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Abstract: Nitrous oxide (N2O) is a potent greenhouse gas (GHG). Although it comprises only 0.03%
of total GHGs produced, N2O makes a marked contribution to global warming. Much of the N2O
in the atmosphere issues from incomplete bacterial denitrification processes acting on high levels
of nitrogen (N) in the soil due to fertilizer usage. Using less fertilizer is the obvious solution for
denitrification mitigation, but there is a significant drawback (especially where not enough N is
available for the crop via N deposition, irrigation water, mineral soil N, or mineralization of organic
matter): some crops require high-N fertilizer to produce the yields necessary to help feed the world’s
increasing population. Alternatives for denitrification have considerable caveats. The long-standing
promise of genetic modification for N fixation may be expanded now to enhance dissimilatory
denitrification via genetic engineering. Biotechnology may solve what is thought to be a pivotal
environmental challenge of the 21st century, reducing GHGs. Current approaches towards N2O
mitigation are examined here, revealing an innovative solution for producing staple crops that can
‘crack’ N2O. The transfer of the bacterial nitrous oxide reductase gene (nosZ) into plants may herald
the development of plants that express the nitrous oxide reductase enzyme (N2OR). This tactic would
parallel the precedents of using the molecular toolkit innately offered by the soil microflora to reduce
the environmental footprint of agriculture.

Keywords: radiative warming; atmospheric phytoremediation; N2O; nitrous oxide reductase; N2OR;
nosZ; fertilizer; crop breeding; transgenic; GHG

1. Introduction—Nitrous Oxide Continues to Bloom Unabated

Atmospheric nitrogen (N) deposition is a pressing matter for climate change scientists concerned
with the increasing danger that nitrous oxide (N2O), a noxious greenhouse gas (GHG), poses. Reactive
nitrogen (Nr)—ammonia (NH3), nitrogen oxides (NOx), nitrates (NO3

−), and N2O—enters the
biosphere from its original form of atmospheric N as at least three derivatives: gas, dry deposit,
and precipitation (wet deposition) [1,2]. The sources of N2O are largely anthropogenic [3]. Many
crops must receive N-based fertilizer to reach yield targets, which is supplied by inorganic fertilizers
and animal manure [4]. In an effort to boost the yield in crop staples like wheat, corn, and soybeans,
farmers apply N fertilizers at rates and times that are not always properly synchronized with crop
demand [5]. While crops thrive when fertilized, experimental analysis has demonstrated that up to
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40% of fertilizer N can be lost via leaching [6,7]. Other routes of N loss include soil erosion, NH3

volatilization and oxidation, and bacterial/fungal denitrification [8], although N losses through NH3

volatilization are higher than those via N leaching [9]. Around 62% of total global N2O issues from
natural and agricultural soils, and the bulk of this production, mainly results from the processes of
bacterial nitrification and denitrification [10].

Nr compounds enter the atmosphere through biological processes, but the invention of the
Haber-Bosch process in 1908 was a critical moment for the sudden increase in Nr and GHG production
globally [11]. This process of artificial N-fixation allowed for the large-scale reduction of N2 to NH3,
producing massive amounts of synthetic N-based fertilizers that supported dramatic increases in
high-yield farming [12]. This process now accounts for 80% of anthropogenic N-fixation (the remaining
20% resulting from combustion [13], with anthropogenic N-fixation in turn accounting for 60% of
global N-fixation [14]). Haber-Bosch remains the industry standard synthetic N fertilizer today and as
a result, has contributed to the ~2% increase in atmospheric levels of N2O [15,16]. This effect is also
magnified by the global emissions of N2O produced by fossil fuel combustion [17] and the natural
ability of legumes to fix N through symbiotic relationships with soil bacteria [18].

