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Abstract: Rainfall-runoff modelling is a useful tool for water resources management. This study
presents a simple daily rainfall-runoff model, based on the water balance equation, which we apply
to the 11,630 km2 Lesser Zab catchment in northeast Iraq. The model was forced by either observed
daily rain gauge data from four stations in the catchment or satellite-derived rainfall estimates from
two TRMM Multi-satellite Precipitation Analysis (TMPA) data products (TMPA-3B42 and 3B42RT)
based on the Tropical Rainfall Measuring Mission (TRMM) from 2003 to 2014. As well as using
raw TMPA data, we used a bias-correction method to adjust TMPA values based on rain gauge
data. The uncorrected TMPA data products underestimated observed mean catchment rainfall by
−10.1% and −10.7%. Corrected data also slightly underestimated gauged rainfall by −0.7% and
−1.6%, respectively. Nash-Sutcliffe Efficiency (NSE) and Pearson’s Correlation Coefficient (r) for the
model fit with the observed hydrograph were 0.75 and 0.87, respectively, for a calibration period
(2010–2011) using gauged rainfall data. Model validation performance (2012–2014) was best (highest
NSE and r; lowest RMSE and bias) using the corrected 3B42 data product and poorest when driven
by uncorrected 3B42RT data. Uncertainty and equifinality were also explored. Our results suggest
that TRMM data can be used to drive rainfall-runoff modelling in semi-arid catchments, particularly
when corrected using rain gauge data.
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1. Introduction

Understanding and modelling hydrological processes is important for the management of
water resources and for the analysis of extreme hydrological events, such as droughts or floods.
However, a significant issue with many semi-arid zones outside of Europe and North America is that
meteorological and hydrological data availability is often scarce. Some of the problems associated
with obtaining reliable long-term hydrological data in semi-arid regions include limited economic
resources for monitoring, sparse population and harsh climates [1,2]. This is compounded by the
fact that spatial and temporal variability in hydrological activity can be much higher than in humid
temperate areas, requiring (in principle) denser monitoring networks (e.g., rain gauges and streamflow
gauging stations) to capture the nature of system behaviour [3–5]. This issue is even more acute in
mountainous areas where spatial and temporal variability in precipitation tends to be higher than
in lowland areas. Unfortunately, the establishment and maintenance of such networks is often not a
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priority for many developing countries or is quite simply unaffordable. Even when monitoring data
exist, they may be of variable quality, contain significant gaps or be unavailable to scientists without
the necessary political contacts [6]. These problems have brought about considerable uncertainty in
the development, calibration and validation of hydrological models in data-poor semi-arid regions
which may affect management decisions based on their simulations [7].

In recent years, advances in remote sensing have established the potential to estimate rainfall from
space [8]. If the spatial and temporal resolution of such data are adequate, then such data may provide
alternative inputs for rainfall-runoff modelling as long as they have sufficient accuracy compared with
observed data. For example, the Tropical Rainfall Measuring Mission (TRMM), which was a joint
mission between the National Aeronautical and Space Administration (NASA) Earth Science Enterprise
and the Japan Aerospace Exploratory Agency (JAXA), was successfully launched in 1997 and ended in
2015. It initially operated at an altitude of 350 km (changed in 2001 to 402.5 km to increase mission
life), with an orbital inclination of 35◦ and made approximately 16 orbits a day [9]. TRMM has now
been replaced by the Global Precipitation Measurement (GPM) mission. The initial objective of TRMM
was to monitor monthly and seasonal rainfall over the tropics and subtropics using a combination of
passive microwave radiometry and radar [10] in order to improve understanding of the hydrological
cycle. One issue with obtaining spatially-distributed rainfall estimates from satellite-based sensors is
that calibration and validation of these estimates may be challenging especially in the absence of a
dense network of rain gauges [4,8,11,12].

Recent examples of applications of satellite-based precipitation estimates include Zulkafli, et al. [13],
Nerini, et al. [14], Zubieta, et al. [15] and Zubieta, et al. [16]. Harris, et al. [17] used satellite-derived
rainfall data (TRMM and Multi-satellite Precipitation Analysis: TMPA) for flood prediction in the
Upper Cumberland River basin Kentucky, using the Hydrologic Engineering Center (HEC) Hydrologic
Modelling System (HMS) and TOPMODEL [18]. Their results showed that satellite data could be used
successfully for flood prediction. Similarly, Tarnavsky, et al. [19] evaluated a dynamic hydrological
model in dry lands using TRMM rainfall intensity at a spatial resolution of 1 km. TRMM data were
corrected based on the fractional cover of rainfall (FCR) method in order to predict high enough rainfall
intensities to generate realistic rates of predicted surface runoff.

Here, we apply a simple lumped hydrological model to the Lesser Zab River basin in the Kurdistan
region of Iraq. The main purposes of the study were (a) to compare TMPA rainfall estimates to data
from rain gauges installed at different locations in the catchment; (b) to evaluate the ability of a simple
conceptual water balance model to simulate the hydrological response of a large and complex semi-arid
catchment and (c) to compare model performance against measured discharge data when driven by
TMPA rainfall estimates and when driven by rain gauge data in order to assess the potential value of
satellite-derived rainfall data for water resources management.

2. Materials and Methods

2.1. Study Area

The Lesser Zab is one of the main tributaries of the river Tigris. It is situated in the Kurdistan region
of northeastern Iraq (35◦49′14” N, 44◦51′39” E to 36◦12′03” N, 46◦28′48” E: Figure 1). The catchment
boundary was delineated using 30 m resolution digital elevation data from the Shuttle Radar
Topography Mission (SRTM).

