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Abstract: Drought is one of the major threats to societies in Sub-Saharan Africa, as the majority of the
population highly depends on rain-fed subsistence agriculture and traditional water supply systems.
Hot-spot areas of potential drought impact need to be identified to reduce risk and adapt a growing
population to a changing environment. This paper presents the Blended Drought Index (BDI),
an integrated tool for estimating the impact of drought as a climate-induced hazard in the semi-arid
Cuvelai-Basin of Angola and Namibia. It incorporates meteorological and agricultural drought
characteristics that impair the population’s ability to ensure food and water security. The BDI uses
a copula function to combine common standardized drought indicators that describe precipitation,
evapotranspiration, soil moisture and vegetation conditions. Satellite remote sensing products were
processed to analyze drought frequency, severity and duration. As the primary result, an integrated
drought hazard map was built to spatially depict drought hot-spots. Temporally, the BDI correlates
well with millet/sorghum yield (r = 0.51) and local water consumption (r = −0.45) and outperforms
conventional indicators. In the light of a drought’s multifaceted impact on society, the BDI is a simple
and transferable tool to identify areas highly threatened by drought in an integrated manner.

Keywords: hazard assessment; remote sensing; drought risk; time series analysis; vulnerability;
copula

1. Introduction

Droughts affect more people in Africa than any other natural hazards [1]. In particular, mixed
crop-livestock systems in Sub-Saharan Africa are highly sensitive to drought events due to their
dependence on local hydro-climatic conditions [2–6]. This is true for the majority of the population
since rural subsistence economies remain the prevalent livelihood strategy [7]. Droughts especially
impact the population that is highly exposed and sensitive to water scarcity and has reduced capacities
to cope with these conditions [8]. Against the background of the difficult social-ecological situation in
Sub-Saharan Africa [9,10] and projections about increased drought frequency and intensity [11,12],
the population is likely to remain in a precarious situation of poverty persistence, civil conflicts, and
food and water insecurity [5,13,14]. The identification of drought-prone areas interlinked with a
thorough characterization of the populations’ sensitivities and coping capacities is thus essential to
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improve short-term emergency responses and develop long-term adaptation strategies on the political
level for the most vulnerable groups [8].

The identification of drought-prone areas is, however, challenging due to the complex nature
of drought events with their slow onset and unclear definition [15,16]. Four types of drought can be
identified [17]: (i) Meteorological drought is defined as a less-than-normal amount of precipitation
for a certain region and time period [15,17,18]. If the water deficit leads to a drop in soil moisture,
thus affecting plant health, the drought situation is defined as (ii) an agricultural drought. Other than
through a water deficit, this type of drought can also be caused by higher-than-usual evapotranspiration
values as soil moisture depletes at a faster rate. The limited surface and subsurface water resources
potentially lead to (iii) a hydrological drought as discharge, groundwater and reservoir levels
decrease [19–21]. (iv) A socio-economic drought, on the other hand, is not solely related to the
climatic conditions, but refers to a water deficit caused by allocation difficulties [15,17].

These different types of drought play an important role in the Cuvelai-Basin at the border
between northern Namibia and southern Angola (Figure 1). Recurring droughts and floods heavily
affect the population in the Basin, where a majority practices rain-fed subsistence agriculture [8,22].
Characterizing the hazard of drought in the Basin and comparable regions is essential, yet difficult
in areas with a low climate station density and irregular precipitation records. This study therefore
uses remotely-sensed climate products, which offer high resolution data reaching back long enough to
compute different drought indicators reliably.

The aim of this study is to incorporate the quantifiable traits of the aforementioned types of
drought by using a copula equation [23] to generate the Blended Drought Index (BDI), which can be
used to determine the combined exposure of the population in the Cuvelai-Basin to meteorological and
agricultural droughts. As the input variables are entirely taken from remote sensing products, the index
is especially suitable for data-scarce regions that are less well-equipped with monitoring infrastructure.

2. Materials and Methods

This section provides an overview on the procedures to calculate and analyze the BDI. First, the
study design and the study area are presented, with special emphasis on the local social-ecological
conditions that determine the selection of appropriate drought indicators. A detailed description of
the processing algorithms follows that makes use of the datasets depicted in Table 1. Subsequently,
the process of combining the individual indicators via a suitable copula function will be described.
An outline of the drought dimensions to be analyzed, such as frequency of occurrence, severity, and
duration, follows. Finally, observed data on millet/sorghum yield and tap water consumption from
central-northern Namibia are presented that are used to validate the temporal BDI signal.

Table 1. Datasets used to calculate the drought indices.

