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Abstract: It is often stated that short-term precipitation of synoptical weather is related to trends
or interannual variations of precipitation. We analyzed nine long-term series of daily precipitation
values of the Global Historical Climatology Network (GHCN-D V2.0). Generally, the mean amplitude
of short-term variations increases (decreases) if there is a positive (negative) interannual anomaly of
precipitation, respectively. In all cases, the amplitude of the short-term variations (periods < 10 days)
clearly correlates with the long-term variations (periods > 1.5 years) of precipitation. The correlation
coefficient is between 0.7 and 0.95 at periods <8 days. For Kukuihaele (Hawaii), the correlation
maximizes at a period of about 14 days. In the other cases, the maximum of the correlation is reached
at periods <5 days.
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1. Introduction

Latif [1] explained that the simulation and prediction of mesoscale systems, synoptical scale
disturbances, intraseasonal, seasonal and interannual variations are intimately linked. Particularly,
we expect that the short-term variations of precipitation are linked to long-term variations of
precipitation. One reason is that precipitation values are always positive. Thus, one can argue that
a long-term positive anomaly of precipitation is likely accompanied by an increase of the frequency
and intensity of short-term rainfall events. The accumulation of short-term rainfall events may induce
the anomaly of the long-term variation of precipitation. On the other hand, the increase of short-term
rainfall events can have its origin in long-term climate change. One example for such a connection is
the increase of tropical sea surface temperature due to global warming and the associated increase in
the frequency and intensity of tropical hurricanes. It would be valuable for climate change research
if one can surely state that a long-term increase of precipitation is accompanied by an increase of
short-term variations of precipitation. This would establish a close connection between climate change
and weather. Up to now, qualitative judgments are given, for example that an increase of flooding is
due to increased water vapor concentrations in the air related to global warming. The long-term series
of daily precipitation values of the Global Historical Climatology Network (GHCN-D V2.0) seem to
be adequate for a quantitative study of the relationship between long-term and short-term variations
of precipitation.

Fujinami [2] found that sub-monthly scale (7–25 days) intraseasonal oscillations (ISO) are a
dominant mode of summer rainfall fluctuations over Bangladesh. The interannual variability (IAV)
of the ISOs is significantly correlated with the IAV of total summer monsoon rainfall suggesting
that the ISO activity could modulate the series of total summer monsoon rainfall. Specifically,
the sub-monthly-scale ISOs are closely associated with the north-south shift of the monsoon trough.
Further, they found that the activity of high-frequency variations (3–6 days) has little relationship
with the IAV of the intraseasonal variance and total summer monsoon rainfall. Suhas [3] explained

Climate 2017, 5, 96; doi:10.3390/cli5040096 www.mdpi.com/journal/climate

http://www.mdpi.com/journal/climate
http://www.mdpi.com
https://orcid.org/0000-0003-2178-9920
http://dx.doi.org/10.3390/cli5040096
http://www.mdpi.com/journal/climate


Climate 2017, 5, 96 2 of 10

that the potential predictability of the seasonal mean would depend on the relative contribution of
the external and internal components to the IAV. The external component arises from ENSO, decadal
oscillations and other slowly varying boundary forces, while the internal component may arise from
the interaction between seasonal mean and ISOs, the interaction between organized convection and
large-scale circulation and other interactions among different scales of motion.

There are not very many studies that have investigated the power spectrum of precipitation.
Hartmann and Michelsen [4] analyzed the intraseasonal periodicities in Indian rainfall and found
40–50-day and 5–7-day spectral peaks in the power spectra. It is likely that the spectral peaks at
periods <10 days are suppressed by the choice of the time window length of about one year. Possibly, a
wavelet-like analysis method is more appropriate where the variable length of the time window is about
three-times the period. Such a method was selected by Studer [5] for investigation of intraseasonal
oscillations in the stratospheric ozone. de Jongh [6] performed a Morlet wavelet analysis of a 105-year
time series of precipitation observed at Uccle, Belgium. They found multi-annual components of three
and seven years, which occurred before 1935 and after 1945.

Fatichi [7] found a significant correlation between the annual precipitation and intra-annual
seasonality using gauge precipitation records of the Global Historical Climatology Network.
This means that sub-yearly precipitation anomalies impose a higher variability in the annual
precipitation fluctuations. Generally, Fatichi [7] found a well-defined geographical distribution of
regions with large and low interannual variability. Dai [8] reported that the first leading EOFin global
precipitation fields is an ENSO-related pattern and that ENSO is the single largest cause of extreme
precipitation events. Thus, there is a link between the interannual variation in precipitation as caused
by ENSO and the strength of short-term precipitation events. Further, Peel [9] found a connection
between the variability of annual precipitation and ENSO for stations in ENSO-influenced regions.
The coefficient of variation Cv of annual precipitation increased by about 5–25%. Cv is defined as the
quotient of the standard deviation of the annual precipitation series and its mean value.