The catchment is bounded by the Zagros Mountains to the northeast, which extend across the
border with Iran. The closing section of the catchment is upstream of the Dukan Dam reservoir.
The upstream catchment area is approximately 11,630 km2 with altitude ranging from 400 m to
3600 m ASL. The geology of the catchment consists of limestones, sandstone and igneous formations,
dominated by a karstic aquifer system [20,21]. Land cover is predominantly extensive grazing of
sparsely vegetated areas but also includes some irrigated and rain-fed arable land, woodland, open
water and some small urban areas [22]. The climate of the study area is classified as subtropical
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semi-arid [23] which is hot and dry in summer and cool and wet in winter [24]. Precipitation mostly
falls as rain in winter with mean annual precipitation ranging from 350 to >1000 mm but winter
snowfall is common at elevations above 1000 m above sea level [25]. The typical mean snow line in
winter is 1270 m ASL (Figure 1, [21]) which covers approximately 20% of the total catchment area.
Average monthly rainfall, temperature and reference evapotranspiration rates are shown in Figure S1
of the Supplementary Material.
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Figure 1. (a) Elevation in the Lesser Zab catchment derived from the SRTM DEM; (b) Regional location
of the catchment. The area above the mean snow line is shown in white.

2.2. Data Acquisition

Meteorological data were obtained for four stations in or close to the catchment from Sulaimani
Meteorological Office. These data all have daily temporal resolution from 2003 to 2014 and include
maximum, minimum and average air temperature (◦C), relative humidity (%), sunshine hours, wind
speed (m s−1) and rainfall (mm d−1). Mean daily river discharge data for the Lesser Zab River from
2010 to 2014 were obtained from the Ministry of Agriculture and Water Resources in the Kurdistan
Regional Government.

2.3. TRMM Data

The rainfall-runoff model employed here has a daily time step. Due to their high spatio-temporal
resolution, the TMPA- 3B42 v7 and 3B42RT data products daily temporal resolution and 0.25◦ [approx.
27.83 km] spatial resolution, with global coverage from 50◦ N to 50◦ S: [daily temporal resolution and
0.25◦ [approx. 27.83 km] spatial resolution, with global coverage from 50◦N to 50◦S: 10] were selected
for evaluation as suitable drivers for the model. These data were downloaded from the NASA data
server (disc.sci.gsfc.nasa.gov) for the period 2003–2014. Files were processed to extract data for the
catchment using R [26] and ArcGIS (ESRI, Redlands, CA, USA).

2.4. TRMM Correction

Comparisons between TRMM-derived rainfall estimates and ground-level gauge data suggest
that TRMM data can sometimes be biased systematically [27]. Several attempts have been made to
correct these estimates. Examples include mean bias correction [28], which uses the average bias for all
stations to correct the satellite-derived rainfall, regression analysis [29] based on historical time series
and the spatial bias approach [30].

Here, a bias-correction approach (originally developed for downscaling climate model outputs)
was used to adjust TRMM data, based on the assumption that the satellite and in situ data have similar
statistical properties [31]:
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SREc(t) =

(SRE0(t) − µSRE

σSRE

)
∗ σOBS + µOBS (1)

where SREc(t) and SRE0(t) are the corrected and uncorrected satellite-derived rainfall estimates,
respectively, µOBS is the average observed rainfall for all reporting stations, µSRE is the average
satellite-derived rainfall, σOBS is the standard deviation of the observed data and σSRE is the standard
deviation of satellite-derived rainfall.

This can be re-written as

SREc(t) =
(

SRE0(t) − µSRE

)
∗ σf + µSRE ∗ µ f (2)

where
µ f =

µOBS
µSRE

(3)

and
σf =

σOBS
σSRE

(4)

Rainfall data were split into two periods: Period 1 from 2003 to 2009 (calendar years), in which
we derived the two correction factors (µ f and σf ) and Period 2 from 2010 to 2014, in which the
satellite-derived rainfall data were adjusted using the correction factors derived in Period 1 (µ f = 1.05
and σf = 1.24). Period 2 represents an independent validation period for the rainfall correction method.

2.5. Rainfall-Runoff Model

LEMSAR (Leicester Model for Semi-Arid Regions) is a conceptual lumped rainfall-runoff model
that simulates daily river discharge using daily rainfall and potential evapotranspiration data. It is
based on the models described by Whelan and Gandolfi [32] and Pullan, et al. [33], with added routines
for snow melt and groundwater storage (Figure S2).

Briefly, the catchment is conceptualised using three moisture stores: (1) a single soil store,
characterised by its depth (z), whole profile porosity (∅) and by hydraulic parameters which describe
the relationship between soil water content and unsaturated hydraulic conductivity; (2) a groundwater
store which is augmented by recharge from the soil and depleted by baseflow to the river and
(3) a time-variable snowpack.

A simple water balance is considered for the soil store:

dS
dt

= P− ET − q− qo + Mtot (5)

where S is the whole profile soil water storage (mm), t is time (d), P is precipitation as rainfall (mm d−1),
ET is actual evapotranspiration (mm d−1), qo is overland flow (mm d−1), q is vertical drainage out of
the soil (mm d−1) and Mtot is the area-weighted input from snowmelt (mm d−1).

Actual evapotranspiration is calculated from reference evapotranspiration (ETo) which can be
either be imported or calculated from temperature using the Hargreaves equation [34]. It is assumed
that ET is equal to ETo when the soil moisture content exceeds a threshold value, θT, and that
there is a linear decrease in ET as soil moisture content is depleted below θT down to zero at the
permanent wilting point (θR). In the work described in this paper ETo was assumed to be equivalent
to the reference ET rate which was imported from the Wasim-ET model [35] employing the FAO
Penman-Monteith equation.