Parameter Dataset Spat. Cov. Spat. Res. Temp. Cov. Temp. Res. Provider Reference

Precipitation CHIRPS 2.0 50◦ N–50◦ S 0.05◦ 1981–2015 monthly UCSB, CHG [24]
Evapotranspiration CRU TS3.23 global 0.5◦ 1901–2013 monthly UEA, CRU [25]

Soil Moisture GLDAS global 0.25◦ 1980–2010 monthly NASA [26]
Vegetation NDVI3g global 0.08◦ 1981–2013 15 days GIMMS [27]

(UCSB = University of California, Santa Barbara, CHG = Climate Hazards Group, UEA = University of East Anglia,
CRU = Climate Research Unit, NASA = National Aeronautics and Space Administration).

2.1. Study Area

The Cuvelai-Basin is an endorheic watershed that covers about 172,000 km2 of southern Angola
and northern Namibia (Figure 1). It is a complex system, where water availability depends not only
on rainfall amount and temporal distribution, but also on temperature and regular flooding, which
fills a multitude of ephemeral streams, swales, and channels, locally called Oshanas, that replenish
soil moisture and groundwater storage [22,28]. Rainfall is restricted to the southern-hemispherical
summer months from November to April but differs in the total rainfall depth from the southwest to
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the northeast with a mean precipitation of about 495 mm in the Basin’s center [29]. However, inter-
and intra-annual rainfall variability is pronounced, leading to numerous drought events throughout
the past decades with severe droughts in the late 1980s and mid-1990s and recently in 2012, 2015,
and 2016 [30]. The population of approximately 1.7 million people [31,32] primarily lives in rural
environments and practices subsistence agriculture, with rain-fed millet/sorghum cultivation and
livestock herding being the most important livelihood activities [8,22]. Apart from the tap water system
that is available in central-northern Namibia, traditional water sources such as shallow and deep wells,
open water, and rainwater constitute important water sources for domestic consumption [8]. Overall,
this lifestyle is closely connected to local hydro-climatic conditions. Thus, droughts immediately
impact the living conditions and challenge local water and food security conditions.
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2.2. Study Design and Indicator Selection

The previous section depicted the environmental and socio-economic conditions in the
Cuvelai-Basin. In essence, the inhabitants are challenged by drought with respect to their ability
to secure adequate levels of water and food supply during water-scarce periods as a result of their
dependence on local hydro-climatic conditions. This holds true for both the rural and urban population
due to i.e. familial relationships between the sub-systems [8]. Conceptually speaking, this means
that households are at risk of drought since their ability to meet their demand for blue and green
water [33,34] is impaired by spatio-temporal water scarcity. The term ‘risk’ is often used in an
unspecified manner, but in this study it encompasses two dimensions, the environmental hazard itself
to which societal entities (i.e., households) are exposed and their vulnerability, which specifically
includes the sensitivity of these entities to drought and their inherent ability to cope with adverse
conditions in the short-term [35]. While the vulnerability dimension rather takes a sociological
perspective with a focus on the affected population, this study sheds light on the climate-induced
drought hazard and seeks to develop an integrated drought hazard map for the entire Basin. Further
investigations will follow on the specific vulnerabilities of the population to depict drought risk in
a comprehensive way.

Standardized drought indicators are a common choice in science and practice to quantify drought
events. Up to now, more than one hundred drought indicators have been developed [36], offering
a huge repository of options on the one hand but on the other hand making it almost impossible
to select the right indicator for a specific situation. Most drought indicators compare the current
status of hydro-climatic parameters like precipitation, evapotranspiration, temperature, and soil
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moisture to their respective long-term normal configurations. Mishra and Singh (2010) as well as
Pedro-Monzonís et al. (2015) comprehensively reviewed the use of drought indicators in recent
years and identified the most frequently used ones. According to their analysis, the Standardized
Precipitation Index (SPI), the Palmer Drought Severity Index (PDSI), the Crop Moisture Index (CMI),
the Surface Water Supply Index (SWSI) and the Vegetation Condition Index (VCI) belong to the most
popular drought indicators [15,37].

Some of these tools are integrated into drought monitoring and early warning systems such as
the Famine Early Warning System Network (FEWSnet) and the African Drought Monitor (AFDM).
The latter includes for instance different temporal SPI configurations, the Normalized Difference
Vegetation Index (NDVI), and streamflow percentiles among other parameters [38–40].