N2O is the third most prevalent GHG, behind carbon dioxide (CO2) and methane (CH4) [19]. The
concentration of this gas in the atmosphere has been steadily increasing since the early 1900s (Figure 1),
and it is 265 times more radiative than CO2 [19]. N2O also has an atmospheric lifetime of 121 years; by
comparison, CH4 has an atmospheric lifetime of only 12 years, but CO2 also has a long half-life and
can take anywhere from 20–200 years to be absorbed by the ocean [19], compounding the ‘greenhouse
gas’ effect. Since chlorofluorocarbons (CFCs) were banned in 1989, N2O has become the leading cause
of ozone layer depletion [20].
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Figure 1. GHG levels since 1850. The green line represents the increase in CO2 concentration since 1850;
the orange line represents the increase in CH4 concentration since 1850; lastly, the red line represents
the increase in N2O since 1850 [19].

N2O emission results from the coupled oxidation and reduction of N performed by
heterotrophic [21] (and some autotrophic) soil proteobacteria: (1) the nitrification pathway is
catalyzed by autotrophs (Nitrosomonas spp. and other genera [22]) and also heterotrophs, and
involves the oxidation of NH3/ammonium(NH4

+) to nitrite (NO2
−) [23] and nitric oxide (NO) [24]),

which is followed by the oxidation of NO2
− to NO3

− by Nitrobacter spp. [25]; and (2) the
denitrification pathway, whereby NO3

− is reduced to N2O and ultimately inert N2 gas [26]. As
many as a third of soil bacterial species [27] lack the nosZ gene that reduces N2O to inert N2 [28], which
leads to a sizeable amount of incomplete denitrification reactions and the subsequent buildup of N2O
since it is an obligate intermediate [29]. This N2O diffuses out of the soil and into the atmosphere,
contributing to the greenhouse effect, contaminating water, and leading to serious human health
implications [30,31].
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2. Combating GHGs: Current N2O Mitigation Strategies and Limitations

Demands for crop-borne food must be met, and so researchers must address the hazards of
N-based fertilizers [32]. There are multiple N2O mitigation strategies either currently in commercial
use or in development (summarized in Table 1).

Table 1. Summary of current N2O mitigation strategies.

Strategy Mechanism of Action Pros Cons

(1) Conservation tillage
and crop rotation [33]

Tillage, rotation of N-fixing
crops, cover cropping [33]

Prevent NH3
volatilization and
eventual N2O emissions
[34,35]

Unreliable N2O mitigation
[36,37]. Yield reduction [38].
Not effective at scrubbing
N2O from the air

(2) Best management
practices (BMPs) [39]

Correct source, placement,
time, and rate of fertilization
[40]. Proper irrigation
(fertigation) [41]

Proven to reduce N2O
emissions [41] and other
N losses [42]

Technical constraints [43]

(3) EENFs [44]

Multiple types: stable,
short-release (SRFs), and
constant-release (CRFs); rely
on enrichment of chemical
inhibitors or coated
N-compounds that are
released into the soil over a
period of time [45]; urease
inhibitors (UIs) [46]

Proven to reduce N2O
emissions [47,48]

Inconsistent yields from year
to year [48]. More expensive
than standard N fertilizers
[49]. Long lifetime of
N-compounds in soil can lead
to NH3 volatilization [50,51].
Not effective at scrubbing
N2O from the air

(4) Synthetic N2O
mitigators

SNIs suppress activity of
nitrifying bacteria in the soil
[52]. SDIs operate by
unknown mechanism
[44,53,54]

SNIs and SDIs reduce
N2O emissions [52,54]

Effectiveness depends on
environmental conditions,
prefer low temperature and
sandy soils [55]. Not effective
at scrubbing N2O from the air

(5) Biological N2O
mitigators

BNIs suppress activity of
nitrifying bacteria in the soil
by releasing compounds that
inhibit NH3-oxidizing
pathways [56]. BDIs inhibit
nitrate reductase to inhibit
N2O production [57]

BNIs demonstrated to
reduce N2O emission
[56]; BDIs inhibit
denitrification and can
conceivably mitigate
N2O emissions [57]

BNI-exuding plants must be
grown in rotation with other
crops [58]. Little work done on
BDI-exuding plants [57]. Not
effective at scrubbing N2O
from the air

(6) Microbial
bioremediation

Proper water table
management to facilitate
growth of rhizobia [59];
inoculation of plant roots
with genetically modified
N2O-cracking rhizobia [60,61]