In the absence of a snow pack, Hortonian overland flow is described after Kirkby, et al. [36] using:

qo = p(P− R0) (6)
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where R0 is a constant runoff threshold for precipitation (mm d−1) and p is a dimensionless proportion
of excess rainfall that flows over the land surface. Note that when P < R0, qo is zero.

Vertical drainage out of the soil is calculated using a simple gravity flow approximation under
unit hydraulic gradient [32]:

q = K(θ) (7)

where K(θ) is the unsaturated hydraulic conductivity (mm d−1) at average profile volumetric water
content (θ, cm3 cm −3). The daily value of q is partitioned between direct transfer to surface water
(e.g., via shallow throughflow: qTF) and groundwater recharge (qGW) using an empirically-derived
(calibrated) partition factor ( fg) ranging between 0 and 1:

qGW = fg.q (8)

qTF =
(
1− fg

)
.q (9)

K(θ) is calculated using the Mualem-van Genuchten equation [37]:

K(θ) = Ksat.θ0.5
∗ .

[
1− (1− θ

1
m∗ )

m]2
(10)

where Ksat is the saturated hydraulic conductivity (mm d−1), m is an empirical shape factor parameter
of the soil water retention curve and θ∗ is the dimensionless water content (0 to 1):

θ∗ =
θ − θr

∅− θr
(11)

where θr is the average profile residual water content (cm3 cm−3), assumed here to be the storage at the
permanent wilting point—i.e., the water content at −1500 kPa tension). Note that in the Mualem-van
Genuchten model θr is often lower than the wilting point but here the equations are employed with
different physical significance for the parameters, which represent effective area responses rather than
describing hydraulic properties at the Darcy scale [33].

The shape parameter m is related to the van Genuchten parameter n via:

m = 1− 1
n

(12)

Snow accumulation and snow melt are assumed to occur in limited zones of the catchment
delineated by altitude using the SRTM 30 m DEM. The daily air temperature in each zone is estimated
from reference weather station data via:

Ti = Ta −Ω(Zi − Zw) (13)

where Ti is the temperature of zone i, Ω is the dry adiabatic lapse rate (0.0065 ◦C m−1: [38], Zi is the
mean elevation of zone i (m) and Zw is the elevation of the nearest reference station (m).

The treatment of the snowpack is based on a simple mass balance algorithm of water equivalent
units similar to that employed in the HBV model [39] which is augmented by snowfall and depleted by
snowmelt. All precipitation in a zone is assumed to fall as snow when the daily average temperature
(Ta) for the zone is below −0.5 ◦C [40]. When the zonal temperature is above 1.5 ◦C all precipitation is
assumed to be rainfall and between −0.5 and 1.5 ◦C the fraction of precipitation assumed to fall as
snow is calculated by linear interpolation. Snow melt is assumed to be independent of the size of the
snow store (except when the snow pack is exhausted) and is calculated from the difference between
mean air temperate and 0 ◦C multiplied by a degree-day factor [41]. Although simplistic, this approach
has been shown to produce reasonable results [42,43]. The daily rate of melting in each zone (Mi) is
given by:
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Mi = a[Ta − Tmelt] + βRn (14)

where a is degree-day factor ranging between 2 and 2.5 (mm ◦C−1d−1), β is conversion factor for
energy flux density to snowmelt depth (set to 0.26) [41], Tmelt is a threshold temperature below which
no melting occurs and Rn is the net radiation flux density in water equivalent units (mm d−1). Rn is
calculated from sunshine hours at the reference meteorological stations using the Angstrom formula
and assuming a snow albedo of 0.7 [44]. No adjustments for changes in cloud cover with altitude are
made. Total snow melt Mtot is the area-weighted average of the daily snow melt in each zone which is
added to the main soil store.

Baseflow is assumed to be proportional to water storage (SG) in groundwater via a non-linear
storage model [45]:

qb = kSG
ε (15)

where qb is groundwater discharge (mm d−1) and ε (>0) and k typically 0–1: [46] are empirical
coefficients. SG is derived from mass balance as:

dSG
dt

= fg.q− qb (16)

The predicted total daily river discharge (Q: mm d−1) is calculated as

Q = qo + qb + qTF (17)

2.6. Calibration and Validation of the LEMSAR Model

The observed discharge data were divided into two subsets, one for calibration and the another
for validation. Calibration was performed using the Self Organizing Migrating Algorithm [47].
The Nash-Sutcliffe Efficiency [48] was adopted as the objective function. Optimal parameter values
are shown in Table 1 along with the range within which the parameters values were constrained
in the SOMA procedure. The initial value for S was also optimised in the calibration routine but
the initial value for SG was arbitrarily set to 100 mm. Various configurations of the groundwater
parameterization were attempted. Optimizing ε in the SOMA procedure (ε = 0.72) gave a NSE of
0.75 and Bias = 1.1% and a reasonable prediction of base flow. However, the slope of the 1:1 line in
this calibration was closer to 1 when ε was arbitrarily set to 1 (i.e., when groundwater is represented
by a linear reservoir), the NSE was unaffected although the Bias was higher (−12.6%). Furthermore,
model performance in the validation period was superior when ε was fixed at 1 (Bias = 4%). Given the
considerable uncertainty in the behaviour of the groundwater store in this catchment we, therefore,
chose to fix ε = 1 in all subsequent simulations. This issue is discussed further below. Four statistical
measures were used to evaluate model performance in validation: the NSE; Pearson’s Correlation
Coefficient (r); the root-mean-square error (RMSE) and Percent bias (see Equations (S4)–(S7) of the
Supplementary Material). The model was validated three times (using a different rainfall data set in
each case) in order to evalute the value of satellite-derived rainfall as the driver for predicted runoff in
this catchment and, potentially, in large semi-arid data-poor catchments.