The overall problem of most drought indicators is, however, their limited scope, often focusing on
one single parameter and thus neglecting other important determinants of meteorological, hydrological,
agricultural, or socio-economic droughts. While the individual indicators often show comparable
signals [41], relying on a singular index is not suitable to describe drought conditions accurately in the
study area, as soil moisture and evaporation in addition to precipitation heavily influence the blue
and green water accessible to the population. Some drought indicators already address this issue
like in the case of the PDSI. It combines precipitation data, soil moisture evaporation, and runoff
into a single index. However, being calibrated for the United States, it does not perform well in
other climatic regions and is thus not comparable, spatially [18]. More recently, advanced methods
of coupling individual drought indicators via copula functions have led to the development of new
multivariate integrated drought indicators [42]. For instance, the Multivariate Standardized Drought
Index (MSDI) incorporates precipitation and soil moisture data and has proved to adequately represent
drought conditions in California and North Carolina [23] as well as East Africa [43]. Chang et al. (2016)
combined four separate drought indicators to construct the Multivariate Integrated Drought Index
(MIDI) and analyzed its suitability to depict drought onset, duration, severity and termination in
central China [44]. Likewise, studies on drought conditions in central Iran examined the strengths of
the copula approach by constructing the Hybrid Drought Index (HDI) that makes use of SPI, PDSI
and SWSI [45]. These approaches are promising and hence taken up in this study to combine drought
indicators that cover different aspects of drought that are of relevance in the Cuvelai-Basin.

2.3. Standardized Precipitation Index (SPI)

The SPI is a commonly used indicator to monitor drought occurrence for different time scales [46].
It is recommended by the World Meteorological Organization (WMO) as the mandatory tool for
all National Meteorological and Hydrological Services to characterize meteorological droughts [47].
The SPI is simple to calculate, since it only requires a long-term precipitation record of 20–30 years as
input variable and offers the opportunity to analyze both dry and wet periods at a specific location.
In essence, the long-term precipitation record at one location is compared to the current rainfall,
which produces a standardized deviation from normal as the index value which is either positive
(wet conditions) or negative (dry conditions). The respective size of the standard deviation reflects the
intensity of a drought as represented in .

Table 2, while the threshold value of –1 is commonly considered for distinguishing near normal
conditions from real drought situations [46,47].

Table 2. Drought intensities according to the size of standard deviation [46].

SPI Values Drought Severity

0 to –0.99 Mild drought
–1.00 to –1.49 Moderate drought
–1.50 to –1.99 Severe drought

<–2.00 Extreme drought
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The SPI can be calculated for different timescales reflecting different types of drought or affected
depletable water storages. While McKee et al. (1993) initially proposed the consideration of 3, 6, 12, 24,
and 48 months moving average periods [46], shorter periods of 1 and 2 months can provide important
information for drought early warning systems [47].

The standardized index (SI) is calculated by creating a moving sum time series of monthly
precipitation and fitting this times series to a probability density function (PDF). The PDF is
transformed to a standardized normal distribution with a mean of zero and standard deviation
of 1. The resulting standard z-score is the SPI value [46]. Finding the right PDF is, however, a challenge,
in particular for other hydrological parameters. In the case of precipitation data, Guttman (1999)
compared a three-parameter Pearson type III and a two-parameter Gamma distribution and did not
find sizable differences, though he recommended the Pearson III distribution since it allows more
flexibility [48]. However, the gamma distribution is more widely used to calculate the SPI [46,49–52]
as it fits the bounded and positively skewed precipitation values best [53].

Because precipitation values are fit to a probability distribution and then normalized, the SPI is
location-independent and comparable across different climate zones. While short-term durations like
3- or 6-month SPI are more related to agricultural drought, a low 12- or 24-month SPI can indicate
major water resources deficits and thus define hydrological droughts [49,54,55].

In the case of precipitation, the Climate Hazards Group Infrared Precipitation with Station Data
(CHIRPS 2.0) product has been used [24,56]. CHIRPS data is continuously produced by blending
three components to an unbiased gridded estimate: (i) Percent of normal infrared precipitation
(IRP) estimates derived from cloud cover temperature and local regression previously determined
from TRMM 3B42 precipitation data, (ii) long-term precipitation normals (CHPClim) [24] and (iii)
precipitation station data. In case of missing IRP values, atmospheric model rainfall fields from NOAA
Climate Forecast System (CFSv2) are used. The data cover the period from 1981 to present and are
available at 0.05 degree resolution [56]. Nevertheless, quality of CHIRPS data is controversial. While
Hessels (2015) attests CHIRPS (v. 1.8) and TRMM the highest accuracy in comparison with station data
in the lower Nile basin [57], Toté et al. (2015) criticize CHIRPS for overestimating the frequency of low
rainfall events in Mozambique [58].