Lau and Sheu [10] derived the spatial and temporal variations in global precipitation associated
with the annual oscillation (AO), the tropospheric quasi-biennial oscillation (QBO) and the ENSO.
They found that the QBO is well correlated with the square of the ENSO signal. Further, the QBO
was strongly phase locked to the AO, while the phase lock between AO and ENSO was not obvious.
Lau and Sheu [10] suggested that the timing of the AO and intraseasonal oscillations at a critical phase
of the QBO may be important in influencing the subsequent evolution of the coupled ocean-atmosphere
system. Wang [11] reported that the major modes of the Asian-Australian Monsoon (A-AM) system
changed since the late 1970s. This inter-decadal change is ascribed to increased ENSO forcing and
A-AM feedback to ENSO.

Our study investigates the relationship between short-term precipitation of synoptical weather,
the annual oscillation and interannual variations of precipitation. Section 2 describes the time series
of daily precipitation values at nine selected locations. The data analysis is explained in Section 3.
The results are shown and discussed in Section 4.

2. Precipitation Measurements

The study utilizes nine long-term series of daily precipitation values of the Global Historical
Climatology Network (GHCN-D V2.0), which are provided via the Climate Explorer of Koninklijk
Nederlands Meteorologisch Instituut (https://climexp.knmi.nl). If data gaps were present, then they
were closed by linear interpolation. The fraction of data gaps were on average about 3%. Table 1 shows
the characteristics and certain parameters of the selected nine time series of precipitation. The stations
are ordered by the strength of the mean precipitation. The selected time series cover a broad range of
precipitation and have lengths of about 80 years or more. Further, the quality of the time series is good,
e.g., they have only a few data gaps. The selected time series are representative of tropical, subtropical
and extratropical climates.

https://climexp.knmi.nl
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Table 1. Precipitation measurements.

Location Lat., Lon., m.a.s.l. Time Mean p (mm/day)

Saentis (Switzerland) 47.25 N, 9.35 E, 2502 1901–2017 7.28
Kukuihaele (Hawaii, USA) 20.13 N, 155.57 W, 91 1910–1994 4.79

Ft. Lauderdale (Florida, USA) 26.10 N, 80.20 W, 5 1912–2017 4.32
Zurich (Switzerland) 47.38 N, 8.57 E, 556 1901–2017 2.99

Pianco (Brazil) 7.21 S, 37.93 W, 250 1910–1999 2.35
Hamburg (Germany) 53.63 N, 9.99 E, 11 1891–2017 2.05
Windhoek (Namibia) 22.57 S, 17.10 E, 1700 1913–2003 0.98
Ningaloo (Australia) 22.70 S, 113.67 W, 10 1898–2014 0.64

Bajramaly (Turkmenistan) 37.60 N, 62.18 E, 240 1889–1998 0.39

3. Data Analysis

The time series of the interannual variations are derived by means of low pass filtering with
a cutoff period of 1.5 years. The time series are filtered with a digital non-recursive, finite impulse
response (FIR) low pass filter performing zero-phase filtering by processing the time series in forward
and reverse directions. The number of filter coefficients corresponds to a time window of three-times
the cutoff period, and a Hamming window has been selected for the filter.

Similarly, the time series of the short-term variations of precipitation were obtained by a band pass
filter with central periods ranging from 2.3–200 days. Then, the amplitude series of the filtered time
series is determined [5]. Please note that the amplitude is the envelope of the modulated oscillation,
and the amplitude is always positive. The band pass cutoff frequencies are at fc = fp ± 10% fp,
where fp is the central frequency. The number of filter coefficients corresponds to a time window of
three-times the central period, and a Hamming window has been selected for the filter. Thus, the band
pass filter has a relatively fast response time to temporal changes in the data series. The variable choice
of the filter order permits the analysis of wave trains with a resolution that matches their scale. More
details about the band pass filtering are given by Studer [5]. Generally, the digital filtering method has
the advantage that the central wave periods of the band pass-filtered time series can be exactly selected.
However, a wavelet analysis method [12] is surely an alternative to the digital filtering method of the
present study.

