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Abstract: One of the recent advances in climate science research is the development of global
general circulation models (GCMs) to simulate changes in climatic elements of the present and
future, which helps us to determine consequences earlier and prepare for necessary adaptation
measures. However, it is difficult to apply the raw data of GCMs at a local scale, such as the urban
scale, without downscaling due to coarse resolution. This study, therefore, statistically downscaled
daily maximum temperature, minimum temperature, and precipitation in 30-year intervals from
the second generation of the Earth System Model (CanESM2) and Coupled Global Climate Model
(CGCM3) under two Representative Concentration Pathways (RCP) Scenarios (RCP4.5 and RCP8.5)
and two Special Report Emission Scenarios (SRES), A1B and A2, to examine future changes and
their extremes. Two representative meteorological stations (Entoto at high elevation and Addis
Ababa at downtown and medium elevation) were selected for model calibration and validation
in the Statistical Downscaling Model (SDSM). Twelve core temperature and precipitation indices
were selected to assess temperature changes and precipitation extremes. For the largest changes
the results showed that the maximum temperature increases were in the range of 0.9 ◦C (RCP4.5)
in 2020 to 2.1 ◦C (CGCM3A2) in 2080 at Addis Ababa Observatory. The minimum temperature is
projected to increase by 0.3 ◦C (RCP4.5) in 2020 and 1.0 ◦C in 2080 (CGCM3A1B). While the changes in
maximum temperature are lower at Entoto station compared to Addis Ababa Observatory, the highest
minimum temperature change is projected at Addis Ababa Observatory, which ranges from 0.25 ◦C
in the 2020s to 1.04 ◦C in 2080 according to the CGCM3 model. Except for the coldest nights (TNn),
the mean temperature and other temperature indices will continue to increase to the end of this
century. The highest precipitation change is projected by CGCM3A2 and CanESM2 RCP8.5 at an
increase of about 11.8% and 16.62% by 2080. The highest total precipitation increase is 29% (RCP4.5)
in winter and 20.9% (RCP8.5) in summer by 2080. There is high interseasonal variability in changes
of extreme events. The topographic role will diminish in influence on the air temperature distribution
due to the high rate of urbanization. The rise in temperature will exacerbate the urban heat highland
effects in warm seasons and an increase in precipitation is expected along with a possible risk of
flooding due to a low level of infrastructure development and a high rate of urbanization.

Keywords: climate change; extreme events; general circulation models; RCP scenarios; SRES
scenarios; Statistical Downscaling Model

1. Introduction

Scientists have reached a consensus that the global annual average temperature is likely to be
2 ◦C above pre-industrial levels by 2050, and a 2 ◦C warmer world will experience more intense
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rainfall and more frequent and more intense droughts, floods, heat waves, and other extreme weather
events [1–3]. The year 2017 demonstrates up-to-date evidence for climate change as it was the warmest
year on record for the global ocean [4]. It is well accepted that climate change will have a far more
detrimental effect on developing countries compared to developed countries, mainly because the
capacity to respond to such changes is lower in developing countries. Moreover, it seems clear that
vulnerability to climate change is closely related to poverty, as the poor are least able to respond to
climatic stimuli [5].

Regionally in East Africa, studies indicate that in countries like Burundi, Kenya, Sudan,
and Tanzania people are badly hit by the impacts of climate change [6,7]. In Ethiopia in the last
few decades, high temperature values were recorded in different parts of the country. The various
General Circulation Model (GCM) results also suggest that future climatic change climatic elements
will be significant. For instance, the average future change for the whole of Ethiopia for a 30-year
period with A2 emissions shows warming in all four seasons in all regions, with annual warming in
Ethiopia of 1.2 ◦C with a range of 0.7–2.3 ◦C by the 2020s, and by 2.2 ◦C with a range of 1.4–2.9 ◦C
by the 2050s [8]. So far, some studies have predicted long-term future climate change situations that
could prevail up until the end of this century in Ethiopia [9].

The models in the ensemble are broadly consistent, indicating increases in total precipitation
occurring in ‘heavy’ events, and increases in the magnitude of one-day maxima and five-day rainfall
maxima [9]. In Kenya, Ethiopia, and Somalia, climate-related extremes have been the dominant trigger
of natural disasters [10]. Overall, warm days and nights are projected to become more frequent in the
entire Great Horn of Africa, while the occurrence of cold nights is likely to decrease [11].

The results of the temperature and precipitation record obtained above on a large scale are
either from the average of meteorological observations or from general circulation models. General
circulation models are a tool to understand the climatic conditions of the past and future [12]. In order
to use general circulation model results to study the impact of climate change on a local scale, it is
common to downscale and bring the results into the finest resolution. In addition to the obtained
fine resolution of the data, downscaling has the ability to identify and analyze extreme events [13],
which are the points of emphasis when we study urban climate.

Typical definitions of weather and climate extremes consider either the maximum value during
a specified time interval (such as a season or year), or instances of exceeding a threshold (the
“peaks-over-threshold” [POT], in which universal rather than local thresholds are frequently applied).
The IPCC defines extremes as 1–10% of the largest or smallest values of an extreme value distribution
for a given period [14]. An extreme weather or climate occurrence is usually defined as one that has
extreme values for certain important meteorological variables above (or below) a given pre-existing
high threshold near the upper (or lower) climaxes of the range of detected standards of the variable [14].