Table 1. Optimum parameter values generated by automatic calibration for LEMSAR in the Lesser Zab
catchment (ε = 1).

Parameter Description Lower Upper Optimised Value

n Shape parameter in van Genuchten equation (-) 1 2.5 2.18
∅ Saturated water content (cm3 cm−3) 0.4 0.6 0.58
θR Permanent wilting point (cm3 cm−3) 0.03 0.22 0.10
z Soil depth (cm) 50 200 146

θT Threshold water content when ET < ETo (cm3 cm−3) 0.2 0.4 0.35
θr Residual soil water content (cm3 cm−3) 0.01 0.3 0.007
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Table 1. Cont.

Parameter Description Lower Upper Optimised Value

Ksat Soil saturated hydraulic conductivity (mm d−1) 75 450 262
R0 Rainfall threshold for overland flow (mm d−1) 5 50 42.9
p Fraction of excess rainfall which runs off (-) 0.05 0.1 0.06
k Empirical coefficient for groundwater flow (d−1) 0.1 0.99 0.6
fg Empirical partition factor for groundwater recharge (-) 1 0.99 0.32

2.7. Equifinality and Sensitivity Analysis in LEMSAR

Uncertainty analysis was conducted using the Generalised Likelihood Uncertinty Estimation
(GLUE) methodology [49]. R code for GLUE was obtained from a link in [50] and incorporated
into the LEMSAR model. Briefly, a Monte Carlo Simulation (MCS) is performed in which model
parameters are selected randomly from uniform distributions with pre-defined ranges in a large
number of iterations. Model performance is estimated using a likelihood function (0–1) which is zero
for parameter combinations which do not reflect system behaviour and unity for “optimal” parameter
combinations. GLUE can help to identify equifinality—the existence of different combinations of
parameters which generate similarly “good” representations of system behaviour [51]. This often
occurs when models are poorly constrained (e.g., they are evaluated solely on the basis of one predictor,
such as stream discharge, with no check on model performance with respect to other predicted state
variables, such as soil water content or groundwater storage). Here, 10,000 model iterations were
performed and the NSE (Equation (S4)) for Q (Equation (17)) was used as the likelihood function.
An acceptability threshold of 0.5 was selected for NSE based on the model performance classification
executed by Moriasi, et al. [52], (i.e., simulations were considered to be acceptable for NSE > 0.5).

3. Results

3.1. Comparison Between Gauged Rainfall and TRMM Data

Weighted-mean (Thiessen polygon) daily ground-observed rainfall is plotted against both
uncorrected and corrected TMPA-3B42/3B42RT data for Periods 1 and 2 in Figure 2. Correlation
coefficients (r) were highly significant in both cases (p < 0.0001) but there is a lot of scatter around the
1:1 line and, in general, the satellite-derived data tended to under-estimate the gauged data (negative
bias). Figure 2 shows that for Period 1 the correction of the TMPA-3B42 and TMPA-3B42RT data
resulted in a slight change to r (from 0.674 to 0.673 and from 0.545 to 0.546, respectively) but also a
decrease in the magnitude of the bias (from −5.5% to −0.8% and −16.3% to −1.3%, respectively).
For Period 2 (Figure 2c,d) the application of the correction factors derived with the Period 1 data
also resulted in little change to r but reduced the bias from −10% to −0.7% for TMPA-3B42 and from
−10.7% to −1.6% for TMPA-3B42RT.

To further investigate the correspondence between TMPA-3B42/3B42RT estimates and the rain
gauge data, we also employed the following verification metrics, based on a contingency table
(Table S1): (i) the False Alarm Ratio (FAR) i.e., the ratio of the number of times rainfall was forecast
by the satellite data product but not observed in the gauged rainfall data to the total number of
times rain was forecasted successfully (see Equation (S1)); (ii) the Probability of Detection (POD; see
Equation (S2)) i.e., the ratio of the number of times rain days were successfully forecasted to the total
number of rain days [53,54]) and (iii) the Heidke Skill Score (HSS; see Equation (S3)) i.e., a measure of
the frequency of correct matches between satellite forecasts and gauged observations compared to the
number of correct matches which would be expected by chance [53,55]. These verification statistics for
Periods 1 and 2 are displayed in Figure S3. The FAR values for both the uncorrected and corrected
TMPA-3B42RT were higher than those calculated for TMPA-3B42 for both Periods 1 and 2. The POD
values were lower for the TMPA-3B42RT data than for the TMPA-3B42 for both periods. Overall, the
3B42 data performed better than the 3B42RT data. However, these statistics show that both TMPA
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products have serious problems in detecting the occurrence or not of rainfall. Values of HSS were
about 0.4 for Period 1 and 0.3 for Period 2 for most rainfall intensities. Note that positive values of HSS
indicate that the TMPA data products were better than chance. This is the case for the most common
rainfall intensities (i.e., between 5 and 45 mm d−1).
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Figure 2. Scatterplots of daily catchment-average gauged rainfall versus TRMM daily rainfall:
(a,b) represent uncorrected and corrected TMPA-3B42/3B42RT data for Period 1 and (c,d) represent
uncorrected and corrected TMPA-3B42/3B42RT data for Period 2.