Ceccherini et al. (2015) on the other hand find CHIRPS and GPCC (Global Precipitation
Climatology Centre) to have the highest precision in calculating mean annual precipitation [59].
Calculation of the standardized indicators for SPI and the subsequently presented indicators was
conducted using the R package “SPEI” [60].

2.4. Standardized Precipitation Evapotranspiration Index (SPEI)

In seasonal wetlands a large amount of floodwater is lost by evaporation, thus diminishing the
amount left for soil and groundwater [61]. The Standardized Precipitation Evapotranspiration Index
(SPEI), developed by Vicente-Serrano et al. (2010), therefore covers drought due to water loss by
evaporation and phenomena like flash droughts, where hot, windy conditions with high potential
evaporation rates deplete soil moisture rapidly [55].

Potential evapotranspiration (PET) data were taken from the Climatic Research Unit’s monthly
global climate dataset (CRU TS3.23) that covers the period from 1901 to 2014 at a 0.5 degree grid
resolution. Data stem from global quality-checked station data. Here, PET is calculated using the
FAO variant of the Penman–Monteith method, the grass reference evapotranspiration equation [62],
using air temperature minimum, maximum, and mean, vapor pressure, cloud cover, and wind
speed. For calculating the water balance, precipitation data from the CHIRPS product were used,
as presented in the previous sub-section. Since the SPEI was calculated with climatic water balance
values, which can reach below zero, a three-parameter distribution was needed. Vicente-Serrano
et al. (2010), who developed the index, tested four different distributions (Pearson III, Log-normal,
General Extreme Value and Log-logistics) and found the Log-logistic distribution to best fit the data
even at extreme values [55]. Stagge et al. (2015) on the other hand recommended the General Extreme
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Value distribution [50]. However, since the method developed by Vicente-Serrano et al. (2010) is more
commonly used [63–65], the Log-logistic distribution was used in this study. Likewise, the calculation
procedure was performed using the R package “SPEI” [60].

Every raster dataset was transformed into WGS84 projection and the resolution adjusted to fit
the precipitation data. This was done for the purpose of calculating and comparing the indicators
later for every raster cell. Bilinear interpolation of raster with lower resolution was avoided by using
nearest-neighbor method in order to avoid simulating with a seemingly higher certainty than the
original data provides.

2.5. Standardized Soil Moisture Index (SSI)

While abnormal precipitation relates to meteorological drought, agricultural drought is connected
most to a decrease in soil moisture, which affects crops and yield [18]. An indicator measuring
depletion of soil moisture is therefore an important part of a combined index, which especially focuses
on drought effects on agriculture.

Monthly soil moisture data were retrieved from the Global Land Data Assimilation System
(GLDAS) by NASA for the years 1980 to 2010 [26,66]. Soil moisture data were available at a 0.25◦

resolution for the depth 0–10 cm, 10–40 cm, 40–100 cm and 100–200 cm, and was summed to represent
total moisture content for the depth of 0 to 200 cm, measured in m3/m3.

Temporal distributions for soil moisture are less-often discussed in the literature. Sheffield et al.
(2004) decided to use the beta distribution for soil moisture data in the US, since it can fit positively and
negatively skewed shapes [67]. It is, however, the only reference recommending a certain distribution
for soil moisture data. Therefore, to determine which distribution is most suitable for the study area,
normal, beta, and gamma distributions were fit to every data point with the fitdist-function of the
R-package “fitdistrplus” [68] using moment matching estimation. Comparison of the log-likelihood
showed that the gamma distribution proves to be the best fit in the study area.

2.6. Standardized Vegetation Index (SVI)

For the purpose of incorporating the effect of drought on vegetation, this study utilizes data on
the (NDVI) obtained from NASA’s Global Inventory Monitoring and Modeling Systems (GIMMS)
Advanced Very High Resolution Radiometer (AVHRR) product. This dataset, also referred to as
NDVI3g, contains global NDVI observations from 1981 to 2013 at an 8-km grid resolution [27].
The Vegetation Condition Index (VCI) was calculated using the Min-Max normalization technique [69]
and thus compares current NDVI values to their long-term characteristics and gives evidence on
decreased vegetation conditions [69].

The VCI has successfully been applied in multiple regions and climate zones around the globe,
both to calculate meteorological as well as agricultural drought [69–72]. However, since vegetation
stress is not necessarily related to water-scarce periods but can also be attributed to flooding conditions,
especially in the Cuvelai-Basin, the VCI was complemented with temperature information. As Kogan
(1995) illustrates, low VCI during low temperature periods is an indicator of flooding stress rather
than drought stress. The Temperature Condition Index (TCI) is calculated similar to the VCI, while the
resulting Vegetation Index (VI) is thus generated by complementing the initial VCI with the TCI in
an additive way with relative weights of 70/30 [69]. Since the VI ranges between 0 (dry) and 1 (wet),
it was transformed to a standardized index, the Standardized Vegetation Index (SVI), to be comparable
to the other indicators, using the R-package “SCI” [73].

