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Abstract: In this paper, we apply the optimal control theory to obtain the analytic solutions of
the two-component globally averaged energy balance model in order to estimate the influence of
solar radiation management (SRM) operations on the global mean surface temperature in the 21st
century. It is assumed that SRM is executed via injection of sulfur aerosols into the stratosphere to
limit the global temperature increase in the year 2100 by 1.5 ◦C and keeping global temperature
over the specified period (2020–2100) within 2 ◦C as required by the Paris climate agreement.
The radiative forcing produced by the rise in the atmospheric concentrations of greenhouse gases is
defined by the Representative Concentration Pathways and the 1pctCO2 (1% per year CO2 increase)
scenario. The goal of SRM is formulated in terms of extremal problem, which entails finding a
control function (the albedo of aerosol layer) that minimizes the amount of aerosols injected into the
upper atmosphere to satisfy the Paris climate target. For each climate change scenario, the optimal
albedo of the aerosol layer and the corresponding global mean surface temperature changes were
obtained. In addition, the aerosol emission rates required to create an aerosol cloud with optimal
optical properties were calculated.
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1. Introduction

Climate change is among the most significant threats to human civilization in the 21st century
and beyond [1]. The Paris Climate Accord proposed to hold average temperature increase “to well
below 2 ◦C above pre-industrial levels” and to pursue efforts to keep warming “below 1.5 ◦C above
pre-industrial levels” [2]. To reach these goals, eight countries have already presented long-term
low-emission strategies, which aims to reduce greenhouse gas emissions; several countries are currently
in the process of preparing such strategies [3]. Meanwhile, the World Meteorological Organization’s
(WMO) “Statement of the State of the Global Climate in 2017” released in January 2018 said, “The global
mean temperature in 2017 was approximately 1.1 ◦C above the pre-industrial era” [4]. There is high
confidence that planetary warming will continue throughout the 21st century even if we immediately
stopped emitting greenhouse gases into the atmosphere (e.g., References [5–9]). Some resent studies
(e.g., References [10–13]) suggest that geoengineering technologies can serve as a supplementary
measure to stabilize climate as “in the absence of external cooling influence” [14], it is hard to achieve
the Paris Agreement climate goals.

Solar radiation management (SRM) by injection of sulfur aerosols into the stratosphere [15,16] is
one of the most feasible and promising solutions for inducing negative radiative forcing (RF) from
aerosols in order to at least partially compensate the positive RF from atmospheric greenhouse gases.
The current state of understanding of climate engineering technologies, including SRM, has been
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discussed in References [17–26]. Over the years, climate models have played a key role in exploring
geoengineering techniques and predicting and quantifying their potential effects on Earth’s climate
(e.g., References [27–36]). Due to the uncertainties inherent in climate models that could not be
sufficiently reduced over the last decade [37], the resulting range of possible outcomes of hypothetical
geoengineering efforts remains quite vague. To handle the climate response uncertainties, some
studies (e.g., References [38–45]) have suggested modeling the Earth’s climate as a control system with
feedbacks, which allows planning scenarios for geoengineering using the so-called “design model”.
This formulation makes it possible to design the control law and calculate the amount of SRM forcing
as a function of time needed to offset the rise in global mean surface temperature due to human-caused
positive RF. Meanwhile, exploring Earth’s global climate as controlled dynamical system, we can
approach geoengineering from the perspective of optimal control theory [46–49]. Within the optimal
control framework, the goal of geoengineering can be formulated in terms of extremal problem, which
involves finding control functions and the corresponding climate system trajectory that minimize or
maximize a certain objective functional (also referred to as performance measure or index) subject to
various constraints (e.g., References [50,51]. If x is the state vector of climate system and u is the vector
of control variables, then the abstract extremal problem can be formulated as follows:

J (x, u)→ extr, F (x, u) = 0, (x, u) ∈ M ⊂ X ×U (1)

The statement of this problem includes a set X × U on which the (real) functional J (x, u)
is defined and constraints imposed on state and control variables given by the model of control
object F (x, u) = 0 (dynamic constraints) and by the subset M in X × U . The solution to the
extremal problem (Equation (1)) is the optimal process (x∗, u∗). Thus, by solving the optimal control
problem (OCP), we can obtain the mathematically rigorous control law and the corresponding system’s
trajectory that are relevant for the specified performance measure J (x, u).