3.2. Comparing Observed and Simulated Discharge

Observed and simulated discharge for the Lesser Zab River in different periods and driven by
different rainfall data sets are shown in Figure 3. In all cases, the black line shows the observed
discharge, the orange line represents predicted snowmelt and the red line is groundwater flow.
In general, the seasonal agreement between observed and simulated discharge is reasonable using both
gauge-derived and corrected TMPA-3B42/3B42RT rainfall data. However, some hydrograph peaks
appear to be noticeably under-predicted by the model, particularly when driven by the uncorrected
TMPA-3B42/3B42RT rainfall data. In part, this reflects a general tendency for the TMPA data to
under-estimate the gauge-derived rainfall data. Simulated flows are plotted against measured data
in Figure 4, along with the best-fit linear regression and the 1:1 line. Most of the points are scattered
around the 1:1 line when the model is driven by the area-weighted rain gauge data. However, there is
considerable deviation at high flows (e.g., the model underestimates some measured discharge peaks
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>500 m3s−1) and for hydrograph recessions (in which predicted flows tend to reduce slightly faster
than those observed). This results in a slope for the best-fit regression which is less than unity in
the validation period. This systematic deviation was more pronounced when the model was driven
by the uncorrected TMPA-3B42 and TMPA-3BRT rainfall data (Figure 4c,e). However, the TMPA
correction procedure noticeably reduced (but did not eliminate) the systematic tendency for the model
to under-estimate measured flow and resulted in tolerable discharge predictions overall. It is important
to note that the factors (µ f and σf ) used for the correction of the TMPA data were derived from Period 1
(2003–2009) which does not overlap with either the calibration or the validation periods used for
evaluating the hydrological model. The TMPA corrections are, therefore, independent of the rain
gauge data used to drive the hydrological model over 2010–2014. Statistical comparisons between
simulated and measured flows are also plotted on Taylor Diagrams in Figure S4. These diagrams
summarise the overall performance of LEMSAR during the calibration and validation periods when
driven by different precipitation data.
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Figure 3. Observed and simulated hydrographs for the Lesser Zab River above the Dukan reservoir.
Data for the calibration period (2010-2011) are shown in (a). In all cases, hydrological model parameters
were calibrated using the gauged rainfall data. Data for the validation period (2012–2014) are shown in
(b–f). The top right panel (b) shows validation when driven by the weighted-average gauge-derived
rainfall. The middle panels (c,d) show validation driven by the uncorrected and corrected TMPA-3B42
rainfall data, respectively. The bottom panels (e,f) show validation driven by the uncorrected and
corrected TMPA-3B42RT rainfall data, respectively. In all cases, the orange line shows modelled
snowmelt and the red line is modelled groundwater flow.
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Figure 4. Scatterplots of observed versus simulated discharge for (a) the calibration period (2010–2011)
and (b) the validation period (2012–2014) when the model was driven by the weighted-average
gauge-derived rainfall. The middle panels (c,d) show model performance for the validation period
when driven by the uncorrected (c) and corrected (d) TMPA-3B42 rainfall data. The bottom panels
(e,f) show validation simulations driven by the uncorrected (e) and the corrected (f) TMPA-3B42RT
rainfall data, respectively. The solid line indicates the 1:1 relationship. The grey line shows the best fit
regression with 95% confidence intervals.

Goodness-of-fit statistics are presented in Table 2. These statistics reinforce the message derived
from the graphs that the model tends to under-estimate the measured river discharge in both
the calibration and validation periods regardless of the rainfall data used. The bias was lowest
when the measured rainfall data were used to drive the model and highest when the uncorrected
TMPA-3B42/3B42RT rainfall data were used. However, the best NSE value for the validation period
was obtained using the corrected TMPA-3B42 data. As expected, model performance was poorest when
it was driven by the uncorrected TMPA-3B42/3B42RT data (lowest NSE, highest BIAS and highest
RMSE). Overall, using the TMPA-3B42 product resulted in better model performance compared to
usingTMPA-3B42RT product.

Table 2. Summary of goodness of fit criteria for simulated discharge in the Lesser Zab catchment using
different rainfall data sets to drive the model. * Significant at p ≤ 0.01.

Statistical
Measures

Calibration Validation

Mean rainfall obs Mean rainfall obs TMPA-3B42uc TMPA-3B42c TMPA-3B42RTuc TMPA-3B42RTc

BIAS (%) −12.6 4 −37.6 −2.6 −32 −14.2
RMSE 65 96 97 77 112 109
NSE 0.75 0.48 0.45 0.66 0.28 0.31

r 0.87 * 0.72 * 0.80 * 0.81 * 0.59 * 0.61 *
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3.3. Contribution of Snowmelt and Groundwater Flow to Simulated River Discharge