As an example, Figure 1a shows the precipitation raw data for Ft. Lauderdale (FL, USA) as a blue
line and the interannual variation (periods >1.5 years) as a red line. Figure 1b shows the amplitude
series of the four-day oscillation in cyan. Further, the amplitude series is smoothed by a low pass filter
(periods >1.5 years) yielding the black line. Thus, one can compare the mean amplitude of the four-day
oscillation (black line) to the long-term variation of precipitation (red line) in Figure 1b. Both curves
are quite similar, and the correlation coefficient r is 0.904 ± 0.002 (where the uncertainty marks the 95%
confidence level). The significance of the correlation is 100%. The significance (1 − p) was determined
by the function corrcoef of the MATLAB software. Here, the p-value was computed by transforming
the correlation to create a t-statistic having N − 2 degrees of freedom, where N is the number of
elements of the time series. This example is quite typical, and it shows the close relation between the
mean amplitude of synoptical scale variations and the interannual variation of precipitation. Such a
relation was also suggested by Fujinami [2], but they focused on the period ranging from 7–25 days.
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Figure 1. (a) Time series of precipitation at Ft. Lauderdale (blue line) and its interannual variability
(red line), which was obtained by a 1.5-year low pass filter. (b) Time series of the amplitude of
four-day fluctuation of precipitation at Ft. Lauderdale provided by a four-day band pass filter (cyan
line). The black line denotes the 1.5-year low pass filtered data of the four-day amplitude series. For
intercomparison, the interannual variability of (a) is also shown in (b) as a red line.

4. Results and Discussion

At first, the interannual variability of precipitation and the frequency of precipitation are analyzed.
Figure 2 depicts the 1.5-year low pass filtered time series indicating the interannual variability of
precipitation at the nine selected stations. Generally, the interannual variability has amplitudes of a
few mm/day and periods from about two years to decades.

Figure 3 shows the frequency of precipitation as function of the strength of precipitation. It is
obvious that the subtropical and tropical stations Ft. Lauderdale, Kukuihaele and Pianco have heavy
rain more often. In addition, the mountain site Saentis in Switzerland often has heavy rain so that the
Saentis is known as the wettest place of Switzerland.

Figure 4 depicts the amplitude spectra of precipitation for the period ranging from 2.3–200 days.
The amplitudes were determined by band pass filtering as described in the section Data Analysis.
The filtering can be regarded as a wavelet-like analysis, and upon the first view, it is knownthat the
amplitude generally decreases with the increase of the period. This is different from the results of
the fast Fourier transform (FFT) power spectra of precipitation of time intervals over an half year or
more. In the case of FFT power spectra, the amplitudes of short-term precipitation of synoptical scale
weather are suppressed since the phase changes from event to event. Figure 4 shows partly different
inclinations of the amplitude spectra. In case of Pianco, a spectral peak at the semi-annual oscillation
is present. Generally, all stations show that the amplitudes of oscillations with periods <20 days are
greater than those of the period ranging from 20–100 days.

The main focus of the article is on the relation between short-term and long-term variations
of precipitation. Figure 1b already showed a high correlation of r = 0.90 between the low pass
filtered amplitude series of the four-day oscillation and the interannual variability of precipitation at
Ft. Lauderdale. Similar high correlations between short-term and long-term variations of precipitation
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are also present at the other stations as Figure 5 shows. The depicted values have a significance of the
correlation greater than 95%, and relative uncertainties of r are less than 1% at the 95% confidence level.

Figure 2. Interannual variability of precipitation at the nine selected stations. The curves were obtained
by filtering the precipitation series with a 1.5-year low pass filter.

Figure 3. Frequency of precipitation as a function of the intensity of precipitation for the nine
selected stations.
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Figure 4. Amplitude spectra of precipitation for the period range from 2.3–200 days. The amplitudes
were determined by a wavelet-like analysis.

Figure 5. Correlation between the interannual variation of precipitation and the amplitude series
obtained by band pass filtering at periods in the range from 2.3 days–200 days. Before calculation of
the correlation coefficient, the amplitude series were filtered by a 1.5-year low pass filter.

The figure depicts the correlation coefficient r as a function of the period of the short-term
variation of precipitation. For the calculation of r, two time series are correlated: one series represents
the interannual variability (IAV) of precipitation, which is given by 1.5-year low pass filtering of the
precipitation series. The other series represents the strength of the short-term variation of precipitation,
which is given by band pass filtering. The positive amplitude series of the short-term variation is
low pass filtered with a period of 1.5 years so that the slow amplitude modulation of the short-term
variation is determined, and the correlation between IAV and the modulation of the short-term
variation is calculated. Figure 5 indicates that correlation coefficients r greater than 0.7 are reached for
short-term variations with periods less than eight days for all sites. The station Zurich has the steepest
decrease of the correlation towards higher periods, while the station Ningaloo still has a high r of 0.82
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at a period of 100 days. Generally, Figure 5 suggests a close relation between interannual variability
and synoptical-scale variations of precipitation, which is in rough agreement with the findings of
Fujinami [2]. However, in our analysis, the high frequency variations with periods less than seven days
play the major role while Fujinami [2] reported that the intraseasonal oscillations with periods from
7–25 days have the strongest influence on the interannual variability of precipitation at Bangladesh. I
did not include a time series from India in the analysis since the lengths of the Indian precipitation
time series as provided by KNMIClimate Explorer were too short for my selection criterion.