This paper deals with a simple mathematical model for controlling the global mean surface
temperature Ts f c in the 21st century by the injection of sulfur aerosols into the stratosphere to limit the
global temperature increase in the year 2100 by 1.5 ◦C above pre-industrial level and keeping global
temperature over the period of 2020–2100 within 2 ◦C as required by the Paris climate agreement.
The objective is to minimize resources (the total mass of aerosols) required to achieve the desired final
state of the climate system. In the model, the positive RF produced by the rise in the atmospheric
concentrations of greenhouse gases is specified in accordance with the Representative Concentration
Pathways [52] and the 1pctCO2 (1% per year CO2 increase) scenario.

The mathematical statement of OCP is the collection of the following key elements: objective
function defined to judge the effectiveness of control process, mathematical model of the controlled
object, equality and inequality constraints to be satisfied by state and control variables, and boundary
and initial conditions (if any) for state variables. To imitate the behavior of the climate system, we
applied a two-component energy balance model [53–55] in which the global mean surface temperature
anomaly (perturbation) represents the variable that interests us the most, and the albedo of the
global aerosol layer is designated as the control variable. We derived analytical expressions for both
the optimal albedo of the global aerosol layer and the corresponding change in the global mean
surface temperature.

The results of illustrative calculations are presented for the period 2020–2100. For each climate
change scenario, the optimal albedo of the aerosol layer—and therefore the aerosol emission rates—as
well as the associated global mean surface temperature changes were found.

We need to emphasize that the main reason for using such a model is that similar two-layer models
have been considered and analyzed in a number of papers considering the response to forced climate
change. For example, Geoffroy et al. [56,57] obtained and discussed the general analytical solutions of
the two-layer model for different hypothetical climate forcing scenarios and suggested the approach of
calibrating the model parameters to imitate the time response of coupled general circulation models
(CGCMs) from CMIP5 to radiative forcing. Gregory et al. [58] analyzed the two-layer model and
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discussed the transient climate response, the global mean surface air temperature change under
two scenarios: one with a step forcing (the abrupt 4xCO2 experiment) and one with the 1pctCO2

scenario. Despite the fact that the two-layer model is one of the simplest tools to mimic climate
dynamics under external radiative forcing, it was able to simulate the evolution of average global
surface temperature over time in response to both abrupt and time-dependent forcing with reasonable
accuracy (e.g., References [56,59]).

In the two-layer model, climate control is carried out via changing Earth’s planetary albedo by
injection of sulfur aerosols into the stratosphere (“albedo modification”). Sulfur aerosols increase the
amount of sunlight that is scattered back to space, thereby reducing the amount of sunlight absorbed
by Earth. Inherently, the planetary albedo is an average of the local albedo, averaged over the entire
globe. The local albedo, in turn, is a highly variable dimensionless parameter that depends on a
number of local factors, such as the composition of the atmosphere and in particular the presence of
aerosols, the cloud amount and properties [60], the sea ice cover [61], the land use [62–64], the snow
cover [65], etc. A typical value of Earth’s planetary albedo is about 0.3 [66].

As change in the albedo of our planet is a powerful driver of climate (indeed, a 1% change in the
Earth’s planetary albedo generates the radiative effect of 3.42 Wm−2, which is commensurate with radiative
forcing due to a doubling of CO2 concentrations in the atmosphere), scientists have proposed “albedo
modification” as a powerful tool to deal with global warming (e.g., References [16,20,23,29,31,33,67]).