The daily predicted contributions of snowmelt and groundwater in the Lesser Zab catchment
are shown in (Figure 3). Although predicted daily snow melt contributions to total flow tended to be
low (annual percentage contribution 4%–13.5%), predicted melt-derived flows can be substantial in
spring and may contribute to occasional flood events (Figure 5). Monthly snowmelt contributions
were highest when the model was driven by gauged rainfall data, principally due to a higher winter
precipitation rate observed compared to both the uncorrected and corrected TMPA products, and
hence a deeper simulated snowpack accumulation. The snowmelt contributions were also higher
when LEMSAR was driven by both uncorrected and corrected TMPA-3B42RT data than it was driven
by the TMPA-3B42 data.
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Figure 5. Boxplots of predicted monthly snowmelt contributions to river discharge in the Lesser Zab
catchment. The calibration period (2010–2011) is shown in the top left panel (a). Panels (b–f) show
contributions during the validation period (2012–2014) using rain gauge data and uncorrected and
corrected TMPA-3B42/3B42RT data. The horizontal line within each box represents the median, the box
boundaries represent upper and lower quartiles and the dashed whiskers show the maximum and
minimum values.
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The predicted contribution of groundwater flow to river discharge is low and significantly
underestimates baseflow. This is, in part, due to the simplistic representation of the complex and
highly uncertain hydrogeological system underlying this catchment but it is also a result of the model
parameterisation (including our arbitrary decision to set ε = 1). Overall model performance tended
to be better with a high value of k (implying very steep groundwater recession and a perenially low
groundwater storage). Many of the underlying strata in the catchment are karstic (i.e., they contain a
highly conductive network of cracks and fissures) which respond rapidly during storm events but
which have baseflow behaviours which are difficult to model [56]. A high value of k is consistent with
the rapid behaviour of karstic systems, although we recognise that it penalises model performance at
low flows in order to get a better simulation of the hydrograph during storm events.

3.4. Flow Duration Curves

Flow duration curves (FDC) for both observed and simulated river discharge are shown in
Figure 6. The match between the curves is generally good, although there is some under-prediction
of discharge at high exceedance percentiles (i.e., low flows tend to be under predicted) and some
over-prediction of flows in the 5–25 exceedance percentile range. Again, the under-prediction of low
flows is due in part to the simple nature of the baseflow model adopted here and its parameterisation.
The source of rainfall data used to drive the model had a significant effect on the shape of the FDC.
Flows were under predicted over most of the range when the model was driven by the uncorrected
TMPA-3B42 and 3B42RT data but this noticeably improved for a significant percentile range when
the TMPA-3B42/3B42RT data were corrected. Overall, reproduction of the FDC was slightly better
when the model was driven by the corrected TMPA-3B42RT data than when it was driven by the
TMPA-3B42 data.
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produce poor simulations for unmeasured phenomena such as snow melt and baseflow contributions 
(i.e., the model may give the “right results for the wrong reasons”). Although it is possible to apply 
qualitative constraints on parameter combinations to ensure that unmeasured state variable 
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gauge-derived rainfall. Middle panels: (c) Validation period when driven by the uncorrected
TMPA-3B42 data; (d) Validation period when driven by the corrected TMPA-3B42 data. Bottom panels:
(e) Validation period when driven by the uncorrected TMPA-3B42 RT data; (f) Validation period when
driven by the corrected TMPA-3B42RT data.

3.5. Equifinality

Figure 7 shows scatter plots of NSE against MCS-generated parameter values for the calibration
period. The blue point indicates the NSE for the calibrated (reference) parameter set (NSE = 0.75).
Only parameter combinations yielding NSE > 0.5, are displayed. The graphs clearly demonstrate the
frequently reported phenomenon of equifinality [7,49,57–60] in which reasonable model performance
can be achieved using several different combinations of model parameters. Here it occurs, in part,
due to the fact that our model is poorly constrained (i.e., measured data are available for only one
predicted output variable—stream discharge, with other predicted internal state variables, such as
soil water content and groundwater storage, not measured and, hence, not validated). Hence, the
“optimal” set of model parameters yields good predictions of the data available but may actually
produce poor simulations for unmeasured phenomena such as snow melt and baseflow contributions
(i.e., the model may give the “right results for the wrong reasons”). Although it is possible to apply
qualitative constraints on parameter combinations to ensure that unmeasured state variable predictions
are “sensible” [61], the lack of measured data for these variables mean that both aleatory and epistemic
uncertainty are always high. Equifinality also makes evaluating the relative contributions of errors
in the individual terms of the water balance equations to the overall model error difficult if not
impossible. This is in part, because many of these terms are linked e.g., via a dependence on soil
moisture or contain parameters which are calibrated on discharge at the catchment outlet, rather than
being determined independently. The results from a local sensitivity analysis are presented in the
Supplementary Material (see Figure S5) and suggest the following rank order for model sensitivity
(high to low ∅ > n > z > Ksat > fg> θT, θR, θr, p, Ro, k. Given the relative insenstitivity of the model
performance to θT, θR, θr, p, Ro, and k these parameters were fixed to their optimal values and the MCS
re-run to generate GLUE uncertainty boundaries on predicted discharge. These are shown in Figure 8
for the calibration period (2010–2011).
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TRMM orbits is too long to capture all rainfall events [30] and the random, short duration and 
localized nature of high intensity convective storm events in arid and semi-arid areas which 
contribute to greater spatial variability for precipitation in these areas compared with humid regions 

Figure 8. Prediction uncertainty bounds for river discharge in the Lesser Zab river over the calibration
period 2010–2011. The black line is the observed discharge; the red line is the median predicted flow for
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4. Discussion

In this paper, we present a simple rainfall-runoff model which we apply, for the first time, to the
Lesser Zab catchment in Iraq using weighted average gauged daily rainfall data and rainfall data
derived from remote sensing. The principal aim was to assess the potential value of remotely-sensed
rainfall data as a driver for rainfall-runoff modelling in data-scarce semi-arid catchments. Although
data availability for the Lesser Zab catchment was actually sufficient for hydrological modelling, this
is atypical of most semi-arid regions in the world which often suffer from data scarcity issues related
to inadequate resource allocation for instrumentation and monitoring [62]. Moreover, even when data
exist, they may not be made available for scientific studies without appropriate connections to the
data-holding authorities. This study, therefore, provides an excellent opportunity to evaluate model
performance and the utility of remotely sensed data under various assumptions of data paucity.