Enables plants to
degrade contaminants in
the soil; N2O-cracking
rhizobia demonstrated to
reduce N2O emissions
[60,61]

Most effective on crops that
naturally cultivate a
rhizosphere of N2O-reducing
[62] microorganisms, i.e.,
soybean [63]. Not effective at
scrubbing N2O from the air

(7) Rhizosecretion

Transformation of amenable
crops to express recombinant
bacterial proteins that reduce
N2O [64]

Plants that secrete
N2O-cracking enzyme
could target N2O in soil
[64]

Plant transformation is a
time-consuming process [65].
Bacterial proteins may not
function efficiently in
heterologous hosts [66]. Not
effective at scrubbing N2O
from the air

(8) Atmospheric
phytoremediation

Transformation of amenable
crops with genes expressing
recombinant bacterial
proteins that reduce N2O [67]

Arm crops and other
plant species to mop up
N2O in the atmosphere
[67], including N2O
emitted by other
non-agricultural sources

Plant transformation is a
time-consuming process [65].
Bacterial genes may not
function in a heterologous
system [66]. Not yet
experimentally validated via
gas analysis

BDI, biological denitrification inhibitor; BNI, biological nitrification inhibitor; EENFs, enhanced efficiency nitrogen
fertilizers; SDI, synthetic denitrification inhibitor; SNI, synthetic nitrification inhibitor.
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(1) Conservation tillage and crop rotation. Mechanical incorporation (tillage) of N-based fertilizer
into the soil may also be effective [68], but this is affected by many other parameters, such as the
method of N application (i.e., broadcast vs surface urea ammonium nitrate). These techniques also
result in a reduced yield [38]. Conservation tillage increases N2O emissions compared with no-till
and conventional tillage techniques using broadcast application, while tillage in general does not
reduce N2O emissions produced from surface urea ammonium nitrate-treated fields [69]. Other
studies have shown that conservation tillage reduces N2O emissions [70], underscoring the lack of
reliability of this N management technique [36,37]. Crop rotation with N-acquisitive plant species
can also reduce N2O emissions following the application of high N-fertilizer treatment [33]; cover
cropping can also control N2O emissions, but the results are often variable and in some cases can
increase N2O emissions [71];

(2) Best management practices (BMP) [39]. Such nitrogen use efficiency techniques are myriad and
involve simple steps such as proper fertilizer placement, timing of fertilizer application, the
right type of N-compound, and so on. Others involve the proper incorporation of N-compounds
into the soil so that they may be taken up by the plant more effectively and will be less likely
to volatilize [72]. Fertigation, a technique involving careful irrigation of fields following the
application of N fertilizer, is effective at mitigating N2O emissions [41]. Such knowledge-based N
management practices have been shown to be effective at both increasing crop yield and reducing
immediate N2O emissions [73], but some approaches may also increase N2O production in the
long term [55]. Their effectiveness also depends heavily on proper practices put in place by the
farmers themselves, which requires proper training [43];

(3) Fertilizer management using enhanced efficiency nitrogen fertilizers (EENFs). These fertilizer
cocktails are concocted in such a way that they prevent the volatilization of NH3 and
inhibit nitrification/denitrification [46]. EENFs generally fall into one of three categories:
(a) stabilized fertilizers, which contain nitrification and/or urease inhibitors; (b) slow-release
fertilizers (SRFs), whereby the N source in the fertilizer is released over time from encapsulated
granules, although the release rates can be variable; and (c) controlled-release fertilizers (CRFs),
where the release rate is constant [45]. Urease inhibitors (UIs) are also a common EENF
component. N-(n-butyl) thiophosphoric triamide (NBPT), phenylphosphorodiamidate (PPD),
and hydroquinone are used worldwide and act by inhibiting the bacterial hydrolysis of urea into
NH3 in fertilizer [46,74,75]. UIs are typically used in conjunction with nitrification inhibitor
(NIs) for maximum effectiveness [76,77], but NBPT alone can reduce N2O emissions from
N-treated soil [78]. There is controversy regarding the effectiveness of EENFs; while reductions
in N2O emissions from the soil have been recorded [47,48], recent studies have shown that crop
yields are only marginally higher when EENFs are used in place of standard N fertilizers [79].
Those studies that demonstrated reduced N2O emissions also reported inconsistent results from
year to year [50]. Questionable effectiveness notwithstanding, EENFs are more expensive than
conventional N-containing fertilizers and require special handling and storage [49,80], which are
all features that make these fertilizers less attractive to farmers;

