A1 SWE); (b) October–March runoff (OM FNF); (c) October–March precipitation
(OM Ppt); (d) April–June precipitation (AJun Ppt). The white color indicates no statistically
significant trends. The X-axis and Y-axis show the moving-window size (in years) and study
watersheds, respectively.

The trend is further investigated at the regional scale with the regional trend slope determined by
averaging the slopes of identified significant trends at individual watersheds located in each of the
three hydrologic regions (Figure 9). The study area is also examined as a whole (designated by green
lines in Figure 9) by averaging the slopes of trends of all watersheds where increasing or decreasing
tendency exists. In general, the Sacramento Region and San Joaquin Region exhibit positive trends
in predictability contributed from each single predictor at all window sizes. It is also the case when
looking at all study watersheds together (green lines). Relatively speaking, the increasing rate at the
Sacramento Region is the most significant. For the Tulare Region, however, trends in the predictability
coming from OM FNF (Figure 9b) and OM Ppt (Figure 9c) are not consistently upwards. This is caused
by the downward trends observed at watersheds KWT and SCC (Figure 8b,c). Overall, the increasing
or decreasing trend slope becomes milder with increasing window size, which is also the case for
individual watersheds exhibiting trends at all window sizes (Figure 8).
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Figure 9. Slope (/decade) of significant trends in the predictability attributed from (a) 1 April snow
water equivalent (A1 SWE); (b) October–March runoff (OM FNF); (c) October–March precipitation
(OM Ppt); (d) April–June precipitation (AJun Ppt) at the regional scale. The X-axis and Y-axis show the
moving-window size (in years) and averaged trend slope, respectively.

In brief, among the four operational predictors, A1 SWE and OM Ppt are major predictors since
they are highly correlated with the predictand. In comparison, the predictability coming from AJun
Ppt is the weakest. However, the increasing tendency in the predictability contributed from AJun Ppt
is the most significant and most consistent across different study watersheds at different window sizes.
Increasing tendency is also observed in the predictability from A1 SWE for most watersheds at most
window sizes. However, the increasing rate is much smaller than that of the AJun Ppt (Figure 9d).
Two watersheds in the Tulare Region exhibit downward trends in the predictability attributed from
OM FNF and OM Ppt, leading to downward region-wide trends at some window sizes. When
looking at the Sacramento Region, San Joaquin Region, and all study watersheds together, however,
the increasing trends is consistent at all window sizes. The increasing rate generally decreases with
increasing window size.

3.3. Predictability from Potential Predictors

The predictability from potential predictors including the standardized indices and large-scale
climate indices described in Section 2.2 are first assessed in this sub-section. Based on the assessment
results, changes in the predictability are examined next. The correlation coefficients between the raw
observations of AJ FNF and its four operational predictors are calculated in the whole study period
(water years 1930–2015), along with the correlation coefficients between the standardized AJ FNF
index with the standardized indices determined from these predictors (Figure 10). It is evident that, the
correlation values associated with the standardized indices (dark bar) are generally higher than their
counterparts associated with the raw data (grey bar) for A1 SWE, OM FNF and OM Ppt (Figure 10a–c).
Specifically, the difference is the most notable for OM FNF with the increasing percentage value
ranging from 2.4% (FTO) to 11.7% (SNS) (Figure 10b). It is a different case for predictor AJun Ppt
(Figure 10d). The correlation values between the standardized AJ FNF and standardized AJun Ppt are
smaller (ranging from −15.4% at SBB to −4.6% at SCC) than their counterparts of the raw data. Given
the fact that A1 SWE and OM Ppt are the major predictor while AJun Ppt has the weakest predictability
for AJ FNF, these observations imply that using standardized indices has the potential of improving



Climate 2016, 4, 57 13 of 20

the predictability of AJ FNF. The trend in the predictability based on the standard indices will thus be
explored later in this sub-section.Climate 2016, 4, 57 13 of 19 
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Figure 10. Pearson correlation coefficients (grey bar) between April–July runoff (AJ FNF) and
operational predictors including (a) 1 April snow water equivalent (A1 SWE); (b) October–March
runoff (OM FNF); (c) October–March precipitation (OM Ppt); (d) April–June precipitation (AJun Ppt) in
the study period. Also shown are the correlations (dark bar) between the standardized AJ FNF index
and standardized indices determined from each operational predictor in the study period (water years
1930–2015). The X-axis and Y-axis show the study watersheds and correlation coefficients, respectively.
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Figure 11. Pearson correlation coefficients between April-July runoff (AJ FNF) observations and the
moving three-month average (a) Niño 3.4; (b) Trans-Niño Index (TNI)); (c) Southern Oscillation Index
(SOI); (d) Pacific Decadal Oscillation (PDO) in the study period (water years 1930-2015). The X-axis
and Y-axis show the three month period and correlation coefficients, respectively.