Changes in climate extremes and their impacts on the natural physical environment were
examined by the Intergovernmental Panel on Climate Change [2]. Climate change has the potential
to change the intensity and frequency of extremes. More severe climate change can cause dramatic
impacts with unpredictable consequences. Therefore, the projection of climate extremes is critical
information that is needed to assess the impact of potential climate change on human beings and on
the natural environment. Such information also helps with long-term planning at both regional and
national levels for mitigation and adaptation strategies because it opens up a space for a set of potential
responses [15]. While extreme climate events are generally multifaceted phenomena, the present study,
in particular, discusses climate extremes based on daily temperature and precipitation, such as the
hottest or coldest day of the year, heavy precipitation events, and dry spells [16].

In Ethiopia, we have explored various downscaling applications and their potential to detect
climate change impacts in agricultural and hydrological applications. Some of these applications
include statistical downscaling for daily temperature and rainfall in South Wollo [17], the study
of future changes in climate parameters in Amhara Regional State [18], future climate studies in
northwestern Ethiopia for assessing the hydrological response of the Gilgel Abay River to climate
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change in the Lake Tana Basin [19], and the climate change impact on the Geba Catchment in Northern
Ethiopia [20]. However, applications of statistical downscaling of general circulation models for the
largest cities in Ethiopia have not been undertaken. It is important to use the downscaled results
of GCMs to assess future projections and to identify adaptation measures, as recently explored in
some large East and North African cities [21,22]. Only a few studies are available for Addis Ababa,
which differ in method and temporal scale from this study [23,24].

Some environmental problems like high temperature and extreme rainfall, which results in
flooding in Addis Ababa, could be signals of climate change [25]. In the future, flooding problems may
also become much more common due to the poor urban storm water management system and due to
climate change-induced extreme precipitation events, as observed from models in which precipitation
is expected to increase in the future at the highest rate, creating additional problems. Fast urbanization,
marked by high-rise buildings in the city, contributes to the occurrence of climate change. When these
local conditions meet with the global temperature rise conditions, the environmental quality and
thermal comfort of the residents will be affected. The impact of the urbanization-driven land use/cover
change has resulted in a notable urban heat island [26].

In order to fill in the gaps related to temporal and spatial resolution using recent scenarios and
obtain data to help decision makers fulfill the objectives set for Ethiopia’s climate-resilient green
economy, the priority has to be given to quantifying the amount and intensity of changes in climate
variables and their variations for the 21st century. Therefore the main aim of this study is to statistically
downscale the future daily maximum temperature, daily minimum temperature, and precipitation,
as well as the statistics of extreme events, for the early identification of the possible associated impacts
and to set adaptation priorities. The downscaled results under different scenarios could be considered
in environmental policy formulation and urban planning processes in Ethiopia.

2. Materials and Methods

2.1. Description of the Study Area

Addis Ababa is found between 8◦50′ N to 9◦5′ N and 38◦38′ E to 38◦54′ E. It is the capital
and the largest city of Ethiopia, with a total projected population of 3.44 million people in 2017.
The administration of the city is divided into 10 sub-cities. Addis Ababa is home to 25% of the urban
population in Ethiopia and is one of the fastest growing cities in Africa. It is the growth engine
for Ethiopia and a major pillar in the country’s vision to become a middle-income, carbon-neutral,
and resilient economy by 2025. The city alone currently contributes approximately 50% to the national
Gross Domestic Product, highlighting its strategic role within the overall economic development of the
country [27].

The city is located in the central highlands of Ethiopia, covering an area of about 527 km2 with an
average elevation of 2600 m above mean sea level (asl). The altitude range extends from the highest
peak at Mount Entoto, which is 3041 m high, to 2051 m above mean sea level at the lower part of the
Akaki plain. The average maximum temperature for Addis Ababa over the last 60 years was 22.9 ◦C
and the average minimum temperature was 10.2 ◦C. Minimum and maximum temperatures show
increasing trends from 1951 to 2002 of 0.4 ◦C per decade and 0.2 ◦C per decade, respectively; however,
there was no major shift in annual and seasonal rainfall during the period 1898–2002 [28]. The average
annual rain fall for Addis Ababa is 1184 mm. The wet season is from June to mid-September. The urban
area is endowed with three major rivers: Kebena, Little Akaki, and Big Akaki, as well as numerous
small streams. The population density varies between sub-cities. The highest density is in Addis
Ketema sub-city (37,215 persons per square kilometer). The lowest density is in Akaki Kality sub-city
(1832 p/sk.km). All the sub-cities in the downtown have a high population density compared to
sub-cities found in peripheral areas. A fast rate of urban expansion is occurring, and built-up areas are
rapidly increasing in Addis Ababa [29]. The study area is presented in Figure 1.
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Figure 1. Study area.

2.2. Data Description

The daily observed maximum temperature, minimum temperature and precipitation data from
National Meteorological Service Agency of Ethiopia were used for model calibration and validation
in SDSM. Of the five meteorological stations with temperature and precipitation records in the city,
two stations have been selected based on having complete data and good location representation.
Addis Ababa station (9◦0′36” E, 38◦ 26′ 24” N, altitude 2386 m) represents the urban center (downtown),
while Entoto station (9◦3′0” E, 38◦25′48” N, altitude 2903 m) represents the suburban (peripheral area).
Data from 1971–1985 were used for model calibration and from 1986–2000 for model validation at
Addis Ababa Observatory. At Entoto station data from 1989–1998 were used for model calibration and
1999–2005 for model validation. The difference in the baseline year is based on the availability of the
baseline data in the study area.

All the predictor data have been obtained from a Canadian climate data and scenarios website
(http://climate-scenarios.canada.ca).