(4) Synthetic N2O mitigators. Synthetic nitrification inhibitors (SNIs) and UIs are both used in EENFs
and can be applied to crops in conjunction with standard N fertilizer. NIs inhibit the activity of
Nitrosomonas to block the nitrification of N in fertilizer (the oxidation of NH3 to hydroxylamine
via ammonia monooxygenase (AMO)) [23,52]. The efficacy of the inhibitors is also dependent
on environmental conditions, as they are unstable; 3,4-dimethylpyrazole phosphate (DMPP), for
example, exhibited reduced activity in hot, dry conditions [81]. The use of these inhibitors can
also lead to less than desirable results: DMPP and 3-methylpyrazole 1,2,4-triazole (3MP + TZ)
have been shown to increase N2O emissions in vegetable crop systems, as the inhibitors promote
the buildup of N in the fraction of the soil most available to bacteria during the breakdown of
vegetative matter. Synthetic denitrification inhibitors (SDIs) suppress denitrification via unknown
mechanisms [82], although some are known to inhibit the activity of fungal copper reductase [83].
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SDIs nitrapyrin [84], toluidine [54], and acetylene [44] all effectively mitigate N2O emission, albeit
with toxic side-effects [55], and they do not technically inhibit nitric oxide reductase;

(5) Biological N2O mitigators. This category is comprised of compounds produced by plants that
inhibit enzymes in either the bacterial nitrification or denitrification pathway. The exploitation of
such inhibiting root exudates is another intriguing approach towards N2O mitigation [82]. Biological
nitrification inhibitors (BNIs) are compounds that block the activity of NO2

− producing enzymes.
The roots of the tropical grass Brachiaria humidicola exude brachialactone, a compound that can
mitigate N2O emission from soil [85]. Attempts at developing BNI-producing cultivated wheat by
crossing Triticum aestivum with BNI-producer Leymus racemosus, a wild wheat, have imparted some
BNI activity, but also made the lines susceptible to rust infection [86]. The use of BNIs as an effective
N2O mitigator is also severely limited by the fact that the enactor of nitrification is a plant itself
and cannot be applied to growing crops, although growing B. humidicola in rotation with maize
saw a four-fold increase in yield [87]. Biological denitrification inhibitors (BDIs) are a relatively new
discovery. Currently, the only example of such an inhibitor is the procyanidin produced by the
invasive Fallopia spp. (Asian knotweed). This compound has been demonstrated to be an allosteric
inhibitor of Pseudomonas brassicacearum nitrate reductase and while it does reduce denitrification in
the soil, it has not yet been proven to mitigate N2O levels [57];

(6) Microbial bioremediation [88]. The success of N fertilizer management techniques and proper
irrigation is largely due to the creation of a microsphere conducive to denitrifying bacteria
flourishing [89]. Proper water table management techniques can promote the growth of
N2O-cracking bacteria in the soil and reduce N2O emissions from the managed soil regions [59].
Another type of microbial bioremediation takes advantage of the ability of certain bacterial
species to inhabit the root nodules of leguminous crops. Field peas [62], broad beans [90], and
soybean [63] house bacteria (or rhizobia) that fix N and, unfortunately, also produce N2O gas.
While maintaining the rhizosphere, N2O emissions can be mitigated by inoculating the roots of
leguminous plants with rhizobia modified to express higher levels of a bacterial N2O-cracking
enzyme [60]. Genetically engineered strains of Bradyrhizobium japonicum have been used to
inoculate the roots of soybean and reduced N2O emissions [61]. Needless to say, this method is
far more effective on crops that naturally cultivate a rhizosphere of N2O-reducing microorganisms.
It is also another technique that cannot target atmospheric N2O;