2. Materials and Methods

2.1. The Model of Control Object

The control object is Earth’s climate system. To simulate the climate system dynamics under the
influence of external radiative forcing, we have applied the mathematical model consisting of two
subsystems: One is the upper layer subsystem, which combines the atmosphere, the land surface,
and the upper ocean; the other is the lower layer subsystem, which represents the deep ocean [53–55].
The state of each subsystem is characterized by the corresponding temperature perturbation (anomaly)
with respect to initial climate “equilibrium” state. Denoting temperature anomalies for upper and
lower subsystems by T and TD, respectively, the equations that govern these perturbations can be
written as follows:

CU
dT
dt

= −λT − γ(T − TD) + ∆RCO2 + (1− α0)∆RA (2)

CD
dTD
dt

= γ(T − TD) (3)

Here, CU and CD are the effective heat capacities of the upper and lower models, respectively
(note that CU � CD); λ is a climate radiative feedback parameter; γ is a coupling strength parameter
that describes the rate of heat loss by the upper layer; ∆RCO2 is the radiative forcing caused by global
increase in the atmospheric CO2 concentration; ∆RA is the negative radiative forcing generated by the
artificial aerosols at the top of the atmosphere; and α0 is Earth’s planetary albedo. We will assume that
the temperature anomaly T is identified with the global mean surface temperature change Ts f c [53,54].

Despite its simplicity, this model imitates climate changes under external radiative forcing with
reasonable accuracy [56–59]. We have chosen values of 7.34 W yr m−2 K−1, 105.5 W yr m−2 K−1,
1.13 W m−2 K−1, and 0.7 W m−2 K−1 for parameters CU , CD, λ, and γ, respectively. These values are
taken in accordance with values consistent with the CMIP5 multimodel mean under climate change
derived in Reference [56].

For convenience sake, we have rewritten the model Equations (2) and (3) as follows:

dT
dt

= −aT + bTD +
∆RCO2

CU
+

(1− α0)∆RA

CU
(4)

dTD
dt

= pT − pTD (5)
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where
a =

λ + γ

CU
, b =

γ

CU
, p =

γ

CD
. (6)

Ordinary Differential Equations (4) and (5) represent a mathematical model of the object to
be controlled.

2.2. Parameterization of the Aerosols’ Radiative Effect

The climate control is assumed to be executed through the injection of nonabsorptive sulfate
aerosols into the stratosphere. Injected aerosol particles scatter shortwave solar radiation back to the
outer space and consequently change the radiative balance of our planet, increasing Earth’s planetary
albedo and therefore causing the negative RF at the top of the atmosphere [68–71]:

∆RA = −αAQ0 (7)

Here, αA is the instant albedo of the global aerosol layer; Q0 is the global average incoming
solar radiation on the top of the atmosphere defined as Q0 = I0/4, where I0 = 1368 W m2 is a solar
constant [72,73]. Thus, to estimate the radiative effect of stratospheric aerosol, we need to calculate
the albedo αA, which is considered as the control variable. However, in reality, we have the ability to
manipulate the emission rate of aerosols injected into the stratosphere EA. To determine EA from the
known αA, the mass balance equation is used:

dMA
dt

= EA −
MA
τA

(8)

where τA is the residence time of stratospheric aerosol particles; MA is the global mass of the
stratospheric aerosols, which is linearly related to the albedo αA [69]:

αA = MA(βAkA/Q0Se) (9)

where the coefficient βA = 24 W m−2 [70,71]; kA = 7.6 m2g−1 is the mass extinction coefficient [69];
Se is Earth’s area determined as Se = 4πR2

e , where Re = 6371 km is Earth’s radius.
In geoengineering, sulfate aerosol particles are not directly injected into the stratosphere but can

be formed from gaseous precursors, such as sulfur dioxide SO2, hydrogen sulfide H2S, carbonyl sulfide
OCS, or dimethyl sulfide (DMS), which then convert into aerosols. We will express the emission rate
of aerosol precursors as well as the mass of sulfate aerosols in units of sulfur, denoting them by ES
(in Tg S yr−1) and MS (in Tg S), respectively. Assuming that 1 Tg of sulfur injected into the stratosphere
forms approximately 4 Tg of aerosol particles [74], we obtain that ES ≈ EA/4 and MS ≈ MA/4. As the
relationship between MA and αA is linear, the following predictive equation for αA can be derived
from Equation (8):

dαA
dt

= χ−1ES −
αA
τA

(10)

where χ = Q0Se/(4βAkA) ≈ 2.39× 102 Tg S.
Thus, solving the OCP, we can find the optimal control law α∗A(t) and then calculate the optimal

aerosol emission rate E∗S(t) using Equation (10).

2.3. Parameterization of the Anthropogenic Radiative Forcing

In energy balance models, simple empirical expressions are generally used to calculate radiative
forcing due to the increase in atmospheric greenhouse gases. For example, the radiative forcing
caused by a perturbation of the atmospheric burden of CO2 can be parameterized as a function of CO2

only [75,76]: ∆RCO2 = κ × ln [CCO2(t)/C(0)
CO2

], where κ (W m−2) is the empirical coefficient; CCO2(t)

is the CO2 concentration at time t; and C(0)
CO2

is the reference CO2 concentration level. A typical
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value for the parameter κ is near 5.35 W m2 [75,76]. In our model, we have taken the total global
mean anthropogenic and natural radiative forcing ∆RN as prescribed by the different scenarios and
approximated by a linear function of time:

∆RN = ηt (11)

where η is the annual rate of forcing (see Table 1).

Table 1. Annual radiative forcing rate η.

Scenario RCP8.5 1pctCO2 RCP6 RCP4.5

η (W m−2 yr−1) 7.14× 10−2 5.29× 10−2 3.814× 10−2 2.17× 10−2

2.4. Optimal Control Problem Formulation

We let [t0, tf] be a finite and fixed time interval. The OCP is defined as follows:
We find the control function αA(t) generating the corresponding temperature anomalies T(t) and

TD(t) that minimizes the objective function:

J =
1
2

t f∫
t0

α2
A(t)dt (12)

subject to the dynamics (4) and (5) and given initial T(t0) = 0 and TD(t0) = 0, as well as final (terminal)
T
(

t f

)
= T f conditions.

In this formulation, the terminal condition T f is interpreted as a target change in the global mean
surface temperature at t = t f , and the performance index (Equation (12)) characterizes the aerosol
consumption for SRM operations (recall that αA and MA are linearly dependent functions). Thus, we
wish to minimize the mass of aerosols required to reach the target surface temperature change at the
final time. The global mean deep ocean temperature anomaly at the final time t f is not defined because
changes in the global mean surface temperature are of primary concern, while changes in the deep
ocean temperature are only of secondary concern. The total amount of aerosols annually emitted to
the stratosphere can be limited by the available technical equipment. In this case, the minimization
problem (Equation (12)) should be considered within the framework of control-constrained OCP.
The set of admissible controls is given formally by αA ∈ [0, U], where U is the maximum value of
technically feasible and affordable albedo αA.

2.5. Method for Solving the Optimal Control Problem

Before proceeding further, we rewrite the model Equations (4) and (5) by replacing ∆RCO2 with ηt
(11) and ∆RA with −αAQ0 (7):

dT
dt

= −aT + bTD + ct− qαA (13)

dTD
dt

= pT − pTD (14)

where c = η/CU and q = (1− α0)Q0/CU .
We solve the formulated OCP using the Pontryagin’s maximum principle (PMP) [47].