The general circulation models used in the analyses were:

i. National Center of Environmental Prediction (NCEP): The National Centers for Environmental
Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis (NCEPR)
project was designed to provide homogenized (gridded) records of atmospheric fields,
to support climate research by assimilating data from multiple sources with modeled
short-range forecasts [30]. The coherence, accessibility, and completeness of the NCEPR dataset
make it attractive for climate studies on topics ranging from climate variability and synoptic
climatological analyses to comparative analyses of GCM performance [31]. NCEP data was
used to compare the results obtained from the models during the historical simulation period.
NCEP has a resolution of 2.5◦ latitude and 2.5◦ longitude.

ii. Third Version Coupled Global Climate Model (CGCM3): This is the third version of the
Canadian Coupled Global Climate Model (CGCM3.1) and is a widely used model for statistical
downscaling input. Details of the model are described by McFarlane et al., 2005 [32]. Additional
information can also be obtained from (http://www.ec.gc.ca/ccmac-cccma/default.asp?lang=
En&n=89039701-1. The CGCM3 has a resolution of 3.75◦ latitude and 3.75◦ longitude.

iii. Second Generation of Earth System Model (CanESM2): Developed at the Canadian Centre
for Climate Modelling and Analysis (CCCma), this model consists of the physical coupled

http://climate-scenarios.canada.ca
http://www.ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=89039701-1
http://www.ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=89039701-1
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atmosphere–ocean model CanCM4 coupled to a terrestrial carbon model (CTEM) and an ocean
carbon model (CMOC) [33]. CanESM2 provided CCCma’s long-term climate simulations
for Phase 5 of the Coupled Model Inter-comparison Project, which in turn informed the
Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change [34].
The CanESM2 model has a resolution of 2.79◦ latitude and 2.81◦ longitude.

These models were used both for the Special Report on Emissions Scenarios and the Representative
Concentration Pathway (RCP) Scenarios. The SRES Scenarios were also included with the RCP
Scenarios and the results compared with the previous studies undertaken in the region. The SRES
(Special Report on Emissions Scenarios) Scenarios were those used by the IPCC until the Fourth
Assessment Report, and these four narratives (A1, A2, B1, and B2) cover different demographic and
technological futures. Specifically, they address a fossil-fuel-intensive future (A1F1 scenario) versus a
predominantly non-fossil-fuel future (A1T).

For new scenarios of the Fifth Assessment Report of the IPCC, the Representative Concentration
Pathways (RCPs) were developed. Each pathway represents a set of internally consistent socioeconomic
assumptions that result in four levels of radiative forcing: RCP8.5, RCP6, RCP4.5, and RCP2.6.
The Concentration Pathways are four greenhouse gas concentration (not emissions) trajectories
adopted by the IPCC for its Fifth Assessment Report (AR5) in 2014. It supersedes the Special Report on
Emissions Scenarios (SRES) projections. So far, four RCP scenarios exist and each assumes a different
level of radiative forcing by the year 2100: 3, 4.5, 6 and 8.5 W/m2 [35]. The RCP Scenarios considered
in this study fall under RCP4.5 and RCP8.5. RCPs describe a wide range of potential issues concerning
climate change like greenhouse gases, air pollutants, emissions, and land use. RCPs have broken new
grounds in several ways. They include some of the highest and lowest scenarios of greenhouse gases
that have been recently examined by the climate research community.

2.3. Downscaling Method

Climate scenarios from a global climate model (GCM) are usually at a large scale and, for that
reason, they are not suitable for impact and adaptation studies that require detailed local data.
The regional outputs from a GCM are therefore “downscaled” using one of two methods—dynamical
downscaling or statistical downscaling.

Statistical downscaling has standard and accepted statistical procedures.It is computationally
inexpensive, able to directly incorporate the observational record of the region, etc. A number of
studies indicate that the SDSM yields reliable estimates of extreme temperatures, seasonal precipitation
totals, and areal and inter-site precipitation behavior [3,10,20,36]. The SDSM calculates statistical
relationships based on multiple linear regression techniques between large-scale (the predictors) and
local climate variables (the predictand) [37].

The SDSM software manages tasks like data quality control and transformation, screening
variables, model calibration, frequency analyses, statistical analysis, scenario generation, and graphing
of climate data. All the data are processed using the SDSM software. The mathematical details of
this model are provided in the study by Wilby et al. [38]. As the values are normally distributed,
transformation was not undertaken on temperature results in the software [18]. However, for the
daily rainfall, the fourth root transformation was used as the data were skewed and as its model was
conditional. Transforming created a more normal distribution in the precipitation data.

The SDSM model contains two separate sub-models to determine the occurrence and amount
of conditional meteorological variables (or discrete variables), such as precipitation, and the amount
of unconditional variables (or continuous variables), such as temperature or evaporation. Therefore,
the SDSM can be classified as a conditional weather generator in which regression equations are used
to estimate the parameters of daily precipitation occurrence and amount separately, making it slightly
more sophisticated than a straightforward regression model. The SDSM yields reliable estimates of
extreme temperatures, seasonal precipitation totals, and areal and inter-site precipitation behavior.
This freely available software enables the production of climate change time series at sites for which
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there are sufficient daily data for model calibration, as well as archived General Circulation Model
(GCM) output to generate scenarios for the 21st century. The SDSM can also be used as a stochastic
weather generator or to fill in gaps in meteorological data [10].