(7) Rhizosecretion. This is a biotechnology-based approach, involving the transformation of
amenable crop plants with genes expressing recombinant bacterial proteins that reduce N2O by
secreting N2O-cracking enzymes [64,91]. Plants can be engineered to express proteins under the
control of promoters that induce hairy root formation in plants. This rooting response results from
the presence of the rolABCD genes from Agrobacterium rhizogenes, the bacterium that induces hairy
root disease [92]. The rhizosecretion expression system harnesses the ability of A. rhizogenes to
both target gene expression to the roots and to increase root biomass, subsequently increasing the
amount of recombinant protein secreted into the soil [91]. Tobacco plants expressing a bacterial
N2O-cracking enzyme tagged for secretion under the control of the A. rhizogenes rolD promoter
have been successful in demonstrating reducing activity [64,93]. Gas analysis was not performed
to confirm that these plants mitigated N2O emission. Ultimately, this approach arrives at a similar
problem as other ‘rhizoremediative’ techniques: the N2O-reducing ability of such a transgenic
plant would be limited to the rhizosphere. This system would not have access to the bulk of N2O
gas, much of which comes from other sources;

(8) Atmospheric phytoremediation using genetically engineered plants. The potential of
transgenic plants for environmental phytoremediation is well-documented: several fungal
and bacterial oxidoreductases have been functionally expressed in plants as phytoremediation
strategies including pentaerythritol tetranitrate reductase [94], mercuric reductase [95], and
arsenate reductase [96]. This type of plant-based decontamination strategy provides advantages,
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such as stable cultivation and control of the remediant organism and atmospheric exposure of
the gas-cracking enzyme [97].

Atmospheric phytoremediation may ameliorate problems created by the other N2O mitigation
strategies described. The concept here is to develop crops with the ability to “crack” N2O in both
the soil and the atmosphere by incorporating the bacterial nosZ gene into their genomes. This gene
encodes the nitrous oxide reductase enzyme (N2OR), an oxidoreductase that catalyzes the removal of
N2O from the atmosphere, a process performed naturally by both denitrifying and non-denitrifying
bacteria in the soil [98]. While conventional N2O mitigation strategies aim to control N2O production
at earlier stages in the nitrification/denitrification pathway, this approach will target the atmospheric
sum of N2O emitted by all sources (Figure 2).
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Figure 2. Nitrification-denitrification pathway and overview of current N2O mitigation strategies.
Orange arrows and lines show eight N2O mitigation strategies described in Table 1. Green arrows
show nitrification and purple arrows represent denitrification reactions. BDI, biological denitrification
inhibitor; BMPs, best management practices; BNI, biological nitrification inhibitor; EENFs, enhanced
efficiency nitrogen fertilizers; SDI, synthetic denitrification inhibitor; SNI, synthetic nitrification
inhibitor; UI, urease inhibitor. O Encircled numbers refer to Table 1 strategies.

3. Nitrous Oxide Reductase—An Orphaned Soil Protein?

The nosZ gene can be categorized as either ‘clade I’ or ‘clade II’ based on sequence and nos operon
organization, including the lack of an accessory nosR gene in the clade II members [99]. Clade II
nosZ genes are also known as ‘atypical’ nos genes since they are found in non-denitrifying bacterial
species. The N2OR enzyme that the clade II gene encodes catalyzes the same reaction performed by
the clade I-encoded enzyme, but has a higher affinity for N2O [100], an important factor to consider
when conceptualizing the development of an nosZ-expressing plant.