The Hamiltonian function for the problem (12) is defined as follows:

H = −1
2

α2
A + ψ1(−aT + bTD + ct− qαA) + ψ2(pT − pTD) (15)
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where ψ1 and ψ2 are time-varying Lagrange multipliers, also known as costate or adjoint variables,
which satisfy the adjoint system:

dψ1

dt
= − ∂H

∂T
= aψ1 − pψ2 (16)

dψ2

dt
= − ∂H

∂TD
= −bψ1 + pψ2 (17)

The PMP states that the optimal control α∗A(t) ∈ [0, U] is one that would maximize the

Hamiltonian (Equation (13)) at each fixed time t ∈
[
t0, t f

]
:

α∗A = arg max
αA∈[0,U]

H(αA) (18)

Therefore, to find the optimal control α∗A, we must maximize H with respect to αA, where the
control belongs to the admissible control region αA ∈ [0, U]. The Hamiltonian maximization condition
is as follows:

∂H
∂αA

= −αA − qψ1 = 0 (19)

Thus, to find the optimal control and the corresponding climate system’s trajectory, we need
to solve the set of four ordinary Differential Equations (13), (14), (16), and (17) in four unknowns T,
TD, ψ1, and ψ2 with given initial and terminal conditions. As the variable TD is not defined at t f , the

following transversality condition for costate variable ψ2 applies: ψ2

(
t f

)
= 0 [48,49]. The analytic

expressions derived for the control variable αA and temperature anomalies T and TD can be written
as follows:

αA(t) = −C1q
[
v11eλ1t + e(λ1−λ2)t f v21eλ2t

]
(20)

T(t) = C1α1

(
eλ1t − eλ2t

)
+ C3e−λ1t + C4e−λ2t ++w2t + w1 (21)

TD(t) = C3
a− λ1

b
e−λ1t + C4

a− λ2

b
e−λ2t+ (22)

+ C1

[
α1(a + α1)− q2v11

b
eλ1t − α2(a + α2)− q2v21e(λ1−λ2)t f

b
eλ2t

]
+

+
aw2 − c

b
t +

aw1 + w2

b
where C1, C3, and C4 are arbitrary integration constants (note that the integration constant
C2 = −C1e(λ1−λ2)t f ); λ1 and λ2 are the eigenvalues of the coefficient matrix of the adjoint system,
Equations (14) and (15); v11 and v21 are the components of the corresponding eigenvectors.

α1 =
q2v11(λ1 + p)

λ2
1 + λ1(a + p) + (ap− pb)

α2 =
q2v21(λ2 + p)e(λ1−λ2)t f

λ2
1 + λ1(a + p) + (ap− pb)

w1 =
c[(ap− pb)− p(a + p)]

(ap− pb)2

w2 =
pc

ap− pb

The constants of integration are determined by applying the boundary conditions.
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If we consider climate engineering as a state-constrained OCP with constraints on the state
variables, then additional necessary conditions for optimality, known as the complementary slackness
conditions, should be specified [77]. In this study, we express the OCP with the following
state constraint:

T(t) ≤ CT ∀t ∈
[
t0, t f

]
(23)

where CT is the threshold parameter whose value should be set. The meaning of the condition
(Equation (23)) known as a path constraint is that throughout the geoengineering project, the global
mean surface temperature change should not exceed a certain value CT , which is determined a priori.
We should highlight that state constraints add a great deal of complexity to the OCP [77,78].

3. Results and Discussion

In the calculations, we took calendar years 2020 and 2100 as the initial t0 and the final (terminal)
t f time, respectively, which meant that we were examining the climate control problem on the finite
time interval 2020–2100. To formulate the boundary conditions and impose a constraint on change in
the global mean surface temperature Ts f c, we assumed the following:

- The temperature anomalies T and TD were calculated relative to 2020, i.e., the boundary
conditions for T and TD at t = t0 were T2020 = 0 and TD, 2020 = 0, respectively, where the
numerical subscript referred to the year 2020.

- By 2020, Ts f c would exceed the pre-industrial level by 1.1 ◦C, i.e., ∆T2020 = 1.1 .