The model structure in the SDSM is given in Figure 2.
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2.4. Selection of Predictors

Selecting a predictor is an important step in the downscaling process. It is an iterative procedure
consisting of a rough screening of the possible settings and predictors, which is repeated until an
objective function is optimized [38]. The variables with the highest correlation are selected using
the screen variable tool in the SDSM. First, all the predictors from historical records are correlated
with the past observed maximum temperature, minimum temperature, and precipitation in the past.
Then the predictors with the highest correlation are selected. The selected number of predictors
varies from three to five. The correlation statistics and p-values are used to explain the strength of the
relationship between the predictor and predictand. The highest correlation values represent a higher
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degree of association and smaller p-values describe a better chance for an association between variables.
The most appropriate sets of predictor variables are selected on the basis of partial correlation and
percentage of explained variance (E) analysis among the predictand and the individual predictors.
In order to have better prediction results, all the correlations with a p-value less than 0.05 were selected.

The default bias correction factor in the SDSM is 1 for temperature. The ‘Bias Correction’ parameter
compensates for any tendency in the downscaling model to over- or under-inflate the variance of
the conditional process. The selected variables, screened for precipitation and temperature at Entoto
station and Addis Ababa Observatory, are given in Table 1.

Table 1. Selected predictor variables from the General Circulation Models.

Predictors Code
Addis Ababa Station Entoto Station

Max.
Temp

Min.
Temp Precip. Max.

Temp
Min.

Temp Precip.

Surface zonal velocity p_u 3 3

500 hPa airflow strength p5_f 3 3

500 hpa geopotential height p500 3 3 3

Surface meridional velocity P_v 3 3

500 hPa zonal velocity p8_v 3 3 3

Surface specific humidity shum 3 3

Mean temperature at 2 m temp 3 3

500 hPa zonal velocity p5_u 3

Surface vorticity p_z 3 3

850 hpa divergence p8zh 3

850 hPa airflow strength p8_f 3

850 hpa zonal velocity p8_u 3

850 hPa meridional velocity p8_v 3

850 hpa vorticity p8_z. 3 3 3

500 hPa divergence p5zh 3 3

Surface wind direction p_th: 3

Surface airflow strength p_f 3

2.5. Model Calibration, Validation, and Extreme Event Indices Selection

In other words, to calibrate the SDSM, regression models for every month of the year are
constructed with the relationship between predictand and selected predictors. The first 15 years of the
station (predictand) and reanalysis (predictors) datasets are used for calibration, and the last 15 years
for evaluation of the calibration. The period 1989–1998 was used for model calibration and 1999–2003
for model validation for Entoto station. The difference in time span for the calibration and validation
periods for Addis Ababa and Entoto stations is due to data availability. When calibrating a model
the coefficient of determination (R2) and Standard Error (SE) factors are considered. The calibration
algorithm reports the percentage of explained variance and standard error for each regression model
type (monthly, seasonal, or annual averages). These data should inform assessments of the significance
of climate changes projected by the statistical downscaling.

One of the main concerns while assessing extreme climate events is properly defining extreme indices
for climate variables (temperature and precipitation). Different studies have defined varying indices
according to their study regions’ climates. While these indices may have similar names, their definitions
may vary. Recently, the Expert Team on Climate Change Detection Indices (ETCCDI) has developed a
core set of 27 indices to analyze the wide range of extreme climate changes. For this study, six temperature
indices and six precipitation indices out of the 27 ETCCDI’ recommendations were selected to explore
possible changes in temperature extremes in the future in Addis Ababa. In addition to the definitions
given by the ETCCD for the extreme events, an additional definition given by Donat et al. [40] was used.
Extreme events such as heat waves and heavy rains result in severe climate-related damage and hence
emphasis is given to analyzing the changes in extreme events under a changing climate. The temperature
and precipitation indices used in this study are summarized in Table 2.
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Table 2. Extreme indices of temperature and precipitation.

Temperature Indices

Code Description Indices definition Units
TXx Hottest days Maximum values of daily maximum temperature ◦C
TNx Hottest nights Maximum values daily minimum temperature ◦C
TXn Coldest days Minimum values of daily maximum temperature ◦C
TNn Coldest nights Minimum values of daily minimum temperature ◦C

TX_90P Hot Days (90th percentile value of data describes that at least 90% of the values in the data are
less than or equal to this value) [41]

◦C

TN_90P Hot Nights 90th percentile value of data describes that at least 90% of the values in the data are
less than or equal to this value % [41]

Precipitation Indices

Rx1day Max 1-day precip. Monthly maximum 1-day precip. mm
Rx5day Max 5-day precip. Monthly maximum consecutive 5-day precip. mm
99%le Extremely wet days Annual total precip. from days >99th percentile mm

PRCPTOT Annual total wet day
precip. Annual total precip. from days ≥1 mm mm

CDD Consecutive dry days Maximum number of consecutive dayswhen precipitation <1 mm days
CWD Consecutive wet days Maximum number of consecutive dayswhen precipitation ≥1 mm days

2.6. Quantile Mapping and Delta Statistics

Quantile Mapping (QM) is an emerging downscaling approach that is utilized to remove
bias from observed and simulated rainfall using cumulative distribution functions. It estimates
quantiles for both datasets, then forms a transfer function by interpolation between corresponding
quantile values. The number of quantiles is a free parameter. A quantile–quantile plot is a basic
graphical approach for checking normality by comparing sample quantiles against population
quantiles. Thus, quantile–quantile downscaling consists of a probability plot of model outputs against
observed values, with both corresponding to the same probability [42] or using empirical distribution
functions [43]. It assumes that, although the two time series are independent, they describe the same
variable at approximately the same location and, therefore, must have unique probability density
functions (PDFs).