N2OR is a multi-copper protein encoded by the nosZ gene (which is accompanied by an operon
cluster of additional genes (nosRDFYL) [101]) and is the only enzyme that can catalyze the conversion
of N2O into N2. The first active N2OR was characterized from the soil bacterium Pseudomonas stutzeri
and similar enzyme structures were resolved in bacterial species Marinobacter hydrocarbonoclasticus
(formerly Pseudomonas nautica) (Figure 3), Achromobacter cyclocastes, and Paracoccus denitrificans. N2OR
is a head-to-tail homodimer and each monomer contains two domains: an electron transferring domain
(binuclear CuA centre) and a catalytic domain (tetranuclear CuZ centre) [102]. There is some variability
between the species regarding CuZ bridging and cupric coordination in the catalytic centre, suggesting
that N2OR substrate binding is species-specific. Regardless, the catalytic mechanism of N2O reduction
in N2OR is still unclear [103].
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Figure 3. Structure of Marinobacter hydrocarbonoclasticus nitrous oxide reductase (N2OR) homodimer.
N2OR is organized as a head-to-tail homodimer. Monomers are coloured differently so that they
can be distinguished. In both monomers, the N-terminal domain is dark-coloured. The N-terminal
domain forms a seven-bladed β-propeller fold that coordinates the catalytic tetranuclear active site
CuZ through seven histidine residues at its hub. The C-terminal domain forms a cupredoxin fold and
binds the dinuclear mixed-valent CuA centre [104].

The proven ability of N2OR to “crack” the N2O molecule raises the question of why the protein has
not yet been incorporated into a commercially available transgenic cropping choice for environmentally
motivated producers and small-plot farmers. Work has been done on this gene and its potential role
in plant biotechnology since it was originally isolated in 1998 from the anaerobic soil bacterium A.
cyclocastes [105,106], but it has yet to be converted into a commercially valuable tool. In this sense, N2OR
may be considered an “orphaned” protein, neglected among a veritable molecular toolkit of genes in
the soil microflora [107,108]. Such forays into integrating soil and air sciences are demonstrative of the
possibilities of what the soil microbiome offers biotechnologists [27]; it has already been discussed
regarding the N-management possibilities offered by the microbiome and the current practice of
‘bioprospecting’ is also revealing a plethora of beneficial bacterial products, which is only accelerating
thanks to whole-system approaches involving computational analyses [109].

Web of Science reports that between 1900 and 1991, there are no records binned under the
combined topics “nitrous oxide reductase” and “microb*”. The scientific literature blossomed from its
first occurrence of 1992 to the present day, witnessing at least 175 publications dealing with the science
of this important enzyme in our total environment. The scientific community waited until 1996 to start
discussing denitrification in a plant context, according to these same search terms. With the search
terms “nitrous oxide reductase” and “plant”, the scientific record shows that soil microbiologists have
taken a growing interest in the movement of N into the atmosphere (Figure 4). It is encouraging to
note that in the same time period, the linkage between N2OR and climate began its nascent phase.
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Figure 4. Nitrous oxide reductase-related publications released since 1990 on Web of Science (Clarivate
Analytics). Publications by key word vs “nitrous oxide reductase” from 1990 to 2018. The orange line
indicates “nitrous oxide reductase” + “microb*”; green: “nitrous oxide reductase” + “plant”; blue:
“nitrous oxide reductase” + “climat*”.

4. Catch Me If You Can: Can Plants Catalytically Convert N2O in planta?

Rather than a ‘cat and robin redbreast’ conundrum, we are confronted with an opportunity to
deploy protein engineering to ensure that more N2OR molecules are attracted to the substrate binding
site of the copper enzyme. Protein engineering offers ways to sidestep the challenges of expressing a
complex bacterial protein in a plant [110]. There are potential issues with a recombinant metalloprotein
like N2OR, such as whether the ABC transporter can assemble within a plant cell, or the plant can
incorporate copper into the electron transferring and catalytic domains [111,112]. It is possible to
re-engineer N2OR and produce a functional product [66], so there is precedent for designing an
artificial metalloenzyme through rational protein design. This approach may be key to engineering a
plant-compatible N2OR protein.