The correlation coefficients between AJ FNF and moving three-month large-scale climate indices
(Niño 3.4, TNI, SOI, and PDI) are calculated for all 12 study watersheds in the entire study period
from water year 1930–2015. The maximum, median, and minimum correlation values of these study
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watersheds are illustrated (Figure 11). It is clear that all watersheds exhibit positive correlation with
only Niño 3.4 (Figure 11a) among four climate indices at all lead times. In contrast, the correlation
with PDO (Figure 11c) is mostly negative. On average, the correlation values with Niño 3.4 (positive)
and PDO (negative) are relatively stronger when focusing on the median correlation. Regardless, the
absolute correlation coefficients are consistently less than 0.4 for all four climate indices at all lead
times investigated. This value is significantly smaller than the correlation values of the operational
predictors as well as the standardized indices (Figure 10). This implies that climate indices most likely
have no significant potential in enhancing the current operational seasonal streamflow forecasting.
The trend in their predictability will not be discussed in this study.

Similar to the predictability of AJ runoff attributed from A1 SWE (Figure 8a), the predictability
of standardized AJ runoff index coming from the standardized A1 SWE index is increasing for most
study watersheds at most window sizes (Figure 12a). However, watershed FTO has a decreasing trend
(with a slope of −0.01/decade) when a 60-year window size is applied. No decreasing tendency is
detected in the predictability coming from the standardized OM runoff index (Figure 12b), different
from its raw data counterpart where two Tulare watersheds exhibit decreasing trend (Figure 8b). As for
the predictability contributed from the standardized OM precipitation index, four watersheds in the
Tulare Region show no changes when 20-year is used as the window size. A total of seven watersheds
exhibit no trends neither when looking at the 60-year window size. In other cases, increasing tendency
is generally observed with one exception being the KRI where a decreasing trend is detected at the
60-year window size. In comparison, the predictability of AJ runoff coming from OM Ppt for SCC
is consistently decreasing at all window sizes investigated; for KRI, no significant trend exists at
any window size (Figure 8c). The predictability of standardized AJ runoff index coming from the
standardized AJun precipitation index is increasing for most study watersheds at most window sizes
(Figure 12d), which is similar to the predictability of AJ runoff contributed from AJun Ppt (Figure 8d).
However, the increasing rate in the former is not as significant as the latter.
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Figure 12. Slope (/decade) of significant trends in the predictability of standardized April–July
runoff index (AJ SRI) attributed from (a) standardized 1 April snow water equivalent index (A1 SSI);
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study watersheds, respectively.
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In short, the correlations between the standardized AJ runoff index and the standardized A1 SWE
index as well as the standardized OM precipitation index are generally higher than their counterparts
when the raw data is examined. This highlights the implication of these standardized indices in
enhancing the current operational regression equations in providing more reliable seasonal streamflow
forecasts, particularly in light of the observation that A1 SWE and OM precipitation are the major
predictors for AJ runoff. The large-scale climate indices typically applied in predicting seasonal
streamflow in previous studies, in contrast, have significantly smaller correlation with AJ runoff than
the current operational predictors. Comparing to the standardized indices, these climate indices are
less likely to improve the current forecasting. In general, increasing tendency in the predictability of
the standardized AJ runoff index coming from different standardized predictors is notable for most
watersheds at most window-sizes.