The delta method is a simple, yet widely used method [31] to create scenario time series from
GCM output. The method uses the delta method of the SDSM for future projections and changes in
extreme indices. The standard approach for the delta method is that the GCM-simulated difference
for each calendar month (absolute difference for temperature and relative difference for precipitation)
between a future period and the baseline period is determined and then this is superimposed on the
historical daily temperature and precipitation series [44].

In the SDSM, a change in precipitation is obtained by:

∆2020s =
(v2020s− vbase) × 100

vbase
. (1)

The same is true for changes in 2050 and 2080.
For the absolute value calculation (temperature in this case)

∆2020 = v2020− vbase (2)

The value at 2050 and 2080 is also obtained by the same formula explained in Equation (2).
Vbase is the mean of all ensembles (or a specific ensemble if selected) for each statistic for the

baseline period. Likewise, V2020s is the mean of all ensembles (or a specific ensemble) for each statistic
for period A, and so on for V2050s and V2080s [39].

3. Results and Discussion

3.1. Performance of the SDSM Model Validation and Calibration Result

Prior to future scenario construction the results of the observed data of maximum temperature,
minimum temperature and precipitation are correlated with the modeled data during the calibration
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and validation periods using the coefficients of determination and standard errors. The calibration
period for Addis Ababa station is 1971–1985 and for Entoto station it is 1989–1998. The coefficient
of determination for Addis Ababa Observatory is 0.63 (NCEP and CanESM2) and 0.4 (CGCM3) for
maximum temperature and 0.68 (NCEP) and 0.66 (CanESM2 and CGCM3) for minimum temperature
during the calibration period for both CanESM2 and CGCM3 models. The correlation coefficient of
determination for precipitation is 0.09, 0.011, and 0.010 in the NCEP, CanESM2, and CGCM3A2 models,
respectively, for Addis Ababa station. In the unconditional process the calibration and validation
period’s coefficient of determination (R2) and standard error are similar. The R2 for precipitation at
Addis Ababa station is higher than in the validation period. The R2 for precipitation is the lowest
due to it being a conditional process and having a less regular distribution than the temperature
distribution. Unconditional models assume a direct link between the regional-scale predictors and the
local predictand. For example, local wind speeds may be a function of gridded airflow indices such
as the zonal or meridional velocity components. Conditional models, such as for daily precipitation
amounts, depend on an intermediate variable such as the probability of wet-day occurrence [36].
The R2 and standard error of the calibration and validation period are summarized in Table 3.

Table 3. Result of model calibration and validation.

Addis Ababa obs. Calibration Period (1971–1985) Addis Ababa obs. Validation Period (1986–2000)

Model Maximum
Temperature

Minimum
Temp Precipitation Maximum

Temperature
Minimum

Temp Precipitation

R2

SE
R2

SE
R2

SE
R2

SE
R2

SE
R2

SE

NCEP 0.63
1.34

0.68
1.21

0.09
9.02

0.58
1.45

0.63
1.12

0.02
9.55

CanESM2 0.63
1.36

0.66
1.18

0.011
9.00

0.57
1.46

0.65
1.17

0.01
9.50

CGCM3 0.64
1.34

0.66
1.17

0.01
9.00

0.58
1.44

0.64
1.17

0.06
9.58

Entoto Station Calibration Period (1989–1998) Entoto Station Validation Period (1999–2003)

NCEP 0.58
1.32

0.65
1.10

0.031
9.30

0.60
1.4

0.40
1.00

0.01
8.20

CanESM2 0.62
1.35

0.64
0.09

0.043
9.30

0.63
1.36

0.41
0.97

0.04
8.20

CGCM3 0.61
1.36

0.65
1.10

0.030
9.37

0.62
1.38

0.43
1.00

0.04
8.22

R2: Coefficient of determination; SE: Standard Error. Autoregressive terms are added on all R2 and SE values
in SDSM.

The performance of the model is tested by constructing the plots for the observed and modeled
data during the calibration period. The calibration period for Addis Ababa station is 1986–2000 and
the calibration period for Entoto station is 1999–2005. As observed from the graphs, the observed
maximum temperature values and the graphs are well simulated with pattern characteristics both
at Addis Ababa and Entoto stations. Except for the CGCM3 at Addis Ababa station, all the models
overestimate the minimum temperature for values below 8 ◦C and above 11 ◦C. Details of the models
of the quantile plots are shown in Figure 3.
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Similarly, simulated daily precipitation is modeled against the observed precipitation. All the 
model results indicate that there is overestimation for results that are greater than 20 mm and 
underestimation for results that are greater than 20 mm. The Q–Q plots of daily precipitation of the 
validation period are given in Figure 5. 

Figure 3. Quantile–quantile (Q–Q) plots of observed versus modeled maximum temperature (◦C) at
Addis Ababa (upper) and Entoto (bottom) stations.

The plot is a normally distributed population. The modeled maximum temperatures are exactly
the same as the observed temperatures, shown as fitted lines for the Q–Q plots (except for records for
values less than 12 ◦C that overestimate the maximum temperature at Entoto station). The Q–Q plot
for minimum temperature is normally distributed at Addis Ababa station. At Entoto station, however,
all models overestimate the highest and lowest values, i.e., below 6 ◦C and above 10 ◦C. The Q–Q
plot fits between 6 ◦C and 10 ◦C. The Q–Q plots of minimum temperature at Addis Ababa and Entoto
stations are given in Figure 4.
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Figure 4. Quantile–quantile plots of observed versus modeled minimum temperature (◦C) at Addis
Ababa (upper) and Entoto (bottom) stations during the validation period.