- By 2100, Ts f c would exceed the pre-industrial level by 1.5 ◦C, i.e., ∆T2100 = 1.5 .

- For the 2020 to 2100 period, the rise in Ts f c should not exceed 2 ◦C above the pre-industrial level.

Then, the permissible increase in the temperature anomaly T2100 by year 2100 relative to 2020
would be T2100 = ∆T2100 − ∆T2020 = 0.4 . This value represents the boundary condition for T at t = t f .
The threshold parameter, which defines a path constraint (Equation (23)), is CT = 2 − ∆T2020 = 0.9 .

Changes in both global mean surface temperature and deep ocean temperature calculated for
different climate change scenarios in the absence of climate engineering interventions are illustrated in
Figure 1. The corresponding temperature changes in the year 2100 are shown in Table 2. According to
Reference [79], without additional measures to reduce GHG emissions (RCP8.5 scenario), increases in
global mean surface temperatures are expected to be between 3.7 and 4.8 ◦C by the year 2100 versus
pre-industrial levels (this range is based on median climate response). As seen in Table 2, by year
2100, the model outlined here projects globally averaged surface temperature increases of 4.26, 3.44,
and 2.80 ◦C for the RCP8.5, 1pctCO2, and RCP6.0 scenarios, respectively (relative to pre-industrial
period). Thus, geoengineering can be regarded as one of supplementary measures needed to achieve
the climate targets of the Paris Agreement.
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Figure 1. Changes in (a) global mean surface temperature and (b) deep ocean temperature calculated
for different climate change scenarios in the absence of climate engineering interventions.

Table 2. Calculated temperature changes T and TD from 2020 to 2100 (changes relative to the
pre-industrial level are shown in brackets).

Scenario RCP8.5 1pctCO2 RCP6.0 RCP4.5

T (K) 3.16 (4.26) 2.34 (3.44) 1.70 (2.80) 0.96 (2.06)

We considered results of calculations for the RCP8.5 (the worst-case) scenario in more detail.
Figure 2 shows (a) the optimal albedo of the global stratospheric aerosol layer, (b) the corresponding
surface temperature anomaly, (c) the mass of the global aerosol layer, and (d) the optimal emission rate
of aerosol particles calculated for RCP8.5 pathway with and without constraint on the global mean
surface temperature increase. In the absence of state constraint, the optimal albedo α∗A and, accordingly,
the optimal emission rate of aerosol particles E∗S would increase exponentially. This optimal aerosols
emission rate ensures that the target temperature anomaly T2100 = 0.4 is satisfied. However, within
the given time interval 2020–2100, a temperature rise would exceed the set point CT , i.e., T(t) > CT
(the “overshooting” phenomenon [80]). The maximum increases in global mean surface temperature
for different climate change scenarios are presented in Table 3. The use of the constraint (Equation (21))
allows us to avoid overshoot; however, compared to the unconstrained case, keeping the increase
in global mean surface temperature below the target constrained level CT would require additional
amount of aerosols (see Table 4). For example, for the RCP8.5 scenario, the total mass of aerosol
particles injected in the stratosphere from the year 2020 to 2100 is about 73.6 Tg S, which is about 2
times larger than M∗S, tot, calculated by solving an unconstrained OCP.



Climate 2018, 6, 85 9 of 16Climate 2018, 6, x FOR PEER REVIEW  9 of 16 

 

 

(a) 

 

(b) 

 

(c) 

  

(d) 

Figure 2. Results for the RCP8.5 pathway: (a) optimal albedo of aerosol layer 𝛼𝐴
∗ ; (b) the 

corresponding temperature anomaly 𝑇∗; (c) total aerosol mass 𝑀𝑆
∗; and (d) the optimal emission rate 

𝐸𝑆
∗. 

Table 3. Maximum global mean surface temperature anomaly T calculated without state constraint. 