4. Discussion and Conclusions

In line with previous studies that report increasing trends in temperature across
California [27,28,73–75], this study identifies general upward trends in watershed-wide minimum
temperature and average temperature across annual, seasonal and monthly scales. Particularly, the
trend in the minimum temperature is more consistent (across study watersheds) and significant
(in terms of increasing rate). However, this study detects limited upward trend in the maximum
temperature. Given the fact that the study basins are all snow impacted, increasing in minimum
temperature most likely elevates the rain-snow dividing line and leads to more precipitation falling
as rain rather than snow in these areas. This study further shows that there is generally no change
in annual, seasonal, and monthly precipitation in the study watersheds. This finding is consistent
with what is shown in previous studies [22,31,76]. A new finding of this study is that the April–July
runoff volumes of the study watersheds show no sign of changes in the study period. It is also the case
for four operational predictors (i.e., 1 April snow water equivalent, October–March precipitation and
runoff, April–June precipitation). This highlights that though the occurrence frequency of extreme
storm and runoff events may be increasing as reported in previous work [31,77–79], their total volume
at a longer temporal scale (multi-monthly) remains largely unchanged. The practical implication of
this finding is that the current operational regression equations are still valid and usable since both the
predictand and predictors are stationary so far. Nevertheless, it should be pointed out that declining
trend in Sierra Nevada snowpack has been reported in previous work [12,80,81], which is contrary to
the finding of the current study. This contrast is most likely caused by the differences in the spatial
scale of the dataset and trend analysis method between the current and previous work. Specifically,
this study utilizes operational watershed-scale snow water equivalent data (versus point or grid scale
typically adopted in previous work) and the Mann-Kendall Trend-Free Pre-Whitening trend analysis
procedure (versus traditional linear regression trend analysis method).

Despite no trends detected in the predictand and its predictors, in another new finding, this study
shows that they generally become more variable in terms of exhibiting increasing tendency in their
variabilities. Overall, the increasing trend in the flow variability (April–July and October–March runoff)
is more consistent and significant than in the precipitation (October–March and April–June) and snow
(1 April snow water equivalent). This indicates that though the increasing minimum temperature
and average temperature have not explicitly led to changes in the amount of snowpack (peak) and
runoff (multi-monthly), they generally lead to increasing variability in those variables. This is in
agreement with what have been previously found out in precipitation with increasing variability but
no significant changes to the mean value [31,82,83]. The implication is that the occurrence frequency of
extreme events is increasing. The current water resources (particularly flood and drought) planning
and management practices should be adapted to reflect this change. Additionally, this study finds out
that the predictability of April–July runoff contributed from four operational predictors is generally
increasing, particularly for April–June precipitation. This is likely due to the fact that more precipitation
during April–June falls as rainfall rather than snowfall due to warming in Spring and early Summer
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(Figure 5). Comparing to snowfall which contributes to evaporation, infiltration, and runoff in a
slow process, rainfall largely contributes to April–July runoff directly. However, the specific changing
rate varies with different predictors across different watersheds at different moving-window sizes.
Specifically, the increasing rate is the highest in Sacramento watersheds and typically decreases with
increasing moving-window size. The practical implication of this finding is twofold. First, it can help
improve the current regression equations in terms of adjusting the weight assigned to each predictor
in response to the changing climate. Second, it can guide the efforts in investing more on watersheds
with relatively lower predictability.

Another new finding of this study is that standardized precipitation (October–March), runoff
(October–March) and snow (1 April snow water equivalent) indices show higher predictability than
their raw precipitation and snow counterparts, while the large-scale climate indices have relatively
lower predictability compared to the current operational predictors. In general the predictability
coming from the standardized precipitation, runoff, and snow indices is also increasing in the study
period. These standardized indices hold great scientific implication for improved seasonal streamflow
forecasting in the context of incorporating them into the current regression equations as new predictors
or developing new forecasting equations (models) based on them. The operational applicability of
these standardized indices is under evaluation and will be reported in our future work.

In spite of its popularity among researcher [69–72], the linear Pearson correlation coefficient
applied in this study may not be a perfect proxy for predictability. When high non-linearity exists
between the predictand and predictors, alternative metrics should be evaluated. It should also been
highlighted that, when looking at changes in predictability on the regional scale, only basins exhibiting
significant trends (at a significance level of 0.05) are considered in determining the regional changes,
while the basins showing no significant trends at the same significance level are accounted out.
Ideally, the region-wide variable (e.g., runoff) should be aggregated first and the predictability of the
aggregated value can be determined afterwards. A more comprehensive analysis at the regional scale
will be presented in our future work.

In a nut shell, the findings of this study are meaningful from both theoretical and practical
perspectives in terms of guiding the development of new forecasting models and enhancing the
current operational forecasting model, respectively, for improved seasonal streamflow forecasting in a
changing climate.
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