Similarly, simulated daily precipitation is modeled against the observed precipitation. All the
model results indicate that there is overestimation for results that are greater than 20 mm and
underestimation for results that are greater than 20 mm. The Q–Q plots of daily precipitation of
the validation period are given in Figure 5.
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Figure 5. Observed and modeled precipitation at Addis Ababa (upper) and Entoto (bottom) stations
during the validation period.

3.2. Future Temperature and Precipitation Change Scenarios

3.2.1. Temperature

Future temperature predictions from all downscaled models under different scenarios show that
both maximum and minimum temperature increase in magnitude and intensity in Addis Ababa up to
the end of this century. According to the models, the change ranges from 0.03 ◦C for the minimum
temperature at Entoto in 2020 to 2.1 ◦C by 2080 using the CGCM3A2 projections and considering
RCP4.5 in the worst case scenario for maximum temperature. All models project increases of the
maximum temperatures from 0.03 ◦C–0.21 ◦C using the CGCM3A2 and RCP4.5 models in 2020. In 2050,
the maximum temperature increases by 1 ◦C in the CGCM3A2 scenario. In all scenarios the projected
maximum temperature in 2020 is the highest at Entoto station. The minimum temperature is also
projected to increase by 1.03 ◦C in 2080 under the A1B scenario at Entoto station. The minimum
temperature change at Addis Ababa station is the lowest in 2020. The minimum temperature at Entoto
station increases more than the maximum temperature in the 2020s. In 2050 the minimum temperature
ranges from 0.29 ◦C (RCP4.5) to 0.32 ◦C (RCP8.5) at Addis Ababa station. In 2080, the CGCM3A2
model projects an increase of 0.6 ◦C for the minimum temperature at Entoto station and 0.75 ◦C under
the RCP8.5 model at Addis Ababa station. It is observed that the rate of change for the minimum
temperature at a higher altitude is much higher than the rate of change at a lower altitude at Addis
Ababa. However, the change in maximum temperature is higher in the downtown than in the
peripheral areas (Entoto).

The results from all models under multiple scenarios indicate that precipitation will continue
increasing until the end of this century. In the CanESM2 model under the RCP8.5 scenario and the
CGCM3A2 model, the precipitation is projected to increase by 16.6% compared to the baseline period.
Though the changes in the precipitation value by 2020 are not significant, as concluded from the results
of future scenarios, the prediction of precipitation will continue to increase in 2050 and 2080. In 2050,
under the worst-case scenario, precipitation will increase by 8.7% compared to the baseline period.
In 2080, the highest projection is 16.6% (RCP8.5), followed by the CGCMA2 scenario, which is 11.7% at
Addis Ababa station. At Entoto station, the rate of change in 2080 is projected to be 2.58%, 8%, 7.8%,
and 11.8% under the RCP4.5, RCP8.5, CGCM3A1B, and CGCM3A2 scenarios, respectively.

The summaries of maximum and minimum temperature predictions from three models for the
six scenarios are presented in Table 4.
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Table 4. Downscaled temperature (◦C) and precipitation (%) scenarios (changes).

Station Predictands Year
CanESM2 CGCM3

RCP4.5 RCP8.5 A1B A2

Addis Ababa obs.
(Baseline period

1971–2000)

Maximum
Temperature

2020s
2050s
2080s

0.09
0.41
0.52

0.06
0.61
1.20

0.09
0.77
1.31

0.12
1.00
2.06

Minimum
Temperature

2020s
2050s
2080s

0.02
0.239
0.30

0.02
0.39
0. 70

0. 36
0.18
0.28

0.07
0.14
0.27

Precipitation
(% Difference)

2020s
2050s
2080s

1.28
3.82
7.49

1.30
6.20
16.6

1.08
4.02
7.40

2.30
8.70
11.7

Entoto
(Baseline period

1989–2003)

Maximum
Temperature

2020s
2050s
2080s

0.09
0.22
0.28

0.09
0.41
0.71

0.17
0.57
0.84

0.21
0.56
1.01

Minimum
Temperature

2020s
2050s
2080s

0.03
0.07
0.10

0.03
0.09
0.14

0.25
0.69
1.04

0.20
0.57
0.99

Precipitation
(% Difference)

2020s
2050s
2080s

1.10
2.57
2.58

0.60
4.80
8.00

1.24
2.80
7.80

1.36
2.70
11.8

3.2.2. Changes in Temperature Extreme Indices

The results of the extreme events analyses are important for this study. Temperature indices are
studied based on their changes within each season. In all the seasons, the maximum value of the
maximum temperature (TXx) is projected to increase in 2080 with the highest projection reaching
3.20 ◦C (A2). Except for the RCP8.5 scenario, the CGCM3A2 scenario in 2020 and CanESM2 RCP8.5
scenario in 2050 all the maximum value of the minimum temperatures (TNx) will increase to a
non-significant degree. In winter and spring the TNx value decreases, while in summer and autumn
the TNx value is projected to increase. The year-round prediction has a positive value. Regarding the
minimum values of the minimum temperature (TNn), half of the scenarios indicate that TNn decreases.
In 2050 and in 2080 all the CanESM2 scenarios project that the TNn value decreases.