2.7. Copula

Copulas became popular throughout the last years for multivariate characterizations of drought
events [23,44,74,75]. Copulas are functions that link two or more variables and construct a single
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dependent one that incorporates key characteristics of the originals. In essence, the relationship
between p uniform random variables U(0,1) can be captured using their joint distribution function

C
(
u1, . . . , up

)
= Pr

(
U1 ≤ u1, . . . , Up ≤ up

)
(1)

with C being the copula. For a p-dimensional distribution function F with respective margins, the
copula for all x can be derived as

F
(

x1, . . . , xp
)
= C

(
F1(x1), . . . , Fp

(
xp

))
(2)

For a comprehensive overview on the copula approach, its origin, technical aspects, and
application, the reader is referred to respective key publications [76–79]. A number of studies employed
copulas to combine drought characteristics (duration, severity, peak intensity, and interval times) of a
single drought indicator like the SPI [75]. Other studies seek to incorporate different drought indicators
that build upon a range of parameters such as precipitation, soil moisture, and vegetation [23,44,74].
Several copula families exist with the Archimedian and Gaussian copulas being the most popular ones.
In this study, we chose four copula candidates, the Frank, Clayton, Gumbel, and the Normal (Gaussian)
copula and evaluated their suitability to match the drought indicators with a goodness-of-fit (GOF)
test. The GOF test was conducted using the Cramér-von Mises statistics (Sn) test [23]. Here, p-values
higher or equal to 0.05 indicate that the respective copula cannot be rejected. The GOF test in this
study clearly revealed that the Gaussian copula fits the data best:

CP(u1, . . . , ud) = σP

(
σ−1(u1), . . . , σ−1(ud)

)
, (3)

where σ denotes the standard normal distribution function and σP the multivariate standard normal
distribution function with correlation matrix P. The Gaussian copula was hence used to combine the
individual indicators and create integrated time series for each available pixel in the study area.

2.8. Drought Dimensions

The individual drought indicators and the derived copula were calculated as 6-months running
averages to capture the drought conditions on a seasonal basis. Since water and food security
conditions in the Cuvelai-Basin primarily depend on the hydro-climatic situation of the rainy season
from November to April [22], this study considers the indicator values of April as being relevant
for further analysis and spatial representation. This value captures the drought conditions during
the growing period of millet/sorghum from December/January to March/April [80] and gives an
indication of the amount of green and blue water available at the start of the dry season. Another
reason for not including all-year-round values is the indicators’ high uncertainty during the dry
season and arid conditions in general [81]. Zero precipitation during June, July, and August are not
uncommon and can bias the results [51].

The change of the April values over time serves the statistical analysis of three key drought
dimensions: (i) frequency of occurrence, (ii) severity, and (iii) duration. Drought frequency measures
the number of years that have April values of below the threshold of –1. Drought severity is measured
as the integral area between the indicator curve and the threshold of –1. It should not be confused
with drought intensity that rather refers to the most extreme value in a certain period [81]. Drought
duration, which is often calculated as the time from drought start (first month of below 0) to its end
(last month of below 0) [82], is measured in a different way here. Since we only consider annual
drought values, duration in this study is regarded as the number of consecutive years that show April
values of below –1. It is thus a measure of inter-annual drought duration, which is particularly relevant
to subsistence systems in the Cuvelai-Basin, as longer lasting droughts challenge the coping capacities
of the local population.
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The pixel-based copula time series were evaluated with regard to frequency, severity, and duration.
The average of these three dimensions was defined as the Blended Drought Index (BDI) to depict
hot-spot areas spatially. For temporal comparison with validation data (Section 2.9), the frequency
dimension was used.

2.9. Validation

Validating the results of drought indicators is a challenging task. Since the impact of drought on
subsistence societies is multi-layered [8], it is difficult to find single indicators that cover the entire
effect. Although the Cuvelai-Basin is a data-scarce environment, central-northern Namibia offers a
few options for validation. Data on agricultural yields are available from the Namibian Ministry for
Agriculture, Water, and Forestry (MAWF), in particular on millet and sorghum which constitute the
staple food in the target area [83–85]. The ministry provides data for the period 1995 to 2010 with an
explicit link to the conditions of central-northern Namibia. Other statistics exist like from FAOSTAT;
however the data that these platforms provide are not unequivocally attributable to the Cuvelai-Basin,
while the MAWF reports explicitly state the data origin. Therefore, this 16-year period of yield data is
used to validate the results of the copula frequency analysis.