Two daily satellite-derived data products (TMPA-3B42 and 3B42RT) were corrected using mean
bias statistics (mean and standard deviation) assuming uniform bias across the whole range of rainfall
intensities. Five river discharge simulations were performed, driven by different daily rainfall data sets
(gauged data, uncorrected TMPA3B42 data, uncorrected TMPA-3B42RT data, corrected TMPA-3B42
and corrected TMPA-3B42RT data). Both the uncorrected TMPA data products tended to underestimate
gauge-derived rainfall. The performance of the TMPA-3B42RT product was poorer than that of the
TMPA-3B42 product during rainy days. The 3B42RT also had a higher tendency to predict rainfall
on days in which there was no gauge-observed rainfall (hence the higher FAR). In addition, the
TMPA-3B42 data generated higher POD values than the 3B42RT data, confirming better performance
for predicting rainy days. Generally, the HSS of both products was best for rainfall rates between 5
and 45 mm d−1. Failure to accurately predict events with higher intensities could be related to the low
spatial and temporal resolution of the TMPA data products (the time interval between TRMM orbits
is too long to capture all rainfall events [30] and the random, short duration and localized nature of
high intensity convective storm events in arid and semi-arid areas which contribute to greater spatial
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variability for precipitation in these areas compared with humid regions [63]. This is also an issue
for precipitation capture by rain gauges, especially if they are sparsely located [64]. That said, overall
trends are generally captured well.

Aside from the localised nature of convective rainfall, there are many possible explanations for
deviations of the TMPA rainfall from the gauge-recorded data, including the influence of topography
(e.g., slope, aspect and local relief) [65]. In addition, known (and unknown) instrument errors
(e.g., the TRMM radar cannot detect rainfall at less than about ~18 dBZ or 0.4 mm/h [66]) will
also contribute to deviations. We used area-averaged (Thiessen polygon weighted averaging)
precipitation measurements derived from ground observations from four stations over a limited
period to correct the TMPA data. These data are associated with considerable uncertainty due to
instrument and sampling errors arising from the relatively low spatial density of gauges. In particular,
these stations are predominantly located at low elevations (550 to 1300 m ASL) and, hence may
under-estimate total precipitation at altitude and total catchment precipitation in general. However,
data to verify the extent to which this may have been a major issue or not are currently not available.
The uncorrected and corrected TMPA-3B42 data both underestimated gauged data by −10% and
−0.7% respectively. Similarly, the TMPA-3B42RT underestimated gauged data by −10.7% and −1.3
respectively. This finding is in rough agreement with [67] which reported that satellite-derived rainfall
could systematically underestimate ground observed rainfall by 30% or more. Collischonn, Collischonn
and Tucci [4] also showed that relative differences between observed and satellite-derived rainfall data
can range from −39% to +25%.

Given the simplicity of the model assumptions and the large and complex nature of the catchment,
the performance of the LEMSAR model in the Lesser Zab catchment was surprisingly good. Although
model performance was weak in places (e.g., the poor prediction of baseflow), performance overall
was equivalent or better than that obtained using similar model in smaller UK catchments [33].
The contribution of snow melt and baseflow to river discharge is unknown and the model is poorly
constrained with respect to these simulations. This contributed to significant equifinality, illustrated by
a wide range of “acceptable” parameter combinations. Although a significant part of the catchment is
above 1500 m altitude and, therefore, likely to receive some winter precipitation as snow, the relative
contribution of calculated snowmelt to simulated river discharge was generally low, even in the
spring melt season (although the absolute volumes were occasionally significant and the snow melt
contribution may have been masked by coincidentally high rainfall in this season). However, it would
be useful to confirm this prediction by independent studies in high altitude sub-catchments.

No adjustment was made in the model for changes in ETo with altitude or over snow cover.
Instead a weighted average daily ETo value from the available meteorological stations was used to
drive the model. Since ETo is likely to decrease with altitude, this assumption is likely to lead to an
overestimation in mean catchment ETo. Estimated evapotranspiration and sublimation from snow and
frozen soil has generally been reported to be low [68]. For example, Male and Granger [69] estimated
daily net evaporation rates of 0.02–0.3 mm d−1 in central Saskatchewan. However, in any case, snow
cover is predicted to occur in a maximum of 20% of the catchment area and only for three months
of the year. Given the lumped nature of the model employed and the other major simplifications
assumed, therefore, we expect the impact of this uncertainty is relatively minor.

The behaviour of the regional groundwater system in our model was simplistic, reflecting high
epistemic uncertainty. In fact, model performance was highest overall when ε was fixed at 1 and k was
high (resulting in minimal groundwater contribution), suggesting that the aquifer reacts like a single
linear reservoir where the groundwater flow is proportional to groundwater storage and water release
from the soil store is the principal limit on the timing and magnitude of river discharge. This will,
in turn, be controlled by seasonal changes in evapotranspiration and soil moisture content, similar to
many humid-temperate catchments. Although the dominant underlying karstic strata in the catchment
are volumetrically important, they have rapid hydrological response times [56]. We can postulate,
therefore, that delays in groundwater flow are short and make little modification to hydrograph shape



Climate 2017, 5, 32 17 of 22

and magnitude. However, one important issue with this assumption is that low flows in the sustained
dry summers experienced in the catchment are poorly predicted. This is clearly important from a water
resources management perspective but does not affect the evaluation of the TMPA-3B42/3B42RTdata
as a driver for hydrological modelling. Resolving this issue is, therefore, beyond the scope of this paper
but one solution could be to simply assume an additional fixed baseflow. Finally, although there will be
channel network delays in the translation of rainfall to runoff in such a large catchment (>11,000 km2),
these delays are not likely to be important at the daily time step (i.e., network travel times will still
be mostly < 24 h—particularly during storm events). Although some modelling uncertainty could
be reduced by excluding model-insensitive parameters from the [51], constraining simulations using
measured state variables such as soil water content, snow melt and groundwater behaviour would
clearly be more beneficial [70–72].