Next, the role of the annual oscillation is investigated. Figure 6 shows the amplitude spectra in the
period range from 3 months–20 years. For the majority of the stations, the annual oscillation has the
strongest amplitude. The highest amplitude of the annual oscillation is reached by the station Pianco,
which also shows a spectral peak for the semi-annual oscillation. In differences of the FFT power spectra,
the interannual oscillations at periods of 2, 4–5 and 12 years, are smaller than the annual oscillation, and
they are also smaller than the amplitudes of the synoptical-scale variations of precipitation in Figure 4.

Next, the correlation between the annual oscillation and the intraseasonal oscillations is investigated.
Figure 7 depicts the r values as a function of the period of the short-term variations. The amplitude
series of the short-term variation is low pass filtered with a period of 90 days. It is obvious that r is quite
different for each station. For short-term variations with periods less than 10 days, r is in the range from
about 0.3–0.8, which is a moderate to good correlation. The significance of the correlation is greater
than 95%, and relative uncertainties of r are less than 1% at the 95% confidence interval. However,
the correlation between the annual oscillation and short-term variations is weaker than those between
the interannual variability and short-term variations of precipitation.

Figure 6. Amplitude spectra of precipitation for the period range from 3 months–20 years.
The amplitudes were determined by a wavelet-like analysis.
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Figure 7. Correlation between the annual oscillation of precipitation and the amplitude series obtained
by band pass filtering at periods in the range from 2.3 days–200 days. Before calculation of the
correlation coefficient, the amplitude series were filtered by a 90-day low pass filter.

Finally, the correlation between the 1.5-year low pass filtered amplitude series of the annual
oscillation and the interannual variability is analyzed. Figure 8 shows the coefficient of variation Cv of
annual precipitation as a function of the correlation r between the amplitude of the annual oscillation
and the interannual variability. Cv is defined as the quotient of the standard deviation of the annual
precipitation series and its mean value [9]. Figure 8 indicates the value ranges of Cv and r for the
selected stations. Roughly, Cv increases with the increase of r where r varies over a wide range from
0–0.9 for the selected stations. Generally, the correlation between the short-term variations and the
interannual variability of precipitation (Figure 5) is the strongest correlation, which was found in the
present study.

Figure 8. Coefficient of variation Cv of annual precipitation as a function of the correlation r between
the amplitude of the annual oscillation and the interannual variability.
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5. Conclusions

The study investigated the correlation between short-term precipitation of synoptical weather
and interannual variations (IAV) of precipitation. Nine long-term series of daily precipitation values of
the Global Historical Climatology Network (GHCN-D V2.0) were selected, which are representative of
tropical, subtropical and extratropical climates. Generally, the mean amplitude of short-term variations
increases (decreases) if there is a positive (negative) interannual anomaly of precipitation, respectively.
In all cases, the amplitude of the short-term variations (periods < 10 days) clearly correlates with
the long-term variations (periods >1.5 years) of precipitation. The correlation coefficient is between
0.7 and 0.95 at periods <8 days. For Kukuihaele (Hawaii), the correlation maximizes at a period
of about 14 days. In the other cases, the maximum of the correlation is reached at periods <5 days.
The correlations of the IAV and the short-term variations with respect to the annual oscillation are not
so strong and vary between 0 and 0.9 for the IAV and 0.3 and 0.8 for the short-term variations. The main
finding of the present study is a close relation between synoptical scale variations of precipitation
(periods < 10 days) and interannual variability of precipitation, which establishes a link between
weather and climate. This finding is a bit related to the study of Fujinami [2] who reported such
a relation for the Indian monsoon. Our study shows that the relationship between short-term and
long-term variations of precipitation is also present at other places of the Earth and for about eight
decades. We did not find other studies about this important research topic. The wavelet-like amplitude
spectra of the present study show that the synoptical scale variations have the largest amplitudes
followed by the annual oscillation. The interannual variations are the smallest components in the
amplitude spectra of the wavelet-like analysis. This finding is different from the results derived by
FFT power spectra where usually the interannual variations prevail [10]. Temporal phase changes of
the short-term variations possibly lead to a reduction of the amplitudes of the short-term variations if
a large time window is selected.

Routines for data analysis and visualization are available upon request by K.H. The study utilized
nine long-term series of daily precipitation values of the Global Historical Climatology Network
(GHCN-D V2.0), which are provided via the Climate Explorer of Koninklijk Nederlands Meteorologisch
Instituut (https://climexp.knmi.nl).
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