Moreover, data on tap water consumption in rural villages of central-northern Namibia for the
period 2000–2010 provided by the Namibian Water Cooperation (NamWATER) were used as a second
option for validation [86]. The central idea behind this variable is that the population in the villages
utilizes tap water as a major backup resource, meaning that if traditional water sources such as wells,
open waters, and rainwater decline in quantity or quality, people switch to the tap network. Thus,
if the rainy season is dry, water consumption from the network increases.

3. Results

The study results are presented in the following four sub-sections. First, the temporal signal of
the individual drought indicators and the resulting copula are shown. Second, the effect of threshold
variation is presented using the SPEI indicator as an example. Third, the individual drought indicators
are depicted spatially with special emphasis on frequency of occurrence, severity, and duration. Finally,
the spatial configuration of the BDI is presented with its specific characteristics, followed by the
temporal validation of the results using yield and water consumption data.

3.1. Temporal Drought Signal

Every drought indicator was initially calculated as a standardized index of the 6-months running
average. Figure 2 presents the temporal signal of the individual drought indicators, averaged over
the entire basin. In addition, the copula time series is plotted that incorporates the SPEI, SSI, and SVI.
Since SPI and SPEI correlate strongly (see Table 3), the SPI was not incorporated into the copula.

SPI and SPEI show almost an identical temporal signal. Solely, the extreme values of the SPI are
surpassing the ones of the SPEI. Both indicators predict significant drought conditions between 1990
and 1995 and major wet periods between 2006 and 2010. The soil moisture-based SSI differs from the
precipitation-based indicators. The data show less variation and only identify drought conditions
in the 1980s and 1990s while after the year 2000 no droughts were recorded when considering the
Basin’s mean. The vegetation conditions covered by the SVI show less variability compared to the
precipitation-based indicators but still more than the SSI. It identifies drought conditions in the 1990s
and mid-2000s with the most intense drought event in 2006. The resulting copula function incorporates
characteristics of the individual indicators as can be seen in the lowest plot of Figure 2. The years 1995
and 2006 stand out as below –2 drought events. The recent years between 2006 and 2010 are rather
wet, instead.
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3.2. Threshold Variation

Identifying a drought event necessitates the selection of an appropriate threshold value.
Commonly, –1 is chosen to distinguish dry conditions from a real drought event. However, the spatial
pattern strongly varies with the selection of this threshold. The spatial analyses presented hereafter
are based on the evaluation of the time series of April values, as these are regarded as giving the best
estimation of drought conditions of the rainy season. Figure 3 exemplarily presents the results of
the SPEI and shows the frequency of drought occurrence if different threshold values are considered.
Herein, a mild drought is evident if the SPEI values range between 0 and –0.99, while extreme drought
events are recorded if the SPEI shows values below –2.
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Figure 3. Drought index threshold variation for Cuvelai-Basin. Maps show the frequency of drought
occurrence on a normalized scale from 0 (often) to 1 (rare) depending on the drought threshold chosen.
Exemplarily, the SPEI indicator was chosen for illustration. Mild (0 to –0.99), Moderate (–1 to –1.49),
Severe (–1.5 to –1.99) and Extreme (<–2) droughts are distinguished from the official Namibian drought
threshold based on the lowest 7% quantile.

The areas at risk of high drought frequencies vary strongly, with the southwest being the most
affected region in terms of mild droughts, while the northwest in particular shows most extreme
drought events. According to the National Drought Policy & Strategy, disaster droughts are declared
in Namibia if the seasonal aggregates of a respective environmental parameter fall below the lowest
7% of the long-term average [87]. In the case of the SPEI, the threshold is then set to –0.91 which is
depicted in Figure 3 and highlights the southeast as being the region of highest risk levels in terms
of drought occurrence. For the purpose of consistency, this study applies the widely accepted –1
threshold value for further processing.

3.3. Spatial Drought Hot-Spots

The frequency of occurrence is not the only important parameter to determine a drought. In this
study, two more dimensions are regarded as being important for an overall drought hazard assessment.
Figure 4 presents the results of each drought indicator, broken down into frequency of occurrence,
severity, and duration.
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Figure 4. Drought indicator dimensions of frequency of occurrence, severity and duration, for the
Cuvelai-Basin. The results are represented spatially on a normalized scale from 0 (unfavorable) to 1
(favorable). White pixels within the Basin are the result of “no-data” pixels from the initial NDVI
vegetation dataset.