TX_90P and TN_90P are expected to increase in 2020, 2050, and 2080. In autumn the models
predicts the lowest TN_90P, and in spring the TX_90P is predicted to have positive values. The highest
value of TX_90P is 3.18 ◦C in autumn of 2080 under RCP8.5, followed by 3.07 ◦C in spring. Similarly,
TN_90P (◦C) is the highest in summer for 2080 (RCP8.5), reaching 1.3 ◦C. All models predict that the
TN_90P value will increase by less than 1 ◦C. It is only in the RCP 8.5 scenario for the summer of 2080
that the projection reaches as high as 1.37 ◦C. Details of the temperature indices based on the seasonal
changes in 2020, 2050, and 2080 are given in Figure 6.
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3.2.2. Changes in Temperature Extreme Indices 

The results of the extreme events analyses are important for this study. Temperature indices are 
studied based on their changes within each season. In all the seasons, the maximum value of the 
maximum temperature (TXx) is projected to increase in 2080 with the highest projection reaching 3.20 
°C (A2). Except for the RCP8.5 scenario, the CGCM3A2 scenario in 2020 and CanESM2 RCP8.5 
scenario in 2050 all the maximum value of the minimum temperatures (TNx) will increase to a non-
significant degree. In winter and spring the TNx value decreases, while in summer and autumn the 
TNx value is projected to increase. The year-round prediction has a positive value. Regarding the 
minimum values of the minimum temperature (TNn), half of the scenarios indicate that TNn 
decreases. In 2050 and in 2080 all the CanESM2 scenarios project that the TNn value decreases.  

TX_90P and TN_90P are expected to increase in 2020, 2050, and 2080. In autumn the models 
predicts the lowest TN_90P, and in spring the TX_90P is predicted to have positive values. The 
highest value of TX_90P is 3.18 °C in autumn of 2080 under RCP8.5, followed by 3.07 °C in spring. 
Similarly, TN_90P (°C) is the highest in summer for 2080 (RCP8.5), reaching 1.3 °C. All models predict 
that the TN_90P value will increase by less than 1 °C. It is only in the RCP 8.5 scenario for the summer 
of 2080 that the projection reaches as high as 1.37 °C. Details of the temperature indices based on the 
seasonal changes in 2020, 2050, and 2080 are given in Figure 6. 
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Figure 6. Cont.
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Figure 6. Changes in selected temperature extreme indices.

3.2.3. Future Changes in Precipitation Extreme Indices

The precipitation indices show different changes in intensity and amount, indicating incremental
changes in the precipitation amount. Except for the RCP8.5 scenarios in 2020, CGCM3 in 2050, and A2
in 2080, all the models predict Rx1 increases. The highest value is 7.22% in 2050. However, specifically
for autumn, the prediction falls to −11.3%. Similarly, the Rx5day is expected to increase in 2050 for
most of the models. The highest Rx5day predictions are 21% (RCP4.5) and 17.6% (RCP8.5) in winter
2020 and 2080, respectively. Regarding the total precipitation index (PTOT), the highest is in 2080
at 17.96% (RCP8.5). The greatest change is in the winters of the 2080s, for which a value of 29.30%
(RCP4.5) is predicted, and in summer a value of 20.9% (RCP8.9) and 19.13% (CGCM3A2). Consecutive
wet days are expected to increase by 27.3% (RCP8.5) in 2050, and the highest value for this is in summer
2080 at 28% (RCP8.5). Consecutive dry days are projected to decrease from 2020–2080 in all models,
with ranges from −0.6% in 2020 to −19.8% in 2080. Details of the precipitation indices are presented in
Figure 7. The results indicated positive trends for the maximum value of the maximum temperature
(TXx), warm days (TX90P), and warm nights (TN90P).
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Figure 7. Selected precipitation indices in percentages.

4. Discussion

This study investigated changes in future maximum temperature, minimum temperature,
precipitation, and their extremes in Addis Ababa, through downscaling from selected general
circulation models. The considered changes were analyzed up to the end of the 21st century, taking
observed station data from two meteorological sites from 1971–2003 as the baseline. The aim of
the downscaling was to predict site-specific future temperature and precipitation extreme changes,
in order to assess possible future risks from climate change. The results indicate that temperature and
its extremes are expected to increase in the city, with the highest rate occurring in the 2080s. The trends,
changes, highest moderate and extreme changes in both climatic elements and extreme events have
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been identified. For all three future periods and under all scenarios, almost all intensity extreme
indices showed incremental increases. We conclude that more warming is expected towards the end of
this century.

It should not be surprising that this study’s findings are in line with many downscaling works
undertaken in Ethiopia, particularly on temperature results, though the previous studies were not
conducted on an urban scale. Climate model projections of climate in Ethiopia show warming in all
four seasons across the country but a wide range of rainfall patterns, with no clear direction of change.
Table 5 describes the summary of many downscaling studies in Ethiopia, using statistical models.

Table 5. Comparison of obtained changes with statistically downscaled research in different parts
of Ethiopia.

Model Study Area Temperature Precipitation References

ECHAM 5 and
HADCM3

Across Ethiopia
and Kenya

Clear trends at all locations towards
warmer conditions in the future.

ECHAM5 model shows a
trend towards wetter annual
conditions over most parts.

[23]

HadCM3 A2a and B2a
and CanESM2 (RCP2.6,
4.5 and 8.5)

Upper Blue Nile
River Basin

Maximum temperature rise by 0.4
◦C to 2.9 ◦C and minimum
temperature rise by 0.3 ◦C to 1.6 ◦C.

Relative changes in mean
annual precipitation ranges
from 2.1–43.8%.

[45]

HadCM3 A2 and B2 Lake Hawasa
Maximum temperature increase by
1.6–1.8 ◦C and minimum
temperature by 1.54–1.7 ◦C in 2050.