Scenario RCP8.5 1pctCO2 RCP6 RCP4.5 

T (K) 2.48 1.84 1.34 0.78 

Table 4. The mass of aerosols 𝑀𝑆,𝑡𝑜𝑡 (Tg S) injected into the stratosphere from 2020 to 2100 

Scenario RCP8.5 1pctCO2 RCP6 RCP4.5 
𝑀𝑆,𝑡𝑜𝑡 without state constraint 36.5 25.6 17.0 7.7 

𝑀𝑆,𝑡𝑜𝑡 with state constraint  73.6 44.46 23.3 - 

Results obtained for 1pctCO2, RCP6.0, and RCP4.5 scenarios are represented in Figures 3–5, 

respectively. These figures show that the overshooting phenomenon is also observed for the 1pctCO2 

and RCP6.0 scenarios. The only exception is the RCP4.5 scenario. 

Figure 2. Results for the RCP8.5 pathway: (a) optimal albedo of aerosol layer α∗A; (b) the corresponding
temperature anomaly T∗; (c) total mass of aerosols M∗S; and (d) the optimal emission rate E∗S.

Table 3. Maximum global mean surface temperature anomaly T calculated without state constraint.

Scenario RCP8.5 1pctCO2 RCP6 RCP4.5

T (K) 2.48 1.84 1.34 0.78

Table 4. The mass of aerosols MS, tot (Tg S) injected into the stratosphere from 2020 to 2100.

Scenario RCP8.5 1pctCO2 RCP6 RCP4.5

MS,tot without state constraint 36.5 25.6 17.0 7.7
MS,tot with state constraint 73.6 44.46 23.3 -

Results obtained for 1pctCO2, RCP6.0, and RCP4.5 scenarios are represented in Figures 3–5,
respectively. These figures show that the overshooting phenomenon is also observed for the 1pctCO2

and RCP6.0 scenarios. The only exception is the RCP4.5 scenario.
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If the optimal control problem is considered with control variable constraint αA(t) ≤ U, then
the target value for the temperature anomaly in the year 2100 may not necessarily be achieved (this
depends on the value of the constraint U and the scenario in question). Assuming, for example, that
U = 0.02, then the corresponding instant mass of aerosols is estimated to be 4.8 Tg S. In such a case, for
the RCP8.5 scenario, the calculated temperature anomaly in the year 2100 relative to 2020 would exceed
the target value by 0.3 ◦C, which is equivalent to exceeding the pre-industrial level by 1.8 ◦C. It needs
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to be recalled that constraint on the control variable is associated with a possible limitation on resources
required to implement the project, namely, the amount of aerosols available to the project executors.

We emphasize that the results of calculations discussed above are for illustration purposes only.
The primary outcome presented in this paper is the optimal control-based approach that can be used
to design projects targeting purposeful manipulation of climate and weather.

4. Concluding Remarks

The use of fine aerosol particles, artificially injected into the stratosphere, is considered to
be one of the most effective and feasible measures to counter global warming in the 21st century
and beyond. Computer simulation using mathematical climate models of various degrees of
sophistication and complexity is the most popular and reliable technique for exploring and estimating
the effectiveness of stratospheric aerosol climate engineering and climate and weather manipulation.
Numerical simulation of climate engineering requires the design of fairly realistic scenarios for aerosol
injections. This paper introduced the optimal-control-based method for designing climate engineering
scenarios. Considering Earth’s climate as controlled dynamical system, we proposed to approach
geoengineering from the standpoint of the optimal control theory, thereby formulating the goal of
geoengineering projects in terms of extremal problem. The capability to apply this technique was
illustrated using the two-layer energy balance model in which the global mean surface temperature
anomaly and the deep ocean temperature perturbation were the state variables, and the emission rate
of aerosol precursors was the control variable. Solutions to the unconstrained as well as state and
control constrained problems were obtained on the basis of classical Pontryagin’s maximum principle.
The proposed method will provide additional useful insights for the development of optimal climate
manipulation strategies to counter global warming in the 21st century.
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