A principle challenge associated with imparting N2OR functionality to plants is that transforming
the nosZ sequence alone may not be effective [113]; in P. stutzeri, the transcription of nosZ was
dependent on the nosDFY genes being expressed, as they encode components of a putative ABC
transporter system for the biogenesis of the CuZ centre [114]. Therefore, catalytically active N2OR
may not be produced when only nosZ is expressed in a heterologous host [28]. Nevertheless,
a model N2O-expressing plant has been engineered [64,93]. The clade I nosZ gene from soil
bacterium Pseudomonas stutzeri was successfully expressed in a heterologous system—in this case,
the tobacco plant (Nicotiana tabacum). In those proof-of-concept experiments the nosZ-expressing
tobacco plants reduced 826 µg N2O/min/gram of leaf tissue [115]. Assuming the tobacco yield to
be 0.50 tonne/ha [116], the calculated N2O-cracking ability of the nosZ-expressing tobacco could be
as high as 600 kg of N2O/ha/day [115], or 60 tonnes/ha/year (100 day growing season). This value
surpasses the calculated N2O flux of 0.05–1.98 kg N2O/ha/year [117]. In other words, if every tobacco
plant in the world produced N2OR, this industrial crop (6.6 million tonnes were produced worldwide
in 2016 [118]) could conceivably crack 785 Tg of N2O (1 Tg = 1 million metric tonnes) during an average
growing season of 100 days, far surpassing the estimated ~30 Tg of N2O emitted per year [119]. Such
catalytic capacity would give the ‘Stop Smoking’ campaigns a whole new flavour.
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Although these transgenic plants produced a functional N2OR enzyme, no gas analysis was
performed to quantifiably ensure that these plants could reduce N2O to N2 using a recombinant N2OR.
In the future, it is imperative that such analyses be performed to properly judge the efficacy of such a
gene-stacking trait system for atmospheric phytoremediation.

An associated issue rests with P. stutzeri being an anaerobic species that produces enzymes
that function optimally in a low-oxygen environment. While expressing nosZ in plants to reduce
N2O appears to be an elegant solution, the N2OR enzyme was not evolutionarily engineered to be
functional in the presence of oxygen. Most soil bacteria that produce N2OR do so in an anaerobic
environment [102].

In the past five years, studies have identified several prokaryotic species that may express an
oxygen-compatible N2OR. Aerobic N2O reducers may be undertaking an important role in mitigating
the amounts of N2O emitted to the atmosphere in events of oxic-to-anoxic transitions, but these systems
have not yet been validated in plants. Here, we discuss two candidates for an oxygen-compatible
nosZ expression system: clade II-nosZ member Gemmatimonas aurantiaca gen nov., spp. nov. strain
T-27, a polyphosphate-accumulating soil aerobe that is strongly represented in many oxygen-rich
soil samples [120]; and Azospira oryzae, another clade II N-fixing bacterium originally isolated from
the roots of rice (Oryza sativa) [121]. N2O reduction by the G. aurantiaca strain T-27 was observed in
both the absence and presence of oxygen [120]. The inability of this organism to consume N2O in the
complete absence of oxygen and the observed oxygen-induced activation of nosZ expression compels
one to consider in planta overexpression, whereby the diurnal fluctuation of photosynthetic oxygen
production may offer an egress for N2O accumulation. The A. oryzae strains I09 and I13 also show
more rapid N2OR recovery rates and tolerance against oxygen inhibition than P. stutzeri [121] and so
may be appropriate candidates for crop plant transformation and N2OR expression.

If the ideal nosZ sequence were to be identified and transformed into commercially important
crop plants, the benefits would be numerous and profound: seed-borne GHG technology foresees
the transgenic cassette passed on from generation to generation, meaning that constant application
of the beneficial catalyst would not be required (as with NI application and rhizoremediation); the
expression of nosZ in the aerial tissues of the plants allows the reducing enzyme to confront N2O much
more easily than when the enzyme is expressed in the soil.