Trends in annual rainfall do
not show statistically
meaningful trends between
years.

[46]

CGCM3.1 and REMO Baro-Akobo Basin
Maximum temperature rises by 1.3
◦C (REMO A1B and B1) and 2.55 ◦C
(CGCM3.1).

24% (REMO) and 23%
(CGCM3.1) rise in 2050. [47]

HadCM3 A2a Northwestern
Ethiopia

The increase in mean maximum and
minimum temperature ranges from
1.55–6.07 ◦C and from 0.11–2.81 ◦C,
respectively, in the 2080s.

Decrease in amount of
annual rainfall and number
of rainy days in 2080s.

[18]

HadCM3-A2 Upper Blue Nile
Basin

The minimum and maximum
temperature will increase by 3.6 ◦C
and 2.4 ◦C, respectively, towards the
end of the 21st century.

Dry season rainfall amounts
are likely to increase and wet
season rainfall to decrease.

[48]

From the results obtained from this study and other general studies in Ethiopia, it should be
noted that the increases in temperature and rainfall are real. Despite climate change being a major
global issue today, in Addis Ababa it does not garner considerable attention. All current government
plans are focused on supplying the ordinary needs of residents; the climate issue seems to be mostly
neglected. The city is busily supplying basic infrastructural and social demands because of high
population growth, which of course plays a pivotal role in modifying the local climate of the city.
Within this framework, the awareness of future downscaled climatic data for environmental planning
is generally limited.

However, considering future changes and prioritizing their incorporation into plans for the
city is inevitable for several reasons. First, there is an elevation difference of 1000 m within the city.
Due to this, all places might not be affected equally by climate change, and hence prioritization for an
intervention mechanism is important. Second, there is a high rate of population growth. Studies reveal
that the projected population of Addis Ababa city, with a high population growth rate (3.3%), is about
7 million by the year 2039, which would exacerbate water problems in the city [49]. Thirdly, there is
a high rate of urbanization. Urban heat islands could exacerbate the climate problem as the studies
indicate the downtown areas are getting hot, and the land surface temperature is increasing over time.
The urban areas are expanding at the expense of forests and agricultural land [50–52].

5. Conclusions

This study attempts to analyze historic climate change trends and extremes, and constructs future
temperature and precipitation scenarios up to the end of this century, in 30-year intervals, based on
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daily predictor data from two stations in Addis Ababa city. The analyses also consider future extreme
events by analyzing six temperature indices and six precipitation indices that could prevail in Addis
Ababa city based on the definitions set by the ETCCD to study climate change extremes. Two GCMS
have been statistically downscaled under four scenarios (two SRES and two RCP). The predictors of the
model were screened and selected based on the R2 and p-values. The study found a good correlation
between the modeled and observed results during the validation period. It also compares the results
of the modeled data against the observed values for the base periods of 1971–2000 for Addis Ababa
station and 1989–2005 for Entoto station.

All the models perform well in predicting the mean values during the validation period.
Their good performance is displayed in quantile–quantile plots and PDFdf curves. Future scenarios
predict that both the maximum and minimum temperature will increase up to the end of the century.
All the models predict the change will be highest after 2020. The changes in climatic elements up to 2020
are not significant. However, in 2050, and 2080, the predictions are higher. The changes in maximum
temperature reach 2.06 ◦C (CGCM3A2) in the worst-case scenarios in 2080. Similarly, the increase in
the minimum temperature reaches 1.03 ◦C in 2080 (CGCM3A1B). Except for the coldest nights (TNn),
the mean temperature and other temperature indices are projected to increase up to the end of the
century. Precipitation will also increase by 11.8% (CGCM3A2) or 16.6.2% (CanESM2 RCP8.5) by 2080.
All the models also predict an increase in precipitation. The changes in precipitation are seasonally
varied. The total precipitation increases by 29% (RCP4.5) in winter and 20.9% (RCP8.5) in summer by
2080 in the worst-case scenarios. Maximum one-day and five-day precipitation will also significantly
increase in winter and summer in 2080. All the indices of precipitation will additionally increase to the
end of the century compared to the baseline period, except for consecutive dry days (CDD).

Although there is a seasonal difference in the amount and changes in extreme events, there is
good agreement among the models under different scenarios regarding the increase of precipitation
and temperature. All the values of the models indicate similar projections; however, the magnitude
of the prediction varies from one model to another. Except for the minimum temperature at Addis
Ababa Observatory in the SRES scenarios of the CGCM3A2 model, temperature values are highly
overestimated (even more than in RCP8.5) at both Entoto and Addis Ababa stations. Regarding
precipitation, in 2020 and 2050 the precipitation value is overestimated by the SRES in CGCM3A2;
however, after 2050, the RCP8.5 better models the precipitation than SRES, except at Entoto station.
The analysis also shows that there is no significant negative trend in temperature and precipitation
despite the variability in amounts.

Generally, the city will experience an increase in temperature, which will gradually modify the
existing temperature conditions, resulting from high urban activity and climate change.

As a result, the effect of elevation differences, which ranges by 1000 m, will be less in every
direction of the city. The city has been affected by flood-induced damage due to the low level of
infrastructure development and the poor quality of housing. Moreover, with the expected rise of
precipitation due to global climate change, the city will continue to experience flooding vulnerability.
Hence, it is recommended that city planning integrates the findings of this research to develop
better adaptation mechanisms. Further studies also need to be undertaken by adding various model
ensembles in order to avoid prediction inconsistency.
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