Observed discharge in the Lesser Zab river was represented reasonably well by the model using in
situ gauged rainfall and both TMPA-3B42 and 3B42RT data, particularly when the latter were corrected
using a limited set of rain gauge data. Flow simulations using uncorrected TMPA-3B42/3B42RT data
generally under-estimated flows for significant periods, with some peaks missed altogether, although
seasonal fluctuations were still well captured. It has been reported that TMPA bias tends to increase
with rainfall intensity [73], suggesting that the bias is multiplicative, not additive. In our study, some
rainfall events >40 mm d−1 do appear to become more biased after correction (Figure 2b). This means
that although our corrections improve rainfall over the most frequent ranges (typically low intensity),
they may fail to improve significantly (or worsen) model performance in lower frequency, higher
magnitude events. Application of different bias statistics for different ranges of rainfall intensity could
provide a solution to this issue but this has not been explored further here.

The superior accuracy of LEMSAR when driven by corrected, compared to uncorrected, TRMM
data mainly reflects the fact that the correction reduced the bias in the TRMM estimates which was
translated, in part, into higher predicted flows. These results are consistent with other research [4,74,75]
which has indicated that corrected TMPA-3B42 v7 precipitation estimates can provide reasonable
model input for the simulation of discharge river. However, previous attempts at correction have used
denser rain gauge networks than the network employed here and none have been employed in this
region. The TMPA-3B42/3B42RT data were corrected using a limited set of the available rain gauge
data in order to evaluate the application of the correction equation to independent data. The agreement
between the corrected daily TMPA-3B42/3B42RT data and the daily rain gauge data for Period 2,
together with the reasonable performance of LEMSAR when driven by the corrected TMPA data for
the whole flow record, suggest that this correction may be generally applicable in this catchment.
Nevertheless, it should be noted that the superior performance of the model when driven by both
of the corrected satellite data products may be “opportunistic” to some extent—resulting from the
fact that flows are slightly over-estimated by the model when calibrated using gauged rainfall whilst
gauged rainfall is still slightly under-estimated by the TMPA data.

Furthermore, since the TMPA data provide spatially aggregated rainfall estimates over an area,
while rain gauge data are measured at specific point locations, the TMPA data may be useful for
modelling catchments where gauge data are sparse. Note that the TRMM data mission has now ended
and another platform (Global Precipitation Measurement (GPM) mission is available at http://pmm.
nasa.gov/GPM) which supplies similar data to TRMM. The Integrated Multi-satellitE Retrievals for
GPM (IMERG) will be much improved in terms of spatial and temporal resolutions (e.g., 0.1 deg and
half-hourly [76]). The findings of this work should also be broadly applicable to GPM data.

All hydrological model runs used weighted average values of daily ETo calculated from
ground-based meteorological observations. Here, we have evaluated only the utility of remotely-sensed
rainfall data for driving a hydrological model. Further work should also explore the effects of using
other remotely sensed meteorological data (e.g., surface temperature) to predict ETo and the potential
for simulating hydrological response in this and other catchments completely independently of
ground-based observations.

http://pmm.nasa.gov/GPM
http://pmm.nasa.gov/GPM
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5. Conclusions

Semi-arid regions often have sparse rain gauge networks. Satellite-based precipitation estimates
can, therefore, potentially provide crucial information for evaluating runoff using hydrological models.
In this study, we explored the utility of satellite-derived data to force a simple water balance model.
We found that both data products were biased towards an under-estimation of observed rainfall in the
Lesser Zab catchment and needed to be corrected. A bias-correction approach was employed, which
rescales standard scores (z scores) using the mean and standard deviation of the gauged rainfall data.
Overall, model performance for predicting discharge was reasonable, particularly given the relatively
simplistic assumptions made and the large size of the catchment. This suggests that runoff dynamics in
this catchment are principally controlled by the soil moisture balance and that groundwater dynamics
and snow melt make relatively small contributions to the shape and magnitude of the hydrograph
(although snow melt is predicted to be significant in spring and baseflow is important in the dry
season). However, significant uncertainty exists in the model simulations reported, manifested as
equifinality. The aleatory component of this uncertainty could be quantified using GLUE which
defines uncertainty bounds on predicted flows (resulting, in part, from poorly constrained calibration)
but epistemic uncertainty is unknown and likely to be significant. Overall the TMPA-3B42 data
product out-performed the 3B42RT data in terms of POD, HSS and FAR compared with gauged
rainfall. Hydrological model performance was also generally better when driven by the corrected 3B42
data than when the 3B42RT data were used. When LEMSAR was driven by corrected TMPA- 3B42c
rainfall, predicted runoff in the validation period was as good as or better than that predicted using
gauge-derived data. This suggests that the corrected TMPA rainfall data particularly TMPA-3B42
(or equivalent data from GPM) can be used to predict river discharge in this catchment which may
be useful for future water resources management (e.g., estimating the availability of water resources
in ungauged catchments and to anticipate the need for temporary controls on water use at times of
water scarcity).

Supplementary Materials: The following are available online at www.mdpi.com/2225-1154/5/2/32/s1.
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