It becomes obvious that the three dimensions depict different spatial characteristics of each
indicator. While the frequency of occurrence is often estimated to be highest in the southeast
(SPI & SPEI) and southwest (SVI), drought severity shows different results with a stronger focus on
the southwest and south. Drought duration likewise highlights different areas. Here, the central and
northwestern areas are threatened (SPI, SPEI, and SSI) and the northern part as well (SVI). Obviously,
SPI and SPEI show similar patterns in all of the three dimensions, which is caused by the partly
common database (CHIRPS 2.0). Due to their similarity, the SPI was excluded when applying the
copula function to generate the BDI indicator.

3.4. Blended Drought Index

To generate an integrated drought hazard map for the Cuvelai-Basin, the BDI was derived from
the copula that builds upon the SPEI, SSI, and VCI time series. In accordance with the other drought
indicators, the April-values were selected for drought impact analysis and spatial representation.

Since all of the three dimensions are relevant for an integrated drought hazard map and analysis,
the final BDI is generated as the average of frequency, severity, and duration, equally weighted and
normalized. The resulting map depicted in Figure 5 clearly shows important drought hot-spot areas
in the center, north of the Etosha Pan, and along the northwestern watershed boundary near the
Kunene River.
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In order to evaluate the temporal drought signal of the copula, the frequency dimensions were
averaged over the entire Basin and compared to millet/sorghum yield and water consumption data
from central-northern Namibia. Figure 6 hence shows the normalized copula frequency values, with
1 indicating favorable and 0 unfavorable conditions in comparison with yield and water consumption.
It becomes obvious that the yield data visually correlate well with the copula, except after the year
2006. The water consumption data should ideally work in an opposite direction according to the
assumption that water consumption increases if drought conditions exist. From a visual interpretation,
this is again true for most of the years except the period after 2006.
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Figure 6. Temporal copula frequency signal in comparison with the validation datasets of
millet/sorghum yield and water consumption from central-northern Namibia. The time series were
normalized from 0 (copula: unfavorable, yield: low, water consumption: low) to 1 (copula: favorable,
yield: high, water consumption: high).

This visual impression is confirmed by the correlation analysis. Table 3 presents the Pearson and
Spearman correlation coefficients of the drought indicators, including the copula, as well as yield and
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water consumption. The overall positive correlation of the copula with yield and the overall negative
correlation with water consumption are confirmed and outperform the other indicators, in particular
when considering the yield data.

Table 3. Pearson and Spearman correlations between the drought indicators, millet/sorghum yield,
and rural water consumption in central-northern Namibia.

Copula SPI SPEI SSI SVI

P S P S P S P S P S

Copula
SPI *** 0.86 *** 0.87
SPEI *** 0.86 *** 0.87 *** 1.00 *** 1.00
SSI *** 0.77 *** 0.70 *** 0.63 ** 0.54 *** 0.62 ** 0.55
SVI *** 0.81 *** 0.78 ** 0.50 ** 0.56 ** 0.51 ** 0.56 * 0.35 * 0.36
Yield * 0.51 * 0.56 * 0.43 * 0.50 * 0.46 * 0.50 * 0.46 * 0.48 0.35 0.16
Water –0.45 * –0.52 –0.45 –0.42 –0.45 –0.42 –0.31 –0.38 –0.30 –0.17

* p < 0.1, ** p < 0.01, *** p < 0.001, P = Pearson-r, S = Spearman-r. Bold coefficients indicate strongest correlations.

4. Discussion

The study’s discussion section will focus on two key issues. First, the results will be reflected
upon. Herein, the spatial drought signal will be discussed against the study’s target of developing
an integrated drought hazard map. Furthermore, the temporal drought signals and their correlations
with validation data will be analyzed. Second, the methodology will be discussed critically. Here,
the selection of drought indicators, with a special focus on the copula approach used to combine
the individual time series, will be evaluated against critical questions of seasonal comparability and
threshold setting.