5. Novel Breeding Task: “Gas Cracking” Plants

The challenge of expressing heterologous bacterial proteins in plants necessitates codon
optimization due to differences in GC content and codon bias with eukaryotes [122]. Altering the
codon bias (or applying ‘directed evolution’ [123]) of a bacterial gene to be expressed in plants has
been highly successful: P. stutzeri nosZ in tobacco [115], 5-enolpyruvylshikimate-3-phosphate (EPSP)
synthase from Agrobacterium tumefaciens in Roundup Ready crops [124], and Bacillus thuringiensis
Cry genes in maize [125] and rice [126]. Indeed, the global advance promulgating engineered crops
is pillared on today’s artificial intelligence-guided plant codon optimization rules offered by both
large and small boutique DNA houses. However, there has been success expressing native bacterial
sequences in plants, i.e., in the case of cotton expressing the native sequence of the P. stutzeri gene ptxd
(PHOSPHONATE DEHYDROGENASE) [127,128]. One can dare to fathom how a universally-functional
nosZ expression system could conceivably redirect some aspects of GHG mitigation research. Such a
plant transformation cassette could theoretically be applied to any plant—wheat, rice, soybean, peat
moss [129]—recruiting these species for the purpose of denitrification mitigation.

Even with an effective nosZ expression system, there are additional challenges in developing
nosZ-expressing plant lines. There are relatively few powerful monocot-optimized expression systems
available [130] (although Bt corn, LibertyLink wheat, and Roundup Ready wheat can attest to
the effectiveness of the 35S promoter system in monocots), and there is difficulty in transforming
monocots [65]. With the advent of new plant transformation technologies like the soil bacterium
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Ochrobactrum haywardense [131] and the BABYBOOM/WUSCHEL2 system [132], the production of
genetically modified crops with stacked or pyramided GHG genes may be expedited in the near future.

6. Conclusions—Challenges to the Future Success of nosZ

We must address what may be the greatest challenge of all for the modern molecular plant breeder:
convincing the general public that transgenic crops may be beneficial for all the plant-planet’s denizens,
as modified crops that enter the food stream may appear unpopular in some boroughs. Regardless,
there is a clear, urgent need to control soil N2O losses due to the detrimental effects of this potent GHG
in the atmosphere. Climate-smart crops should be given a crack at directly addressing this issue and
tackling climate change. Such GHG-reducing plant lines, endowed with the ability to catalytically
“crack” N2O in the air, could be vital in the battle to shift public perception towards the acceptance of
“GMOs” in agricultural research.

Involvement of N2O in climate change and global warming has been the subject of increasing
investigations due to its potential heat-trapping properties [3]. N2O emission from soil is primarily
the result of an incomplete enzymatic reaction which is mediated by the bacterial enzyme, N2OR [98].
Therefore, in the late 1990s [105,106], the development of N2OR-positive transgenic plants was
proposed as an environmental phytoremediation strategy with promise to remove N2O from soil and
the atmosphere (Figure 2). However, producing a foreign protein in a plant cell is often a serious
challenge. For example, different codon usage [133] and cellular properties between eukaryotic and
prokaryotic cells are considered as unknown aspects of this strategy. At least two key questions
need to be addressed in future studies to probe the probability for success of this green gene de-toxic
tactic for accelerating the destruction of nitrous oxide via canopy catalysis: (1) Which candidate is
the best source-organism to donate nosZ sequence for plant transformation? Activity of bacterial
N2OR is associated with the anaerobic conditions in soil [101], whereas the plant cell is mostly an
aerobic environment. Photosynthesis and respiration cause different levels of oxygen content in plant
cells in a diurnal cycle which is not consistent with the enzymatic activity of N2OR in anaerobic soil
bacteria. Therefore, selecting obligate or facultative aerobic bacteria containing active N2OR enzymes
as ‘the source code’ would be pivotal; (2) Which plant cell compartment is the best destination for
targeting N2OR accumulation? The native enzyme N2OR in bacteria is directed to the periplasm,
where Cu chaperones provide enough Cu for the assembly of metal centres [134]. The absence
of periplasmic space in plant cells reinforces the notion that subcellular localization of N2OR may
influence its enzymatic activity in planta. Moreover, the important role of Cu in the functional assembly
of N2OR posits whether the transformation of bacterial nosDFY, along with nosZ, is essential for a
functional enzyme. Urgent exploration of how the cellular pool of metal nutrients and proteins (pseudo
chaperones) in eukaryotic cells may suffice to activate N2OR in planta may compel the use of such
climate-smart plants.
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