4.1. Reflection on Results

The main target of this study was the development of a drought hazard map that incorporates
the drought’s impact on the social-ecological system in the Cuvelai-Basin. For this purpose, multiple
drought indicators that are common tools for drought analysis (SPI, SPEI, SSI, and VCI) were combined.
Their spatial dimensions, in particular the frequency of occurrence, however, show strongly diverging
signals. Although each indicator is valid, it is difficult to decide which indicator to use for a drought
hazard map in the study area. Against this background, the copula-based BDI incorporates the
characteristics of the underlying indicators and even builds upon multiple dimensions (frequency of
occurrence, severity, and duration). The resulting drought hazard map identifies hot-spot areas in
the Basin, in particular the area north of the Etosha pan and the northwestern boundary of the Basin,
near the Kunene River. These areas are threatened by drought events since these landscapes are
highly degraded due to population density and intensive, uncontrolled grazing activities. Such human
impacts are reflected in the SSI and SVI indicators and highlight the potential shortcomings of indicators
that solely rely on precipitation. Since areas with a more dense vegetation cover are less threatened by
scarce rainfalls and are moreover less vulnerable against drought effects like food and water insecurity,
they may experience droughts in a meteorological sense but not in a social-ecological understanding.
In this context not only can the frequency of occurrence and severity of droughts pose a problem but
also consecutive (annual) droughts with recurring crop failures. These effects become apparent when
comparing the results for the frequency and severity of meteorological droughts (see SPI and SPEI
results in Figure 4) with the results for the BDI (Figure 5), where the former indicate major drought
events in the southwest and southeast, which are offset in the BDI.

Temporally, all the indicators correlate well with the validation data of millet/sorghum yield
and water consumption. The copula likewise reveals good results. While the period from 1995–2006
shows a good correlation, the subsequent years are less well correlated. This might be attributed to
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extraordinary wet conditions, in particular flooding events that might have led to yield reductions.
Low water consumption from the tap network confirms this, assuming that the population was able to
meet its water demand via traditional sources.

4.2. Reflection on Methodology

Drought indicators have been used for decades with an ever-increasing number of varieties.
The use of copula functions to combine individual drought indicators has become prominent in recent
years and more importantly has proved to reveal good results [42]. Hence, using a copula function
in this study to link three individual drought indicators is regarded as an appropriate procedure for
incorporating multiple drought effects into one single time series for further analysis. The selection of
drought indicators, however, can be revisited. The suitability of further indicators can be evaluated
in future research for the study area. Likewise, taking three dimensions into account such as the
occurrence of droughts (frequency), the impact of single droughts (severity) as well as the impact of
consecutive droughts (duration) can be a matter of discussion not only for their selection but also
for their (in this case equal) weighting for the final index. Nonetheless, this approach highlights the
matter’s complexity that should not be overlooked.

Due to the indicators’ shortcomings of being highly sensitive to low precipitation values in the
case of SPI and SPEI for instance [51,81], the selection of the 6-months running mean April values as
the rainy season’s aggregate is a rather new procedure. Comparing these values reveals direct insights
into the status of the rainy season and makes it comparable over the years. The good correlation
coefficients with yield and water consumption confirm the suitability of this procedure.

Section 3.2 described how the results of the SPEI indicator change if the threshold varies.
The literature commonly sets the threshold to –1, while other thresholds can also be used to delineate
drought events. It is thus important to point out that using a certain threshold will have a pronounced
impact on the study results. The importance of threshold values should not be understated since they
are necessary for clearly identifying emergency situations with all necessary relief measures associated
to this. Nevertheless, the appropriate threshold value must be selected for every location, individually.

5. Conclusions

Drought is a recurring threat to Sub-Saharan Africa and the Cuvelai-Basin in Namibia and Angola,
in particular. The current study seeks to shed light on the drought hazard itself with a focus on its
temporal and spatial characteristics that are of relevance for the social-ecological system within the
watershed. Based on insights from previous qualitative studies on drought impact in the target area,
this study makes a contribution to characterizing the drought hazard in more detail. For this purpose,
four commonly used drought indicators, the SPI, SPEI, SSI, and SVI (VCI) were used to construct
a copula-based BDI that captures the effects of meteorological and agricultural droughts. The BDI
can be presented as an integrated drought hazard map to depict hot-spot areas that are particularly
threatened by drought events. Herein, drought frequency, severity, and duration are merged into one
single indicator.

The drought hazard map is one important part of a comprehensive drought risk assessment.
This includes further investigations on the vulnerability of the population living in the watershed.
In the Cuvelai-Basin, most people practice subsistence agriculture and utilize traditional water
sources which makes them highly sensitive to blue and green water scarcity. If droughts—as major
hydro-climatic extreme events—occur, risk materializes in real disasters, as is currently happening in
central-northern Namibia and many more places in Sub-Saharan Africa.

The study results will feed into an overall drought risk assessment at the household level, using
a composite indicator, the Household Drought Risk Index (HDRI) that seeks to comprehensively
characterize drought-prone households in the Cuvelai-Basin, to provide a better decision-base for
respective governmental and non-governmental stakeholders.
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